Science.gov

Sample records for ageing model podospora

  1. A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: decrease in mitochondrial DNA repair activity during ageing.

    PubMed

    Soerensen, Mette; Gredilla, Ricardo; Müller-Ohldach, Mathis; Werner, Alexandra; Bohr, Vilhelm A; Osiewacz, Heinz D; Stevnsner, Tinna

    2009-08-01

    The free radical theory of ageing states that ROS play a key role in age-related decrease in mitochondrial function via the damage of mitochondrial DNA (mtDNA), proteins and lipids. In the sexually reproducing ascomycete Podospora anserina ageing is, as in other eukaryotes, associated with mtDNA instability and mitochondrial dysfunction. Part of the mtDNA instabilities may arise due to accumulation of ROS induced mtDNA lesions, which, as previously suggested for mammals, may be caused by an age-related decrease in base excision repair (BER). Alignments of known BER protein sequences with the P. anserina genome revealed high homology. We report for the first time the presence of BER activities in P. anserina mitochondrial extracts. DNA glycosylase activities decrease with age, suggesting that the increased mtDNA instability with age may be caused by decreased ability to repair mtDNA damage and hence contribute to ageing and lifespan control in this ageing model. Additionally, we find low DNA glycosylase activities in the long-lived mutants grisea and DeltaPaCox17::ble, which are characterized by low mitochondrial ROS generation. Overall, our data identify a potential role of mtDNA repair in controlling ageing and life span in P. anserina, a mechanism possibly regulated in response to ROS levels.

  2. The genome sequence of the model ascomycete fungus Podospora anserina

    PubMed Central

    Espagne, Eric; Lespinet, Olivier; Malagnac, Fabienne; Da Silva, Corinne; Jaillon, Olivier; Porcel, Betina M; Couloux, Arnaud; Aury, Jean-Marc; Ségurens, Béatrice; Poulain, Julie; Anthouard, Véronique; Grossetete, Sandrine; Khalili, Hamid; Coppin, Evelyne; Déquard-Chablat, Michelle; Picard, Marguerite; Contamine, Véronique; Arnaise, Sylvie; Bourdais, Anne; Berteaux-Lecellier, Véronique; Gautheret, Daniel; de Vries, Ronald P; Battaglia, Evy; Coutinho, Pedro M; Danchin, Etienne GJ; Henrissat, Bernard; Khoury, Riyad EL; Sainsard-Chanet, Annie; Boivin, Antoine; Pinan-Lucarré, Bérangère; Sellem, Carole H; Debuchy, Robert; Wincker, Patrick; Weissenbach, Jean; Silar, Philippe

    2008-01-01

    Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope. PMID:18460219

  3. Poly(ADP-Ribose) Polymerase Is a Substrate Recognized by Two Metacaspases of Podospora anserina

    PubMed Central

    Strobel, Ingmar

    2013-01-01

    The two metacaspases MCA1 and MCA2 of the fungal aging model organism Podospora anserina (PaMCA1 and PaMCA2, respectively) have previously been demonstrated to be involved in the control of programmed cell death (PCD) and life span. In order to identify specific pathways and components which are controlled by the activity of these enzymes, we set out to characterize them further. Heterologous overexpression in Escherichia coli of the two metacaspase genes resulted in the production of proteins which aggregate and form inclusion bodies from which the active protein has been recovered via refolding in appropriate buffers. The renaturated proteins are characterized by an arginine-specific activity and are active in caspase-like self-maturation leading to the generation of characteristic small protein fragments. Both activities are dependent on the presence of calcium. Incubation of the two metacaspases with recombinant poly(ADP-ribose) polymerase (PARP), a known substrate of mammalian caspases, led to the identification of PARP as a substrate of the two P. anserina proteases. Using double mutants in which P. anserina Parp (PaParp) is overexpressed and PaMca1 is either overexpressed or deleted, we provide evidence for in vivo degradation of PaPARP by PaMCA1. These results support the idea that the substrate profiles of caspases and metacaspases are at least partially overlapping. Moreover, they link PCD and DNA maintenance in the complex network of molecular pathways involved in aging and life span control. PMID:23584991

  4. A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina.

    PubMed

    Sellem, Carole H; Marsy, Sophie; Boivin, Antoine; Lemaire, Claire; Sainsard-Chanet, Annie

    2007-07-01

    We present here the properties of a complex III loss-of-function mutant of the filamentous fungus Podospora anserina. The mutation corresponds to a single substitution in the second intron of the gene cyc1 encoding cytochrome c(1), leading to a splicing defect. The cyc1-1 mutant is long-lived, exhibits a defect in ascospore pigmentation, has a reduced growth rate and a reduced ROS production associated with a stabilisation of its mitochondrial DNA. We also show that increased longevity is linked with morphologically modified mitochondria and an increased number of mitochondrial genomes. Overexpression of the alternative oxidase rescues all these phenotypes and restores aging. Interestingly, the absence of complex III in this mutant is not paralleled with a deficiency in complex I activity as reported in mammals although the respiratory chain of P. anserina has recently been demonstrated to be organized according to the "respirasome" model.

  5. Manganese rescues adverse effects on lifespan and development in Podospora anserina challenged by excess hydrogen peroxide.

    PubMed

    Grimm, Carolin; Osiewacz, Heinz D

    2015-03-01

    For biological systems, balancing cellular levels of reactive oxygen species (ROS) is of great importance because ROS are both, essential for cellular signaling and dangerous in causing molecular damage. Cellular ROS abundance is controlled by a delicate network of molecular pathways. Within this network, superoxide dismutases (SODs) are active in disproportion of the superoxide anion leading to the formation of hydrogen peroxide. The fungal aging model Podospora anserina encodes at least three SODs. One of these is the mitochondrial PaSOD3 isoform containing manganese as a cofactor. Previous work resulted in the selection of strains in which PaSod3 is strongly overexpressed. These strains display impairments in growth and lifespan. A computational model suggests a series of events to occur in Sod3 overexpressing strains leading to adverse effects due to elevated hydrogen peroxide levels. In an attempt to validate this model and to obtain more detailed information about the cellular responses involved in ROS balancing, we further investigated the PaSod3 overexpressing strains. Here we show that hydrogen peroxide levels are indeed strongly increased in the mutant strain. Surprisingly, this phenotype can be rescued by the addition of manganese to the growth medium. Strikingly, while we obtained no evidence for an antioxidant effect of manganese, we found that the metal is required for induction of components of the ROS scavenging network and lowers the hydrogen peroxide level of the mutant. A similar effect of manganese on lifespan reversion was obtained in wild-type strains challenged with exogenous hydrogen peroxide. It appears that manganese is limited under high hydrogen peroxide and suggests that a manganese-dependent activity leads to the induction of ROS scavenging components.

  6. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina.

    PubMed

    Krause, Frank; Scheckhuber, Christian Q; Werner, Alexandra; Rexroth, Sascha; Reifschneider, Nicole H; Dencher, Norbert A; Osiewacz, Heinz D

    2004-06-18

    To elucidate the molecular basis of the link between respiration and longevity, we have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This established aging model is able to respire by either the standard or the alternative pathway. In the latter pathway, electrons are directly transferred from ubiquinol to the alternative oxidase and thus bypass complexes III and IV. We show that the cytochrome c oxidase pathway is organized according to the mammalian "respirasome" model (Schägger, H., and Pfeiffer, K. (2000) EMBO J. 19, 1777-1783). In contrast, the alternative pathway is composed of distinct supercomplexes of complexes I and III (i.e. I(2) and I(2)III(2)), which have not been described so far. Enzymatic analysis reveals distinct functional properties of complexes I and III belonging to either cytochrome c oxidase- or alternative oxidase-dependent pathways. By a gentle colorless-native PAGE, almost all of the ATP synthases from mitochondria respiring by either pathway were preserved in the dimeric state. Our data are of significance for the understanding of both respiratory pathways as well as lifespan control and aging.

  7. Emestrins: Anti-Cryptococcus Epipolythiodioxopiperazines from Podospora australis.

    PubMed

    Li, Yan; Yue, Qun; Krausert, Nicole M; An, Zhiqiang; Gloer, James B; Bills, Gerald F

    2016-09-23

    Eleven emestrin-type epipolythiodioxopiperazines, including four new compounds, emestrins H-K (1-4), were isolated from the crude extracts of two strains of the coprophilous fungus Podospora australis. The structures of 1-4 were established primarily by analysis of NMR data, and the absolute configuration of C-6 in 1 was independently assigned using the modified Mosher method. Four of the known emestrins obtained (emestrins C-E and MPC1001C) were found to selectively inhibit the growth of Cryptococcus neoformans. These results also represent the first report of chemistry from any strain of P. australis. PMID:27557418

  8. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina *

    PubMed Central

    Chatterjee, Deep; Kudlinzki, Denis; Linhard, Verena; Saxena, Krishna; Schieborr, Ulrich; Gande, Santosh L.; Wurm, Jan Philip; Wöhnert, Jens; Abele, Rupert; Rogov, Vladimir V.; Dötsch, Volker; Osiewacz, Heinz D.; Sreeramulu, Sridhar; Schwalbe, Harald

    2015-01-01

    Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner. PMID:25979334

  9. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina.

    PubMed

    Chatterjee, Deep; Kudlinzki, Denis; Linhard, Verena; Saxena, Krishna; Schieborr, Ulrich; Gande, Santosh L; Wurm, Jan Philip; Wöhnert, Jens; Abele, Rupert; Rogov, Vladimir V; Dötsch, Volker; Osiewacz, Heinz D; Sreeramulu, Sridhar; Schwalbe, Harald

    2015-06-26

    Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner. PMID:25979334

  10. RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model

    PubMed Central

    Fischer, Fabian; Filippis, Christodoulos; Osiewacz, Heinz D.

    2015-01-01

    Mitochondrial respiratory supercomplexes (mtRSCs) are stoichiometric assemblies of electron transport chain (ETC) complexes in the inner mitochondrial membrane. They are hypothesized to regulate electron flow, the generation of reactive oxygen species (ROS) and to stabilize ETC complexes. Using the fungal ageing model Podospora anserina, we investigated the impact of homologues of the Saccharomyces cerevisiae respiratory supercomplex factors 1 and 2 (termed PaRCF1 and PaRCF2) on mtRSC formation, fitness and lifespan. Whereas PaRCF2’s role seems negligible, ablation of PaRCF1 alters size of monomeric complex IV, reduces the abundance of complex IV-containing supercomplexes, negatively affects vital functions and shortens lifespan. PaRcf1 overexpression slightly prolongs lifespan, though without appreciably influencing ETC organization. Overall, our results identify PaRCF1 as necessary yet not sufficient for mtRSC formation and demonstrate that PaRCF1-dependent stability of complex IV and associated supercomplexes is highly relevant for maintenance of the healthy lifespan in a eukaryotic model organism. PMID:26220011

  11. Peroxisome dynamics during development of the fungus Podospora anserina.

    PubMed

    Takano-Rojas, Harumi; Zickler, Denise; Peraza-Reyes, Leonardo

    2016-01-01

    Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics.

  12. Yeti--a degenerate gypsy-like LTR retrotransposon in the filamentous ascomycete Podospora anserina.

    PubMed

    Hamann, A; Feller, F; Osiewacz, H D

    2000-10-01

    In the filamentous ascomycete Podospora anserina a 6,935-bp retrotransposon, Yeti, has been identified and characterized. It is flanked by a 5-bp target site duplication and contains long terminal repeats (LTRs) 354 bp in length. The LTRs show a high degree of identity to the previously reported repetitive element repa, a sequence suggested to represent a solo-LTR element of an unknown transposon. In the investigated Podospora strains, the number of complete Yeti copies is significantly lower than the number of repa elements, with up to 25 copies. Yeti appears to be inactive: it is highly degenerate and no transcripts of the element have been detected even in Podospora cultures grown under elevated stress conditions. The amino acid sequences deduced from Yeti display significant homology, particularly in the reverse transcriptase region, to those of other fungal retrotransposons, indicating that it is a member of the gypsy family. As suggested by the unusual dinucleotide content, degeneration of Yeti appears to be the result of a molecular mechanism resembling repeat-induced point mutation in Neurospora crassa.

  13. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  14. Premature Death in Podospora Anserina: Sporadic Accumulation of the Deleted Mitochondrial Genome, Translational Parameters and Innocuity of the Mating Types

    PubMed Central

    Contamine, V.; Lecellier, G.; Belcour, L.; Picard, M.

    1996-01-01

    The Podospora anserina premature death syndrome was described as early growth arrest caused by a site-specific deletion of the mitochondrial genome (mtDNA) and occurring in strains displaying the genotype AS1-4 mat-. The AS1-4 mutation lies in a gene encoding a cytosolic ribosomal protein, while mat- is one of the two forms (mat- and mat+) of the mating-type locus. Here we show that, depending on culture conditions, death due to the accumulation of the deleted mtDNA molecule can occur in the AS1-4 mat+ context and can be delayed in the AS1-4 mat- background. Furthermore, we show that premature death and the classical senescence process are mutually exclusive. Several approaches permit the identification of the mat-linked gene involved in the appearance of premature death. This gene, rmp, exhibits two natural alleles, rmp- linked to mat- and rmp+ linked to mat+. The first is probably functional while the second probably carries a nonsense mutation and is sporadically expressed through natural suppression. A model is proposed that emphasizes the roles played by the AS1-4 mutation, the rmp gene, and environmental conditions in the accumulation of the deleted mitochondrial genome characteristic of this syndrome. PMID:8889519

  15. Cytosolic Ribosomal Mutations That Abolish Accumulation of Circular Intron in the Mitochondria without Preventing Senescence of Podospora Anserina

    PubMed Central

    Silar, P.; Koll, F.; Rossignol, M.

    1997-01-01

    The filamentous fungus Podospora anserina presents a degeneration syndrome called Senescence associated with mitochondrial DNA modifications. We show that mutations affecting the two different and interacting cytosolic ribosomal proteins (S7 and S19) systematically and specifically prevent the accumulation of senDNAα (a circular double-stranded DNA plasmid derived from the first intron of the mitochondrial cox1 gene or intron α) without abolishing Senescence nor affecting the accumulation of other usually observed mitochondrial DNA rearrangements. One of the mutant proteins is homologous to the Escherichia coli S4 and Saccharomyces cerevisiae S13 ribosomal proteins, known to be involved in accuracy control of cytosolic translation. The lack of accumulation of senDNAα seems to result from a nontrivial ribosomal alteration unrelated to accuracy control, indicating that S7 and S19 proteins have an additional function. The results strongly suggest that modified expression of nucleus-encoded proteins contributes to Senescence in P. anserina. These data do not fit well with some current models, which propose that intron α plays the role of the cytoplasmic and infectious Determinant of Senescence that was defined in early studies. PMID:9055079

  16. Curvicollides A-C: new polyketide-derived lactones from a sclerotium-colonizing isolate of Podospora curvicolla (NRRL 25778).

    PubMed

    Che, Yongsheng; Gloer, James B; Wicklow, Donald T

    2004-04-15

    Curvicollides A-C (1-3) have been obtained from cultures of an isolate of Podospora curvicolla (NRRL 25778) that colonized a sclerotium of Aspergillus flavus. The structures of these compounds were elucidated by analysis of one- and two-dimensional NMR data. The lead compound (1) showed antifungal activity against A. flavus and Fusarium verticillioides. [structure: see text] PMID:15070309

  17. ALL AGES LEAD MODEL

    EPA Science Inventory

    The Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children (version 0.99d) was released in March 1994, and has been widely accepted in the risk assessment community as a tool for implementing the site specific risk assessment process when the issue is childhood...

  18. Age models and their uncertainties

    NASA Astrophysics Data System (ADS)

    Marwan, N.; Rehfeld, K.; Goswami, B.; Breitenbach, S. F. M.; Kurths, J.

    2012-04-01

    The usefulness of a proxy record is largely dictated by accuracy and precision of its age model, i.e., its depth-age relationship. Only if age model uncertainties are minimized correlations or lead-lag relations can be reliably studied. Moreover, due to different dating strategies (14C, U-series, OSL dating, or counting of varves), dating errors or diverging age models lead to difficulties in comparing different palaeo proxy records. Uncertainties in the age model are even more important if an exact dating is necessary in order to calculate, e.g., data series of flux or rates (like dust flux records, pollen deposition rates). Several statistical approaches exist to handle the dating uncertainties themselves and to estimate the age-depth relationship. Nevertheless, linear interpolation is still the most commonly used method for age modeling. The uncertainties of a certain event at a given time due to the dating errors are often even completely neglected. Here we demonstrate the importance of considering dating errors and implications for the interpretation of variations in palaeo-climate proxy records from stalagmites (U-series dated). We present a simple approach for estimating age models and their confidence levels based on Monte Carlo methods and non-linear interpolation. This novel algorithm also allows for removing age reversals. Our approach delivers a time series of a proxy record with a value range for each age depth also, if desired, on an equidistant time axis. The algorithm is implemented in interactive scripts for use with MATLAB®, Octave, and FreeMat.

  19. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  20. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  1. Podospora anserina does not senesce when serially passaged in liquid culture.

    PubMed Central

    Turker, M S; Cummings, D J

    1987-01-01

    A procedure was developed for the prolonged growth of the ascomycete fungus Podospora anserina in liquid culture to determine the effects of such growth on the senescence phenotype. Senescence in P. anserina, which is maternally inherited and associated with the excision and amplification of specific mitochondrial plasmids, occurs when this species is grown on solid medium. In two independent experiments no evidence of senescence was observed as mycelia were serially passaged in liquid culture. Further, when separable mycelial masses, termed puff balls, from the liquid cultures were plated on solid medium, a significant increase in their average longevity was observed. The apparent immortality of P. anserina in liquid culture was not dependent upon mitochondrial DNA rearrangements, nor was it affected by the presence of a previously described senescence plasmid, alpha senDNA. Evidence was obtained indicating that growth in liquid culture exerts selective pressure to maintain the wild-type mitochondrial genome. Images PMID:3804968

  2. Genetic and Molecular Analysis of a Long-Lived Strain of Podospora Anserina

    PubMed Central

    Silliker, M. E.; Cummings, D. J.

    1990-01-01

    A genetic and molecular analysis of a long-lived strain of Podospora anserina, Mn19, was undertaken to detect mutations in genes responsible for senescence. In crosses between Mn19 and wild type about 15% of the progeny were long-lived, regardless of the female parent. Molecular analysis of the long-lived progeny showed that none of the strains inherited a mtDNA rearrangement characteristic of the Mn19 parent. Instead, all long-lived strains initially inherited wild-type mtDNA. Over time the mtDNA of most long-lived strains underwent rearrangements, deletions and amplifications. The change over time in the presence of two previously characterized plasmids associated with either senescence or longevity was monitored. Crosses between Mn19 and its long-lived progeny also yielded only a small percent of individuals recovering from senescence. Analysis of mtDNA from crosses suggests that wild-type mtDNA from the paternal parent can be selected over mtDNA from the maternal parent. The life span phenotypes of progeny were not consistent with the hypothesis that mutations in a few nuclear genes were responsible for longevity. PMID:2397883

  3. Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae.

    PubMed

    Matasyoh, Josphat C; Dittrich, Birger; Schueffler, Anja; Laatsch, Hartmut

    2011-03-01

    In a screening for natural products with mosquito larvicidal activities, the endophytic fungus Podospora sp. isolated from the plant Laggera alata (Asteraceae) was conspicuous. Two xanthones, sterigmatocystin (1) and secosterigmatocystin (2), and an anthraquinone derivative (3) 13-hydroxyversicolorin B were isolated after fermentation on M(2) medium. These compounds were characterised using spectroscopic and X-ray analysis and examined against third instar larvae of Anopheles gambiae. The results demonstrated that compound 1 was the most potent one with LC(50) and LC(90) values of 13.3 and 73.5 ppm, respectively. Over 95% mortality was observed at a concentration 100 ppm after 24 h. These results compared farvorably with the commercial larvicide pylarvex® that showed 100% mortality at the same concentration. Compound 3 was less potent and had an LC(50) of 294.5 ppm and over 95% mortality was achieved at a concentration of 1,000 ppm. Secosterigmatocystin (2) revealed relatively weak activity and therefore LC values were not determined.

  4. Purification and characterization of a new laccase from the filamentous fungus Podospora anserina.

    PubMed

    Durand, Fabien; Gounel, Sébastien; Mano, Nicolas

    2013-03-01

    A new laccase from the filamentous fungus Podospora anserina has been isolated and identified. The 73 kDa protein containing 4 coppers, truncated from its first 31 amino acids, was successfully overexpressed in Pichia pastoris and purified in one step with a yield of 48% and a specific activity of 644Umg(-1). The kinetic parameters, k(cat) and K(M), determined at 37 °C and optimal pH are 1372 s(-1) and 307 μM for ABTS and, 1.29 s(-1) and 10.9 μM, for syringaldazine (SGZ). Unlike other laccases, the new protein displays a better thermostability, with a half life>400 min at 37 °C, is less sensitive to chloride and more stable at pH 7. Even though, the new 566 amino-acid enzyme displays a large homology with Bilirubin oxidase (BOD) from Myrothecium verrucaria (58%) and exhibits the four histidine rich domains consensus sequences of BODs, the new enzyme is not able to oxidize neither conjugated nor unconjugated bilirubin. PMID:23220637

  5. Identification of a Hypothetical Protein from Podospora anserina as a Nitroalkane Oxidase

    SciTech Connect

    Tormos, Jose R.; Taylor, Alexander B.; Daubner, S. Colette; Hart, P. John; Fitzpatrick, Paul F.

    2010-08-23

    The flavoprotein nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of primary and secondary nitroalkanes to their respective aldehydes and ketones. Structurally, the enzyme is a member of the acyl-CoA dehydrogenase superfamily. To date no enzymes other than that from F. oxysporum have been annotated as NAOs. To identify additional potential NAOs, the available database was searched for enzymes in which the active site residues Asp402, Arg409, and Ser276 were conserved. Of the several fungal enzymes identified in this fashion, PODANSg2158 from Podospora anserina was selected for expression and characterization. The recombinant enzyme is a flavoprotein with activity on nitroalkanes comparable to the F. oxysporum NAO, although the substrate specificity is somewhat different. Asp399, Arg406, and Ser273 in PODANSg2158 correspond to the active site triad in F. oxysporum NAO. The k{sub cat}/K{sub M}-pH profile with nitroethane shows a pK{sub a} of 5.9 that is assigned to Asp399 as the active site base. Mutation of Asp399 to asparagine decreases the k{sub cat}/K{sub M} value for nitroethane over 2 orders of magnitude. The R406K and S373A mutations decrease this kinetic parameter by 64- and 3-fold, respectively. The structure of PODANSg2158 has been determined at a resolution of 2.0 {angstrom}, confirming its identification as an NAO.

  6. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.

  7. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research. PMID:26743051

  8. Aging Successfully: A Four-Factor Model

    ERIC Educational Resources Information Center

    Lee, Pai-Lin; Lan, William; Yen, Tung-Wen

    2011-01-01

    The study was designed to validate a model for a successful aging process and examine the gender differences in the aging process. Three hundred twelve participants who were 65 or older completed a Taiwan Social Change Survey that measures four factors that define successful aging process: including physical, psychological, social support, and…

  9. Estimating Neuronal Ageing with Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Pham, Tuan D.

    2011-06-01

    Neuronal degeneration is widely observed in normal ageing, meanwhile the neurode-generative disease like Alzheimer's disease effects neuronal degeneration in a faster way which is considered as faster ageing. Early intervention of such disease could benefit subjects with potentials of positive clinical outcome, therefore, early detection of disease related brain structural alteration is required. In this paper, we propose a computational approach for modelling the MRI-based structure alteration with ageing using hidden Markov model. The proposed hidden Markov model based brain structural model encodes intracortical tissue/fluid distribution using discrete wavelet transformation and vector quantization. Further, it captures gray matter volume loss, which is capable of reflecting subtle intracortical changes with ageing. Experiments were carried out on healthy subjects to validate its accuracy and robustness. Results have shown its ability of predicting the brain age with prediction error of 1.98 years without training data, which shows better result than other age predition methods.

  10. Calibration of models using groundwater age

    USGS Publications Warehouse

    Sanford, W.

    2011-01-01

    There have been substantial efforts recently by geochemists to determine the age of groundwater (time since water entered the system) and its uncertainty, and by hydrologists to use these data to help calibrate groundwater models. This essay discusses the calibration of models using groundwater age, with conclusions that emphasize what is practical given current limitations rather than theoretical possibilities.

  11. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    PubMed Central

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex

  12. Aging behavior and lifetime modeling for polycarbonate

    SciTech Connect

    Kahlen, S.; Wallner, G.M.; Lang, R.W.

    2010-05-15

    In this paper, polycarbonate (PC) as a material candidate for solar absorber applications is investigated as to the aging behavior at different temperatures in air and water. The aging conditioning was performed in air in the temperature range from 120 to 140 C and in water between 70 and 95 C. Tensile tests were performed on unaged and aged PC film specimens at ambient temperature using strain-to-break values as a performance indicator for the degree of aging. For PC the effect of aging was found to strongly depend on the aging conditions. Activation energy based lifetime prediction models according to various methods described in the literature were applied. The activation energies and corresponding lifetime predictions for the temperature range from 40 to 60 C in water and from 90 to 110 C in air derived from these models are compared and interpreted as to their practical relevance. (author)

  13. A site-specific deletion in mitochondrial DNA of Podospora is under the control of nuclear genes.

    PubMed Central

    Belcour, L; Begel, O; Picard, M

    1991-01-01

    In the filamentous fungus Podospora anserina, the association of two nuclear genes inevitably leads to a "premature death" phenotype consisting of an early end of vegetative growth a few days after ascospore germination. Mycelia showing this phenotype contain a mitochondrial chromosome that always bears the same deletion. One of the break points is exactly at the 5' splice site of a particular mitochondrial intron, suggesting that the deletion event could result from molecular mechanisms also involved in intron mobility. One of the nuclear genes involved in triggering this site-specific event belongs to the mating-type minus haplotype; the other is a mutant allele of a gene encoding a cytosolic ribosomal protein. Images PMID:2023905

  14. The Podospora rmp1 gene implicated in nucleus-mitochondria cross-talk encodes an essential protein whose subcellular location is developmentally regulated.

    PubMed Central

    Contamine, Véronique; Zickler, Denise; Picard, Marguerite

    2004-01-01

    It has been previously reported that, at the time of death, the Podospora anserina AS1-4 mutant strains accumulate specific deleted forms of the mitochondrial genome and that their life spans depend on two natural alleles (variants) of the rmp1 gene: AS1-4 rmp1-2 strains exhibit life spans strikingly longer than those of AS1-4 rmp1-1. Here, we show that rmp1 is an essential gene. In silico analyses of eight rmp1 natural alleles present in Podospora isolates and of the putative homologs of this orphan gene in other filamentous fungi suggest that rmp1 evolves rapidly. The RMP1 protein is localized in the mitochondrial and/or the cytosolic compartment, depending on cell type and developmental stage. Strains producing RMP1 without its mitochondrial targeting peptide are viable but exhibit vegetative and sexual defects. PMID:15020413

  15. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  16. Species ages in neutral biodiversity models.

    PubMed

    Chisholm, Ryan A; O'Dwyer, James P

    2014-05-01

    Biogeography seeks to understand the mechanisms that drive biodiversity across long temporal and large spatial scales. Theoretical models of biogeography can be tested by comparing their predictions of quantities such as species ages against empirical estimates. It has previously been claimed that the neutral theory of biodiversity and biogeography predicts species ages that are unrealistically long. Any improved theory of biodiversity must rectify this problem, but first it is necessary to quantify the problem precisely. Here we provide analytical expressions for species ages in neutral biodiversity communities. We analyse a spatially implicit metacommunity model and solve for both the zero-sum and non-zero-sum cases. We explain why our new expressions are, in the context of biodiversity, usually more appropriate than those previously imported from neutral molecular evolution. Because of the time symmetry of the spatially implicit neutral model, our expressions also lead directly to formulas for species persistence times and species lifetimes. We use our new expressions to estimate species ages of forest trees under a neutral model and find that they are about an order of magnitude shorter than those predicted previously but still unrealistically long. In light of our results, we discuss different models of biogeography that may solve the problem of species ages.

  17. Love Kills:. Simulations in Penna Ageing Model

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Cebrat, Stanisław; Penna, T. J. P.; Sousa, A. O.

    The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.

  18. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  19. A Mutation in an Hsp90 Gene Affects the Sexual Cycle and Suppresses Vegetative Incompatibility in the Fungus Podospora Anserina

    PubMed Central

    Loubradou, G.; Begueret, J.; Turcq, B.

    1997-01-01

    Vegetative incompatibility is widespread in fungi but its molecular mechanism and biological function are still poorly understood. A way to study vegetative incompatibility is to investigate the function of genes whose mutations suppress this phenomenon. In Podospora anserina, these genes are known as mod genes. In addition to suppressing vegetative incompatibility, mod mutations cause some developmental defects. This suggests that the molecular mechanisms of vegetative incompatibility and development pathways are interconnected. The mod-E1 mutation was isolated as a suppressor of the developmental defects of the mod-D2 strain. We show here that mod-E1 also partially suppresses vegetative incompatibility, strengthening the link between development and vegetative incompatibility. mod-E1 is the first suppressor of vegetative incompatibility characterized at the molecular level. It encodes a member of the Hsp90 family, suggesting that development and vegetative incompatibility use common steps of a signal transduction pathway. The involvement of mod-E in the sexual cycle has also been further investigated. PMID:9335595

  20. Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina.

    PubMed Central

    Coppin, E; Debuchy, R

    2000-01-01

    In the heterothallic filamentous fungus Podospora anserina, four mating-type genes encoding transcriptional factors have been characterized: FPR1 in the mat+ sequence and FMR1, SMR1, and SMR2 in the alternative mat- sequence. Fertilization is controlled by FPR1 and FMR1. After fertilization, male and female nuclei, which have divided in the same cell, form mat+/mat- pairs during migration into the ascogenous hyphae. Previous data indicate that the formation of mat+/mat- pairs is controlled by FPR1, FMR1, and SMR2. SMR1 was postulated to be necessary for initial development of ascogenous hyphae. In this study, we investigated the transcriptional control of the mat genes by seeking mat transcripts during the vegetative and sexual phase and fusing their promoter to a reporter gene. The data indicate that FMR1 and FPR1 are expressed in both mycelia and perithecia, whereas SMR1 and SMR2 are transcribed in perithecia. Increased or induced vegetative expression of the four mat genes has no effect when the recombined gene is solely in the wild-type strain. However, the combination of resident FPR1 with deregulated SMR2 and overexpressed FMR1 in the same nucleus is lethal. This lethality is suppressed by the expression of SMR1, confirming that SMR1 operates downstream of the other mat genes. PMID:10835389

  1. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  2. COnstructing Proxy-Record Age models (COPRA)

    NASA Astrophysics Data System (ADS)

    Marwan, Norbert; Rehfeld, Kira; Goswami, Bedartha; Breitenbach, Sebastian F. M.; Kurths, Jürgen

    2013-04-01

    Reliable age models are fundamental for any palaeoclimate reconstruction. The increasing availability of high-resolution palaeoclimate time series, e.g., based on speleothem archives, has attracted some new activity in the development of alternative and novel approaches for reconstructing chronologies. Challenges in this effort are (semi-)automatic outlier, reversal, and hiatus detection and treatment, as well as the inclusion of information on age uncertainties and independent layer counting to improve the overall precision of the chronology. However, different dating strategies, different kinds of palaeoarchive formation, dating uncertainties, and different chronology construction methods cause a limited comparability of the different palaeoclimate records. We present a recently developed framework which addresses these challenges and which allows the incorporation of layer counting data to improve the reconstructed chronology of a given time series. Moreover, we introduce the concept of an "absolute" time scale, a common time axis which works as an invariant reference allowing the comparison of different palaeoclimate records. This concept translates the age uncertainties into uncertainties in the proxy values. This framework is implemented as an open source software (COPRA) for Octave and Matlab.

  3. Biological Roles of the Podospora anserina Mitochondrial Lon Protease and the Importance of Its N-Domain

    PubMed Central

    Adam, Céline; Picard, Marguerite; Déquard-Chablat, Michelle; Sellem, Carole H.; Denmat, Sylvie Hermann-Le; Contamine, Véronique

    2012-01-01

    Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction. PMID:22693589

  4. DNA-dependent RNA polymerase III from the fungus Podospora comata. Purification, subunit structure and comparison with the homologous enzyme of a related species.

    PubMed

    Barreau, C; Begueret, J

    1982-12-15

    DNA-dependent RNA polymerase III has been purified to homogeneity from the filamentous fungus Podospora comata. The enzyme was extracted at low ionic strength, separated from the polymerases I and II by DEAE-Sephadex chromatography and purified by heparin-Sepharose and phosphocellulose chromatography; 0.1-0.2 mg highly purified homogeneous enzyme with a specific activity of 220 units/mg could be obtained from 2 kg wet mycelium. The subunit composition of the enzyme was determined after sodium dodecyl sulphate/polyacrylamide gel electrophoresis; thirteen putative subunits of molecular weight 174000 (a), 129000 b), 87000 (c), 50000 (d), 39000 (e), 23500 (f), 21000 (g), 19000 (h), 17000 (i), 16500 (j), 13500 (k), 11000 (l) and 10000 (m) were identified. All of the polypeptide components of the enzyme are present in about integral stoichiometric amounts as judged by dye binding. The presence of subunit Mr = 87000 in a molar ratio 1:1 is necessary to obtain very active enzyme. Thirteen homologous subunits were observed in a preparation of RNA polymerase III from Podospora anserina, which is a related species. Only subunit i is different in the two species. PMID:7151805

  5. Creating Better School-Age Care Jobs: Model Work Standards.

    ERIC Educational Resources Information Center

    Haack, Peggy

    Built on the premise that good school-age care jobs are the cornerstone of high-quality services for school-age youth and their families, this guide presents model work standards for school-age care providers. The guide begins with a description of the strengths and challenges of the school-age care profession. The model work standards are…

  6. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society.

    PubMed

    Joulan, Karine; Brémond, Roland; Hautière, Nicolas

    2015-01-01

    The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994

  7. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society

    PubMed Central

    Joulan, Karine; Brémond, Roland

    2015-01-01

    The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994

  8. Virginia Opossums, Minimum Reproduction Age and Predators in the Penna Aging Model

    NASA Astrophysics Data System (ADS)

    Altevolmer, A. K.

    Age-specific predators are introduced into the Penna model of biological aging. It is shown that populations with a variable minimum reproduction age find a stable state with an earlier onset of reproduction, if older ages are eaten by the predators. This behavior agrees with the demographic data of the Virgina opossum.

  9. A compositional and dynamic model for face aging.

    PubMed

    Suo, Jinli; Zhu, Song-Chun; Shan, Shiguang; Chen, Xilin

    2010-03-01

    In this paper, we present a compositional and dynamic model for face aging. The compositional model represents faces in each age group by a hierarchical And-Or graph, in which And nodes decompose a face into parts to describe details (e.g., hair, wrinkles, etc.) crucial for age perception and Or nodes represent large diversity of faces by alternative selections. Then a face instance is a transverse of the And-Or graph-parse graph. Face aging is modeled as a Markov process on the parse graph representation. We learn the parameters of the dynamic model from a large annotated face data set and the stochasticity of face aging is modeled in the dynamics explicitly. Based on this model, we propose a face aging simulation and prediction algorithm. Inversely, an automatic age estimation algorithm is also developed under this representation. We study two criteria to evaluate the aging results using human perception experiments: 1) the accuracy of simulation: whether the aged faces are perceived of the intended age group, and 2) preservation of identity: whether the aged faces are perceived as the same person. Quantitative statistical analysis validates the performance of our aging model and age estimation algorithm.

  10. A compositional and dynamic model for face aging.

    PubMed

    Suo, Jinli; Zhu, Song-Chun; Shan, Shiguang; Chen, Xilin

    2010-03-01

    In this paper, we present a compositional and dynamic model for face aging. The compositional model represents faces in each age group by a hierarchical And-Or graph, in which And nodes decompose a face into parts to describe details (e.g., hair, wrinkles, etc.) crucial for age perception and Or nodes represent large diversity of faces by alternative selections. Then a face instance is a transverse of the And-Or graph-parse graph. Face aging is modeled as a Markov process on the parse graph representation. We learn the parameters of the dynamic model from a large annotated face data set and the stochasticity of face aging is modeled in the dynamics explicitly. Based on this model, we propose a face aging simulation and prediction algorithm. Inversely, an automatic age estimation algorithm is also developed under this representation. We study two criteria to evaluate the aging results using human perception experiments: 1) the accuracy of simulation: whether the aged faces are perceived of the intended age group, and 2) preservation of identity: whether the aged faces are perceived as the same person. Quantitative statistical analysis validates the performance of our aging model and age estimation algorithm. PMID:20075467

  11. Mitochondrial DNA-deficient models and aging.

    PubMed

    Olgun, Abdullah; Akman, Serif

    2007-04-01

    Human mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS) enzyme complexes I, III, IV, and V except complex II. MtDNA is more sensitive to oxidative damage than nuclear DNA. MtDNA defects are involved in many pathologies including aging. Several mtDNA-deficient cell culture, yeast, and animal models were generated to study the role of mtDNA in many physiological processes. Ethidium bromide (EB), an agent that is known to inhibit mtDNA replication with a negligible effect on nuclear DNA, is generally used to generate mtDNA-deficient models. The antibiotics chloramphenicol and doxycycline, which were known to inhibit mitochondrial translation, were also used to generate the same phenotype. Cultured mtDNA-deficient cells need uridine and pyruvate to survive. At the organismal level, uridine can be supplemented, but pyruvate supplementation can cause a worser phenotype because of lactic acidosis. In C. elegans, EB, when used during larval development, increases life span, but decreases, when used after the beginning of adult stage. This should be kept in mind since mitochondria-related genes are generally detected in genome-wide screening studies for longevity. We believe that conditional knockout studies need to be carried out for these genes after reaching adulthood. MtDNA mutator mouse did not show an increase of free radical production. Therefore, the downstream phenomena to mtDNA defects are likely ineffective pyrimidine synthesis (dihydroorotate dehydrogenase, DHODH, needs a functional respiratory chain) and excess NADH (decreased NAD pool) in addition to free radicals. PMID:17460185

  12. Biological implications of the Weibull and Gompertz models of aging.

    PubMed

    Ricklefs, Robert E; Scheuerlein, Alex

    2002-02-01

    Gompertz and Weibull functions imply contrasting biological causes of demographic aging. The terms describing increasing mortality with age are multiplicative and additive, respectively, which could result from an increase in the vulnerability of individuals to extrinsic causes in the Gompertz model and the predominance of intrinsic causes at older ages in the Weibull model. Experiments that manipulate extrinsic mortality can distinguish these biological models. To facilitate analyses of experimental data, we defined a single index for the rate of aging (omega) for the Weibull and Gompertz functions. Each function described the increase in aging-related mortality in simulated ages at death reasonably well. However, in contrast to the Weibull omega(W), the Gompertz omega(G) was sensitive to variation in the initial mortality rate independently of aging-related mortality. Comparisons between wild and captive populations appear to support the intrinsic-causes model for birds, but give mixed support for both models in mammals.

  13. The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing.

    PubMed Central

    Kämper, U; Kück, U; Cherniack, A D; Lambowitz, A M

    1992-01-01

    The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mt tyrRS), which is encoded by the nuclear gene cyt-18, functions not only in aminoacylation but also in the splicing of group I introns. Here, we isolated the cognate Podospora anserina mt tyrRS gene, designated yts1, by using the N. crassa cyt-18 gene as a hybridization probe. DNA sequencing of the P. anserina gene revealed an open reading frame (ORF) of 641 amino acids which has significant similarity to other tyrRSs. The yts1 ORF is interrupted by two introns, one near its N terminus at the same position as the single intron in the cyt-18 gene and the other downstream in a region corresponding to the nucleotide-binding fold. The P. anserina yts1+ gene transformed the N. crassa cyt-18-2 mutant at a high frequency and rescued both the splicing and protein synthesis defects. Furthermore, the YTS1 protein synthesized in Escherichia coli was capable of splicing the N. crassa mt large rRNA intron in vitro. Together, these results indicate that YTS1 is a bifunctional protein active in both splicing and protein synthesis. The P. anserina YTS1 and N. crassa CYT-18 proteins share three blocks of amino acids that are not conserved in bacterial or yeast mt tyrRSs which do not function in splicing. One of these blocks corresponds to the idiosyncratic N-terminal domain shown previously to be required for splicing activity of the CYT-18 protein. The other two are located in the putative tRNA-binding domain toward the C terminus of the protein and also appear to be required for splicing. Since the E. coli and yeast mt tyrRSs do not function in splicing, the adaptation of the Neurospora and Podospora spp. mt tyrRSs to function in splicing most likely occurred after the divergence of their common ancestor from yeast. Images PMID:1531084

  14. Protoplasmic Incompatibility in PODOSPORA ANSERINA: a Possible Function for Incompatibility Genes.

    PubMed

    Boucherie, H; Bernet, J

    1980-10-01

    The suppression of protoplasmic incompatibility resulting from nonallelic gene interactions has been obtained by the coupled effect of mutations in the modA and modB genes (Bernet 1971). Due to their female sterility, modA modB strains provide an experimental tool to determine whether or not the mod and incompatibility loci are involved in a function other than protoplasmic incompatibility. Present results show that modA modB female sterility is a nonautonomous trait since heterokaryotic mycelia that include a modA modB nucleus and a female fertile nucleus (wild-type, modA or modB) produce modA modB protoperithecia, which are also formed by culture on medium supplemented with specific amino acids. Using modA modB strains, which are sterile at 32 degrees and fertile at 26 degrees , we have shown that the mod genes have no specific sequential timing. Indeed, the mod mutations may prevent the achievement of the female sexual cycle at any developmental stage from before early differentiation of protoperithecia until ascospore maturation. Employing different modA and modB mutations, we have shown that protoperithecia in modA modB cultures are generally distributed in female fertile rings; this result indicates that protoperithecia occur only in mycelial areas that have a restricted range of age at the time that modA modB thalli complete growth. Furthermore, nonsense mutations of incompatibility genes suppress the modA modB female fertile rings or restrict their width, suggesting that incompatibility loci, like the mod loci, are involved in protoperithecium formation. Taken together, these results lead to the postulate that mod and incompatibility genes do not determine, sensu stricto, protoperithecial function, as previously supposed (Boucherie and Bernet 1974), but may be involved in the homeostatic control of stationary cell functions essential for the complete development of the female sexual cycle.

  15. Efficacy of Female Rat Models in Translational Cardiovascular Aging Research

    PubMed Central

    Rice, K. M.; Fannin, J. C.; Gillette, C.; Blough, E. R.

    2014-01-01

    Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging. PMID:25610649

  16. Age and gender specific biokinetic model for strontium in humans.

    PubMed

    Shagina, N B; Tolstykh, E I; Degteva, M O; Anspaugh, L R; Napier, B A

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitations for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on (90)Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has a similar structure to the ICRP model for the alkaline earth elements. The following parameters were mainly re-evaluated: gastrointestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0-80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general populations exposed to ingested strontium radioisotopes.

  17. Age and gender specific biokinetic model for strontium in humans

    SciTech Connect

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2015-03-01

    A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.

  18. Aging and integrating spatial mental models.

    PubMed

    Copeland, David E; Radvansky, Gabriel A

    2007-09-01

    Previous research examining the process of integrating spatial information has suggested that older adults retain an ability to use mental models despite declines in working memory capacity. In the current study of both older and young adults, the authors assessed whether mental model performance declines when working memory limitations affect the ability to retain the information needed to initially construct a model. Participants were presented with 3 spatial descriptions that could have been integrated to form a single mental model (e.g., K. Ehrlich & P. N. Johnson-Laird, 1982). Descriptions were continuous (i.e., AB-BC-CD) or discontinuous (i.e., AB-CD-BC) in various stimulus formats: sentences, word diagrams, and pictures. Across the experiments, older adults showed difficulty integrating information, especially in the discontinuous condition, unless pictures were used. The results suggest that older adults' use of mental models can be compromised when spatial information is presented verbally rather than visually. PMID:17874955

  19. An integrated modeling approach to age invariant face recognition

    NASA Astrophysics Data System (ADS)

    Alvi, Fahad Bashir; Pears, Russel

    2015-03-01

    This Research study proposes a novel method for face recognition based on Anthropometric features that make use of an integrated approach comprising of a global and personalized models. The system is aimed to at situations where lighting, illumination, and pose variations cause problems in face recognition. A Personalized model covers the individual aging patterns while a Global model captures general aging patterns in the database. We introduced a de-aging factor that de-ages each individual in the database test and training sets. We used the k nearest neighbor approach for building a personalized model and global model. Regression analysis was applied to build the models. During the test phase, we resort to voting on different features. We used FG-Net database for checking the results of our technique and achieved 65 percent Rank 1 identification rate.

  20. A network model of human aging: Limits, errors, and information

    NASA Astrophysics Data System (ADS)

    Farrell, Spencer; Mitnitski, Arnold; Rockwood, Kenneth; Rutenberg, Andrew

    The Frailty Index (FI) quantifies human aging using the fraction of accumulated age-related deficits. The FI correlates strongly with mortality and accumulates non-linearly and stochastically with age. Clinical data shows a nearly universal limit of FI <= 0 . 7 . We computationally model an aging population using a network model of interacting deficits. Deficits damage and repair at rates that depend upon the average damage of connected nodes. The model is parametrized to fit clinical data. We find that attribution errors, especially false negative, allow the model to recover the frailty limit. Mutual information allows us to assess how well the FI can predict mortality. Mutual information provides a non-parametric measure of how the FI predicts mortality. We find that attribution errors have a small effect on the mutual information when many deficits are included in the model. The mutual information of our model and of the clinical data are comparable.

  1. Numerical solution of the Penna model of biological aging with age-modified mutation rate

    NASA Astrophysics Data System (ADS)

    Magdoń-Maksymowicz, M. S.; Maksymowicz, A. Z.

    2009-06-01

    In this paper we present results of numerical calculation of the Penna bit-string model of biological aging, modified for the case of a -dependent mutation rate m(a) , where a is the parent’s age. The mutation rate m(a) is the probability per bit of an extra bad mutation introduced in offspring inherited genome. We assume that m(a) increases with age a . As compared with the reference case of the standard Penna model based on a constant mutation rate m , the dynamics of the population growth shows distinct changes in age distribution of the population. Here we concentrate on mortality q(a) , a fraction of items eliminated from the population when we go from age (a) to (a+1) in simulated transition from time (t) to next time (t+1) . The experimentally observed q(a) dependence essentially follows the Gompertz exponential law for a above the minimum reproduction age. Deviation from the Gompertz law is however observed for the very old items, close to the maximal age. This effect may also result from an increase in mutation rate m with age a discussed in this paper. The numerical calculations are based on analytical solution of the Penna model, presented in a series of papers by Coe [J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett. 89, 288103 (2002)]. Results of the numerical calculations are supported by the data obtained from computer simulation based on the solution by Coe

  2. The Marmoset as a Model of Aging and Age-Related Diseases

    PubMed Central

    Tardif, Suzette D.; Mansfield, Keith G.; Ratnam, Rama; Ross, Corinna N.; Ziegler, Toni E.

    2013-01-01

    The common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate aging model. With an average lifespan of 5 to 7 years and a maximum lifespan of 16.5 years, marmosets are the shortest-lived anthropoid primates. They display age-related changes in pathologies that mirror those seen in humans, such as cancer, amyloidosis, diabetes, and chronic renal disease. They also display predictable age-related differences in lean mass, calf circumference, circulating albumin, hemoglobin, and hematocrit. Features of spontaneous sensory and neurodegenerative change—for example, reduced neurogenesis, β-amyloid deposition in the cerebral cortex, loss of calbindin D28k binding, and evidence of presbycusis—appear between the ages of 7 and 10 years. Variation among colonies in the age at which neurodegenerative change occurs suggests the interesting possibility that marmosets could be specifically managed to produce earlier versus later occurrence of degenerative conditions associated with differing rates of damage accumulation. In addition to the established value of the marmoset as a model of age-related neurodegenerative change, this primate can serve as a model of the integrated effects of aging and obesity on metabolic dysfunction, as it displays evidence of such dysfunction associated with high body weight as early as 6 to 8 years of age. PMID:21411858

  3. The Healthy Ageing Model: health behaviour change for older adults.

    PubMed

    Potempa, Kathleen M; Butterworth, Susan W; Flaherty-Robb, Marna K; Gaynor, William L

    2010-01-01

    Proposed is a model of primary care for older adults with chronic health conditions that focuses on active engagement in health care. The Healthy Ageing Model is anchored in established theory on motivation and health behaviour change. The model draws on empirical and applied clinical underpinnings in such diverse areas as health promotion and education, treatment of addictions or obesity, management of chronic diseases, goal-setting, and coaching techniques. The conceptual foundation for the Healthy Ageing Model is described first, followed by a brief description of the key characteristics of the model. In conclusion, suggestions are offered for the clinical application and for further developing the model.

  4. A comprehensive approach to age-dependent dosimetric modeling

    SciTech Connect

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1986-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission on Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper we discuss a comprehensive approach to age-dependent dosimetric modeling in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates or risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks.

  5. Lithium battery aging model based on Dakin's degradation approach

    NASA Astrophysics Data System (ADS)

    Baghdadi, Issam; Briat, Olivier; Delétage, Jean-Yves; Gyan, Philippe; Vinassa, Jean-Michel

    2016-09-01

    This paper proposes and validates a calendar and power cycling aging model for two different lithium battery technologies. The model development is based on previous SIMCAL and SIMSTOCK project data. In these previous projects, the effect of the battery state of charge, temperature and current magnitude on aging was studied on a large panel of different battery chemistries. In this work, data are analyzed using Dakin's degradation approach. In fact, the logarithms of battery capacity fade and the increase in resistance evolves linearly over aging. The slopes identified from straight lines correspond to battery aging rates. Thus, a battery aging rate expression function of aging factors was deduced and found to be governed by Eyring's law. The proposed model simulates the capacity fade and resistance increase as functions of the influencing aging factors. Its expansion using Taylor series was consistent with semi-empirical models based on the square root of time, which are widely studied in the literature. Finally, the influence of the current magnitude and temperature on aging was simulated. Interestingly, the aging rate highly increases with decreasing and increasing temperature for the ranges of -5 °C-25 °C and 25 °C-60 °C, respectively.

  6. Modeling the brain morphology distribution in the general aging population

    NASA Astrophysics Data System (ADS)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  7. Probabilistically Constraining Age-Depth-Models of Glaciogenic Sediments

    NASA Astrophysics Data System (ADS)

    Werner, J.; van der Bilt, W.; Tingley, M.

    2015-12-01

    Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting. All of these proxies, such as measurements of tree rings, ice cores, and varved lake sediments do carry some inherent dating uncertainty that is not always fully accounted for. Considerable advances could be achieved if time uncertainties were recognized and correctly modeled, also for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty - in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space-time covariance structure of the climate to re-weight the possible age models. Werner and Tingley (2015) demonstrated how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. In their method, probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments (Werner and Tingley 2015) show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. We show how this novel method can be applied to high resolution, sub-annually sampled lacustrine sediment records to constrain their respective age depth models. The results help to quantify the signal content and extract the regionally representative signal. The single time series can then be used as the basis for a reconstruction of glacial activity. van der Bilt et al. in prep. Werner, J.P. and Tingley, M.P. Clim. Past (2015)

  8. Multiscale Concrete Modeling of Aging Degradation

    SciTech Connect

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  9. Selection Experiments in the Penna Model for Biological Aging

    NASA Astrophysics Data System (ADS)

    Medeiros, G.; Idiart, M. A.; de Almeida, R. M. C.

    We consider the Penna model for biological aging to investigate correlations between early fertility and late life survival rates in populations at equilibrium. We consider inherited initial reproduction ages together with a reproduction cost translated in a probability that mother and offspring die at birth, depending on the mother age. For convenient sets of parameters, the equilibrated populations present genetic variability in what regards both genetically programmed death age and initial reproduction age. In the asexual Penna model, a negative correlation between early life fertility and late life survival rates naturally emerges in the stationary solutions. In the sexual Penna model, selection experiments are performed where individuals are sorted by initial reproduction age from the equilibrated populations and the separated populations are evolved independently. After a transient, a negative correlation between early fertility and late age survival rates also emerges in the sense that populations that start reproducing earlier present smaller average genetically programmed death age. These effects appear due to the age structure of populations in the steady state solution of the evolution equations. We claim that the same demographic effects may be playing an important role in selection experiments in the laboratory.

  10. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  11. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  12. The role of forest age in earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Bellassen, V.; Lin, X.; Luyssaert, S.; Nachin, B.; Pederson, N.; Shchepashchenko, D.; Shvidenko, A.; Ciais, P.

    2012-12-01

    The age of a forest has a principal role in determining the magnitude of carbon stocks and fluxes. As forests grow older, carbon tends to accumulate in above and belowground biomass causing changes in forest canopy complexity, nutrient pools, and the balance between carbon uptake and release. While age is a standard variable for forestry models, the present generation of earth system models neglects a representation of forest age for several reasons. These include the challenge in representing sub-grid cell ecosystem heterogeneity, a poor understanding of how ecosystem processes evolve with age, and because of a lack of forest age data with which to initialize models. Here we present a globally gridded forest age distribution dataset that is derived from National Forest Inventory data and from satellite-derived disturbance frequencies. This gridded dataset is developed at 0.5° spatial resolution at the plant functional types classification level, one that is commonly used in dynamic global vegetation models. We find large national-scale differences in forest age distributions, for example, with a peak age-area for young forests in China, and more mature forests across Canada and in Russia. Comparing simulated forest carbon stocks and fluxes from three DGVM models (LPJ, ORCHIDEE, and ORCHIDEE-Forest Management) with a global forest database, we illustrate the importance of accounting for structural development as forests develop. With over half the world's forests modified by human activities, or influenced by natural disturbance, spatial patterns of forest age distributions are a necessary feature of forward models for closing the global carbon budget within a consistent modeling framework.

  13. Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models

    NASA Astrophysics Data System (ADS)

    Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui

    2010-01-01

    Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.

  14. Mouse models of age-related mitochondrial neurosensory hearing loss.

    PubMed

    Han, Chul; Someya, Shinichi

    2013-07-01

    Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  15. Aging mechanism in model Pickering emulsion

    NASA Astrophysics Data System (ADS)

    Fouilloux, Sarah; Malloggi, Florent; Daillant, Jean; Thill, Antoine

    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23$\\%$ is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective.

  16. Exact solution of an evolutionary model without aging

    NASA Astrophysics Data System (ADS)

    Onody, Roberto N.; de Medeiros, Nazareno G. F.

    1999-09-01

    We introduce an age-structured asexual population model containing all the relevant features of evolutionary aging theories. Beneficial as well as deleterious mutations, heredity, and arbitrary fecundity are present and managed by natural selection. An exact solution without aging is found. We show that fertility is associated with generalized forms of the Fibonacci sequence, while mutations and natural selection are merged into an integral equation which is solved by Fourier series. Average survival probabilities and Malthusian growth exponents are calculated and indicate that the system may exhibit mutational meltdown. The relevance of the model in the context of fissile reproduction groups like many protozoa and coelenterates is discussed.

  17. Dynamical Masses Demonstrate the Discordant Model Ages for Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron C.; Ireland, Michael; Kraus, Adam L.; Dupuy, Trent J.

    2016-01-01

    We present the results of a long term orbit monitoring program, using sparse aperture masking observations taken with NIRC2 on the Keck-II telescope, of seven G to M-type members of the Upper Scorpius subgroup of the Sco-Cen OB association. We present astrometry and derived orbital elements of the binary systems we have monitored, and also determine the age, component masses, distance and reddening for each system using the orbital solutions and multi-band photometry, including Hubble Space Telescope photometry, and a Bayesian fitting procedure. We find that the models can be forced into agreement with any individual system by assuming an age, but that ageis not consistent across the mass range of our sample. The G-type binary systems in our sample have model ages of ~11.5 Myr, which is consistent with the latest age estimates for Upper Scorpius, while the M-type binary systems have significantly younger model ages of ~7 Myr. Based on our fits to the data, this age discrepancy in the models corresponds to a luminosity under-prediction of 0.8-0.15 dex, or equivalently an effective temperature over-prediction of 100-300 K for M-type stars at a given premain-sequence age.

  18. The Development of Small Primate Models for Aging Research

    PubMed Central

    Fischer, Kathleen E.; Austad, Steven N.

    2015-01-01

    Nonhuman primate (NHP) aging research has traditionally relied mainly on the rhesus macaque. But the long lifespan, low reproductive rate, and relatively large body size of macaques and related Old World monkeys make them less than ideal models for aging research. Manifold advantages would attend the use of smaller, more rapidly developing, shorter-lived NHP species in aging studies, not the least of which are lower cost and the ability to do shorter research projects. Arbitrarily defining “small” primates as those weighing less than 500 g, we assess small, relatively short-lived species among the prosimians and callitrichids for suitability as models for human aging research. Using the criteria of availability, knowledge about (and ease of) maintenance, the possibility of genetic manipulation (a hallmark of 21st century biology), and similarities to humans in the physiology of age-related changes, we suggest three species—two prosimians (Microcebus murinus and Galago senegalensis) and one New World monkey (Callithrix jacchus)—that deserve scrutiny for development as major NHP models for aging studies. We discuss one other New World monkey group, Cebus spp., that might also be an effective NHP model of aging as these species are longer-lived for their body size than any primate except humans. PMID:21411860

  19. Modeling Age-Friendly Environment, Active Aging, and Social Connectedness in an Emerging Asian Economy.

    PubMed

    Lai, Ming-Ming; Lein, Shi-Ying; Lau, Siok-Hwa; Lai, Ming-Ling

    2016-01-01

    This paper empirically tested eight key features of WHO guidelines to age-friendly community by surveying 211 informal caregivers and 402 self-care adults (aged 45 to 85 and above) in Malaysia. We examined the associations of these eight features with active aging and social connectedness through exploratory and confirmatory factor analyses. A structural model with satisfactory goodness-of-fit indices (CMIN/df = 1.11, RMSEA = 0.02, NFI = 0.97, TLI = 1.00, CFI = 1.00, and GFI = 0.96) indicates that transportation and housing, community support and health services, and outdoor spaces and buildings are statistically significant in creating an age-friendly environment. We found a statistically significant positive relationship between an age-friendly environment and active aging. This relationship is mediated by social connectedness. The results indicate that built environments such as accessible public transportations and housing, affordable and accessible healthcare services, and elderly friendly outdoor spaces and buildings have to be put into place before social environment in building an age-friendly environment. Otherwise, the structural barriers would hinder social interactions for the aged. The removal of the environmental barriers and improved public transportation services provide short-term solutions to meet the varied and growing needs of the older population.

  20. Modeling Age-Friendly Environment, Active Aging, and Social Connectedness in an Emerging Asian Economy

    PubMed Central

    Lai, Ming-Ming; Lein, Shi-Ying; Lau, Siok-Hwa; Lai, Ming-Ling

    2016-01-01

    This paper empirically tested eight key features of WHO guidelines to age-friendly community by surveying 211 informal caregivers and 402 self-care adults (aged 45 to 85 and above) in Malaysia. We examined the associations of these eight features with active aging and social connectedness through exploratory and confirmatory factor analyses. A structural model with satisfactory goodness-of-fit indices (CMIN/df = 1.11, RMSEA = 0.02, NFI = 0.97, TLI = 1.00, CFI = 1.00, and GFI = 0.96) indicates that transportation and housing, community support and health services, and outdoor spaces and buildings are statistically significant in creating an age-friendly environment. We found a statistically significant positive relationship between an age-friendly environment and active aging. This relationship is mediated by social connectedness. The results indicate that built environments such as accessible public transportations and housing, affordable and accessible healthcare services, and elderly friendly outdoor spaces and buildings have to be put into place before social environment in building an age-friendly environment. Otherwise, the structural barriers would hinder social interactions for the aged. The removal of the environmental barriers and improved public transportation services provide short-term solutions to meet the varied and growing needs of the older population. PMID:27293889

  1. The heuristic value of redundancy models of aging.

    PubMed

    Boonekamp, Jelle J; Briga, Michael; Verhulst, Simon

    2015-11-01

    Molecular studies of aging aim to unravel the cause(s) of aging bottom-up, but linking these mechanisms to organismal level processes remains a challenge. We propose that complementary top-down data-directed modelling of organismal level empirical findings may contribute to developing these links. To this end, we explore the heuristic value of redundancy models of aging to develop a deeper insight into the mechanisms causing variation in senescence and lifespan. We start by showing (i) how different redundancy model parameters affect projected aging and mortality, and (ii) how variation in redundancy model parameters relates to variation in parameters of the Gompertz equation. Lifestyle changes or medical interventions during life can modify mortality rate, and we investigate (iii) how interventions that change specific redundancy parameters within the model affect subsequent mortality and actuarial senescence. Lastly, as an example of data-directed modelling and the insights that can be gained from this, (iv) we fit a redundancy model to mortality patterns observed by Mair et al. (2003; Science 301: 1731-1733) in Drosophila that were subjected to dietary restriction and temperature manipulations. Mair et al. found that dietary restriction instantaneously reduced mortality rate without affecting aging, while temperature manipulations had more transient effects on mortality rate and did affect aging. We show that after adjusting model parameters the redundancy model describes both effects well, and a comparison of the parameter values yields a deeper insight in the mechanisms causing these contrasting effects. We see replacement of the redundancy model parameters by more detailed sub-models of these parameters as a next step in linking demographic patterns to underlying molecular mechanisms.

  2. Invertebrates as model organisms for research on aging biology

    PubMed Central

    Murthy, Mahadev; Ram, Jeffrey L.

    2015-01-01

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity. PMID:26241448

  3. Age and equity in liver transplantation: An organ allocation model.

    PubMed

    Cucchetti, Alessandro; Ross, Lainie Friedman; Thistlethwaite, J Richard; Vitale, Alessandro; Ravaioli, Matteo; Cescon, Matteo; Ercolani, Giorgio; Burra, Patrizia; Cillo, Umberto; Pinna, Antonio Daniele

    2015-10-01

    A moral liver allocation policy must be fair. We considered a 2-step, 2-principle allocation system called "age mapping." Its first principle, equal opportunity, ensures that candidates of all ages have an equal chance of getting an organ. Its second principle, prudential lifespan equity, allocates younger donor grafts to younger candidates and older donors to older candidates in order to increase the likelihood that all recipients achieve a "full lifespan." Data from 2476 candidates and 1371 consecutive adult liver transplantations (from 1999 to 2012) were used to determine whether age mapping can reduce the gap in years of life lost (YLL) between younger and older recipients. A parametric Weibull prognostic model was developed to estimate total life expectancy after transplantation using survival of the general population matched by sex and age as a reference. Life expectancy from birth was calculated by adding age at transplant and total life expectancy after transplantation. In multivariate analysis, recipient age, hepatitis C virus status, Model for End-Stage Liver Disease score at transplant of >30, and donor age were significantly related to prognosis after surgery (P < 0.05). The mean (and standard deviation) number of years of life from birth, calculated from the current allocation model, for various age groups were: recipients 18-47 years (n = 340) = 65.2 (3.3); 48-55 years (n = 387) = 72.7 (2.1); 56-61 years (n = 372) = 74.7 (1.7) and for recipients >61 years (n = 272) = 77.4 (1.4). The total number of YLL equaled 523 years. Redistributing liver grafts, using an age mapping algorithm, reduces the lifespan gap between younger and older candidates by 33% (from 12.3% to 8.3%) and achieves a 14% overall reduction of YLL (73 years) compared to baseline liver distribution. In conclusion, deliberately incorporating age into an allocation algorithm promotes fairness and increases efficiency.

  4. Structural and Biochemical Analyses of Glycoside Hydrolase Families 5 and 26 β-(1,4)-Mannanases from Podospora anserina Reveal Differences upon Manno-oligosaccharide Catalysis*

    PubMed Central

    Couturier, Marie; Roussel, Alain; Rosengren, Anna; Leone, Philippe; Stålbrand, Henrik; Berrin, Jean-Guy

    2013-01-01

    The microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-β-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of lignocellulosic biomass. In this study, P. anserina mannanases were further subjected to detailed comparative analysis of their substrate specificities, active site organization, and transglycosylation capacity. Although PaMan5A displays a classical mode of action, PaMan26A revealed an atypical hydrolysis pattern with the release of mannotetraose and mannose from mannopentaose resulting from a predominant binding mode involving the −4 subsite. The crystal structures of PaMan5A and PaMan26A were solved at 1.4 and 2.85 Å resolution, respectively. Analysis of the PaMan26A structure supported strong interaction with substrate at the −4 subsite mediated by two aromatic residues Trp-244 and Trp-245. The PaMan26A structure appended to its family 35 carbohydrate binding module revealed a short and proline-rich rigid linker that anchored together the catalytic and the binding modules. PMID:23558681

  5. The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypeptide involved in female organ formation.

    PubMed Central

    Barreau, C; Iskandar, M; Loubradou, G; Levallois, V; Bégueret, J

    1998-01-01

    Vegetative incompatibility in fungi results from the control of heterokaryon formation by the genes present at het loci. Coexpression of antagonistic het genes in the same hyphae leads to a lethal process. In Podospora anserina, self-incompatible strains containing nonallelic incompatible genes in the same nucleus are inviable as the result of a growth arrest and a lytic process. Mutations in suppressor genes (mod genes) can restore the viability. These mod mutations also interfere with developmental processes, which suggests common steps between the incompatibility reaction and cellular differentiation. The mod-A locus, responsible for growth arrest in the self-incompatible strains, is also involved in the control of the development of female organs. The mod-A gene was isolated. An open reading frame 687 amino acids long was identified. The MOD-A-encoded polypeptide is rich in proline residues, which are clustered in a domain containing a motif that displays similarity to SH3-binding motifs, which are known to be involved in protein-protein interactions. Construction of a strain deleted for mod-A confirmed that the product of this gene involved in differentiation is a key regulator of growth arrest associated with vegetative incompatibility. PMID:9611202

  6. HET-E and HET-D belong to a new subfamily of WD40 proteins involved in vegetative incompatibility specificity in the fungus Podospora anserina.

    PubMed Central

    Espagne, Eric; Balhadère, Pascale; Penin, Marie-Louise; Barreau, Christian; Turcq, Béatrice

    2002-01-01

    Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2(Y) gene was isolated and shown to have strong similarity with the previously described het-e1(A) gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted beta-propeller structure defined by this domain may confer the incompatible interaction specificity. PMID:12019224

  7. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina.

    PubMed Central

    Silar, P; Lalucque, H; Haedens, V; Zickler, D; Picard, M

    2001-01-01

    Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring. PMID:11514440

  8. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina.

    PubMed Central

    Berteaux-Lecellier, V; Zickler, D; Debuchy, R; Panvier-Adoutte, A; Thompson-Coffe, C; Picard, M

    1998-01-01

    The Podospora anserina cro1 gene was identified as a gene required for sexual sporulation. Crosses homozygous for the cro1-1 mutation yield fruiting bodies which produce few asci due to the formation of giant plurinucleate cells instead of dikaryotic cells after fertilization. This defect does not impair karyogamy, but meioses of the resultant polyploid nuclei are most often abortive. Cytological studies suggest that the primary defect of the mutant is its inability to form septa between the daughter nuclei after each mitosis, a step specific for normal dikaryotic cell divisions. The cro1-1 mutant would thus be unable to leave the syncytial vegetative state while abiding by the meiotic programme. cro1-1 also shows defects in ascospore germination and growth rate. GFP-tagging of the CRO1 protein reveals that it is a cytosolic protein mainly expressed at the beginning of the dikaryotic stage and at the time of ascospore maturation. The CRO1 protein exhibits significant similarity to the SHE4 protein, which is required for asymmetric mating-type switching in budding yeast cells. Thus, a gene involved in asymmetric cell divisions in a unicellular organism plays a key role at the transition between the syncytial (vegetative) state and the cellular (sexual) state in a filamentous fungus. PMID:9482722

  9. ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina.

    PubMed Central

    Graïa, F; Berteaux-Lecellier, V; Zickler, D; Picard, M

    2000-01-01

    The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution. PMID:10835387

  10. Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in podospora.

    PubMed Central

    Ruprich-Robert, Gwenaël; Berteaux-Lecellier, Véronique; Zickler, Denise; Panvier-Adoutte, Arlette; Picard, Marguerite

    2002-01-01

    Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2(+) background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to beta-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation. PMID:12136013

  11. Deletion of the MED13 and CDK8 subunits of the Mediator improves the phenotype of a long-lived respiratory deficient mutant of Podospora anserina.

    PubMed

    Humbert, Adeline; Bovier, Elodie; Sellem, Carole H; Sainsard-Chanet, Annie

    2015-09-01

    In Podospora anserina, the loss of function of the cytochrome segment of the mitochondrial respiratory chain is viable. This is due to the presence in this organism, as in most filamentous fungi, of an alternative respiratory oxidase (AOX) that provides a bypass to the cytochrome pathway. However mutants lacking a functional cytochrome pathway present multiple phenotypes including poorly colored thin mycelium and slow growth. In a large genetic screen based on the improvement of these phenotypes, we isolated a large number of independent suppressor mutations. Most of them led to the constitutive overexpression of the aox gene. In this study, we characterize a new suppressor mutation that does not affect the production of AOX. It is a loss-of-function mutation in the gene encoding the MED13 subunit of the kinase module of the Mediator complex. Inactivation of the cdk8 gene encoding another subunit of the same module also results in partial suppression of a cytochrome-deficient mutant. Analysis of strains lacking the MED13 or CDK8 subunits points to the importance of these subunits as regulators involved in diverse physiological processes such as growth, longevity and sexual development. Interestingly, transcriptional analyses indicate that in P. anserina, loss of the respiratory cytochrome pathway results in the up-regulation of glycolysis-related genes revealing a new type of retrograde regulation. The loss of MED13 augments the up-regulation of some of these genes.

  12. Optimization of arterial age prediction models based in pulse wave

    NASA Astrophysics Data System (ADS)

    Scandurra, A. G.; Meschino, G. J.; Passoni, L. I.; Pra, A. L. Dai; Introzzi, A. R.; Clara, F. M.

    2007-11-01

    We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff.

  13. Age Dependent Absolute Plate and Plume Motion Modeling

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A. P.

    2015-12-01

    Current absolute plate motion (APM) models from 80 - 0 Ma are constrained by the location of mantle plume related hotspot seamounts, in particular those of the Hawaiian-Emperor and Louisville seamount trails. Originally the 'fixed' hotspot hypothesis was developed to explain past plate motion based on linear age progressive intra-plate volcanism. However, now that 'moving' hotspots are accepted, it is becoming clear that APM models need to be corrected for individual plume motion vectors. For older seamount trails that were active between roughly 50 and 80 Ma the APM models that use 'fixed' hotspots overestimate the measured age progression in those trails, while APM models corrected for 'moving' hotspots underestimate those age progressions. These mismatches are due to both a lack of reliable ages in the older portions of both the Hawaii and Louisville seamount trails and insufficient APM modeling constraints from other seamount trails in the Pacific Basin. Seamounts are difficult to sample and analyze because many are hydrothermally altered and have low potassium concentrations. New 40Ar/39Ar Age results from International Ocean Drilling Project (IODP) Expedition 330 Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) aid in constraining the oldest end of the Louisville Seamount trail. A significant observation in this study is that the age range recovered in the drill cores match the range of ages that were acquired on dredging cruises at the same seamounts (e.g. Koppers et al., 2011). This is important for determining the inception age of a seamount. The sections recovered from IODP EXP 330 are in-situ volcanoclastic breccia and lava flows. Comparing the seismic interpretations of Louisville guyots (Contreras-Reyes et al., 2010), Holes U1372, U1373 and U1374 penetrated the extrusive and volcanoclastic sections of the seamount. The ages obtained are consistent over stratigraphic intervals >100-450 m thick, providing evidence that these seamounts

  14. Justification of sexual reproduction by modified Penna model of ageing

    NASA Astrophysics Data System (ADS)

    Sá Martins, J. S.; Stauffer, D.

    2001-05-01

    We generalize the standard Penna bit-string model of biological ageing by assuming that each deleterious mutation diminishes the survival probability in every time interval by a small percentage. This effect is added to the usual lethal but age-dependent effect of the same mutation. We then find strong advantages or disadvantages of sexual reproduction (with males and females) compared to asexual cloning, depending on parameters.

  15. Age-dependent forest carbon sink: Estimation via inverse modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Shi, Peijun; Jia, Gensuo; Dai, Yongjiu; Zhao, Xiang; Shangguan, Wei; Du, Ling; Wu, Hao; Luo, Yiqi

    2015-12-01

    Forests have been recognized to sequester a substantial amount of carbon (C) from the atmosphere. However, considerable uncertainty remains regarding the magnitude and time course of the C sink. Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties in prediction of forest C sink potential. In this study, we developed a stepwise data assimilation approach to combine a process-based Terrestrial ECOsystem Regional model, observations from multiple sources, and stochastic sampling to inversely estimate carbon cycle parameters including carbon sink at different forest ages for evergreen needle-leaved forests in China. The new approach is effective to estimate age-dependent parameter of maximal light-use efficiency (R2 = 0.99) and, accordingly, can quantify a relationship between forest age and the vegetation and soil C sinks. The estimated ecosystem C sink increases rapidly with age, peaks at 0.451 kg C m-2 yr-1 at age 22 years (ranging from 0.421 to 0.465 kg C m-2 yr-1), and gradually decreases thereafter. The dynamic patterns of C sinks in vegetation and soil are significantly different. C sink in vegetation first increases rapidly with age and then decreases. C sink in soil, however, increases continuously with age; it acts as a C source when the age is less than 20 years, after which it acts as a sink. For the evergreen needle-leaved forest, the highest C sink efficiency (i.e., C sink per unit net primary productivity) is approximately 60%, with age between 11 and 43 years. Overall, the inverse estimation of carbon cycle parameters can make reasonable estimates of age-dependent C sequestration in forests.

  16. Why is the dog an ideal model for aging research?

    PubMed

    Gilmore, Keiva M; Greer, Kimberly A

    2015-11-01

    With many caveats to the traditional vertebrate species pertaining to biogerontology investigations, it has been suggested that a most informative model is the one which: 1) examines closely related species, or various members of the same species with naturally occurring lifespan variation, 2) already has adequate medical procedures developed, 3) has a well annotated genome, 4) does not require artificial housing, and can live in its natural environment while being investigated, and 5) allows considerable information to be gathered within a relatively short period of time. The domestic dog unsurprisingly fits each criterion mentioned. The dog has already become a key model system in which to evaluate surgical techniques and novel medications because of the remarkable similarity between human and canine conditions, treatments, and response to therapy. The dog naturally serves as a disease model for study, obviating the need to construct artificial genetically modified examples of disease. Just as the dog offers a natural model for human conditions and diseases, simple observation leads to the conclusion that the canine aging phenotype also mimics that of the human. Genotype information, biochemical information pertaining to the GH/IGF-1 pathway, and some limited longitudinal investigations have begun the establishment of the domestic dog as a model of aging. Although we find that dogs indeed are a model to study aging and there are many independent pieces of canine aging data, there are many more "open" areas, ripe for investigation. PMID:26325590

  17. Cellular senescence in the Penna model of aging

    NASA Astrophysics Data System (ADS)

    Periwal, Avikar

    2013-11-01

    Cellular senescence is thought to play a major role in age-related diseases, which cause nearly 67% of all human deaths worldwide. Recent research in mice showed that exercising mice had higher levels of telomerase, an enzyme that helps maintain telomere length, than nonexercising mice. A commonly used model for biological aging was proposed by Penna. I propose a modification of the Penna model that incorporates cellular senescence and find an analytical steady-state solution following Coe, Mao, and Cates [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.89.288103 89, 288103 (2002)]. I find that models corresponding to delayed cellular senescence have younger populations that live longer. I fit the model to the United Kingdom's death distribution, which the original Penna model cannot do.

  18. Computationally Modeling Lipid Metabolism and Aging: A Mini-review

    PubMed Central

    Mc Auley, Mark T.; Mooney, Kathleen M.

    2014-01-01

    One of the greatest challenges in biology is to improve the understanding of the mechanisms which underpin aging and how these affect health. The need to better understand aging is amplified by demographic changes, which have caused a gradual increase in the global population of older people. Aging western populations have resulted in a rise in the prevalence of age-related pathologies. Of these diseases, cardiovascular disease is the most common underlying condition in older people. The dysregulation of lipid metabolism due to aging impinges significantly on cardiovascular health. However, the multifaceted nature of lipid metabolism and the complexities of its interaction with aging make it challenging to understand by conventional means. To address this challenge computational modeling, a key component of the systems biology paradigm is being used to study the dynamics of lipid metabolism. This mini-review briefly outlines the key regulators of lipid metabolism, their dysregulation, and how computational modeling is being used to gain an increased insight into this system. PMID:25750699

  19. Development of a bioenergetics model for age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.

    2011-01-01

    Bioenergetics modeling can be used as a tool to investigate the impact of non-native age-0 American shad (Alosa sapidissima) on reservoir and estuary food webs. The model can increase our understanding of how these fish influence lower trophic levels as well as predatory fish populations that feed on juvenile salmonids. Bioenergetics modeling can be used to investigate ecological processes, evaluate alternative research hypotheses, provide decision support, and quantitative prediction. Bioenergetics modeling has proven to be extremely useful in fisheries research (Ney et al. 1993,Chips and Wahl 2008, Petersen et al. 2008). If growth and diet parameters are known, the bioenergetics model can be used to quantify the relative amount of zooplankton or insects consumed by age-0 American shad. When linked with spatial and temporal information on fish abundance, model output can guide inferential hypothesis development to demonstrate where the greatest impacts of age-0 American shad might occur.


    Bioenergetics modeling is particularly useful when research questions involve multiple species and trophic levels (e.g. plankton communities). Bioenergetics models are mass-balance equations where the energy acquired from food is partitioned between maintenance costs, waste products, and growth (Winberg 1956). Specifically, the Wisconsin bioenergetics model (Hanson et al. 1997) is widely used in fisheries science. Researchers have extensively tested, reviewed, and improved on this modeling approach for over 30 years (Petersen et al. 2008). Development of a bioenergetics model for any species requires three key components: 1) determine physiological parameters for the model through laboratory experiments or incorporate data from a closely related species, 2) corroboration of the model with growth and consumption estimates from independent research, and 3) error analysis of model parameters.


    Wisconsin bioenergetics models have been parameterized for

  20. An evaluation of sex-age-kill (SAK) model performance

    USGS Publications Warehouse

    Millspaugh, Joshua J.; Skalski, John R.; Townsend, Richard L.; Diefenbach, Duane R.; Boyce, Mark S.; Hansen, Lonnie P.; Kammermeyer, Kent

    2009-01-01

    The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.

  1. Porosity estimation of aged mortar using a micromechanical model.

    PubMed

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  2. Old Age Portrayed by the Ages-of-Life Models from the Middle Ages to the Sixteenth Century.

    ERIC Educational Resources Information Center

    Covey, Herbert C.

    1989-01-01

    The ages of life portrayed in literature and the arts from the late Middle Ages up to the sixteenth century provide valuable information on how aging and old age were perceived in earlier times. Themes related to old age include ambivalence, decay, and age-appropriate behavior. (Author)

  3. Probabilistic Generalization of Penna Ageing Model and the Oldest Old

    NASA Astrophysics Data System (ADS)

    Stauffer, D.

    Using a 1995 method of Thoms et al., the traditional Penna model of biological ageing is modified such that there is no more absolute maximum life span; instead, our Monte Carlo data are similar to real demographic data collected by Thatcher et al., for rich countries.

  4. Modeling sugarcane growth in response to age, insolation, and temperature

    SciTech Connect

    How, K.T.S.

    1986-01-01

    Modeling sugarcane growth in response to age of cane, insolation and air temperature using first-order multiple regression analysis and a nonlinear approach is investigated. Data are restricted to one variety from irrigated fields to eliminate the impact of varietal response and rainfall. Ten first-order models are investigated. The predictant is cane yield from 600 field tests. The predictors are cumulative values of insolation, maximum temperature, and minimum temperature for 3, 6, 12, and 18 months, or for each crop period derived from weather observations near the test plots. The low R-square values indicate that the selected predictor variables could not account for a substantial proportion of the variations of cane yield and the models have limited predictive values. The nonlinear model is based on known functional relationships between growth and age, growth and insolation, and growth and maximum temperature. A mathematical expression that integrates the effect of age, insolation and maximum temperature is developed. The constant terms and coefficients of the equation are determined from the requirement that the model must produce results that are reasonable when compared with observed monthly elongation data. The nonlinear model is validated and tested using another set of data.

  5. Age of stratospheric air and aging by mixing in global models

    NASA Astrophysics Data System (ADS)

    Garny, Hella; Dietmüller, Simone; Plöger, Felix; Birner, Thomas; Bönisch, Harald; Jöckel, Patrick

    2016-04-01

    The Brewer-Dobson circulation is often quantified by the integrated transport measure age of air (AoA). AoA is affected by all transport processes, including transport along the residual mean mass circulation and two-way mixing. A large spread in the simulation of AoA by current global models exists. Using CCMVal-2 and CCMI-1 global model data, we show that this spread can only in small parts be attributed to differences in the simulated residual circulation. Instead, large differences in the "mixing efficiency" strongly contribute to the differences in the simulated AoA. The "mixing efficiency" is defined as the ratio of the two-way mixing mass flux across the subtropical barrier to the net (residual) mass flux, and this mixing efficiency controls the relative increase in AoA by mixing. We derive the mixing efficiency from global model data using the analytical solution of a simplified version of the tropical leaky pipe (TLP) model, in which vertical diffusion is neglected. Thus, it is assumed that only residual mean transport and horizontal two-way mixing across the subtropical barrier controls AoA. However, in global models vertical mixing and numerical diffusion modify AoA, and these processes likely contribute to the differences in the mixing efficiency between models. We explore the contributions of diffusion and mixing on mean AoA by a) using simulations with the tropical leaky pipe model including vertical diffusion and b) explicit calculations of aging by mixing on resolved scales. Using the TLP model, we show that vertical diffusion leads to a decrease in tropical AoA, i.e. counteracts the increase in tropical mean AoA due to horizontal mixing. Thus, neglecting vertical diffusion leads to an underestimation of the mixing efficiency. With explicit calculations of aging by mixing via integration of daily local mixing tendencies along residual circulation trajectories, we explore the contributions of vertical and horizontal mixing for aging by mixing. The

  6. Liver aging and pseudocapillarization in a Werner syndrome mouse model.

    PubMed

    Cogger, Victoria C; Svistounov, Dmitri; Warren, Alessandra; Zykova, Svetlana; Melvin, Richard G; Solon-Biet, Samantha M; O'Reilly, Jennifer N; McMahon, Aisling C; Ballard, J William O; De Cabo, Rafa; Le Couteur, David G; Lebel, Michel

    2014-09-01

    Werner syndrome is a progeric syndrome characterized by premature atherosclerosis, diabetes, cancer, and death in humans. The knockout mouse model created by deletion of the RecQ helicase domain of the mouse Wrn homologue gene (Wrn(∆hel/∆hel)) is of great interest because it develops atherosclerosis and hypertriglyceridemia, conditions associated with aging liver and sinusoidal changes. Here, we show that Wrn(∆hel/∆hel) mice exhibit increased extracellular matrix, defenestration, decreased fenestration diameter, and changes in markers of liver sinusoidal endothelial cell inflammation, consistent with age-related pseudocapilliarization. In addition, hepatocytes are larger, have increased lipofuscin deposition, more frequent nuclear morphological anomalies, decreased mitochondria number, and increased mitochondrial diameter compared to wild-type mice. The Wrn(∆hel/∆hel) mice also have altered mitochondrial function and altered nuclei. Microarray data revealed that the Wrn(∆hel/∆hel) genotype does not affect the expression of many genes within the isolated hepatocytes or liver sinusoidal endothelial cells. This study reveals that Wrn(∆hel/∆hel) mice have accelerated typical age-related liver changes including pseudocapillarization. This confirms that pseudocapillarization of the liver sinusoid is a consistent feature of various aging models. Moreover, it implies that DNA repair may be implicated in normal aging changes in the liver.

  7. Rotifers as models for the biology of aging.

    PubMed

    Snell, Terry W

    2014-03-01

    It has been two decades since 1993 when research on the biology of rotifer aging was last reviewed by Enesco. Much has transpired during this time as rotifer biologists have adapted to the "omics" revolution and incorporated these techniques into the experimental analysis of rotifers. Rotifers are amenable to many of these approaches and getting adequate quantities of DNA, RNA, and protein from rotifers is not difficult. Analysis of rotifer genomes, transcriptomes, and proteomes is rapidly yielding candidate genes that likely regulate a variety of features of rotifer biology. Parallel developments in aging biology have recognized the limitations of standard animal models like worms and flies and that comparative aging research has essentially ignored a large fraction of animal phylogeny in the lophotrochozoans. As experimentally tractable members of this group, rotifers have attracted interest as models of aging. In this paper, I review advances over the past 20 years in the biology of aging in rotifers, with emphasis on the unique contributions of rotifer models for understanding aging. The majority of experimental work has manipulated rotifer diet and followed changes in survival and reproductive dynamics like mean lifespan, maximum lifespan, reproductive lifespan, and mortality rate doubling time. The main dietary manipulation has been some form of caloric restriction, withholding food for some period or feeding continuously at low levels. There have been comparative studies of several rotifer species, with some species responding to caloric restriction with life extension, but others not, at least under the tested food regimens. Other aspects of diet are less explored, like nutritional properties of different algae species and their capacity to extend rotifer lifespan. Several descriptive studies have reported many genes involved in rotifer aging by comparing gene expression in young and old individuals. Classes of genes up or down-regulated during aging have

  8. Aging, Neurogenesis, and Caloric Restriction in Different Model Organisms

    PubMed Central

    Arslan-Ergul, Ayca; Ozdemir, A Tugrul; Adams, Michelle M

    2013-01-01

    Brain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging. The neurobiological changes that underlie this cognitive decline are complex and undoubtedly influenced by many factors. Alterations in the birth of new neurons and neuron turnover may contribute to age-related cognitive problems. Caloric restriction is the only non-genetic intervention that reliably increases life span and healthspan across multiple organisms although the molecular mechanisms are not well-understood. Recently the zebrafish has become a popular model organism for understanding the neurobiological consequences but to date very little work has been performed. Similarly, few studies have examined the effects of dietary restriction in zebrafish. Here we review the literature related to memory decline, neurogenesis, and caloric restriction across model organisms and suggest that zebrafish has the potential to be an important animal model for understanding the complex interactions between age, neurobiological changes in the brain, and dietary regimens or their mimetics as interventions. PMID:23936746

  9. Anomalous scaling in an age-dependent branching model.

    PubMed

    Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin

    2015-02-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.

  10. Anomalous scaling in an age-dependent branching model.

    PubMed

    Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin

    2015-02-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point. PMID:25768548

  11. Computer simulation of Aphis gossypii insects using Penna aging model

    NASA Astrophysics Data System (ADS)

    Giarola, L. T. P.; Martins, S. G. F.; Toledo Costa, M. C. P.

    2006-08-01

    A computer simulation was made for the population dynamics of Aphis gossypii in laboratory and field conditions. The age structure was inserted in the dynamics through bit string model for biological aging, proposed by Penna in 1995. The influence of different host plants and of climatic factors such as temperature and precipitation was considered in the simulation starting from experimental data. The results obtained indicate that the simulation is an appropriate instrument for understanding of the population dynamics of these species and for the establishment of biological control strategies.

  12. Scaling in a Continuous Time Model for Biological Aging

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M. C.; Thomas, G. L.

    In this paper, we consider a generalization to the asexual version of Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ-functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.

  13. Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase

    PubMed Central

    Sellem, Carole H.; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H.; Sainsard-Chanet, Annie

    2016-01-01

    Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8–15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before. PMID:27442014

  14. Mutational analysis of the [Het-s] prion analog of Podospora anserina. A short N-terminal peptide allows prion propagation.

    PubMed Central

    Coustou, V; Deleu, C; Saupe, S J; Bégueret, J

    1999-01-01

    The het-s locus is one of nine known het (heterokaryon incompatibility) loci of the fungus Podospora anserina. This locus exists as two wild-type alleles, het-s and het-S, which encode 289 amino acid proteins differing at 13 amino acid positions. The het-s and het-S alleles are incompatible as their coexpression in the same cytoplasm causes a characteristic cell death reaction. We have proposed that the HET-s protein is a prion analog. Strains of the het-s genotype exist in two phenotypic states, the neutral [Het-s*] and the active [Het-s] phenotype. The [Het-s] phenotype is infectious and is transmitted to [Het-s*] strains through cytoplasmic contact. het-s and het-S were associated in a single haploid nucleus to generate a self-incompatible strain that displays a restricted and abnormal growth. In the present article we report the molecular characterization of a collection of mutants that restore the ability of this self-incompatible strain to grow. We also describe the functional analysis of a series of deletion constructs and site-directed mutants. Together, these analyses define positions critical for reactivity and allele specificity. We show that a 112-amino-acid-long N-terminal peptide of HET-s retains [Het-s] activity. Moreover, expression of a mutant het-s allele truncated at position 26 is sufficient to allow propagation of the [Het-s] prion analog. PMID:10581272

  15. Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase.

    PubMed

    Sellem, Carole H; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H; Sainsard-Chanet, Annie

    2016-07-01

    Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.

  16. Nothobranchius furzeri: A Model for Aging Research and More.

    PubMed

    Platzer, Matthias; Englert, Christoph

    2016-09-01

    The short-lived killifish Nothobranchius furzeri inhabits ephemeral ponds in southeastern Africa and is characterized by rapid growth and early sexual maturation. With respect to the molecular, cellular, and integrative traits of aging, N. furzeri shows significant similarities to mammals, including humans. Recently, reference sequences for the N. furzeri genome have been published. Also, methods for transgenesis and genomic engineering have been established. In this review we discuss why the killifish is a valuable model for aging research and what we have learned from the genome sequence. The respective insights are not limited to the biology of aging but are also relevant for developmental biology and the evolution of sex determination. PMID:27427533

  17. Impact of aging mechanism on model simulated carbonaceous aerosols

    PubMed Central

    Huang, Y.; Wu, S.; Dubey, M.K.; French, N. H. F.

    2013-01-01

    Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further

  18. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  19. Classical Cepheid Pulsation Models. X. The Period-Age Relation

    NASA Astrophysics Data System (ADS)

    Bono, G.; Marconi, M.; Cassisi, S.; Caputo, F.; Gieren, W.; Pietrzynski, G.

    2005-03-01

    We present new period-age (PA) and period-age-color (PAC) relations for fundamental and first-overtone classical Cepheids. Current predictions rely on homogeneous sets of evolutionary and pulsation models covering a broad range of stellar masses and chemical compositions. We found that PA and PAC relations present a mild dependence on metal content. Moreover, the use of different PA and PAC relations for fundamental and first-overtone Cepheids improves the accuracy of age estimates in the short-period (logP<1) range (old Cepheids), because they present smaller intrinsic dispersions. At the same time, the use of the PAC relations improves the accuracy in the long-period (logP>=1) range (young Cepheids), since they account for the position of individual objects inside the instability strip. We performed a detailed comparison between evolutionary and pulsation ages for a sizable sample of LMC (15) and SMC (12) clusters which host at least two Cepheids. In order to avoid deceptive uncertainties in the photometric absolute zero point, we adopted the homogeneous set of B, V, and I data for clusters and Cepheids collected by OGLE. We also adopted the same reddening scale. The different age estimates agree at the level of 20% for LMC clusters and of 10% for SMC clusters. We also performed the same comparison for two Galactic clusters (NGC 6067, NGC 7790), and the difference in age is smaller than 20%. These findings support the use of PA and PAC relations to supply accurate estimates of individual stellar ages in the Galaxy and in external Galaxies. The main advantage of this approach is its independence from the distance.

  20. Mechanical Regulation of Cardiac Aging in Model Systems.

    PubMed

    Sessions, Ayla O; Engler, Adam J

    2016-05-13

    Unlike diet and exercise, which individuals can modulate according to their lifestyle, aging is unavoidable. With normal or healthy aging, the heart undergoes extensive vascular, cellular, and interstitial molecular changes that result in stiffer less compliant hearts that experience a general decline in organ function. Although these molecular changes deemed cardiac remodeling were once thought to be concomitant with advanced cardiovascular disease, they can be found in patients without manifestation of clinical disease. It is now mostly acknowledged that these age-related mechanical changes confer vulnerability of the heart to cardiovascular stresses associated with disease, such as hypertension and atherosclerosis. However, recent studies have aimed at differentiating the initial compensatory changes that occur within the heart with age to maintain contractile function from the maladaptive responses associated with disease. This work has identified new targets to improve cardiac function during aging. Spanning invertebrate to vertebrate models, we use this review to delineate some hallmarks of physiological versus pathological remodeling that occur in the cardiomyocyte and its microenvironment, focusing especially on the mechanical changes that occur within the sarcomere, intercalated disc, costamere, and extracellular matrix. PMID:27174949

  1. Spectral age modelling of the `Sausage' cluster radio relic

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Harwood, Jeremy J.; Hardcastle, Martin J.; Röttgering, Huub J. A.

    2014-12-01

    CIZA J2242.8+5301 is a post-core passage, binary merging cluster that hosts a large, thin, arc-like radio relic, nicknamed the `Sausage', tracing a relatively strong shock front. We perform spatially resolved spectral fitting to the available radio data for this radio relic, using a variety of spectral ageing models, with the aim of finding a consistent set of parameters for the shock and radio plasma. We determine an injection index of 0.77^{+0.03}_{-0.02} for the relic plasma, significantly steeper than was found before. Standard particle acceleration at the shock front implies a Mach number M=2.90^{+0.10}_{-0.13}, which now matches X-ray measurements. The shock advance speed is vshock ≈ 2500 km s-1, which places the core passage of the two subclusters 0.6-0.8 Gyr ago. We find a systematic spectral age increase from 0 at the northern side of the relic up to ˜60 Myr at ˜145 kpc into the downstream area, assuming a 0.6 nT magnetic field. Under the assumption of freely ageing electrons after acceleration by the `Sausage' shock, the spectral ages are hard to reconcile with the shock speed derived from X-ray and radio observations. Re-acceleration or unusually efficient transport of particle in the downstream area and line-of-sight mixing could help explain the systematically low spectral ages.

  2. Mesoscopic model of temporal and spatial heterogeneity in aging colloids.

    PubMed

    Becker, Nikolaj; Sibani, Paolo; Boettcher, Stefan; Vivek, Skanda

    2014-12-17

    We develop a simple and effective description of the dynamics of dense hard sphere colloids in the aging regime deep in the glassy phase. Our description complements the many efforts to understand the onset of jamming in low density colloids, whose dynamics is still time-homogeneous. Based on a small set of principles, our model provides emergent dynamic heterogeneity, reproduces the known results for dense hard sphere colloids and makes detailed, experimentally-testable predictions for canonical observables in glassy dynamics. In particular, we reproduce the shape of the intermediate scattering function and particle mean-square displacements for jammed colloidal systems, and we predict a growth for the peak of the χ(4) mobility correlation function that is logarithmic in waiting-time. At the same time, our model suggests a novel unified description for the irreversible aging dynamics of structural and quenched glasses based on the dynamical properties of growing clusters of highly correlated degrees of freedom.

  3. Predicting mortality from burns: the need for age-group specific models.

    PubMed

    Taylor, Sandra L; Lawless, MaryBeth; Curri, Terese; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2014-09-01

    Traditional burn mortality models are derived using all age groups. We hypothesized that age variably impacts mortality after burn and that age-specific models for children, adults, and seniors will more accurately predict mortality than an all-ages model. We audited data from the American Burn Association (ABA) National Burn Repository (NBR) from 2000 to 2009 and used mixed effect logistic regression models to assess the influence of age, total body surface area (TBSA) burn, and inhalation injury on mortality. Mortality models were constructed for all ages and age-specific models: children (<18 years), adults (18-60 years), and seniors (>60 years). Model performance was assessed by area under the receiver operating curve (AUC). Main effect and two-way interactions were used to construct age-group specific mortality models. Each age-specific model was compared to the All Ages model. Of 286,293 records 100,051 had complete data. Overall mortality was 4% but varied by age (17% seniors, <1% children). Age, TBSA, and inhalation injury were significant mortality predictors for all models (p<0.05). Differences in predicted mortality between the All Ages model and the age-specific models occurred in children and seniors. In the age-specific pediatric model, predicted mortality decreased with age; inhalation injury had greater effect on mortality than in the All Ages model. In the senior model mortality increased with age. Seniors had greater increase in mortality per 1% increment in burn size and 1 year increase in age than other ages. The predicted mortality in seniors using the senior-specific model was higher than in the All Ages model. "One size fits all" models for predicting burn outcomes do not accurately reflect the outcomes for seniors and children. Age-specific models for children and seniors may be advisable. PMID:24846014

  4. Predicting Mortality from Burn Injuries: The need for age-group specific models

    PubMed Central

    Taylor, Sandra L.; Lawless, MaryBeth; Curri, Terese; Sen, Soman; Greenhalgh, David G.; Palmieri, Tina L.

    2014-01-01

    Traditional burn mortality models are derived using all age groups. We hypothesized that age variably impacts mortality after burn and that age-specific models for children, adults, and seniors will more accurately predict mortality than an all-ages model. We audited data from the American Burn Association (ABA) National Burn Repository (NBR) from 2000-2009 and used mixed effect logistic regression models to assess the influence of age, total body surface area (TBSA) burn, and inhalation injury on mortality. Mortality models were constructed for all ages and age-specific models: children (<18 years), adults (18-60 years), and seniors (>60 years). Model performance was assessed by area under the receiver operating curve (AUC). Main effect and two-way interactions were used to construct age-group specific mortality models. Each age-specific model was compared to the All Ages model. Of 286,293 records 100,051 had complete data. Overall mortality was 4% but varied by age (17% seniors, <1% children). Age, TBSA, and inhalation injury were significant mortality predictors for all models (p<0.05). Differences in predicted mortality between the All Ages model and the age-specific models occurred in children and seniors. In the age-specific pediatric model, predicted mortality decreased with age; inhalation injury had greater effect on mortality than in the All Ages model. In the senior model mortality increased with age. Seniors had greater increase in mortality per 1% increment in burn size and 1 year increase in age than other ages. The predicted mortality in seniors using the senior-specific model was higher than in the All Ages model. “One size fits all” models for predicting burn outcomes do not accurately reflect the outcomes for seniors and children. Age-specific models for children and seniors may be advisable. PMID:24846014

  5. Accelerated ageing: from mechanism to therapy through animal models.

    PubMed

    Osorio, Fernando G; Obaya, Alvaro J; López-Otín, Carlos; Freije, José M P

    2009-02-01

    Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.

  6. Ovarian aging and menopause: current theories, hypotheses, and research models.

    PubMed

    Wu, Julie M; Zelinski, Mary B; Ingram, Donald K; Ottinger, Mary Ann

    2005-12-01

    Aging of the reproductive system has been studied in numerous vertebrate species. Although there are wide variations in reproductive strategies and hormone cycle components, many of the fundamental changes that occur during aging are similar. Evolutionary hypotheses attempt to explain why menopause occurs, whereas cellular hypotheses attempt to explain how it occurs. It is commonly believed that a disruption in the hypothalamic-pituitary-gonadal axis is responsible for the onset of menopause. Data exist to demonstrate that the first signs of menopause occur at the level of the brain or the ovary. Thus, finding an appropriate and representative animal model is especially important for the advancement of menopause research. In primates, there is a gradual decline in the function of the hypothalamic-pituitary-gonadal (HPG) axis ultimately resulting in irregularities in menstrual cycles and increasingly sporadic incidence of ovulation. Rodents also exhibit a progressive deterioration in HPG axis function; however, they also experience a period of constant estrus accompanied by intermittent ovulations, reduced progesterone levels, and elevated circulating estradiol levels. It is remarkable to observe that females of other classes also demonstrate deterioration in HPG axis function and ovarian failure. Comparisons of aging in various taxa provide insight into fundamental biological mechanisms of aging that could underlie reproductive decline.

  7. Age structured dynamical model for an endangered lizard Eulamprus leuraensis

    NASA Astrophysics Data System (ADS)

    Supriatna, A. K.; Rachmadani, Q.; Ilahi, F.; Anggriani, N.; Nuraini, N.

    2014-02-01

    The Blue Mountains Water Skink, Eulamprus leuraensis, is listed as an endangered species under the IUCN Red List. This lizard species has a typical characteristic of growth with a low fecundity. It is known that the offspring quality may decline with maternal age of the parents despite they can grow rapidly from neonatal size to adult size within two to three years. It is also believed that low adult survival rates and specialization on rare and fragmented type of habitat are the main cause leading to the endangered status of the lizard. A mathematical model with age structure for Eulamprus leuraensis, taking into account the variation of survival rate in each structure and the declining of offspring quality with respect to maternal age is considered here. Stable coexistence of non-trivial equilibriumis shown. It is also shown that an endangered status is due to combination oflow reproductive output and low rates of adult survival. Further, understanding the age structure within populations can facilitate efective management of the endangered species.

  8. Self-Organization of Aging in a Modified Penna Model

    NASA Astrophysics Data System (ADS)

    Kim, Gi Ok; Shim, Sugie

    The Penna model for biological aging is modified so that the fertility of each individual is determined by means of the number of activated mutations at that time. A new concept of "good" mutation, which makes an individual to mature enough to reproduce, is introduced. It is assumed that each individual can reproduce only during adulthood, which is determined by the number of activated mutations. The results of Monte Carlo calculations using the modified model show that the ranges of the reproductive age are broadened as time goes by, thus showing self-organization in the biological aging to the direction of the maximum self-conservation. In addition, the population, the survival rate, and the average life span were calculated and analyzed by changing the number of new mutations at birth. It is observed that the higher is the considered number of new mutations at birth, the shorter is the obtained average life span. The mortality functions are also calculated and they showed the exponential increase in adulthood, satisfying the Gompertz law.

  9. Multiple endemic states in age-structured SIR epidemic models.

    PubMed

    Franceschetti, Andrea; Pugliese, Andrea; Breda, Dmitri

    2012-07-01

    SIR age-structured models are very often used as a basic model of epidemic spread. Yet, their behaviour, under generic assumptions on contact rates between different age classes, is not completely known, and, in the most detailed analysis so far, Inaba (1990) was able to prove uniqueness of the endemic equilibrium only under a rather restrictive condition. Here, we show an example in the form of a 3x3 contact matrix in which multiple non-trivial steady states exist. This instance of non-uniqueness of positive equilibria differs from most existing ones for epidemic models, since it arises not from a backward transcritical bifurcation at the disease free equilibrium, but through two saddle-node bifurcations of the positive equilibrium. The dynamical behaviour of the model is analysed numerically around the range where multiple endemic equilibria exist; many other features are shown to occur, from coexistence of multiple attractive periodic solutions, some with extremely long period, to quasi-periodic and chaotic attractors. It is also shown that, if the contact rates are in the form of a 2x2 WAIFW matrix, uniqueness of non-trivial steady states always holds, so that 3 is the minimum dimension of the contact matrix to allow for multiple endemic equilibria.

  10. Re-Evaluating Neonatal-Age Models for Ungulates: Does Model Choice Affect Survival Estimates?

    PubMed Central

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  11. Re-evaluating neonatal-age models for ungulates: does model choice affect survival estimates?

    PubMed

    Grovenburg, Troy W; Monteith, Kevin L; Jacques, Christopher N; Klaver, Robert W; DePerno, Christopher S; Brinkman, Todd J; Monteith, Kyle B; Gilbert, Sophie L; Smith, Joshua B; Bleich, Vernon C; Swanson, Christopher C; Jenks, Jonathan A

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  12. Re-evaluating neonatal-age models for ungulates: Does model choice affect survival estimates?

    USGS Publications Warehouse

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  13. Re-evaluating neonatal-age models for ungulates: does model choice affect survival estimates?

    PubMed

    Grovenburg, Troy W; Monteith, Kevin L; Jacques, Christopher N; Klaver, Robert W; DePerno, Christopher S; Brinkman, Todd J; Monteith, Kyle B; Gilbert, Sophie L; Smith, Joshua B; Bleich, Vernon C; Swanson, Christopher C; Jenks, Jonathan A

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  14. Chronic depression as a model disease for cerebral aging.

    PubMed

    Bewernick, Bettina H; Schlaepfer, Thomas E

    2013-03-01

    Conceptualizations of the underlying neurobiology of major depression have changed their focus from dysfunctions of neurotransmission to dysfunctions of neurogenesis and neuroprotection. The "neurogenesis hypothesis of depression" posits that changes in the rate of neurogenesis are the underlying mechanism in the pathology and treatment of major depression. Stress, neuroinflammation, dysfunctional insulin regulation, oxidative stress, and alterations in neurotrophic factors possibly contribute to the development of depression. The influence of antidepressant therapies, namely pharmacotherapy and neuroprotectants, on cellular plasticity are summarized. A dysfunction of complex neuronal networks as a consequence of neural degeneration in neuropsychiatric diseases has led to the application of deep brain stimulation. We discuss the way depression seen in the light of the neurogenesis hypothesis can be used as a model disease for cerebral aging. A common pathological mechanism in depression and cerebral aging-a dysfunction of neuroprotection and neurogenesis-is discussed. This has implications for new treatment methods.

  15. StalAge - A new algorithm especially designed for the construction of speleothem age-depth models

    NASA Astrophysics Data System (ADS)

    Scholz, Denis; Hoffmann, Dirk

    2010-05-01

    A standard approach to construct age-depth models for speleothems on the basis of 230Th/U-ages is not available yet. Some studies apply linear interpolation between dated depths; others use least squares polynomial fits. Other authors, in turn, use various kinds of splines or even more sophisticated methods based on the general growth mechanisms of speleothems. A general approach to estimate the uncertainty of stalagmite age models has neither been developed yet. Since the exact determination of the timing and duration of climatic events recorded in speleothem calcite depends on the method used to calculate the age model, a general technique for the calculation of both the age model and its uncertainty is urgently needed. Here we present a new algorithm, especially designed for constructing age-depth models based on speleothem 230Th/U-ages. The algorithm relies on two basic assumptions: (i) the age model must increase monotonically with increasing distance from top of the stalagmite, and (ii) if possible within the associated error bars, the simplest age-depth relationship (i.e., a straight line) is fitted to the age data. Whereas the first assumption simply arises from the absolute constraint of increasing age with increasing distance from top, the second assumption avoids over-interpretation of the age data. The performance of the algorithm was tested using synthetic speleothem age data. For this purpose, a numerical model simulating (i) speleothem growth, (ii) incorporation and temporal evolution of U-series isotopes and (iii) mass spectrometric analysis was developed. This allows simulation of extreme scenarios, such as stalagmite sections including obvious outliers, age inversions and pronounced detrital contamination, and also to test the performance and robustness of the algorithm under these conditions. The developed algorithm has distinct advantages in comparison with the existing methods. Firstly, it is very robust. Outliers and age inversions are

  16. AGING PERFORMANCE OF MODEL 9975 PACKAGE FLUOROELASTOMER O-RINGS

    SciTech Connect

    Hoffman, E.; Daugherty, W.; Skidmore, E.; Dunn, K.; Fisher, D.

    2011-05-31

    The influence of temperature and radiation on Viton{reg_sign} GLT and GLT-S fluoroelastomer O-rings is an ongoing research focus at the Savannah River National Laboratory. The O-rings are credited for leaktight containment in the Model 9975 shipping package used for transportation of plutonium-bearing materials. At the Savannah River Site, the Model 9975 packages are being used for interim storage. Primary research efforts have focused on surveillance of O-rings from actual packages, leak testing of seals at bounding aging conditions and the effect of aging temperature on compression stress relaxation behavior, with the goal of service life prediction for long-term storage conditions. Recently, an additional effort to evaluate the effect of aging temperature on the oxidation of the materials has begun. Degradation in the mechanical properties of elastomers is directly related to the oxidation of the polymer. Sensitive measurements of the oxidation rate can be performed in a more timely manner than waiting for a measurable change in mechanical properties, especially at service temperatures. Measuring the oxidation rate therefore provides a means to validate the assumption that the degradation mechanisms(s) do not change from the elevated temperatures used for accelerated aging and the lower service temperatures. Monitoring the amount of oxygen uptake by the material over time at various temperatures can provide increased confidence in lifetime predictions. Preliminary oxygen consumption analysis of a Viton GLT-based fluoroelastomer compound (Parker V0835-75) using an Oxzilla II differential oxygen analyzer in the temperature range of 40-120 C was performed. Early data suggests oxygen consumption rates may level off within the first 100,000 hours (10-12 years) at 40 C and that sharp changes in the degradation mechanism (stress-relaxation) are not expected over the temperature range examined. This is consistent with the known long-term heat aging resistance of

  17. Cognitive aging and hearing acuity: modeling spoken language comprehension

    PubMed Central

    Wingfield, Arthur; Amichetti, Nicole M.; Lash, Amanda

    2015-01-01

    The comprehension of spoken language has been characterized by a number of “local” theories that have focused on specific aspects of the task: models of word recognition, models of selective attention, accounts of thematic role assignment at the sentence level, and so forth. The ease of language understanding (ELU) model (Rönnberg et al., 2013) stands as one of the few attempts to offer a fully encompassing framework for language understanding. In this paper we discuss interactions between perceptual, linguistic, and cognitive factors in spoken language understanding. Central to our presentation is an examination of aspects of the ELU model that apply especially to spoken language comprehension in adult aging, where speed of processing, working memory capacity, and hearing acuity are often compromised. We discuss, in relation to the ELU model, conceptions of working memory and its capacity limitations, the use of linguistic context to aid in speech recognition and the importance of inhibitory control, and language comprehension at the sentence level. Throughout this paper we offer a constructive look at the ELU model; where it is strong and where there are gaps to be filled. PMID:26124724

  18. Reconciling Hf-W Model Ages of IVB Parent Body with Numerical Models

    NASA Astrophysics Data System (ADS)

    Neumann, W.; Breuer, D.; Kleine, T.; Kruijer, T.

    2016-08-01

    We calculated the differentiation of the parent body of IVB iron meteorites comparing its evolution to the metal separation data. Our models are consistent with the separation ages inferred from the Hf-W chronology.

  19. Stochastic lattice model for bone remodeling and aging.

    PubMed

    Weinkamer, Richard; Hartmann, Markus A; Brechet, Yves; Fratzl, Peter

    2004-11-26

    We investigate the remodeling process of trabecular bone inside a human vertebral body using a stochastic lattice model, in which the ability of living bone to adapt to mechanical stimuli is incorporated. Our simulations show the emergence of a networklike structure similar to real trabecular bone. With time, the bone volume fraction reaches a steady state. The microstructure, however, coarsens with a typical length in the system following a power law. The simulation results suggest that a coarsening of the trabecular structure should occur as a natural aging phenomenon, not related to disease.

  20. Computational Thermomechanical Modelling of Early-Age Silicate Composites

    NASA Astrophysics Data System (ADS)

    Vala, J.; Št'astník, S.; Kozák, V.

    2009-09-01

    Strains and stresses in early-age silicate composites, widely used in civil engineering, especially in fresh concrete mixtures, in addition to those caused by exterior mechanical loads, are results of complicated non-deterministic physical and chemical processes. Their numerical prediction at the macro-scale level requires the non-trivial physical analysis based on the thermodynamic principles, making use of micro-structural information from both theoretical and experimental research. The paper introduces a computational model, based on a nonlinear system of macroscopic equations of evolution, supplied with certain effective material characteristics, coming from the micro-scale analysis, and sketches the algorithm for its numerical analysis.

  1. The OMS3 JGrass-NewAge Environmental Modelling System

    NASA Astrophysics Data System (ADS)

    Formetta, G.; David, O.; Rigon, R.

    2012-12-01

    The need for integrated analysis, and the multiplicity of possible goals in analyses that require hydro-biophysical modelling, necessitates more than ever the capability of composing modelling solutions with parts of known quality, which are transparent to users and consist of reusable model components. Moreover, modern hydrological modelling requires interaction with GIS tools to allow visualizations and the data-processing necessary to synthesise knowledge from high volumes of inputs and outputs data. Last but not least, doing science that is reproducible has requirements that go beyond the computational issues to embrace the possibility to inspection the tools, and easy compare modelling solutions by third party groups. The JGrass-NewAge system was born in order to satisfy these requirements. It is based on the geographic information system uDig-JGrass, and is composed of two parts: (i) the system of visualization of the data and of the results based on uDig; (ii) the modelling components. The latter are implemented as OMS3 components which can be connected or excluded at runtime, according to the needs and works seamlessly inside the uDig Spatial Toolbox. The system is based on a hillslope-link geometrical partition of the landscape, thus the basic unit, where the water budget is evaluated, is the hillslope, and each one of them drains into a single associated link rather than cells or pixels. To this conceptual partition corresponds an implementation of informatics that uses vectorial features for channels, and raster data for hillslopes. The mass budget for each hillslope can be performed in two ways: according to a modification of Duffy dynamical model of hillslope runoff or according to HyMod lumped model. Differently from traditional rainfall-runoff models where the discharge is usually given at the outlet of a catchment, the discharge is evaluated in each link of the river network according to a procedure presented in Cuencas model. The system includes

  2. Modelling age and secular differences in fitness between basketball players.

    PubMed

    Drinkwater, Eric J; Hopkins, Will G; McKenna, Michael J; Hunt, Patrick H; Pyne, David B

    2007-06-01

    Concerns about the value of physical testing and apparently declining test performance in junior basketball players prompted this retrospective study of trends in anthropometric and fitness test scores related to recruitment age and recruitment year. The participants were 1011 females and 1087 males entering Basketball Australia's State and National programmes (1862 and 236 players, respectively). Players were tested on 2.6 +/- 2.0 (mean +/- s) occasions over 0.8 +/- 1.0 year. Test scores were adjusted to recruitment age (14-19 years) and recruitment year (1996-2003) using mixed modelling. Effects were estimated by log transformation and expressed as standardized (Cohen) differences in means. National players scored more favourably than State players on all tests, with the differences being generally small (standardized differences, 0.2-0.6) or moderate (0.6-1.2). On all tests, males scored more favourably than females, with large standardized differences (>1.2). Athletes entering at age 16 performed at least moderately better than athletes entering at age 14 on most tests (standardized differences, 0.7-2.1), but test scores often plateaued or began to deteriorate at around 17 years. Some fitness scores deteriorated over the 8-year period, most notably a moderate increase in sprint time and moderate (National male) to large (National female) declines in shuttle run performance. Variation in test scores between National players was generally less than that between State players (ratio of standard deviations, 0.83-1.18). More favourable means and lower variability in athletes of a higher standard highlight the potential utility of these tests in junior basketball programmes, although secular declines should be a major concern of Australian basketball coaches.

  3. Lattice percolation approach to 3D modeling of tissue aging

    NASA Astrophysics Data System (ADS)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  4. Age-aware solder performance models : level 2 milestone completion.

    SciTech Connect

    Neilsen, Michael K.; Vianco, Paul Thomas; Neidigk, Matthew Aaron; Holm, Elizabeth Ann

    2010-09-01

    Legislated requirements and industry standards are replacing eutectic lead-tin (Pb-Sn) solders with lead-free (Pb-free) solders in future component designs and in replacements and retrofits. Since Pb-free solders have not yet seen service for long periods, their long-term behavior is poorly characterized. Because understanding the reliability of Pb-free solders is critical to supporting the next generation of circuit board designs, it is imperative that we develop, validate and exercise a solder lifetime model that can capture the thermomechanical response of Pb-free solder joints in stockpile components. To this end, an ASC Level 2 milestone was identified for fiscal year 2010: Milestone 3605: Utilize experimentally validated constitutive model for lead-free solder to simulate aging and reliability of solder joints in stockpile components. This report documents the completion of this milestone, including evidence that the milestone completion criteria were met and a summary of the milestone Program Review.

  5. Overview of Modeling and Simulations of Plutonium Aging

    SciTech Connect

    Schwartz, A J; Wolfer, W G

    2007-04-24

    Computer-aided materials research is now an integral part of science and technology. It becomes particularly valuable when comprehensive experimental investigations and materials testing are too costly, hazardous, or of excessive duration; then, theoretical and computational studies can supplement and enhance the information gained from limited experimental data. Such is the case for improving our fundamental understanding of the properties of aging plutonium in the nuclear weapons stockpile. The question of the effects of plutonium aging on the safety, security, and reliability of the nuclear weapons stockpile emerged after the United States closed its plutonium manufacturing facility in 1989 and decided to suspend any further underground testing of nuclear weapons in 1992. To address this, the Department of Energy's National Nuclear Security Administration (NNSA) initiated a research program to investigate plutonium aging, i.e., the changes with time of properties of Pu-Ga alloys employed in the nuclear weapons and to develop models describing these changes sufficiently reliable to forecast them for several decades. The November 26, 2006 press release by the NNSA summarizes the conclusions of the investigation, '...there appear to be no serious or sudden changes occurring, or expected to occur, in plutonium that would affect performance of pits beyond the well-understood, gradual degradation of plutonium materials'. Furthermore, 'These studies show that the degradation of plutonium in our nuclear weapons will not affect warhead reliability for decades', then NNSA Administrator Linton Brooks said. 'It is now clear that although plutonium aging contributes, other factors control the overall life expectancy of nuclear weapons systems'. The origin of plutonium aging is the natural decay of certain plutonium isotopes. Specifically, it is the process of alpha decay in which a plutonium atom spontaneously splits into a 5 MeV alpha particle and an 85keV uranium recoil

  6. The aging feline kidney: a model mortality antagonist?

    PubMed

    Lawler, Dennis F; Evans, Richard H; Chase, Kevin; Ellersieck, Mark; Li, Qinghong; Larson, Brian T; Satyaraj, Ebenezer; Heininger, Kurt

    2006-12-01

    Traditional thinking views apparently non-programmed disruptions of aging, which medical science calls geriatric diseases, as separate from 'less harmful' morphological and physiological aging phenotypes that are more universally expected with passage of time (loss of skin elasticity, graying of hair coat, weight gain, increased sleep time, behavioral changes, etc). Late-life disease phenotypes, especially those involving chronic processes, frequently are complex and very energy-expensive. A non-programmed process of homeostatic disruption leading into a death trajectory seems inconsistent with energy intensive processes. That is, evolutionary mechanisms do not favor complex and prolonged energy investment in death. Taking a different view, the naturally occurring feline (Felis silvestris catus) renal model suggests that at least some diseases of late life represent only the point of failure in essentially survival-driven adaptive processes. In the feline renal model, individuals that succumbed to failure most frequently displayed progressive tubular deletion and peritubular interstitial fibrosis, but had longer mean life span than cats that died from other causes. Additionally, among cats that died from non-renal causes, those that had degrees of renal tubular deletion and peritubular interstitial fibrosis also had longer mean life span than those cats with no changes, even though causes of death differed minimally between these latter two groups. The data indicate that selective tubular deletion very frequently begins early in adult life, without a clear initiating phase or event. The observations support a hypothesis that this prolonged process may be intrinsic and protective prior to an ultimate point of failure. Moreover, given the genetic complexity and the interplay with associated risk factors, existing data also do not support the ideas that these changes are simple compensatory responses and that breed- or strain-based 'default' diseases are inevitable

  7. The aging feline kidney: a model mortality antagonist?

    PubMed

    Lawler, Dennis F; Evans, Richard H; Chase, Kevin; Ellersieck, Mark; Li, Qinghong; Larson, Brian T; Satyaraj, Ebenezer; Heininger, Kurt

    2006-12-01

    Traditional thinking views apparently non-programmed disruptions of aging, which medical science calls geriatric diseases, as separate from 'less harmful' morphological and physiological aging phenotypes that are more universally expected with passage of time (loss of skin elasticity, graying of hair coat, weight gain, increased sleep time, behavioral changes, etc). Late-life disease phenotypes, especially those involving chronic processes, frequently are complex and very energy-expensive. A non-programmed process of homeostatic disruption leading into a death trajectory seems inconsistent with energy intensive processes. That is, evolutionary mechanisms do not favor complex and prolonged energy investment in death. Taking a different view, the naturally occurring feline (Felis silvestris catus) renal model suggests that at least some diseases of late life represent only the point of failure in essentially survival-driven adaptive processes. In the feline renal model, individuals that succumbed to failure most frequently displayed progressive tubular deletion and peritubular interstitial fibrosis, but had longer mean life span than cats that died from other causes. Additionally, among cats that died from non-renal causes, those that had degrees of renal tubular deletion and peritubular interstitial fibrosis also had longer mean life span than those cats with no changes, even though causes of death differed minimally between these latter two groups. The data indicate that selective tubular deletion very frequently begins early in adult life, without a clear initiating phase or event. The observations support a hypothesis that this prolonged process may be intrinsic and protective prior to an ultimate point of failure. Moreover, given the genetic complexity and the interplay with associated risk factors, existing data also do not support the ideas that these changes are simple compensatory responses and that breed- or strain-based 'default' diseases are inevitable

  8. Modeling Active Aging and Explicit Memory: An Empirical Study.

    PubMed

    Ponce de León, Laura Ponce; Lévy, Jean Pierre; Fernández, Tomás; Ballesteros, Soledad

    2015-08-01

    The rapid growth of the population of older adults and their concomitant psychological status and health needs have captured the attention of researchers and health professionals. To help fill the void of literature available to social workers interested in mental health promotion and aging, the authors provide a model for active aging that uses psychosocial variables. Structural equation modeling was used to examine the relationships among the latent variables of the state of explicit memory, the perception of social resources, depression, and the perception of quality of life in a sample of 184 older adults. The results suggest that explicit memory is not a direct indicator of the perception of quality of life, but it could be considered an indirect indicator as it is positively correlated with perception of social resources and negatively correlated with depression. These last two variables influenced the perception of quality of life directly, the former positively and the latter negatively. The main outcome suggests that the perception of social support improves explicit memory and quality of life and reduces depression in active older adults. The findings also suggest that gerontological professionals should design memory training programs, improve available social resources, and offer environments with opportunities to exercise memory.

  9. Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones.

    NASA Astrophysics Data System (ADS)

    Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.

    2015-12-01

    One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise

  10. Multi-Access Education: A Model for Instructional Delivery in the Information Age.

    ERIC Educational Resources Information Center

    Lever-Duffy, Judy

    Although it is evident that the Industrial Age has given way to the Information Age, educational institutions are still using Industrial Age models of instruction that encourage passive learning and stress knowledge mastery. In the media-rich Information Age, educators must shift to instructional models that put learners at the core of both the…

  11. Modeling age-of-onset: Cox model with latent major gene effects

    SciTech Connect

    Li, H.; Thompson, E.A.

    1994-09-01

    Analysis of age-of-onset is a key factor in the segregation and linkage analysis of complex genetic traits, but is complicated by the censoring of unaffected individuals. Most previous work has used parametric distributional assumptions, but it is hard to characterize the distribution of age-of-onset by a single distribution. Other approaches discretize age-of-onset and use logistic regression to model incidence; this approach does not use the information fully. Frailty models have been used for age-of-oset in the biostatistics literature, but these models do not lend themselves to modeling the correlations due to genetic effects which segregate within a family. Here, we propose use of the Cox model with latent major gene effects; conditional on the major genotypes, Cox`s proportional hazards model is used for age-of-onset for each individual. This is a semiparametric model; we do not specify the baseline hazard function. Likelihood analysis of such models is restricted by the difficulty in evaluating of maximizing the likelihood, especially when data are available for some of the members of an extended pedigree. Markov chain Monte Carlo permits genotypic configurations to be realized from the posterior distributions given a current model and the observed data. Hence methods for likelihood analysis can be developed: Monte Carlo EM is used for estimation of the parameters and their variance-covariance matrix. Markers and observed covariates are easily incorporated into this analysis. We present the model, methods for likelihood analysis and the results of a simulation study. The results are comparable with those based on a Cox model with known genotypic dependence in a pedigree. An early-onset Alzheimer`s pedigree and some breast cancer pedigrees have been used as real data examples. Some possible extensions are also discussed.

  12. Acrylamide induces accelerated endothelial aging in a human cell model.

    PubMed

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  13. Age and structure of a model vapour-deposited glass

    PubMed Central

    Reid, Daniel R.; Lyubimov, Ivan; Ediger, M. D.; de Pablo, Juan J.

    2016-01-01

    Glass films prepared by a process of physical vapour deposition have been shown to have thermodynamic and kinetic stability comparable to those of ordinary glasses aged for thousands of years. A central question in the study of vapour-deposited glasses, particularly in light of new knowledge regarding anisotropy in these materials, is whether the ultra-stable glassy films formed by vapour deposition are ever equivalent to those obtained by liquid cooling. Here we present a computational study of vapour deposition for a two-dimensional glass forming liquid using a methodology, which closely mimics experiment. We find that for the model considered here, structures that arise in vapour-deposited materials are statistically identical to those observed in ordinary glasses, provided the two are compared at the same inherent structure energy. We also find that newly deposited hot molecules produce cascades of hot particles that propagate far into the film, possibly influencing the relaxation of the material. PMID:27762262

  14. Ploidy, sex and crossing over in an evolutionary aging model

    NASA Astrophysics Data System (ADS)

    Lobo, Matheus P.; Onody, Roberto N.

    2006-02-01

    Nowadays, many forms of reproduction coexist in nature: Asexual, sexual, apomictic and meiotic parthenogenesis, hermaphroditism and parasex. The mechanisms of their evolution and what made them successful reproductive alternatives are very challenging and debated questions. Here, using a simple evolutionary aging model, we give a possible scenario. By studying the performance of populations where individuals may have diverse characteristics-different ploidies, sex with or without crossing over, as well as the absence of sex-we find an evolution sequence that may explain why there are actually two major or leading groups: Sexual and asexual. We also investigate the dependence of these characteristics on different conditions of fertility and deleterious mutations. Finally, if the primeval organisms on Earth were, in fact, asexual individuals we conjecture that the sexual form of reproduction could have more easily been set and found its niche during a period of low-intensity mutations.

  15. Radiocarbon ages and age models for the past 30,000 years in Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Colman, Steven M.; Rosenbaum, J.G.; Kaufman, D.S.; Dean, W.E.; McGeehin, J.P.

    2009-01-01

    Radiocarbon analyses of pollen, ostracodes, and total organic carbon (TOC) provide a reliable chronology for the sediments deposited in Bear Lake over the past 30,000 years. The differences in apparent age between TOC, pollen, and carbonate fractions are consistent and in accord with the origins of these fractions. Comparisons among different fractions indicate that pollen sample ages are the most reliable, at least for the past 15,000 years. The post-glacial radiocarbon data also agree with ages independently estimated from aspartic acid racemization in ostracodes. Ages in the red, siliclastic unit, inferred to be of last glacial age, appear to be several thousand years too old, probably because of a high proportion of reworked, refractory organic carbon in the pollen samples. Age-depth models for five piston cores and the Bear Lake drill core (BL00-1) were constructed by using two methods: quadratic equations and smooth cubic-splinefits. The two types of age models differ only in detail for individual cores, and each approach has its own advantages. Specific lithological horizons were dated in several cores and correlated among them, producing robust average ages for these horizons. The age of the correlated horizons in the red, siliclastic unit can be estimated from the age model for BL00-1, which is controlled by ages above and below the red, siliclastic unit. These ages were then transferred to the correlative horizons in the shorter piston cores, providing control for the sections of the age models in those cores in the red, siliclastic unit. These age models are the backbone for reconstructions of past environmental conditions in Bear Lake. In general, sedimentation rates in Bear Lake have been quite uniform, mostly between 0.3 and 0.8 mm yr-1 in the Holocene, and close to 0.5 mm yr-1 for the longer sedimentary record in the drill core from the deepest part of the lake. Copyright ?? 2009 The Geological Society of America.

  16. Towards an evidence-based model of aging.

    PubMed

    Katcher, Harold L

    2015-01-01

    The modern synthesis or evolutionary theory of aging assumes that aging results from the accumulation of errors or damages at the cellular level through the inadequacies of an organism's repair and maintenance machinery. The demonstration of cellular and organic rejuvenation requires the hypothesis that aging is the result of irreparable damage to be rejected. I will propose basic principles of mammalian aging based only on experimental data, without imposing the constraints of evolutionary theory. Consideration of the results of experiment suggests that fundamental assumptions about cell and organ aging being autonomous process, and about the centrality of cellular aging in organismic aging are wrong. The derived principles indicate that exogenous control of age-phenotype at cellular and higher levels of biological organization is possible. PMID:26054348

  17. Sensitivity analysis of the age-structured malaria transmission model

    NASA Astrophysics Data System (ADS)

    Addawe, Joel M.; Lope, Jose Ernie C.

    2012-09-01

    We propose an age-structured malaria transmission model and perform sensitivity analyses to determine the relative importance of model parameters to disease transmission. We subdivide the human population into two: preschool humans (below 5 years) and the rest of the human population (above 5 years). We then consider two sets of baseline parameters, one for areas of high transmission and the other for areas of low transmission. We compute the sensitivity indices of the reproductive number and the endemic equilibrium point with respect to the two sets of baseline parameters. Our simulations reveal that in areas of either high or low transmission, the reproductive number is most sensitive to the number of bites by a female mosquito on the rest of the human population. For areas of low transmission, we find that the equilibrium proportion of infectious pre-school humans is most sensitive to the number of bites by a female mosquito. For the rest of the human population it is most sensitive to the rate of acquiring temporary immunity. In areas of high transmission, the equilibrium proportion of infectious pre-school humans and the rest of the human population are both most sensitive to the birth rate of humans. This suggests that strategies that target the mosquito biting rate on pre-school humans and those that shortens the time in acquiring immunity can be successful in preventing the spread of malaria.

  18. Oxidative Stress, Aging and CNS disease in the Canine Model of Human Brain Aging

    PubMed Central

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    SYNOPSIS Decline in cognitive functions that accompany aging in dogs may have a biological basis, and many of the disorders associated with aging in canines may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of both laboratory and clinical studies – antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs. However, determining all effective compounds and combinations, dosage ranges, as well as when to initiate intervention and long term effects constitute gaps in our current knowledge. PMID:18249248

  19. Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging.

    PubMed

    Head, Elizabeth; Rofina, Jaime; Zicker, Steven

    2008-01-01

    Decline in cognitive functions that accompany aging in dogs may have a biologic basis, and many of the disorders associated with aging in dogs may be mitigated through dietary modifications that incorporate specific nutraceuticals. Based on previous research and the results of laboratory and clinical studies, antioxidants may be one class of nutraceutical that provides benefits to aged dogs. Brains of aged dogs accumulate oxidative damage to proteins and lipids, which may lead to dysfunction of neuronal cells. The production of free radicals and lack of increase in compensatory antioxidant enzymes may lead to detrimental modifications to important macromolecules within neurons. Reducing oxidative damage through food ingredients rich in a broad spectrum of antioxidants significantly improves, or slows the decline of, learning and memory in aged dogs.

  20. Constraining age and rate of deformation in the northern Bolivian Andes from cross sections, cooling ages, and thermokinematic modeling

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; Ehlers, T. A.; Rak, A. J.

    2015-12-01

    A critical component in assessing the viability of proposed plate tectonic or geodynamic processes in regions of convergence is the expected or predicted age and rate of deformation in the overriding plate. Commonly, age of deformation is inferred through geochronology of foreland basin and wedge-top sedimentary rocks and bedrock thermochronometer cooling signals. In Bolivia the original pulse of deformation of the fold-thrust belt is argue to be as young as 38-25 Ma based on the age of synorogenic strata or as old as 65-45 Ma due to proposed foreland basin rocks deposited in the Bolivian Altiplano. The large discrepancies in proposed age, rate and magnitude of deformation through the Bolivian Andes limit our ability to relate age and rate of shortening to internal geodynamic or external plate tectonic processes. We evaluate permissible ranges in age of initiation and rate of deformation through a forward kinematic model of the northern Bolivian fold-thrust belt. Each step of deformation accounts for isostatic loading from thrust faults and subsequent erosional of structural highs. The kinematic model predicts an evolution of flexural basins into which synorogenic sediments are deposited allowing us to fully integrate age of exhumation and deposition to age and magnitude of deformation. By assigning an age to each deformation step, we create a range of velocity vectors that are input into the thermokinematic model Pecube, which predicts thermochronometer cooling histories based on kinematics, topography, thermal parameters and shortening rates. We match the pattern of predicted ages with the across strike pattern of measured zircon fission track, apatite fission track and apatite (U-Th)/ He cooling ages. The sensitivity of modeled thermochronologic data to the age at which deformation initiates indicate that northern Bolivian EC started deforming at 50 Ma and may have begun as early as 55 Ma. The acceptable velocity envelope for the modeled section permits either a

  1. Ages estimated from a diffusion equation model for scarp degradation

    USGS Publications Warehouse

    Colman, Steven M.; Watson, K.E.N.

    1983-01-01

    The diffusion equation derived from the continuity equation for hillslopes is applied to scarp erosion in unconsolidated materials. Solutions to this equation allow direct calculation of the product of the rate coefficient and the age of the scarp from measurements of scarp morphology. Where the rate coefficient can be estimated or can be derived from scarps of known age, this method allows direct calculation of unknown ages of scarps.

  2. Looking for disease being a model of human aging

    PubMed Central

    Hausmanowa-Petrusewicz, I; Madej-Pilarczyk, A

    2007-01-01

    Summary This paper is a part of an introduction to authors’ study on systemic laminopathies and their role in human aging. Of special interest is progeria – a type of systemic laminopathy associated usually with mutation 1824 C > T and presenting phenotype of preliminary aging. The authors analyse the differences between the progeria and other syndrome of preliminary aging – Werner’s syndrome. PMID:18421896

  3. U.S. Telecommunications and Trade Policies: The Need for an Effective Information Age Model.

    ERIC Educational Resources Information Center

    Tirman, W. Robert

    This paper examines the need for telecommunications and international trade policies in the Information Age and presents a model for developing such policies. The first of seven sections discusses the need for an Information Age Model, and the technological changes that are giving rise to increasingly integrated Information Age networks are…

  4. Continuous Age-Structured Model for Bovine Tuberculosis in African buffalo

    NASA Astrophysics Data System (ADS)

    Anguelov, R.; Kojouharov, H.

    2009-10-01

    The paper deals with a model of the spread of bovine tuberculosis in the buffalo population in the Kruger National Park in South Africa. The model uses continuous age structure and it is formulated in terms of partial differential equations using eight epidemiological classes (compartments). More precisely, the age density for each class at time t satisfies a one way wave equation, where the age is the space variable. The continuous age model discussed here is derived from a 2006 age groups model by P. C. Cross and W. M. Getz.

  5. Age or stage structure? A comparison of dynamic outcomes from discrete age- and stage-structured population models.

    PubMed

    Wikan, Arild

    2012-06-01

    Discrete stage-structured density-dependent and discrete age-structured density-dependent population models are considered. Regarding the former, we prove that the model at hand is permanent (i.e., that the population will neither go extinct nor exhibit explosive oscillations) and given density dependent fecundity terms we also show that species with delayed semelparous life histories tend to be more stable than species which possess precocious semelparous life histories. Moreover, our findings together with results obtained from other stage-structured models seem to illustrate a fairly general ecological principle, namely that iteroparous species are more stable than semelparous species. Our analysis of various age-structured models does not necessarily support the conclusions above. In fact, species with precocious life histories now appear to possess better stability properties than species with delayed life histories, especially in the iteroparous case. We also show that there are dynamical outcomes from semelparous age-structured models which we are not able to capture in corresponding stage-structured cases. Finally, both age- and stage-structured population models may generate periodic dynamics of low period (either exact or approximate). The important prerequisite is to assume density-dependent survival probabilities. PMID:22297621

  6. Characterizing cognitive aging of associative memory in animal models

    PubMed Central

    Engle, James R.; Barnes, Carol A.

    2012-01-01

    An overview is provided of the simple single-cue delay and trace eyeblink conditioning paradigms as techniques to assess associative learning and memory in the aged. We highlight and focus this review on the optimization of the parameter space of eyeblink conditioning designs in the aged to avoid and control for potential confounds that may arise when studying aged mammals. The need to examine the contribution of non-associative factors that can contribute to performance outcomes is emphasized, and how age-related changes in the central nervous system as well as peripheral sensory factors can potentially bias the interpretation of the data in the aged is discussed. The way in which slight alterations of the parameter space in the delay and trace eyeblink conditioning paradigms can lead to delayed but intact conditioning, rather than impaired performance in aged animals is also discussed. Overall, the eyeblink conditioning paradigm, when optimized for the age of the animal in the study, is an elegantly simple technique for assessment of associative learning and memory. When design caveats described above are taken into account, this important type of memory, with its well-defined neural substrates, should definitely be included in cognitive assessment batteries for the aged. PMID:22988435

  7. Chronic kidney disease: a clinical model of premature aging.

    PubMed

    Stenvinkel, Peter; Larsson, Tobias E

    2013-08-01

    Premature aging is a process associated with a progressive accumulation of deleterious changes over time, an impairment of physiologic functions, and an increase in the risk of disease and death. Regardless of genetic background, aging can be accelerated by the lifestyle choices and environmental conditions to which our genes are exposed. Chronic kidney disease is a common condition that promotes cellular senescence and premature aging through toxic alterations in the internal milieu. This occurs through several mechanisms, including DNA and mitochondria damage, increased reactive oxygen species generation, persistent inflammation, stem cell exhaustion, phosphate toxicity, decreased klotho expression, and telomere attrition. Because recent evidence suggests that both increased local signaling of growth factors (through the nutrient-sensing mammalian target of rapamycin) and decreased klotho expression are important modulators of aging, interventions that target these should be tested in this prematurely aged population.

  8. The short-lived African turquoise killifish: an emerging experimental model for ageing.

    PubMed

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-02-01

    Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  9. The short-lived African turquoise killifish: an emerging experimental model for ageing

    PubMed Central

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-01-01

    ABSTRACT Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  10. The short-lived African turquoise killifish: an emerging experimental model for ageing.

    PubMed

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-02-01

    Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model.

  11. An agent-based computational model for tuberculosis spreading on age-structured populations

    NASA Astrophysics Data System (ADS)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  12. Urban groundwater age modeling under unconfined condition - Impact of underground structures on groundwater age: Evidence of a piston effect

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Rossier, Yvan; Eisenlohr, Laurent

    2016-04-01

    In this paper, underground structures are shown to have a major influence on the groundwater mean age distribution described as a dispersive piston effect. Urban underground development does not occur without impacts on subsoil resources. In particular, groundwater resources can be vulnerable and generate disturbances when this space is exploited. Groundwater age spatial distribution data are fundamental for resource management as it can provide operational sustainability indicators. However, the application of groundwater age modeling is neglected regarding the potential effect of underground structures in urban areas. A three dimensional modeling approach was conducted to quantify the impact of two underground structures: (1) an impervious structure and (2) a draining structure. Both structures are shown to cause significant mixing processes occurring between shallow and deeper aquifers. The design technique used for draining structures is shown to have the greatest impact, generating a decrease in mean age of more than 80% under the structure. Groundwater age modeling is shown to be relevant for highlighting the role played by underground structures in advective-dispersive flows in urban areas.

  13. Reinvestigation of age model for relative paleointensity stack and application to Lake Baikal record

    NASA Astrophysics Data System (ADS)

    Oda, H.

    2014-12-01

    The age model for relative paleointensity stack PISO-1500 (Channell et al., 2009) is based on IODP U1308 from North Atlantic. Channell et al. (2008) developed the age model for U1308 by correlating the benthic oxygen isotope curve with LR04 oxygen isotope stack (Lisiecki&Raymo, 2005). LR04 stack is known as oxygen isotope stack for benthic foraminifarra, whose age model is dependent on ice volume model with a certain time lag. On the other hand, Caballero-Gill et al. (2012) developed an absolute age model based on U-Th dating for stalagmites from China and correlated the oxygen isotope curve with that on planctonic foraminiferra for a deep-sea core from South China Sea. The age model based on absolute dating for stalagmite was then transfered to oxygen isotope curve of benthic forraminiferra for the same core. This enables to provide absolute age model on PISO-1500 for the past 350 kyrs. The resulting modified PISO-1500 was applied on paleomagnetic records from Lake Baikal to provide an age model based on relative paleointensity. Finally, this age model was compared with alternative age model based on correlation of biogenic silica record with insolation at the site (Prokopenko et al., 2006) and the reason for the discrepancy will be discussed.

  14. Autophagy drives epidermal deterioration in a Drosophila model of tissue aging.

    PubMed

    Scherfer, Christoph; Han, Violet C; Wang, Yan; Anderson, Aimee E; Galko, Michael J

    2013-04-01

    Organismal lifespan has been the primary readout in aging research. However, how longevity genes control tissue-specific aging remains an open question. To examine the crosstalk between longevity programs and specific tissues during aging, biomarkers of organ-specific aging are urgently needed. Since the earliest signs of aging occur in the skin, we sought to examine skin aging in a genetically tractable model. Here we introduce a Drosophila model of skin aging. The epidermis undergoes a dramatic morphological deterioration with age that includes membrane and nuclear loss. These changes were decelerated in a long-lived mutant and accelerated in a short-lived mutant. An increase in autophagy markers correlated with epidermal aging. Finally, the epidermis of Atg7 mutants retained younger characteristics, suggesting that autophagy is a critical driver of epidermal aging. This is surprising given that autophagy is generally viewed as protective during aging. Since Atg7 mutants are short-lived, the deceleration of epidermal aging in this mutant suggests that in the epidermis healthspan can be uncoupled from longevity. Because the aging readout we introduce here has an early onset and is easily visualized, genetic dissection using our model should identify other novel mechanisms by which lifespan genes feed into tissue-specific aging.

  15. Aging and Neurodegeneration: A Tangle of Models and Mechanisms.

    PubMed

    Chakrabarti, Sasanka; Mohanakumar, Kochupurackal P

    2016-03-01

    The research on aging and age-related diseases, especially the neurodegenerative diseases, is on the fast track. However, the results have so far not been translated to actual benefit for the patients in terms of treatment or diagnosis of age-related degenerative diseases including those of the CNS. As far as the prevention of the cognitive decline during non-pathological aging is concerned, there is nothing much to offer other than calorie restriction and physical exercise. Needless to say, the benefits are not up to our expectations. However, over the years at the experimental level it has been possible to identify several cellular and molecular mechanisms that are intricately associated with aging in general and neurodegenerative diseases in particular. These include oxidative stress and altered redox-signaling, mitochondrial dysfunction, inflammation, proteotoxicity and altered gene expressions. These inter-dependent pathways mediate cellular senescence and often culminate in programmed cell death like apoptosis and autophagy, and in the context of brain these changes are manifested clinically as cognitive decline and pathologically as neurodegeneration. This special issue provides the readers with glimpses of this complex scenario from different angles primarily in the context of brain and also attempts to identify the potential drug targets against neurodegenerative diseases. PMID:27114843

  16. Aging and Neurodegeneration: A Tangle of Models and Mechanisms

    PubMed Central

    Chakrabarti, Sasanka; Mohanakumar, Kochupurackal P.

    2016-01-01

    The research on aging and age-related diseases, especially the neurodegenerative diseases, is on the fast track. However, the results have so far not been translated to actual benefit for the patients in terms of treatment or diagnosis of age-related degenerative diseases including those of the CNS. As far as the prevention of the cognitive decline during non-pathological aging is concerned, there is nothing much to offer other than calorie restriction and physical exercise. Needless to say, the benefits are not up to our expectations. However, over the years at the experimental level it has been possible to identify several cellular and molecular mechanisms that are intricately associated with aging in general and neurodegenerative diseases in particular. These include oxidative stress and altered redox-signaling, mitochondrial dysfunction, inflammation, proteotoxicity and altered gene expressions. These inter-dependent pathways mediate cellular senescence and often culminate in programmed cell death like apoptosis and autophagy, and in the context of brain these changes are manifested clinically as cognitive decline and pathologically as neurodegeneration. This special issue provides the readers with glimpses of this complex scenario from different angles primarily in the context of brain and also attempts to identify the potential drug targets against neurodegenerative diseases. PMID:27114843

  17. Abnormal glutamate release in aged BTBR mouse model of autism.

    PubMed

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.

  18. NMR and molecular modeling: application to wine ageing

    NASA Astrophysics Data System (ADS)

    Saucier, C.; Pianet, I.; Laguerre, M.; Glories, Y.

    1998-02-01

    Red wine contains polyphenols called tannins which are very important for its taste and longevity. These polymers consist in repeating units of catechin and its epimer epicatechin. During ageing, slow condensation reactions take place which lead to new chemical structures. Among the possible reactions, we have focused our attention on acetaldehyde cross-linking. Catechin was used as a model for the production of polymers with acetaldehyde. Two reaction product fractions have been isolated by liquid chromatography. Mass measurement indicated that these fractions contain dimers. NMR (1D and 2D) and molecular modelling were then used to study the structure and conformations of these products. The first product consist in a pure dimer with the two catechin moieties connected with an ethyl bridge on the carbon 6 and 8. The second fraction was a mixture of two dimers (50/50). NMR measurements showed that it could be two symmetrical dimers involving the same carbon for each catechin moiety (6 or8). Le vin rouge contient des polyphénols appelés tanins qui sont très importants pour son goût et sa longévité. Il s'agit principalement de polymères de catéchine et d'épicatéchine. Durant le vieillissement du vin, des réactions de condensation interviennent lentement et conduisent à de nouvelles structures. Parmi les réactions possibles, nous avons plus spécialement étudié la polymérisation par pontage avec l'éthanal. La catéchine a été utilisée comme modèle de tannin et mise en présence d'éthanal en milieu acide proche du vin. Deux fractions de produits de réaction ont été isolées par chromatographie liquide. La spectrométrie de masse a révélé la présence de dimères. La RMN (1D et 2D) et la modélisation moléculaire ont ensuite été utilisées pour déterminer la structure et la conformation de ces produits. La première fraction a été identifiée comme étant un dimère de deux unités catéchines reliées par un pont éthyle par leur

  19. Aging well socially through engagement with life: adapting Rowe and Kahn's model of successful aging to Chinese cultural context.

    PubMed

    Ng, Sik Hung; Cheung, Chau-Kiu; Chong, Alice M L; Woo, Jean; Kwan, Alex Y H; Lai, Stephanie

    2011-01-01

    Although aging well socially (engagement with life) is as important as aging well personally (illness avoidance and functioning) (Rowe & Kahn, 1998), it has received less research attention. A caring (CE) and a productive (PE) form of engagement were derived from an analysis of Chinese cultural meanings of engagement, and combined with illness avoidance and functioning to form a 4-factor model. Confirmatory factor analysis based on 2970 Hong Kong Chinese (40 to 74 years) showed a good model fit that was replicated a year later with 2120 of the original sample. Further analysis led to a more parsimonious model where illness avoidance and functioning converged into a single second-order factor whereas CE and PE remained as distinct first-order factors. The results supported the differentiation of Rowe and Kahn's engagement with life component into caring and productive engagements.

  20. Aging and Predicting Inferences: A Diffusion Model Analysis

    ERIC Educational Resources Information Center

    McKoon, Gail; Ratcliff, Roger

    2013-01-01

    In the domain of discourse processing, it has been claimed that older adults (60-0-year-olds) are less likely to encode and remember some kinds of information from texts than young adults. The experiment described here shows that they do make a particular kind of inference to the same extent that college-age adults do. The inferences examined were…

  1. Rb-Sr age of a Luna 16 basalt and the model age of lunar soils.

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.

    1972-01-01

    An internal isochron was determined on a small basalt fragment (sample B-1) returned from the Luna 16 mission, which yields an age of 3.42 plus or minus 0.8 b.y. and a low initial Sr87/Sr86 value. A comparison is made of the data from four lunar missions to mare sites which shows that the last period of major flooding of the mare basins is confined to a narrow time interval of only 0.55 b.y. The direct evidence of major lunar magmatic activity appears to be confined to the interval from 3.1 to 4.0 b.y. The Sr87/Sr86 values for all mare basalts are extremely primitive and lie in a rather narrow range. A diagram is given for initial Sr87/Sr86 as a function of time for all lunar rocks.

  2. Age at marriage in Malaysia: a hazard model of marriage timing.

    PubMed

    Anderson, K H; Hill, M A; Butler, J S

    1987-08-01

    "This paper estimates a proportional hazards model for the timing of age at marriage of women in Malaysia. We hypothesize that age at marriage responds significantly to differences in male and female occupations, race, and age. We find considerable empirical support for the relevance of economic variables in determining age at marriage as well as evidence of strong differences in marriage patterns across races." PMID:12280709

  3. Modeling the Information Age Combat Model: An Agent-Based Simulation of Network Centric Operations

    NASA Technical Reports Server (NTRS)

    Deller, Sean; Rabadi, Ghaith A.; Bell, Michael I.; Bowling, Shannon R.; Tolk, Andreas

    2010-01-01

    The Information Age Combat Model (IACM) was introduced by Cares in 2005 to contribute to the development of an understanding of the influence of connectivity on force effectiveness that can eventually lead to quantitative prediction and guidelines for design and employment. The structure of the IACM makes it clear that the Perron-Frobenius Eigenvalue is a quantifiable metric with which to measure the organization of a networked force. The results of recent experiments presented in Deller, et aI., (2009) indicate that the value of the Perron-Frobenius Eigenvalue is a significant measurement of the performance of an Information Age combat force. This was accomplished through the innovative use of an agent-based simulation to model the IACM and represents an initial contribution towards a new generation of combat models that are net-centric instead of using the current platform-centric approach. This paper describes the intent, challenges, design, and initial results of this agent-based simulation model.

  4. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging.

    PubMed

    Zhang, Weiqi; Li, Jingyi; Suzuki, Keiichiro; Qu, Jing; Wang, Ping; Zhou, Junzhi; Liu, Xiaomeng; Ren, Ruotong; Xu, Xiuling; Ocampo, Alejandro; Yuan, Tingting; Yang, Jiping; Li, Ying; Shi, Liang; Guan, Dee; Pan, Huize; Duan, Shunlei; Ding, Zhichao; Li, Mo; Yi, Fei; Bai, Ruijun; Wang, Yayu; Chen, Chang; Yang, Fuquan; Li, Xiaoyu; Wang, Zimei; Aizawa, Emi; Goebl, April; Soligalla, Rupa Devi; Reddy, Pradeep; Esteban, Concepcion Rodriguez; Tang, Fuchou; Liu, Guang-Hui; Belmonte, Juan Carlos Izpisua

    2015-06-01

    Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.

  5. All age-depth models are wrong, but are getting better

    NASA Astrophysics Data System (ADS)

    Trachsel, Mathias; Chipperfield, Joseph D.; Telford, Richard J.

    2015-04-01

    Construction of accurate age-depth relationships and realistic assessment of their uncertainties is one of the fundamental prerequisites for comparing and correlating Late Quaternary stratigraphic proxy records. Four widely used age-depth modelling routines: i) clam, ii) OxCal, iii) Bacon, and iv) Bchron were tested using radiocarbon dates simulated from varved sediment stratigraphies. All methods produced average age-depth models that were close to the true varve age, but the uncertainty estimation differed considerably among models. Age uncertainties were underestimated by clam, whereas age uncertainties produced by Bchron were too large. Using OxCal and Bacon, setting of model specific parameters influenced the estimated uncertainties, which varied from too large to too small. Still, compared to the study by Telford et al. (2004), the use of Bayesian age-depth models greatly improved on the assessment of uncertainties of age-depth models. Reference: Telford et al. (2004), All age-depth models are wrong: but how badly? Quaternary Science Reviews, 23,1-5.

  6. Preparing the workforce for healthy aging programs: the Skills for Healthy Aging Resources and Programs (SHARP) model.

    PubMed

    Frank, Janet C; Altpeter, Mary; Damron-Rodriguez, JoAnn; Driggers, Joann; Lachenmayr, Susan; Manning, Colleen; Martinez, Dana M; Price, Rachel M; Robinson, Patricia

    2014-10-01

    Current public health and aging service agency personnel have little training in gerontology, and virtually no training in evidence-based health promotion and disease management programs for older adults. These programs are rapidly becoming the future of our community-based long-term care support system. The purpose of this project was to develop and test a model community college career technical education program, Skills for Healthy Aging Resources and Programs (SHARP), for undergraduate college students, current personnel in aging service and community organizations, and others interested in retraining. A multidisciplinary cross-sector team from disciplines of public health, sociology, gerontology and nursing developed four competency-based courses that focus on healthy aging, behavior change strategies, program management, an internship, and an option for leader training in the Chronic Disease Self-Management Program. To enhance implementation and fidelity, intensive faculty development training was provided to all instructors and community agency partners. Baseline and postprogram evaluation of competencies for faculty and students was conducted. Process evaluation for both groups focused on satisfaction with the curricula and suggestions for program improvement. SHARP has been piloted five times at two community colleges. Trainees (n = 113) were primarily community college students (n = 108) and current aging service personnel (n = 5). Statistically significant improvements in all competencies were found for both faculty and students. Process evaluation outcomes identified the needed logical and component adaptations to enhance the feasibility of program implementation, dissemination, and student satisfaction. The SHARP program provides a well-tested, evidence-based effective model for addressing workforce preparation in support of healthy aging service program expansion and delivery.

  7. Age, period, and cohort effects on maternal mortality: a linear logit model.

    PubMed

    Tu, E J; Chuang, J L

    1983-01-01

    This analysis was aimed at disentangling the age, period, and cohort effects on the decline in maternal mortality in the 1917-77 period in New York State. New York maternal mortality rates were consistentley lower than US rates from 191-56, but fell considerably more slowly than national rates since 1957. Cohort analysis can potentially provide separate measures of age, period, and cohort effects by use of linear ligit models. Comparison of various age-period-cohort linear logit models on the logits of maternal mortality rates indicated that period and age effects are the dominant influences on maternal mortality. Cohortship did not make a significant contribution after age and period were already in the model. Age parameter results suggest that the 20-24 year age group faces the lowest maternal mortality risk, and risk increases rapidly with age after age 30 years. The infuctuation in the residuals for the 40-44 year age group is slightly higher due to the stochastic variation in diminishing small numbers of maternal deaths and pregnancies in this group. In addition, adding the period dimension after adjustment for age had a greater impact than adding the cohort dimension after adjustment for age. The implication of these findings is that, as a set, changes in temporal variables that cut across cohorts seem to be more important than those variables that distinguish cohorts.

  8. Phospholipase A2 – nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment

    PubMed Central

    Hermann, Petra M.; Watson, Shawn N.; Wildering, Willem C.

    2014-01-01

    The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain. PMID:25538730

  9. Age-Related Changes in Predictive Capacity Versus Internal Model Adaptability: Electrophysiological Evidence that Individual Differences Outweigh Effects of Age.

    PubMed

    Bornkessel-Schlesewsky, Ina; Philipp, Markus; Alday, Phillip M; Kretzschmar, Franziska; Grewe, Tanja; Gumpert, Maike; Schumacher, Petra B; Schlesewsky, Matthias

    2015-01-01

    Hierarchical predictive coding has been identified as a possible unifying principle of brain function, and recent work in cognitive neuroscience has examined how it may be affected by age-related changes. Using language comprehension as a test case, the present study aimed to dissociate age-related changes in prediction generation versus internal model adaptation following a prediction error. Event-related brain potentials (ERPs) were measured in a group of older adults (60-81 years; n = 40) as they read sentences of the form "The opposite of black is white/yellow/nice." Replicating previous work in young adults, results showed a target-related P300 for the expected antonym ("white"; an effect assumed to reflect a prediction match), and a graded N400 effect for the two incongruous conditions (i.e. a larger N400 amplitude for the incongruous continuation not related to the expected antonym, "nice," versus the incongruous associated condition, "yellow"). These effects were followed by a late positivity, again with a larger amplitude in the incongruous non-associated versus incongruous associated condition. Analyses using linear mixed-effects models showed that the target-related P300 effect and the N400 effect for the incongruous non-associated condition were both modulated by age, thus suggesting that age-related changes affect both prediction generation and model adaptation. However, effects of age were outweighed by the interindividual variability of ERP responses, as reflected in the high proportion of variance captured by the inclusion of by-condition random slopes for participants and items. We thus argue that - at both a neurophysiological and a functional level - the notion of general differences between language processing in young and older adults may only be of limited use, and that future research should seek to better understand the causes of interindividual variability in the ERP responses of older adults and its relation to cognitive performance. PMID

  10. Muscle wasting in myotonic dystrophies: a model of premature aging

    PubMed Central

    Mateos-Aierdi, Alba Judith; Goicoechea, Maria; Aiastui, Ana; Fernández-Torrón, Roberto; Garcia-Puga, Mikel; Matheu, Ander; López de Munain, Adolfo

    2015-01-01

    Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the

  11. Constitutive modeling of the aging viscoelastic properties of portland cement paste

    NASA Astrophysics Data System (ADS)

    Grasley, Zachary C.; Lange, David A.

    2007-12-01

    Analytical approaches for modeling aging viscoelastic behavior of concrete include the time-shift approach (analogous to time-temperature superposition), the solidification theory, and the dissolution-precipitation approach. The aging viscoelastic properties of concrete are generally attributed solely to the cement paste phase since the aggregates are typically linear elastic. In this study, the aging viscoelastic behavior of four different cement pastes has been measured and modeled according to both the time-shift approach and the solidification theory. The inability of each individual model to fully characterize the aging viscoelastic response of the materials provides insight into the mechanisms for aging of the viscoelastic properties of cement paste and concrete. A model that considers aging due to solidification in combination with inherent aging of the cement paste gel (modeled using the time-shift approach) more accurately predicted the aging viscoelastic behavior of portland cement paste than either the solidification or time-shift approaches independently. The results provide evidence that solidification and other intrinsic gel aging mechanisms are concurrently active in the aging process of cementitious materials.

  12. The Statewide Training Model for a Continuing Education Certificate in Gerontology in Religion and Aging.

    ERIC Educational Resources Information Center

    Thompson, Barbara, Ed.; Payne, Barbara, Ed.

    This training model is a guide for developing statewide training for a continuing education certificate in gerontology in religion and aging. It is designed for use by gerontology educators, state office of aging executives, and leaders of religious judicatories. Section I begins with a description of the training model and covers where and how to…

  13. Joint Bayesian analysis of birthweight and censored gestational age using finite mixture models

    PubMed Central

    Schwartz, Scott L.; Gelfand, Alan E.; Miranda, Marie L.

    2016-01-01

    Birthweight and gestational age are closely related and represent important indicators of a healthy pregnancy. Customary modeling for birthweight is conditional on gestational age. However, joint modeling directly addresses the relationship between gestational age and birthweight, and provides increased flexibility and interpretation as well as a strategy to avoid using gestational age as an intermediate variable. Previous proposals have utilized finite mixtures of bivariate regression models to incorporate well-established risk factors into analysis (e.g. sex and birth order of the baby, maternal age, race, and tobacco use) while examining the non-Gaussian shape of the joint birthweight and gestational age distribution. We build on this approach by demonstrating the inferential (prognostic) benefits of joint modeling (e.g. investigation of `age inappropriate' outcomes like small for gestational age) and hence re-emphasize the importance of capturing the non-Gaussian distributional shapes. We additionally extend current models through a latent specification which admits interval-censored gestational age. We work within a Bayesian framework which enables inference beyond customary parameter estimation and prediction as well as exact uncertainty assessment. The model is applied to a portion of the 2003–2006 North Carolina Detailed Birth Record data (n=336129) available through the Children's Environmental Health Initiative and is fitted using the Bayesian methodology and Markov chain Monte Carlo approaches. PMID:20575047

  14. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.

  15. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations. PMID:26328769

  16. Aging and strain softening model for episodic faulting

    USGS Publications Warehouse

    Stuart, W.D.

    1979-01-01

    Episodic slip on shallow crustal faults can be qualitatively explained by postulating a fault constitutive law that is the superposition of two limiting material responses: (1) strain softening after peak stress during large strain rates, and (2) strength (peak stress) recovery during aging at small strain rates. A single law permits a variety of seismic and aseismic phenomena to occur over a range of space and time scales. Specific cases are determined by the spatial variation of material constants, recent deformation history, crustal rigidity, and remote forcing. ?? 1979.

  17. Mini-review: Retarding aging in murine genetic models of neurodegeneration.

    PubMed

    Albin, Roger L; Miller, Richard A

    2016-01-01

    Retardation of aging processes is a plausible approach to delaying the onset or slowing the progression of common neurodegenerative disorders. We review the results of experiments using murine genetic models of Alzheimer disease and Huntington disease to evaluate the effects of retarding aging. While positive results are reported in several of these experiments, there are several discrepancies in behavioral and pathologic outcomes both within and between different experiments. Similarly, different experiments yield varying assessments of potential proximate mechanisms of action of retarding aging. The anti-aging interventions used for some experiments include some that show only modest effects on lifespan, and others that have proven hard to reproduce. Several experiments used aggressive transgenic neurodegenerative disease models that may be less relevant in the context of age-related diseases. The experience with these models and interventions may be useful in designing future experiments assessing anti-aging interventions for disease-modifying treatment of neurodegenerative diseases.

  18. The African Turquoise Killifish: A Model for Exploring Vertebrate Aging and Diseases in the Fast Lane.

    PubMed

    Harel, Itamar; Brunet, Anne

    2015-01-01

    Why and how organisms age remains a mystery, and it defines one of the biggest challenges in biology. Aging is also the primary risk factor for many human pathologies, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. Thus, manipulating the aging rate and potentially postponing the onset of these devastating diseases could have a tremendous impact on human health. Recent studies, relying primarily on nonvertebrate short-lived model systems, have shown the importance of both genetic and environmental factors in modulating the aging rate. However, relatively little is known about aging in vertebrates or what processes may be unique and specific to these complex organisms. Here we discuss how advances in genomics and genome editing have significantly expanded our ability to probe the aging process in a vertebrate system. We highlight recent findings from a naturally short-lived vertebrate, the African turquoise killifish, which provides an attractive platform for exploring mechanisms underlying vertebrate aging and age-related diseases.

  19. Computational models in the age of large datasets.

    PubMed

    O'Leary, Timothy; Sutton, Alexander C; Marder, Eve

    2015-06-01

    Technological advances in experimental neuroscience are generating vast quantities of data, from the dynamics of single molecules to the structure and activity patterns of large networks of neurons. How do we make sense of these voluminous, complex, disparate and often incomplete data? How do we find general principles in the morass of detail? Computational models are invaluable and necessary in this task and yield insights that cannot otherwise be obtained. However, building and interpreting good computational models is a substantial challenge, especially so in the era of large datasets. Fitting detailed models to experimental data is difficult and often requires onerous assumptions, while more loosely constrained conceptual models that explore broad hypotheses and principles can yield more useful insights.

  20. Successful Aging: A Psychosocial Resources Model for Very Old Adults

    PubMed Central

    Randall, G. Kevin; Martin, Peter; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    Objectives. Using data from the first two phases of the Georgia Centenarian Study, we proposed a latent factor structure for the Duke OARS domains: Economic Resources, Mental Health, Activities of Daily Living, Physical Health, and Social Resources. Methods. Exploratory and confirmatory factor analyses were conducted on two waves of the Georgia Centenarian Study to test a latent variable measurement model of the five resources; nested model testing was employed to assess the final measurement model for equivalency of factor structure over time. Results. The specified measurement model fit the data well at Time 1. However, at Time 2, Social Resources only had one indicator load significantly and substantively. Supplemental analyses demonstrated that a model without Social Resources adequately fit the data. Factorial invariance over time was confirmed for the remaining four latent variables. Discussion. This study's findings allow researchers and clinicians to reduce the number of OARS questions asked of participants. This has practical implications because increased difficulties with hearing, vision, and fatigue in older adults may require extended time or multiple interviewer sessions to complete the battery of OARS questions. PMID:22900180

  1. Dynamical Masses of Young Stars. I. Discordant Model Ages of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron C.; Ireland, Michael J.; Dupuy, Trent J.; Kraus, Adam L.

    2016-02-01

    We present the results of a long-term orbit monitoring program, using sparse aperture masking observations taken with NIRC2 on the Keck-II telescope, of seven G- to M-type members of the Upper Scorpius subgroup of the Sco-Cen OB association. We present astrometry and derived orbital elements of the binary systems we have monitored, and also determine the age, component masses, distance, and reddening for each system using the orbital solutions and multi-band photometry, including Hubble Space Telescope photometry, and a Bayesian fitting procedure. We find that the models can be forced into agreement with any individual system by assuming an age, but that age is not consistent across the mass range of our sample. The G-type binary systems in our sample have model ages of ˜11.5 Myr, which is consistent with the latest age estimates for Upper Scorpius, while the M-type binary systems have significantly younger model ages of ˜7 Myr. Based on our fits, this age discrepancy in the models corresponds to a luminosity underprediction of 0.8-0.15 dex, or equivalently an effective temperature overprediction of 100-300 K for M-type stars at a given pre-main-sequence age. We also find that the M-type binary system RXJ 1550.0-2312 has an age (˜16 Myr) and distance (˜85 pc) consistent with membership in the Upper Centaurus Lupus subgroup.

  2. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  3. Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus

    PubMed Central

    Agusto, Folashade B.; Easley, Shamise; Freeman, Kenneth; Thomas, Madison

    2016-01-01

    We developed a new age-structured deterministic model for the transmission dynamics of chikungunya virus. The model is analyzed to gain insights into the qualitative features of its associated equilibria. Some of the theoretical and epidemiological findings indicate that the stable disease-free equilibrium is globally asymptotically stable when the associated reproduction number is less than unity. Furthermore, the model undergoes, in the presence of disease induced mortality, the phenomenon of backward bifurcation, where the stable disease-free equilibrium of the model coexists with a stable endemic equilibrium when the associated reproduction number is less than unity. Further analysis of the model indicates that the qualitative dynamics of the model are not altered by the inclusion of age structure. This is further emphasized by the sensitivity analysis results, which shows that the dominant parameters of the model are not altered by the inclusion of age structure. However, the numerical simulations show the flaw of the exclusion of age in the transmission dynamics of chikungunya with regard to control implementations. The exclusion of age structure fails to show the age distribution needed for an effective age based control strategy, leading to a one size fits all blanket control for the entire population. PMID:27190548

  4. A Model to Determine the Likely Age of an Adolescent’s First Drink of Alcohol

    PubMed Central

    Chan, Grace; Kramer, John R.; Wetherill, Leah; Bucholz, Kathleen K.; Dick, Danielle; Hesselbrock, Victor; Porjesz, Bernice; Rangaswamy, Madhavi; Schuckit, Marc

    2013-01-01

    OBJECTIVE: With the use of a new cohort of adolescent subjects, predictors from the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) interview and the Achenbach Youth Self Report (YSR) were combined to model age of first drink (AFD). METHODS: Subjects consisted of 820 adolescents (ages 14–17) drawn from the current phase of the Collaborative Study on the Genetics of Alcoholism. Three Cox proportional hazards models were considered. Model 1 contained SSAGA variables equivalent to AFD predictors from our previous study: interview age, family history of alcohol dependence, and number of conduct disorder symptoms. Model 2 incorporated 2 additional SSAGA questions (best friends drink and smoked a cigarette before a reported AFD) plus 8 YSR-derived scale scores. Model 3 was a reduced version of model 2, retaining only significant predictors. RESULTS: Model 2 was a significant improvement over model 1. Model 3 was the best and the most parsimonious of the 3 with respect to likelihood ratio and Wald χ2 tests and retained only 5 variables from model 2. Included variables were the following: (1) best friends drink, (2) membership in a high-risk alcohol dependence family, (3) number of conduct disorder symptoms, (4) YSR externalizing score, and (5) YSR social problems score. CONCLUSIONS: Adding variables to those from our original study improved our ability to model the likely age of alcohol initiation. In addition to the SSAGA, the YSR appears to have utility as a research tool to predict the age of alcohol initiation. PMID:23296431

  5. In vivo animal models of body composition in aging

    SciTech Connect

    Yasumura, S. |; Jones, K.; Spanne, P.; Schidlovsky, G.; Wielopolski, L.; Ren, X.; Glaros, D.; Xatzikonstantinou, Y. |

    1992-12-31

    We developed several techniques that provide data on body elemental composition from in vivo measurements in rats. These methods include total body potassium by whole-body counting of endogenous {sup 40}K; total body calcium (TBCa), sodium and chloride by in vivo neutron activation analysis and total body phosphorus (TBP) and nitrogen (TBN) by photon activation analysis. These elements provide information on total body fat, total body protein and skeletal mass. Measurements were made in 6-, 12- and 24-month-old rats. TBN Increased slightly between 6 and 12 months but was significantly lower by 24 months, indicating a substantial loss in total body protein. Working at the National Synchrotron light Source, we studied rat femurs by computed microtomography (CMT), and the elemental profile of the femur cortex by synchrotron-radiation induced X-ray emission (SRIXE). Although there were no significant changes in TBCA and TBP, indices of skeletal mass, CMT revealed a marked increase in the size and number of cavities in the endosteal region of the femur cortex with increasing age. The SRIXE analysis of this cortical bone revealed a parallel decrease in the endosteal Ca/P ratio. Thus, there are major alterations in bone morphology and regional elemental composition despite only modest changes in total skeletal mass.

  6. Adaptation to stroke using a model of successful aging.

    PubMed

    Donnellan, C; Hevey, D; Hickey, A; O'Neill, D

    2012-01-01

    The process of adaptation to the physical and psychosocial consequences after stroke is a major challenge for many individuals affected. The aim of this study was to examine if stroke patients within 1 month of admission (n = 153) and followed up at 1 year (n = 107) engage in selection, optimization, and compensation (SOC) adaptive strategies and the relationship of these strategies with functional ability, health-related quality of life (HRQOL) and depression 1 year later. Adaptive strategies were measured using a 15-item SOC questionnaire. Internal and external resources were assessed including recovery locus of control, stroke severity, and socio-demographics. Outcome measures were the Stroke Specific Quality of Life Questionnaire (SS-QoL), the Nottingham Extended Activities of Daily Living Scale and the Depression Subscale of the Hospital Anxiety and Depression Scale. Findings indicated that stroke patients engaged in the use of SOC strategies but the use of these strategies were not predictive of HRQOL, functional ability or depression 1 year after stroke. The use of SOC strategies were not age specific and were consistent over time, with the exception of the compensation subscale. Results indicate that SOC strategies may potentially be used in response to loss regulation after stroke and that an individual's initial HRQOL functional ability, levels of depression and socio-economic status that are important factors in determining outcome 1 year after stroke. A stroke-specific measure of SOC may be warranted in order to detect significant differences in determining outcomes for a stroke population.

  7. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    PubMed Central

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  8. A Comparison of the Age-Spectra from Data Assimilation Models

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zheng-Xin; Pawson, Steven; Einaudi, Franco (Technical Monitor)

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably well-isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the diabatic trajectory calculations, the age spectrum is too broad as a result of too much exchange between the tropics and mid-latitudes. The age spectrum determined using the kinematic trajectory calculation is less broad and lacks an age offset; both of these features are due to excessive vertical dispersion of parcels. The tropical and mid-latitude mean age difference between the diabatically and kinematically determined age-spectra is about one year, the former being older. The CTM calculation of the age spectrum using the DAS winds shows the same dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the mean ages determined in a number of previous DAS driven CTM's are too young compared with observations. Finally, we note trajectory-generated age spectra show significant age anomalies correlated with the seasonal cycles, and these anomalies can be linked to year-to-year variations in the tropical heating rate. These anomalies are suppressed in the CTM spectra suggesting that the CTM transport is too diffusive.

  9. Dynamical network model for age-related health deficits and mortality

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin; Mitnitski, Arnold B.; Rockwood, Kenneth; Rutenberg, Andrew D.

    2016-02-01

    How long people live depends on their health, and how it changes with age. Individual health can be tracked by the accumulation of age-related health deficits. The fraction of age-related deficits is a simple quantitative measure of human aging. This quantitative frailty index (F ) is as good as chronological age in predicting mortality. In this paper, we use a dynamical network model of deficits to explore the effects of interactions between deficits, deficit damage and repair processes, and the connection between the F and mortality. With our model, we qualitatively reproduce Gompertz's law of increasing human mortality with age, the broadening of the F distribution with age, the characteristic nonlinear increase of the F with age, and the increased mortality of high-frailty individuals. No explicit time-dependence in damage or repair rates is needed in our model. Instead, implicit time-dependence arises through deficit interactions—so that the average deficit damage rates increase, and deficit repair rates decrease, with age. We use a simple mortality criterion, where mortality occurs when the most connected node is damaged.

  10. Comparative and alternative approaches and novel animal models for aging research

    PubMed Central

    Kristan, D. M.

    2008-01-01

    This special issue of AGE showcases powerful alternative or unconventional approaches to basic aging research, including the use of exceptionally long-lived animal model species and comparative methods from evolutionary biology. In this opening paper, we introduce several of these alternative aging research themes, including the comparative phylogenetic approach. This approach applies modern inferential methods for dissecting basic physiological and biochemical mechanisms correlated with phenotypic traits including longevity, slow aging, sustained somatic maintenance, and repair of molecular damage. Comparative methods can be used to assess the general relevance of specific aging mechanisms—including oxidative processes—to diverse animal species, as well as to assess their potential clinical relevance to humans and other mammals. We also introduce several other novel, underexploited approaches with particular relevance to biogerontology, including the use of model animal species or strains that retain natural genetic heterogeneity, studies of effects of infectious disease and parasites on aging and responses to caloric restriction, studies of reproductive aging, and naturally occurring sex differences in aging. We emphasize the importance of drawing inferences from aging phenomena in laboratory studies that can be applied to clinically relevant aging syndromes in long-lived, outbred animals, including humans. PMID:19424857

  11. A Model for Incorporating Content on Aging into the Curriculum: K-12.

    ERIC Educational Resources Information Center

    Blackwell, David L.; Hunt, Sara Stockard

    Following a statement of the problem of putting aging education in the elementary secondary curriculum, and a review of the relevant literature, a model for developing a curriculum on aging is presented. An overview of the 3-year project, developed in Baton Rouge, Louisiana schools for grades K-12, is offered, including activities and yearly…

  12. Modeling the Phenotypic Architecture of Autism Symptoms from Time of Diagnosis to Age 6

    ERIC Educational Resources Information Center

    Georgiades, Stelios; Boyle, Michael; Szatmari, Peter; Hanna, Steven; Duku, Eric; Zwaigenbaum, Lonnie; Bryson, Susan; Fombonne, Eric; Volden, Joanne; Mirenda, Pat; Smith, Isabel; Roberts, Wendy; Vaillancourt, Tracy; Waddell, Charlotte; Bennett, Teresa; Elsabbagh, Mayada; Thompson, Ann

    2014-01-01

    The latent class structure of autism symptoms from the time of diagnosis to age 6 years was examined in a sample of 280 children with autism spectrum disorder. Factor mixture modeling was performed on 26 algorithm items from the Autism Diagnostic Interview-Revised at diagnosis (Time 1) and again at age 6 (Time 2). At Time 1, a…

  13. Establishment of a model of acetaminophen-induced hepatotoxicity in different weekly-aged ICR mice.

    PubMed

    Taguchi, K; Tokuno, M; Yamasaki, K; Kadowaki, D; Seo, H; Otagiri, M

    2015-10-01

    Acetaminophen (APAP), a widely used analgesic and antipyretic drug, has the potential to cause lethal hepatotoxicity. Mice are widely used for developing murine models of APAP-induced hepatotoxicity, and many researchers have used these models for APAP-related studies including the fields of biology, pharmacology and toxicology. Although drug-induced hepatotoxicity is dependent on a number of factors (species, gender and age), very few studies have investigated the effect of aging on APAP hepatotoxicity. In this study, we evaluated the effect of age on APAP-induced hepatotoxicity in different weekly-aged mice to establish a model of APAP-induced hepatotoxicity that is an accurate reflection of general experimental conditions. Male ICR mice 4, 6, 8, 10 and 12 weeks old were given APAP intraperitoneally, and mortality, hepatic damage and the plasma concentration of APAP metabolites were evaluated. It was found that younger male ICR mice were relatively resistant to hepatotoxicity induced by intraperitoneal APAP administration. In addition, the APAP-glucuronide concentration in plasma remained essentially the same among the differently-aged mice, while APAP-sulfate levels were dramatically decreased in an age-dependent manner. Thus, it is recommended that mice of the same ages be used in studies related to APAP-induced hepatotoxixity. These results provide evidence in support of not only the age-related changes in susceptibility to APAP-derived hepatotoxicity in mice but also in developing mouse models for APAP-related studies.

  14. Age Differences within Secular IQ Trends: An Individual Growth Modeling Approach

    ERIC Educational Resources Information Center

    Kanaya, Tomoe; Ceci, Stephen J.; Scullin, Matthew H.

    2005-01-01

    Age differences within the yo-yo trend in IQ, caused when aging norms that produce inflated scores are replaced with new norms, were examined using longitudinal WISC, WISC-R and WISC-III records of students tested for special education services from 10 school districts. Descriptive and individual growth modeling analyses revealed that while the…

  15. Aging Well and the Environment: Toward an Integrative Model and Research Agenda for the Future

    ERIC Educational Resources Information Center

    Wahl, Hans-Werner; Iwarsson, Susanne; Oswald, Frank

    2012-01-01

    Purpose of the Study: The effects of the physical-spatial-technical environment on aging well have been overlooked both conceptually and empirically. In the spirit of M. Powell Lawton's seminal work on aging and environment, this article attempts to rectify this situation by suggesting a new model of how older people interact with their…

  16. A Diffusion Model Analysis of the Effects of Aging on Recognition Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Thapar, Anjali; McKoon, Gail

    2004-01-01

    The effects of aging on response time were examined in a recognition memory experiment with young, college age subjects and older, 60-75 year old subjects. The older subjects were slower than the young subjects but almost as accurate. Ratcliff's (1978) diffusion model was fit to the data and it provided a good account of response times, their…

  17. Degeneration of the Y chromosome in evolutionary aging models

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  18. Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging

    PubMed Central

    Hamilton, Ryan T.; Walsh, Michael E.; Van Remmen, Holly

    2013-01-01

    Aging is a complex process that affects every major system at the molecular, cellular and organ levels. Although the exact cause of aging is unknown, there is significant evidence that oxidative stress plays a major role in the aging process. The basis of the oxidative stress hypothesis is that aging occurs as a result of an imbalance between oxidants and antioxidants, which leads to the accrual of damaged proteins, lipids and DNA macromolecules with age. Age-dependent increases in protein oxidation and aggregates, lipofuscin, and DNA mutations contribute to age-related pathologies. Many transgenic/knockout mouse models over expressing or deficient in key antioxidant enzymes have been generated to examine the effect of oxidative stress on aging and age-related diseases. Based on currently reported lifespan studies using mice with altered antioxidant defense, there is little evidence that oxidative stress plays a role in determining lifespan. However, mice deficient in antioxidant enzymes are often more susceptible to age-related disease while mice overexpressing antioxidant enzymes often have an increase in the amount of time spent without disease, i.e., healthspan. Thus, by understanding the mechanisms that affect healthy aging, we may discover potential therapeutic targets to extend human healthspan. PMID:25300955

  19. Dynamical properties of the Penna aging model applied to the population of wolves

    NASA Astrophysics Data System (ADS)

    Makowiec, Danuta

    1997-02-01

    The parameters of th Penna bit-string model of aging of biological systems are systematically tested to better understand the model itself as well as the results arising from applying this model to studies of the development of the stationary population of Alaska wolves.

  20. Modeling old-age wealth with endogenous early-life outcomes: The case of Mexico.

    PubMed

    DeGraff, Deborah S; Wong, Rebeca

    2014-04-01

    This paper contributes to the literature on the life course and aging by examining the association between early-life outcomes and late-life well being, using data from the Mexican Health and Aging Study. Empirical research in this area has been challenged by the potential endogeneity of the early-life outcomes of interest, an issue which most studies ignore or downplay. Our contribution takes two forms: (1) we examine in detail the potential importance of two key life-cycle outcomes, age at marriage (a measure of family formation) and years of educational attainment (a measure of human capital investment) for old-age wealth, and (2) we illustrate the empirical value of past context variables that could help model the association between early-life outcomes and late-life well being. Our illustrative approach, matching macro-level historical policy and census variables to individual records to use as instruments in modeling the endogeneity of early-life behaviors, yields a statistically identified two-stage model of old-age wealth with minimum bias. We use simulations to show that the results for the model of wealth in old age are meaningfully different when comparing the approach that accounts for endogeneity with an approach that assumes exogeneity of early-life outcomes. Furthermore, our results suggest that in the Mexican case, models which ignore the potential endogeneity of early-life outcomes are likely to under-estimate the effects of such variables on old-age wealth.

  1. Modeling old-age wealth with endogenous early-life outcomes: The case of Mexico

    PubMed Central

    DeGraff, Deborah S.; Wong, Rebeca

    2014-01-01

    This paper contributes to the literature on the life course and aging by examining the association between early-life outcomes and late-life well being, using data from the Mexican Health and Aging Study. Empirical research in this area has been challenged by the potential endogeneity of the early-life outcomes of interest, an issue which most studies ignore or downplay. Our contribution takes two forms: (1) we examine in detail the potential importance of two key life-cycle outcomes, age at marriage (a measure of family formation) and years of educational attainment (a measure of human capital investment) for old-age wealth, and (2) we illustrate the empirical value of past context variables that could help model the association between early-life outcomes and late-life well being. Our illustrative approach, matching macro-level historical policy and census variables to individual records to use as instruments in modeling the endogeneity of early-life behaviors, yields a statistically identified two-stage model of old-age wealth with minimum bias. We use simulations to show that the results for the model of wealth in old age are meaningfully different when comparing the approach that accounts for endogeneity with an approach that assumes exogeneity of early-life outcomes. Furthermore, our results suggest that in the Mexican case, models which ignore the potential endogeneity of early-life outcomes are likely to under-estimate the effects of such variables on old-age wealth. PMID:25170434

  2. Polycystic ovary syndrome (PCOS)-like phenotypes in the d-galactose-induced aging mouse model.

    PubMed

    Park, Ji-Hun; Choi, Tae-Saeng

    2012-11-01

    The D-galactose (D-gal)-induced animal model, which is established by consecutive subcutaneous d-gal injections for approximately 6weeks, has been frequently used for aging research. This animal model has been shown to accelerate aging of the brain, kidneys, liver, and blood cells. However, aging of the female reproductive organs in this animal model has not been reported. The aim of this study was to investigate changes in the ovary in the d-gal-induced aging mouse model. First, we evaluated anti-Müllerian hormone (AMH) as a marker of ovarian aging in blood plasma. We speculated there would be lower AMH levels in d-gal-treated mice because ovarian aging would be induced by d-gal, as reported for other tissues. However, the results showed that AMH levels in d-gal-treated mice were approximately four-fold higher than control mice. Abnormally high AMH levels are detected in ovarian cancer and polycystic ovary syndrome (PCOS) patients. Therefore, we examined PCOS-related markers in this mouse model. Total testosterone levels were high and abnormal estrous cycles were induced in d-gal-treated mice. These changes, including AMH levels, in d-gal-treated mice were inhibited by aminoguanidine treatment, an advanced glycation end product reducer. In addition, ovarian cysts were observed in some d-gal-treated mice. These results indicate that with respect to female reproduction, d-gal-treated mice are suitable for PCOS studies, rather than aging studies.

  3. Mathematical modeling of left ventricular dimensional changes in mice during aging.

    PubMed

    Yang, Tianyi; Chiao, Ying Ann; Wang, Yunji; Voorhees, Andrew; Han, Hai-Chao; Lindsey, Merry L; Jin, Yu-Fang

    2012-01-01

    Cardiac aging is characterized by diastolic dysfunction of the left ventricle (LV), which is due in part to increased LV wall stiffness. In the diastolic phase, myocytes are relaxed and extracellular matrix (ECM) is a critical determinant to the changes of LV wall stiffness. To evaluate the effects of ECM composition on cardiac aging, we developed a mathematical model to predict LV dimension and wall stiffness changes in aging mice by integrating mechanical laws and our experimental results. We measured LV dimension, wall thickness, LV mass, and collagen content for wild type (WT) C57/BL6J mice of ages ranging from 7.3 months to those of 34.0 months. The model was established using the thick wall theory and stretch-induced tissue growth to an isotropic and homogeneous elastic composite with mixed constituents. The initial conditions of the simulation were set based on the data from the young mice. Matlab simulations of this mathematical model demonstrated that the model captured the major features of LV remodeling with age and closely approximated experimental results. Specifically, the temporal progression of the LV interior and exterior dimensions demonstrated the same trend and order-of-magnitude change as our experimental results. In conclusion, we present here a validated mathematical model of cardiac aging that applies the thick-wall theory and stretch-induced tissue growth to LV remodeling with age. PMID:23281647

  4. Simulation of aging with an extended Penna model

    NASA Astrophysics Data System (ADS)

    Maksymowicz, A. Z.; Bubak, M.; Zajac, K.; Magdoń, M.

    1999-09-01

    We employed the Penna model for computer simulation of population evolution when it is controlled by (a) hunting out some of the population as well as (b) to find out the role of fluctuations in threshold T for the maximum number of bad mutations on population growth dynamics. Extinction of population may be caused by too many mutations inherited by offspring. Overhunting acts in the same way and may also result in vanishing of the whole population. When both factors are present, we get a critical line that defines a sharp transition between existence and non-existence of the population. A distribution of T around its average value with some width Δ may reflect some individual resistance to illnesses, or some non-inherited somatic mutations. Structural changes in the final population as a result of overhunting or threshold T fluctuations are observed.

  5. Systems integrity in health and aging - an animal model approach

    PubMed Central

    2013-01-01

    Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees’ performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people. PMID:24472488

  6. Olfactory memory: a bridge between humans and animals in models of cognitive aging.

    PubMed

    Eichenbaum, Howard; Robitsek, R Jonathan

    2009-07-01

    Odor-recognition memory in rodents may provide a valuable model of cognitive aging. In a recent study we used signal detection analyses to distinguish odor recognition based on recollection versus that based on familiarity. Aged rats were selectively impaired in recollection, with relative sparing of familiarity, and the deficits in recollection were correlated with spatial memory impairments. These results complement electrophysiological findings indicating age-associated deficits in the ability of hippocampal neurons to differentiate contextual information, and this information-processing impairment may underlie the common age-associated decline in olfactory and spatial memory.

  7. Age-Related Changes in Predictive Capacity Versus Internal Model Adaptability: Electrophysiological Evidence that Individual Differences Outweigh Effects of Age

    PubMed Central

    Bornkessel-Schlesewsky, Ina; Philipp, Markus; Alday, Phillip M.; Kretzschmar, Franziska; Grewe, Tanja; Gumpert, Maike; Schumacher, Petra B.; Schlesewsky, Matthias

    2015-01-01

    Hierarchical predictive coding has been identified as a possible unifying principle of brain function, and recent work in cognitive neuroscience has examined how it may be affected by age–related changes. Using language comprehension as a test case, the present study aimed to dissociate age-related changes in prediction generation versus internal model adaptation following a prediction error. Event-related brain potentials (ERPs) were measured in a group of older adults (60–81 years; n = 40) as they read sentences of the form “The opposite of black is white/yellow/nice.” Replicating previous work in young adults, results showed a target-related P300 for the expected antonym (“white”; an effect assumed to reflect a prediction match), and a graded N400 effect for the two incongruous conditions (i.e. a larger N400 amplitude for the incongruous continuation not related to the expected antonym, “nice,” versus the incongruous associated condition, “yellow”). These effects were followed by a late positivity, again with a larger amplitude in the incongruous non-associated versus incongruous associated condition. Analyses using linear mixed-effects models showed that the target-related P300 effect and the N400 effect for the incongruous non-associated condition were both modulated by age, thus suggesting that age-related changes affect both prediction generation and model adaptation. However, effects of age were outweighed by the interindividual variability of ERP responses, as reflected in the high proportion of variance captured by the inclusion of by-condition random slopes for participants and items. We thus argue that – at both a neurophysiological and a functional level – the notion of general differences between language processing in young and older adults may only be of limited use, and that future research should seek to better understand the causes of interindividual variability in the ERP responses of older adults and its relation to

  8. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed Central

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients. PMID:27095931

  9. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan; Shirzad, Hedayatolah

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients.

  10. Understanding the link between sexual selection, sexual conflict and aging using crickets as a model.

    PubMed

    Archer, C Ruth; Hunt, John

    2015-11-01

    Aging evolved because the strength of natural selection declines over the lifetime of most organisms. Weak natural selection late in life allows the accumulation of deleterious mutations and may favor alleles that have positive effects on fitness early in life, but costly pleiotropic effects expressed later on. While this decline in natural selection is central to longstanding evolutionary explanations for aging, a role for sexual selection and sexual conflict in the evolution of lifespan and aging has only been identified recently. Testing how sexual selection and sexual conflict affect lifespan and aging is challenging as it requires quantifying male age-dependent reproductive success. This is difficult in the invertebrate model organisms traditionally used in aging research. Research using crickets (Orthoptera: Gryllidae), where reproductive investment can be easily measured in both sexes, has offered exciting and novel insights into how sexual selection and sexual conflict affect the evolution of aging, both in the laboratory and in the wild. Here we discuss how sexual selection and sexual conflict can be integrated alongside evolutionary and mechanistic theories of aging using crickets as a model. We then highlight the potential for research using crickets to further advance our understanding of lifespan and aging.

  11. The zebrafish as a gerontology model in nervous system aging, disease, and repair.

    PubMed

    Van Houcke, Jessie; De Groef, Lies; Dekeyster, Eline; Moons, Lieve

    2015-11-01

    Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age. PMID:26538520

  12. Exploring the limitations of age-based models for health care planning.

    PubMed

    Mason, Thomas; Sutton, Matt; Whittaker, William; Birch, Stephen

    2015-05-01

    Health care decision makers are required to make planning decisions over a medium to long term planning horizon. Whilst population ageing is an important consideration for planners, age-stratified demographic models may produce misleading estimates of future resource requirements if the actual relationship between age and health is not fixed. We present a methodology which tests whether the assumption of a fixed age-health relationship is valid and estimate the magnitude of planning errors using a long time-series of measures of chronic health and service utilisation (N = 2419) taken from the Great British General Household Survey (1980-2008). We find that age-only models contain significant omitted variable bias, and that the relationship between age and health varies significantly across birth cohorts. Chronic sickness has fallen across birth cohorts born between 1890 and 2008, particularly before birth year 1930. Generational health improvements have mitigated the effects of population ageing, meaning that the population rate of sickness fell between 1980 and 2008. Planning based only on age leads to overestimation of the population level of health care need if successive cohorts are becoming healthier. Many alternative approaches exist which allow planners to relax the assumption of a fixed relationship between age and health. PMID:25780858

  13. Human iPSC-based Modeling of Late-Onset Disease via Progerin-induced Aging

    PubMed Central

    Miller, Justine D.; Ganat, Yosif M.; Kishinevsky, Sarah; Bowman, Robert L.; Liu, Becky; Tu, Edmund Y.; Mandal, Pankaj; Vera, Elsa; Shim, Jae-won; Kriks, Sonja; Taldone, Tony; Fusaki, Noemi; Tomishima, Mark J.; Krainc, Dimitri; Milner, Teresa A.; Rossi, Derrick J.; Studer, Lorenz

    2014-01-01

    Summary Reprogramming somatic cells to induced pluripotent stem cells (iPSCs), resets their identity back to an embryonic age, and thus presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson’s disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD-iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine-hydroxylase (TH) expression and enlarged mitochondria or Lewy body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models. PMID:24315443

  14. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    PubMed

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-05-28

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors.

  15. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    PubMed

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-06-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  16. Risk, Reward, and Decision-Making in a Rodent Model of Cognitive Aging

    PubMed Central

    Gilbert, Ryan J.; Mitchell, Marci R.; Simon, Nicholas W.; Bañuelos, Cristina; Setlow, Barry; Bizon, Jennifer L.

    2011-01-01

    Impaired decision-making in aging can directly impact factors (financial security, health care) that are critical to maintaining quality of life and independence at advanced ages. Naturalistic rodent models mimic human aging in other cognitive domains, and afford the opportunity to parse the effects of age on discrete aspects of decision-making in a manner relatively uncontaminated by experiential factors. Young adult (5–7 months) and aged (23–25 months) male F344 rats were trained on a probability discounting task in which they made discrete-trial choices between a small certain reward (one food pellet) and a large but uncertain reward (two food pellets with varying probabilities of delivery ranging from 100 to 0%). Young rats chose the large reward when it was associated with a high probability of delivery and shifted to the small but certain reward as probability of the large reward decreased. As a group, aged rats performed comparably to young, but there was significantly greater variance among aged rats. One subgroup of aged rats showed strong preference for the small certain reward. This preference was maintained under conditions in which large reward delivery was also certain, suggesting decreased sensitivity to reward magnitude. In contrast, another subgroup of aged rats showed strong preference for the large reward at low probabilities of delivery. Interestingly, this subgroup also showed elevated preference for probabilistic rewards when reward magnitudes were equalized. Previous findings using this same aged study population described strongly attenuated discounting of delayed rewards with age, together suggesting that a subgroup of aged rats may have deficits associated with accounting for reward costs (i.e., delay or probability). These deficits in cost-accounting were dissociable from the age-related differences in sensitivity to reward magnitude, suggesting that aging influences multiple, distinct mechanisms that can impact cost

  17. Grape powder treatment prevents anxiety-like behavior in a rat model of aging.

    PubMed

    Patki, Gaurav; Ali, Quaisar; Pokkunuri, Indira; Asghar, Mohammad; Salim, Samina

    2015-06-01

    Earlier, we have reported that grape powder (GP) treatment prevented pharmacologic and psychological stress-induced anxiety-like behavior and memory impairment in rats. Protective effects of GP were attributed to its antioxidant effects. In this study, we tested the hypothesis that age-associated behavioral and cognitive deficits such as anxiety and memory impairment will be ameliorated with GP treatment. Using a National Institute of Aging recommended rodent model of aging, we examined a potentially protective role of antioxidant-rich GP in age-associated anxiety-like behavior and memory impairment. Male Fischer 344 rats were randomly assigned into 4 groups: young rats (3 months old) provided with tap water or with 15 g/L GP dissolved in tap water for 3 weeks, aged rats (21 months old) provided with tap water or with GP-treated tap water for 3 weeks (AG-GP). Anxiety-like behavior was significantly greater in aged rats compared with young rats, GP-treated young rats, or aged control rats (P < .05). Also, GP treatment prevented age-induced anxiety-like behavior in AG-GP rats (P < .05). Neither short-term nor long-term age-associated memory deficits improved with GP treatment in AG-GP rats. Furthermore, aged rats showed increased level of physiological stress (corticosterone) and increased oxidative stress in the plasma (8-isoprostane) as well as in selected brain areas (protein carbonylation). Grape powder treatment prevented age-induced increase in corticosterone levels and plasma 8-isoprostane levels in aged rats (P < .05), whereas protein carbonylation was recovered in the amygdala region only (P < .05). Grape powder by regulating oxidative stress ameliorates age-induced anxiety-like behavior in rats, whereas age-associated memory deficits seem unaffected with GP treatment.

  18. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    SciTech Connect

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.; Bureau, B.; Vlcek, M.; Ganjoo, A.; Jain, H.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  19. Nuclear and Mitochondrial DNA Repair in Selected Eukaryotic Aging Model Systems

    PubMed Central

    Gredilla, Ricardo; Garm, Christian; Stevnsner, Tinna

    2012-01-01

    Knowledge about the different mechanisms underlying the aging process has increased exponentially in the last decades. The fact that the basic mechanisms involved in the aging process are believed to be universal allows the use of different model systems, from the simplest eukaryotic cells such as fungi to the most complex organisms such as mice or human. As our knowledge on the aging mechanisms in those model systems increases, our understanding of human aging and the potential interventions that we could approach rise significantly. Among the different mechanisms that have been implicated in the aging process, DNA repair is one of the processes which have been suggested to play an important role. Here, we review the latest investigations supporting the role of these mechanisms in the aging process, stressing how beneficial the use of different model systems is. We discuss how human genetic studies as well as several investigations on mammalian models and simpler eukaryotic organisms have contributed to a better understanding of the involvement of DNA repair mechanisms in aging. PMID:23050036

  20. An age-dependent feedback control model of calcium dynamics in yeast cells.

    PubMed

    Tang, Fusheng; Liu, Weijiu

    2010-06-01

    The functional decline of selected proteins or organelles leads to aging at the intracellular level. Identification of these proteins or organelles is usually challenging to traditional single-factor approaches since these factors are inter-connected via feedback or feedforward controls. Establishing a feedback control model to simulate the interactions of multiple factors is an insightful approach to guide the search for proteins involved in aging. However, there are only a few mathematical models describing the age-dependent accumulation of DNA mutations, which are directly or indirectly induced by deterioration of the intracellular environment including alteration of calcium homeostasis, a contributor of aging. Thus, based on Cui and Kaandorp's model, we develop an age-dependent mathematical model for the calcium homeostasis in budding yeast Saccharomyces cerevisiae. Our model contains cell cycle-dependent aging factors and can qualitatively reproduce calcium shocks and calcium accumulations in cells observed in experiments. Using this model, we predict calcium oscillations in wild type, pmc1 Delta, and pmr1 Delta cells. This prediction suggests that Pmr1p plays a major role in regulating cytosolic calcium. Combining the model with our experimental lifespan data, we predict an upper-limit of cytosolic calcium tolerance for cell survival. This prediction indicates that, for aged cells (>35 generations), no pmr1 Delta can tolerate the cytosolic calcium concentration of 0.1 microM while a very small fraction (1%) of aged wild type cells (>50 generations) can tolerate a high cytosolic calcium concentration of 0.5 microM.

  1. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging.

    PubMed

    Oliveira, Cláudia S; Joshee, Lucy; Zalups, Rudolfs K; Bridges, Christy C

    2016-03-01

    Aging often results in progressive losses of functioning nephrons, which can lead to a significant reduction in overall renal function. Because of age-related pathological changes, the remaining functional nephrons within aged kidneys may be unable to fully counteract physiological and/or toxicological challenges. We hypothesized that when the total functional renal mass of aged rats is reduced by 50%, the nephrons within the remnant kidney do not fully undergo the functional and physiological changes that are necessary to maintain normal fluid and solute homeostasis. We also tested the hypothesis that the disposition and handling of a nephrotoxicant are altered significantly in aged kidneys following an acute, 50% reduction in functional renal mass. To test these hypotheses, we examined molecular indices of renal cellular hypertrophy and the disposition of inorganic mercury (Hg(2+)), a model nephrotoxicant, in young control, young uninephrectomized (NPX), aged control and aged NPX Wistar rats. We found that the process of aging reduces the ability of the remnant kidney to undergo compensatory renal growth. In addition, we found that an additional reduction in renal mass in aged animals alters the disposition of Hg(2+) and potentially alters the risk of renal intoxication by this nephrotoxicant. To our knowledge, this study represents the first report of the handling of a nephrotoxicant in an aged animal following a 50% reduction in functional renal mass. PMID:26768998

  2. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging.

    PubMed

    Oliveira, Cláudia S; Joshee, Lucy; Zalups, Rudolfs K; Bridges, Christy C

    2016-03-01

    Aging often results in progressive losses of functioning nephrons, which can lead to a significant reduction in overall renal function. Because of age-related pathological changes, the remaining functional nephrons within aged kidneys may be unable to fully counteract physiological and/or toxicological challenges. We hypothesized that when the total functional renal mass of aged rats is reduced by 50%, the nephrons within the remnant kidney do not fully undergo the functional and physiological changes that are necessary to maintain normal fluid and solute homeostasis. We also tested the hypothesis that the disposition and handling of a nephrotoxicant are altered significantly in aged kidneys following an acute, 50% reduction in functional renal mass. To test these hypotheses, we examined molecular indices of renal cellular hypertrophy and the disposition of inorganic mercury (Hg(2+)), a model nephrotoxicant, in young control, young uninephrectomized (NPX), aged control and aged NPX Wistar rats. We found that the process of aging reduces the ability of the remnant kidney to undergo compensatory renal growth. In addition, we found that an additional reduction in renal mass in aged animals alters the disposition of Hg(2+) and potentially alters the risk of renal intoxication by this nephrotoxicant. To our knowledge, this study represents the first report of the handling of a nephrotoxicant in an aged animal following a 50% reduction in functional renal mass.

  3. Age equity in different models of primary care practice in Ontario

    PubMed Central

    Dahrouge, Simone; Hogg, William; Tuna, Meltem; Russell, Grant; Devlin, Rose Ann; Tugwell, Peter; Kristjansson, Elizabeth

    2011-01-01

    Abstract Objective To assess whether the model of service delivery affects the equity of the care provided across age groups. Design Cross-sectional study. Setting Ontario. Participants One hundred thirty-seven practices, including traditional fee-for-service practices, salaried community health centres (CHCs), and capitation-based family health networks and health service organizations. Main outcome measures To compare the quality of care across age groups using multilevel linear or logistic regressions. Health service delivery measures and health promotion were assessed through patient surveys (N = 5111), which were based on the Primary Care Assessment Tool, and prevention and chronic disease management were assessed, based on Canadian recommendations for care, through chart abstraction (N = 4 108). Results Older individuals reported better health service delivery in all models. This age effect ranged from 1.9% to 5.7%, and was larger in the 2 capitation-based models. Individuals aged younger than 30 years attending CHCs had more features of disadvantage (ie, living below the poverty line and without high school education) and were more likely than older individuals to report discussing at least 1 health promotion subject at the index visit. These differences were deemed an appropriate response to greater needs in these younger individuals. The prevention score showed an age-sex interaction in all models, with adherence to recommended care dropping with age for women. These results are largely attributable to the fact that maneuvers recommended for younger women are considerably more likely to be performed than other maneuvers. Chronic disease management scores showed an inverted U relationship with age in fee-for-service practices, family health networks, and health service organizations but not in CHCs. Conclusion The salaried model might have an organizational structure that is more conducive to providing appropriate care across age groups. The thrust toward

  4. Parameterization of European perch Perca fluviatilis length-at-age data using stochastic Gompertz growth models.

    PubMed

    Troynikov, V S; Gorfine, H K; Ložys, L; Pūtys, Z; Jakubavičiūtė, E; Day, R W

    2011-12-01

    Three stochastic versions of the Gompertz growth model were used to parameterize total length (L(T) )-at-age data for perch Perca fluviatilis, an important target species for commercial and recreational fishers and a food species for predatory fishes and aquatic birds. Each model addresses growth heterogeneity by incorporating random parameters from a specific positive distribution: Weibull, gamma or log-normal. The modelling outputs for each version of the model provide L(T) distributions for selected ages and percentiles of L(T) at age for both males and females. The results highlight the importance of using a stochastic approach and the logistic-like growth pattern for analysing growth data for P. fluviatilis in Curonian Lagoon (Lithuania). Outputs from this modelling can be extended to a stochastic analysis of fish cohort dynamics, incorporating all length-based biological relationships, and the selectivity-related interactions between fish cohorts and fishing gear.

  5. Verification of relationship model between Korean new elderly class’s recovery resilience and productive aging

    PubMed Central

    Cho, Gun-Sang; Kim, Dae-Sung; Yi, Eun-Surk

    2015-01-01

    The purpose of this study is to verification of relationship model between Korean new elderly class’s recovery resilience and productive aging. As of 2013, this study sampled preliminary elderly people in Gyeonggi-do and other provinces nationwide. Data from a total of effective 484 subjects was analyzed. The collected data was processed using the IBM SPSS 20.0 and AMOS 20.0, and underwent descriptive statistical analysis, confirmatory factor analysis, and structure model verification. The path coefficient associated with model fitness was examined. The standardization path coefficient between recovery resilience and productive aging is β=0.975 (t=14.790), revealing a statistically significant positive effect. Thus, it was found that the proposed basic model on the direct path of recovery resilience and productive aging was fit for the model. PMID:26730383

  6. Diphenylamine and derivatives as predictors of gunpowder age by means of HPLC and statistical models.

    PubMed

    López-López, María; Bravo, J Carlos; García-Ruiz, Carmen; Torre, Mercedes

    2013-01-15

    The gunpowder age is information of great importance that could help to establish safety regulations related to the propellants use and manipulation. In this work, a forced aging treatment (65°C for 120 days) was applied to four gunpowders stabilized with diphenylamine (DPA). The evolution of DPA and derivatives (N-nitroso-DPA, 2-nitro-DPA, 4-nitro-DPA, and 4-4'-dinitro-DPA) concentration during the days was leaded by High Performance Liquid Chromatography (HPLC). The variation with time of the peak areas of these compounds was used to construct different statistical models that could predict the gunpowders age. These models were validated using nitrocellulose-based gunpowders of known manufacture date. Models that best predicted the gunpowder age provided prediction errors lower than 6, 4, and 2 years for single-base gunpowders with dinitrotoluene (≥ 10%(m/m)), single-base gunpowders and double-base gunpowders, respectively.

  7. Chronic and progressive Parkinson's disease MPTP model in adult and aged mice.

    PubMed

    Muñoz-Manchado, Ana B; Villadiego, Javier; Romo-Madero, Sonia; Suárez-Luna, Nela; Bermejo-Navas, Alfonso; Rodríguez-Gómez, José A; Garrido-Gil, Pablo; Labandeira-García, José L; Echevarría, Miriam; López-Barneo, José; Toledo-Aral, Juan J

    2016-01-01

    Despite the different animal models of Parkinson's disease developed during the last years, they still present limitations modelling the slow and progressive process of neurodegeneration. Here, we undertook a histological, neurochemical and behavioural analysis of a new chronic parkinsonian mouse model generated by the subcutaneous administration of low doses of MPTP (20 mg/kg, 3 times per week) for 3 months, using both young adult and aged mice. The MPTP-induced nigrostriatal neurodegeneration was progressive and was accompanied by a decrease in striatal dopamine levels and motor impairment. We also demonstrated the characteristic neuroinflammatory changes (microglial activation and astrogliosis) associated with the neurodegenerative process. Aged animals showed both a faster time course of neurodegeneration and an altered neuroinflammatory response. The long-term systemic application of low MPTP doses did not induce any increase in mortality in either young adult or aged mice and better resembles the slow evolution of the neurodegenerative process. This treatment could be useful to model different stages of Parkinson's disease, providing a better understanding of the pathophysiology of the disease and facilitating the testing of both protective and restorative treatments. Here, we show a new chronic and progressive parkinsonian mouse model, in young and aged mice. This model produces a stable degeneration of the dopaminergic nigrostriatal pathway, continuous neuroinflammatory reaction and motor deficits. Aged animals showed a faster neurodegeneration and an altered neuroinflammatory response. This treatment could be useful to model different stages of PD and to test both protective and restorative therapeutic approaches.

  8. COMPONENT DEGRADATION SUSCEPTIBILITIES AS THE BASES FOR MODELING REACTOR AGING RISK

    SciTech Connect

    Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

    2010-07-18

    The extension of nuclear power plant operating licenses beyond 60 years in the United States will be necessary if we are to meet national energy needs while addressing the issues of carbon and climate. Characterizing the operating risks associated with aging reactors is problematic because the principal tool for risk-informed decision-making, Probabilistic Risk Assessment (PRA), is not ideally-suited to addressing aging systems. The components most likely to drive risk in an aging reactor - the passives - receive limited treatment in PRA, and furthermore, standard PRA methods are based on the assumption of stationary failure rates: a condition unlikely to be met in an aging system. A critical barrier to modeling passives aging on the wide scale required for a PRA is that there is seldom sufficient field data to populate parametric failure models, and nor is there the availability of practical physics models to predict out-year component reliability. The methodology described here circumvents some of these data and modeling needs by using materials degradation metrics, integrated with conventional PRA models, to produce risk importance measures for specific aging mechanisms and component types. We suggest that these measures have multiple applications, from the risk-screening of components to the prioritization of materials research.

  9. Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models.

    PubMed

    Créau, Nicole; Cabet, Eva; Daubigney, Fabrice; Souchet, Benoit; Bennaï, Soumia; Delabar, Jean

    2016-09-01

    Down syndrome, or trisomy 21, has been modeled with various trisomic and transgenic mice to help understand the consequences of an altered gene dosage in brain development and function. Though Down syndrome has been associated with premature aging, little is known about the molecular and cellular alterations that target brain function. To help identify alterations at specific ages, we analyzed the cerebellum of Ts1Cje mice, trisomic for 77 HSA21 orthologs, at three ages-young (4 months), middle-age (12 months), and old (17 months)-compared to age-matched controls. Quantification of neuronal and glial markers (n=11) revealed increases in GFAP, with an age effect, and S100B, with age and genotype effects. The genotype effect on S100B with age was unexpected as Ts1Cje has only two copies of the S100b gene. Interestingly, the different increase in GFAP observed between Ts1Cje (trisomic segment includes Pcp4 gene) and controls was magnified in TgPCP4 mice (1 extra copy of the human PCP4 gene) at the same age. S100B increase was not found in the TgPCP4 confirming a difference of regulation with aging for GFAP and S100B and excluding the calcium signaling regulator, Pcp4, as a potential candidate for increase of S100B in the Ts1Cje. To understand these differences, comparison of GFAP and S100B immunostainings at young and middle-age were performed. Immunohistochemical detection of differences in GFAP and S100B localization with aging implicate S100B+ oligodendrocytes as a new phenotypic target in this specific aging process. PMID:27297494

  10. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    PubMed Central

    Djordjevic, Ivan B.

    2015-01-01

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually

  11. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution.

    PubMed

    Djordjevic, Ivan B

    2015-08-24

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually

  12. Hutchinson-Gilford progeria syndrome as a model for vascular aging.

    PubMed

    Brassard, Jonathan A; Fekete, Natalie; Garnier, Alain; Hoesli, Corinne A

    2016-02-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by a de novo genetic mutation that leads to the accumulation of a splicing isoform of lamin A termed progerin. Progerin expression alters the organization of the nuclear lamina and chromatin. The life expectancy of HGPS patients is severely reduced due to critical cardiovascular defects. Progerin also accumulates in an age-dependent manner in the vascular cells of adults that do not carry genetic mutations associated with HGPS. The molecular mechanisms that lead to vascular dysfunction in HGPS may therefore also play a role in vascular aging. The vascular phenotypic and molecular changes observed in HGPS are strikingly similar to those seen with age, including increased senescence, altered mechanotransduction and stem cell exhaustion. This article discusses the similarities and differences between age-dependent and HGPS-related vascular aging to highlight the relevance of HGPS as a model for vascular aging. Induced pluripotent stem cells derived from HGPS patients are suggested as an attractive model to study vascular aging in order to develop novel approaches to treat cardiovascular disease.

  13. Using remotely-sensed multispectral imagery to build age models for alluvial fan surfaces

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Mason, Philippa J.; Roda Boluda, Duna C.; Whittaker, Alexander C.; Lewis, James

    2016-04-01

    Accurate exposure age models are essential for much geomorphological field research, and generally depend on laboratory analyses such as radiocarbon, cosmogenic nuclide, or luminescence techniques. These approaches continue to revolutionise geomorphology, however they cannot be deployed remotely or in situ in the field. Therefore other methods are still needed for producing preliminary age models, performing relative dating of surfaces, or selecting sampling sites for the laboratory analyses above. With the widespread availability of detailed multispectral imagery, a promising approach is to use remotely-sensed data to discriminate surfaces with different ages. Here, we use new Landsat 8 Operational Land Imager (OLI) multispectral imagery to characterise the reflectance of 35 alluvial fan surfaces in the semi-arid Owens Valley, California. Alluvial fans are useful landforms to date, as they are widely used to study the effects of tectonics, climate and sediment transport processes on source-to-sink sedimentation. Our target fan surfaces have all been mapped in detail in the field, and have well-constrained exposure ages ranging from modern to ~ 125 ka measured using a high density of 10Be cosmogenic nuclide samples. Despite all having similar granitic compositions, the spectral properties of these surfaces vary systematically with their exposure ages. Older surfaces demonstrate a predictable shift in reflectance across the visible and short-wave infrared spectrum. Simple calculations, such as the brightness ratios of different wavelengths, generate sensitive power law relationships with exposure age that depend on post-depositional alteration processes affecting these surfaces. We investigate what these processes might be in this dryland location, and evaluate the potential for using remotely-sensed multispectral imagery for developing surface age models. The ability to remotely sense relative exposure ages has useful implications for preliminary mapping, selecting

  14. The Werner syndrome. A model for the study of human aging.

    PubMed

    Nehlin, J O; Skovgaard, G L; Bohr, V A

    2000-06-01

    Human aging is a complex process that leads to the gradual deterioration of body functions with time. Various models to approach the study of aging have been launched over the years such as the genetic analysis of life span in the yeast S. cerevisiae, the worm C. elegans, the fruitfly, and mouse, among others. In human models, there have been extensive efforts using replicative senescence, the study of centenerians, comparisons of young versus old at the organismal, cellular, and molecular levels, and the study of premature aging syndromes to understand the mechanisms leading to aging. One good model for studying human aging is a rare autosomal recessive disorder known as the Werner syndrome (WS), which is characterized by accelerated aging in vivo and in vitro. A genetic defect implicated in WS was mapped to the WRN locus. Mutations in this gene are believed to be associated, early in adulthood, with clinical symptoms normally found in old individuals. WRN functions as a DNA helicase, and recent evidence, summarized in this review, suggests specific biochemical roles for this multifaceted protein. The interaction of WRN protein with RPA (replication protein A) and p53 will undoubtedly direct efforts to further dissect the genetic pathway(s) in which WRN protein functions in DNA metabolism and will help to unravel its contribution to the human aging process.

  15. Accelerated Aging of Intervertebral Discs in a Mouse Model of Progeria

    PubMed Central

    Vo, Nam; Seo, Hyoung-Yeon; Robinson, Andria; Sowa, Gwendolyn; Bentley, Douglas; Taylor, Lauren; Studer, Rebecca; Usas, Arvydas; Huard, Johnny; Alber, Sean; Watkins, Simon C.; Lee, Joon; Coehlo, Paulo; Wang, Dong; Loppini, Mattia; Robbins, Paul D.; Niedernhofer, Laura J.; Kang, James

    2012-01-01

    Intervertebral disc degeneration (IDD) is a common and debilitating disorder that results in reduced flexibility of the spine, pain, and reduced mobility. Risk factors for IDD include age, genetic predisposition, injury, and other environmental factors such as smoking. Loss of proteoglycans (PGs) contributes to IDD with advancing age. Currently there is a lack of a model for rapid investigation of disc aging and evaluation of therapeutic interventions. Here we examined progression of disc aging in a murine model of a human progeroid syndrome caused by deficiency of the DNA repair endonuclease, ERCC1–XPF (Ercc1−/Δ mice). The ERCC1-deficient mice showed loss of disc height and degenerative structural changes in their vertebral bodies similar to those reported for old rodents. Compared to their wild-type littermates, Ercc1−/Δ mice also exhibit other age-related IDD characteristics, including premature loss of disc PG, reduced matrix PG synthesis, and enhanced apoptosis and cell senescence. Finally, the onset of age-associated disc pathologies was further accelerated in Ercc1−/Δ mice following chronic treatment with the chemotherapeutic agent mechlorethamine. These results demonstrate that Ercc1−/Δ mice represent an accurate and rapid model of disc aging and provide novel evidence that DNA damage negatively impacts PG synthesis. PMID:20973062

  16. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model.

    PubMed

    Park, Se Eun; Park, Cheol-Young; Choi, Jung Mook; Chang, Eugene; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki Won; Park, Sung Woo; Kang, Eun Seok; Lee, Hyun Chul; Cha, Bong Soo

    2016-01-01

    Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.

  17. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model

    PubMed Central

    Park, Se Eun; Choi, Jung Mook; Chang, Eugene; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki Won; Park, Sung Woo; Kang, Eun Seok; Lee, Hyun Chul

    2016-01-01

    Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation. PMID:26894429

  18. Personalizing Age of Cancer Screening Cessation Based on Comorbidity: Model estimates of harms and benefits

    PubMed Central

    Lansdorp-Vogelaar, Iris; Gulati, Roman; Mariotto, Angela B; Schechter, Clyde B; de Carvalho, Tiago M; Knudsen, Amy B; van Ravesteyn, Nicolien T; Heijnsdijk, Eveline AM; Pabiniak, Chester; van Ballegooijen, Marjolein; Rutter, Carolyn M; Kuntz, Karen M; Feuer, Eric J; Etzioni, Ruth; de Koning, Harry J; Zauber, Ann G; Mandelblatt, Jeanne S

    2014-01-01

    Background Harms and benefits of cancer screening depend on age and comorbidity, yet reliable estimates are lacking. Objective To estimate the harms and benefits of cancer screening by age and comorbidity to inform decisions about screening cessation. Design Collaborative modeling with seven well-established cancer simulation models and common data on average and comorbidity level-specific life expectancy from SEER-Medicare. Setting US population. Patients US cohorts aged 66–90 years in 2010 with average health or one of four comorbidity levels (linked to specific conditions): none, mild, moderate, or severe. Intervention Mammography, prostate-specific antigen testing, or fecal immunochemical testing. Measurements Lifetime cancer deaths prevented and life-years gained (benefits); false-positive tests and overdiagnosed cancers (harms). For each comorbidity level: the age at which harms and benefits of screening were similar to that for individuals with average health undergoing screening at age 74. Results Screening 1000 women with average life expectancy at age 74 for breast cancer resulted in 79–96 (range across models) false-positives, 0.5–0.8 overdiagnosed cancers, and 0.7–0.9 breast cancer deaths prevented. While absolute numbers of harms and benefits differed across cancer sites, the ages at which to cease screening were highly consistent across models and cancer sites when based on harm-benefit ratios comparable to screening average-health individuals at age 74. For individuals with no, mild, moderate, and severe comorbidities, screening until ages of 76, 74, 72, and 66, respectively, resulted in similar harms and benefits as for average-health individuals. Limitations Comorbidity only influenced life expectancy. Conclusion Comorbidity is an important determinant of harms and benefits of screening. Estimates of screening benefits and harms by comorbidity can inform discussions between providers and their older patients about personalizing decisions

  19. Multilevel Risk Models for Retrospective Age-of-Onset Data: School Children's First Cigarette.

    ERIC Educational Resources Information Center

    Pickles, Andrew; Pickering, Kevin; Taylor, Colin; Sutton, Stephen; Yang, Shuying

    2001-01-01

    Describes a random effects discrete time survival model that addresses problems of measurement error and sample design complexities. Demonstrates the effectiveness of the model in an analysis of retrospective report data on the age of onset of smoking from two cross-sectional school-based studies. (JPB)

  20. METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)

    EPA Science Inventory

    The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...

  1. Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2010-01-13

    Understanding the aging process of aerosol particles is important for assessing their chemical reactivity, cloud condensation nuclei activity, radiative properties and health impacts. In this study we investigate the aging of black carbon containing particles in an idealized urban plume using a new approach, the particleresolved aerosol model PartMC-MOSAIC. We present a method to estimate aging time-scales using an aging criterion based on cloud condensation nuclei activation. The results show a separation into a daytime regime where condensation dominates and a nighttime regime where coagulation dominates. For the chosen urban plume scenario, depending on the supersaturation threshold, the values for the aging timescales vary between 0.06 hours and 10 hours during the day, and between 6 hours and 20 hours during the night.

  2. Lens opacity based modelling of the age-related straylight increase.

    PubMed

    Rozema, Jos J; Sanchez, Victoria; Artal, Natalia; Gramajo, Ana L; Torres, Eduardo; Luna, Jose D; Iribarren, Rafael; Tassignon, Marie-José; Juarez, Claudio P

    2015-12-01

    This work studies ethnic and geographical differences in the age-related straylight increase by means of a stochastic model and unpublished lens opacity data of 559 residents of Villa Maria (Argentina), as well as data of 912 Indonesian subjects published previously by Husain et al. For both cohorts the prevalence of each type and grade of lens opacity was determined as a function of age, from which a stochastic model was derived capable of simulating the lens opacity prevalence for both populations. These simulated lens opacity data were then converted to estimated straylight by means of an equation derived from previously recorded data of 107 eyes with varying degrees of cataract. Based on these opacity templates 2500 random sets of subject age and lens opacity data were generated by the stochastic model for each dataset, from which estimated straylight could be calculated. For the Argentinian data the estimated straylight was found to closely resemble the published models for age-related straylight increase. For younger eyes the straylight variation of the model was the same as what was previously published (in both cases ±0.200logunits), which doubled in size for older eyes. For the Indonesian data, however, this age-related straylight increase was found to be fundamentally different from the published age model. This suggests that current normative curves for age-related straylight increase may not always be appropriate for non-European populations, and that the inter-individual straylight variations in young, healthy eyes may possibly be due to variations in lens opacities.

  3. Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing adjustment

    NASA Astrophysics Data System (ADS)

    Lavigne, L.; Sabatier, J.; Francisco, J. Mbala; Guillemard, F.; Noury, A.

    2016-08-01

    This paper is a contribution to lithium-ion batteries modelling taking into account aging effects. It first analyses the impact of aging on electrode stoichiometry and then on lithium-ion cell Open Circuit Voltage (OCV) curve. Through some hypotheses and an appropriate definition of the cell state of charge, it shows that each electrode equilibrium potential, but also the whole cell equilibrium potential can be modelled by a polynomial that requires only one adjustment parameter during aging. An adjustment algorithm, based on the idea that for two fixed OCVs, the state of charge between these two equilibrium states is unique for a given aging level, is then proposed. Its efficiency is evaluated on a battery pack constituted of four cells.

  4. The effects of aging on the BTBR mouse model of autism spectrum disorder

    PubMed Central

    Jasien, Joan M.; Daimon, Caitlin M.; Wang, Rui; Shapiro, Bruce K.; Martin, Bronwen; Maudsley, Stuart

    2014-01-01

    Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype. PMID:25225482

  5. Evaluating Health Span in Preclinical Models of Aging and Disease: Guidelines, Challenges, and Opportunities for Geroscience

    PubMed Central

    Huffman, Derek M.; Justice, Jamie N.; Stout, Michael B.; Kirkland, James L.; Barzilai, Nir

    2016-01-01

    Life extension is no longer considered sufficient evidence of delayed aging in research animals. It must also be demonstrated that a broad swathe of health indicators have been extended. During a retreat of the Geroscience Network, a consortium of basic and clinical aging researchers, potential measures of mouse health were considered for their potential as easily standardized, highly informative metrics. Major health domains considered were neuromuscular, cognitive, cardiovascular, metabolic, and inflammatory functions as well as body composition and energetics and a multitude of assays interrogating these domains. A particularly sensitive metric of health is the ability to respond to, and recover, from stress. Therefore, the Network also considered stresses of human relevance that could be implemented in mouse models to assess frailty and resilience. Mouse models already exist for responses to forced immobility, cancer chemotherapy, infectious diseases, dietary challenges, and surgical stress, and it was felt that these could be employed to determine whether putative senescence-retarding interventions increased and extended organismal robustness. The Network discussed challenges in modeling age-related human chronic diseases and concluded that more attention needs to be paid to developing disease models with later age of onset, models of co- and multimorbidity, diversifying the strains and sexes commonly used in aging research, and considering additional species. PMID:27535967

  6. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    PubMed Central

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  7. Damage Mechanisms of Filled Siloxanes for Predictive Multiscale Modeling of Aging Behavior

    SciTech Connect

    Balazs, B; Maxwell, R; de Teresa, S; Dinh, L; Gee, R

    2002-04-02

    Predictions of component performance versus lifetime are often risky for complex materials in which there may be many underlying aging or degradation mechanisms. In order to develop more accurate predictive models for silica-filled siloxane components, we are studying damage mechanisms over a broad range of size domains, linked together through several modeling efforts. Atomistic and molecular dynamic modeling has elucidated the chemistry of the silica filler to polymer interaction, as this interaction plays a key role in this material's aging behavior. This modeling work has been supported by experimental data on the removal of water from the silica surface, the effect of the surrounding polymer on this desiccation, and on the subsequent change in the mechanical properties of the system. Solid State NMR efforts have characterized the evolution of the polymer and filler dynamics as the material is damaged through irradiation or desiccation. These damage signatures have been confirmed by direct measurements of changes in polymer crosslink density and filler interaction as measured by solvent swelling, and by mechanical property tests. Data from the changes at these molecular levels are simultaneously feeding the development of age-aware constitutive models for polymer behavior. In addition, the microstructure of the foam, including under load, has been determined by Computed Tomography, and this data is being introduced into Finite Element Analysis codes to allow component level models. All of these techniques are directed towards the incorporation of molecular and microstructural aging signatures into predictive models for overall component performance.

  8. Age structure and capital dilution effects in neo-classical growth models.

    PubMed

    Blanchet, D

    1988-01-01

    Economists often over estimate capital dilution effects when applying neoclassical growth models which use age structured population and depreciation of capital stock. This occurs because capital stock is improperly characterized. A standard model which assumes a constant depreciation of capital intimates that a population growth rate equal to a negative constant savings ratio is preferable to any higher growth rate. Growth rates which are lower than a negative constant savings ratio suggest an ever growing capital/labor ratio and an ever growing standard of living, even if people do not save. This is suggested because the natural reduction of the capital stock through depreciation is slower than the population decrease which is simply unrealistic. This model overlooks the fact that low or negative growth rates result in an ageing of the capital stock, and this ageing subsequently results in an increase of the overall rate of capital depreciation. In that overly simplistic model, depreciation was assumed independent of the age of the captial stock. Incorporating depreciation as a variable into a model allows a more symmetric treatment of capital. Using models with heterogenous capital, this article explores what occurs when more than 1 kind of capital good is involved in production and when these various captial goods have different lengths of life. Applying economic models, it also examines what occurs when the length of life of capital may vary. These variations correct the negative impact that population growth can have on per capital production and consumption.

  9. Sympathetic modulation of sensory nerve activity with age: human and rodent skin models.

    PubMed

    Khalil, Z; LeVasseur, S; Merhi, M; Helme, R D

    1997-11-01

    1. Sensory nerves serve an afferent role and mediate neurogenic components of inflammation and tissue repair via an axon reflex release of sensory peptides at sites of injury. Dysfunction of these nerves with age could contribute to delayed tissue healing. 2. Complementary animal and human skin models were used in the present studies to investigate changes in the modulation of sensory nerve function by sympathetic efferents during ageing. Laser Doppler flowmetry was used to monitor neurogenic skin vascular responses. 3. The animal model used skin of the hind footpad of anaesthetized rats combined with electrical stimulation of the sciatic nerve, while the human model comprised capsaicin electrophoresis to the volar surface of the forearm. Sympathetic modulation was effected by systemic phentolamine pretreatment in animals and local application in the human model. 4. The results obtained from the human model confirmed the reported decline in sensory nerve function and showed no change in sympathetic modulation with age. The results from the animal model confirm and expand results obtained from the human model. 5. The use of low (5 Hz) and high (15 Hz) frequency electrical stimulation (20 V, 2 ms for 1 min) revealed a preferential response of aged sensory nerves to low-frequency electrical stimulation parameters with differential sympathetic modulation that is dependent on the frequency of stimulation.

  10. Government, industry, and university partnerships: A model for the knowledge age

    NASA Astrophysics Data System (ADS)

    Varner, Michael O.

    1996-03-01

    New technologies are transforming the industrial economy into a marketplace driven by information and knowledge. The depth, breadth, and rate of technology development, however, overwhelms our ability to absorb, process, and recall new information. Moreover, the bright future enabled by the knowledge age cannot be realized without the development of new organizational models and philosophies. This paper discusses the necessity for business, government, and universities to create inter-institutional partnerships in order to accommodate change and flourish in the knowledge age.

  11. Simulations of a mortality plateau in the sexual Penna model for biological aging.

    PubMed

    Schwämmle, V; Moss de Oliveira, S

    2005-09-01

    The Penna model is a strategy to simulate the genetic dynamics of age-structured populations, in which the individual genomes are represented by bit strings. It provides a simple metaphor for the evolutionary process in terms of the mutation accumulation theory. In its original version, an individual dies due to inherited diseases when its current number of accumulated mutations, n, reaches a threshold value T. Since the mean number of diseases increases with age, the probability to die is zero for very young ages (n < T) and equals 1 for the old ones (n > or = T). Here, instead of using a step function to determine the genetic death age, we test several other functions that may or may not slightly increase the death probability at young ages (n < T), but that decrease this probability at old ones. Our purpose is to study the oldest old effect, that is, a plateau in the mortality curves at advanced ages. By imposing certain conditions, it has been possible to obtain a clear plateau using the Penna model. However, a more realistic one appears when a modified version, that keeps the population size fixed without fluctuations, is used. We also find a relation between the birth rate, the age structure of the population, and the death probability.

  12. Simulations of a mortality plateau in the sexual Penna model for biological aging

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; de Oliveira, S. Moss

    2005-09-01

    The Penna model is a strategy to simulate the genetic dynamics of age-structured populations, in which the individual genomes are represented by bit strings. It provides a simple metaphor for the evolutionary process in terms of the mutation accumulation theory. In its original version, an individual dies due to inherited diseases when its current number of accumulated mutations, n , reaches a threshold value T . Since the mean number of diseases increases with age, the probability to die is zero for very young ages (nage, we test several other functions that may or may not slightly increase the death probability at young ages (nages. By imposing certain conditions, it has been possible to obtain a clear plateau using the Penna model. However, a more realistic one appears when a modified version, that keeps the population size fixed without fluctuations, is used. We also find a relation between the birth rate, the age structure of the population, and the death probability.

  13. Age-Dependent Metastatic Spread and Survival: Cancer of Unknown Primary as a Model

    PubMed Central

    Hemminki, Kari; Pavlidis, Nicholas; Tsilidis, Konstantinos K.; Sundquist, Kristina; Ji, Jianguang

    2016-01-01

    In order to describe a novel approach for the clinical study of metastases, we provide here age-specific incidence and survival data for cancer of unknown primary (CUP). Metastases in various organs are found at CUP diagnosis, which have implications for prognosis, and we hypothesize similar prognostic implications for metastases found at diagnosis of primary cancers. We identified 33,224 CUP patients from the Swedish Cancer Registry and calculated incidence rates (IRs) for CUP development. Cox proportional hazards regression models were performed to estimate hazard ratios (HRs) for relative survival in CUP patients compared to the general population. In age-group specific analyses, a maximal IR was reached at age 85–89 years, followed by a marked decline to age 90+ (7-fold in men and 3-fold in women). The overall HR for relative survival declined systematically by age. CUP may be applied as an epidemiological age-incidence model for cancer metastases providing evidence in line with autopsy data that the metastatic potential, as shown by the incidence of CUP, appears to weaken markedly at age 85 years, depending on metastatic locations. The relative death rates were highest among young patients, which was probably entirely due to the low death rates in young background population. PMID:27009354

  14. Understanding the physiology of the ageing individual: computational modelling of changes in metabolism and endurance.

    PubMed

    van Beek, Johannes H G M; Kirkwood, Thomas B L; Bassingthwaighte, James B

    2016-04-01

    Ageing and lifespan are strongly affected by metabolism. The maximal possible uptake of oxygen is not only a good predictor of performance in endurance sports, but also of life expectancy. Figuratively speaking, healthy ageing is a competitive sport. Although the root cause of ageing is damage to macromolecules, it is the balance with repair processes that is decisive. Reduced or intermittent nutrition, hormones and intracellular signalling pathways that regulate metabolism have strong effects on ageing. Homeostatic regulatory processes tend to keep the environment of the cells within relatively narrow bounds. On the other hand, the body is constantly adapting to physical activity and food consumption. Spontaneous fluctuations in heart rate and other processes indicate youth and health. A (homeo)dynamic aspect of homeostasis deteriorates with age. We are now in a position to develop computational models of human metabolism and the dynamics of heart rhythm and oxygen transport that will advance our understanding of ageing. Computational modelling of the connections between dietary restriction, metabolism and protein turnover may increase insight into homeostasis of the proteins in our body. In this way, the computational reconstruction of human physiological processes, the Physiome, can help prevent frailty and age-related disease.

  15. Voluntary Medical Male Circumcision for HIV Prevention in Swaziland: Modeling the Impact of Age Targeting

    PubMed Central

    Kripke, Katharine; Okello, Velephi; Maziya, Vusi; Benzerga, Wendy; Mirira, Munamato; Gold, Elizabeth; Schnure, Melissa; Sgaier, Sema; Castor, Delivette; Reed, Jason

    2016-01-01

    Background Voluntary medical male circumcision (VMMC) for HIV prevention has been a priority for Swaziland since 2009. Initially focusing on men ages 15–49, the Ministry of Health reduced the minimum age for VMMC from 15 to 10 years in 2012, given the existing demand among 10- to 15-year-olds. To understand the implications of focusing VMMC service delivery on specific age groups, the MOH undertook a modeling exercise to inform policy and implementation in 2013–2014. Methods and Findings The impact and cost of circumcising specific age groups were assessed using the Decision Makers’ Program Planning Tool, Version 2.0 (DMPPT 2.0), a simple compartmental model. We used age-specific HIV incidence from the Swaziland HIV Incidence Measurement Survey (SHIMS). Population, mortality, births, and HIV prevalence were imported from a national Spectrum/Goals model recently updated in consultation with country stakeholders. Baseline male circumcision prevalence was derived from the most recent Swaziland Demographic and Health Survey. The lowest numbers of VMMCs per HIV infection averted are achieved when males ages 15–19, 20–24, 25–29, and 30–34 are circumcised, although the uncertainty bounds for the estimates overlap. Circumcising males ages 25–29 and 20–24 provides the most immediate reduction in HIV incidence. Circumcising males ages 15–19, 20–24, and 25–29 provides the greatest magnitude incidence reduction within 15 years. The lowest cost per HIV infection averted is achieved by circumcising males ages 15–34: $870 U.S. dollars (USD). Conclusions The potential impact, cost, and cost-effectiveness of VMMC scale-up in Swaziland are not uniform. They vary by the age group of males circumcised. Based on the results of this modeling exercise, the Ministry of Health’s Swaziland Male Circumcision Strategic and Operational Plan 2014–2018 adopted an implementation strategy that calls for circumcision to be scaled up to 50% coverage for neonates, 80

  16. A realistic age structured transmission model for dengue hemorrhagic fever in Thailand.

    PubMed

    Pongsumpun, P; Tang, I M

    2001-06-01

    The influence of age structure in the susceptible class of the Susceptible-Infected Recovered (SIR) model used to describe the transmission of dengue hemorrhagic fever (DHF) was studied. This was done by first dividing all of the population classes into cohorts and then writing a set of coupled SIR equations for each cohort. The consequences of assuming different behavior of the transmission rates on the age structure in the DHF incidence rates were determined. In order for the predicted incidence rates to be similar to the DHF incidence patterns observed in several provinces in Thailand during the DHF epidemic in 1998, the transmission rates should be age dependent.

  17. Trajectories of Sleep Complaints From Early Midlife to Old Age: Longitudinal Modeling Study

    PubMed Central

    Salo, Paula; Vahtera, Jussi; Ferrie, Jane E.; Akbaraly, Tasnime; Goldberg, Marcel; Zins, Marie; Pentti, Jaana; Virtanen, Marianna; Shipley, Martin J.; Singh-Manoux, Archana; Dauvilliers, Yves; Kivimaki, Mika

    2012-01-01

    Study Objectives: To estimate trajectories of sleep lost over worry as a function of age, using longitudinal modeling, and compare these trajectories with those for insomnia symptoms. Design and Setting: Data from two prospective, occupational cohorts (the Whitehall II and Finnish Public Sector studies) comprising 84,384 observations from four to eight repeat measurements in 1985-2010. Participants: There were 16,408 men and women age 34-79 yr. Measurements and Results: Age-related trajectories of sleep lost over worry and insomnia symptoms (sleep initiation or maintenance problems, nonrefreshing sleep) were estimated using repeated-measures log-binomial regression analysis and generalized estimating equations. These analyses were adjusted for year of birth and time of measurement to minimize confounding by cohort or period effects. The prevalence ratio for insomnia symptoms was higher in older age groups compared with participants age 34-45 yr. In contrast, the age-related trajectory of sleep lost over worry included two phases: a period of high prevalence of sleep complaints at age 34-60 yr followed by a declining trajectory at older ages. Compared with participants age 34-45 yr, prevalence ratios for sleep lost over worry were 0.63 (0.49-0.80) and 0.59 (0.41-0.84) in the Whitehall II study participants ages 61-65 and 71-79 years. Corresponding figures were 0.62 (0.52-0.75) and 0.46 (0.32-0.66) in the Finnish Public Sector study. Conclusion: This study shows a general age-related decrease in sleep lost over worry between late midlife and old age, a pattern strikingly different from the age-related increase in insomnia symptoms. Citation: Salo P; Vahtera J; Ferrie JE; Akbaraly T; Goldberg M; Zins M; Pentti J; Virtanen M; Shipley MJ; Singh-Manoux A; Dauvilliers Y; Kivimaki M. Trajectories of sleep complaints from early midlife to old age: longitudinal modeling study. SLEEP 2012;35(11):1559-1568. PMID:23115405

  18. Evaluation of Aged Garlic Extract Neuroprotective Effect in a Focal Model of Cerebral Ischemia

    NASA Astrophysics Data System (ADS)

    Aguilera, Penélope; Maldonado, Perla D.; Ortiz-Plata, Alma; Barrera, Diana; Chánez-Cárdenas, María Elena

    2008-02-01

    The oxidant species generated in cerebral ischemia have been implicated as important mediators of neuronal injury through damage to lipids, DNA, and proteins. Since ischemia as well as reperfusion insults generate oxidative stress, the administration of antioxidants may limit oxidative damage and ameliorate disease progression. The present work shows the transitory neuroprotective effect of the aged garlic extract (AGE) administration (a proposed antioxidant compound) in a middle cerebral artery occlusion (MCAO) model in rats and established its therapeutic window. To determine the optimal time of administration, animal received AGE (1.2 mL/kg) intraperitoneally 30 min before onset of reperfusion (-0.5 R), at the beginning of reperfusion (0R), or 1 h after onset of reperfusion (1R). Additional doses were administrated after 1, 2, or 3 h after onset of reperfusion. To establish the therapeutic window of AGE, the infarct area was determined for each treatment after different times of reperfusion. Results show that the administration of AGE at the onset of reperfusion reduced the infarct area by 70% (evaluated after 2 h reperfusion). The therapeutic window of AGE was determined. Repeated doses did not extend the temporal window of protection. A significant reduction in the nitrotyrosine level was observed in the brain tissue subjected to MCAO after AGE treatment at the onset of reperfusion. Data in the present work show that AGE exerts a transitory neuroprotective effect in response to ischemia/reperfusion-induced neuronal injury.

  19. The African Turquoise Killifish: A Model for Exploring Vertebrate Aging and Diseases in the Fast Lane.

    PubMed

    Harel, Itamar; Brunet, Anne

    2015-01-01

    Why and how organisms age remains a mystery, and it defines one of the biggest challenges in biology. Aging is also the primary risk factor for many human pathologies, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. Thus, manipulating the aging rate and potentially postponing the onset of these devastating diseases could have a tremendous impact on human health. Recent studies, relying primarily on nonvertebrate short-lived model systems, have shown the importance of both genetic and environmental factors in modulating the aging rate. However, relatively little is known about aging in vertebrates or what processes may be unique and specific to these complex organisms. Here we discuss how advances in genomics and genome editing have significantly expanded our ability to probe the aging process in a vertebrate system. We highlight recent findings from a naturally short-lived vertebrate, the African turquoise killifish, which provides an attractive platform for exploring mechanisms underlying vertebrate aging and age-related diseases. PMID:26642856

  20. Accounting for age uncertainty in growth modeling, the case study of yellowfin tuna (Thunnus albacares) of the Indian Ocean.

    PubMed

    Dortel, Emmanuelle; Massiot-Granier, Félix; Rivot, Etienne; Million, Julien; Hallier, Jean-Pierre; Morize, Eric; Munaron, Jean-Marie; Bousquet, Nicolas; Chassot, Emmanuel

    2013-01-01

    Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the sagittal otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty around age estimates into the process of growth estimation and it can be applied to any

  1. Accounting for age uncertainty in growth modeling, the case study of yellowfin tuna (Thunnus albacares) of the Indian Ocean.

    PubMed

    Dortel, Emmanuelle; Massiot-Granier, Félix; Rivot, Etienne; Million, Julien; Hallier, Jean-Pierre; Morize, Eric; Munaron, Jean-Marie; Bousquet, Nicolas; Chassot, Emmanuel

    2013-01-01

    Age estimates, typically determined by counting periodic growth increments in calcified structures of vertebrates, are the basis of population dynamics models used for managing exploited or threatened species. In fisheries research, the use of otolith growth rings as an indicator of fish age has increased considerably in recent decades. However, otolith readings include various sources of uncertainty. Current ageing methods, which converts an average count of rings into age, only provide periodic age estimates in which the range of uncertainty is fully ignored. In this study, we describe a hierarchical model for estimating individual ages from repeated otolith readings. The model was developed within a Bayesian framework to explicitly represent the sources of uncertainty associated with age estimation, to allow for individual variations and to include knowledge on parameters from expertise. The performance of the proposed model was examined through simulations, and then it was coupled to a two-stanza somatic growth model to evaluate the impact of the age estimation method on the age composition of commercial fisheries catches. We illustrate our approach using the sagittal otoliths of yellowfin tuna of the Indian Ocean collected through large-scale mark-recapture experiments. The simulation performance suggested that the ageing error model was able to estimate the ageing biases and provide accurate age estimates, regardless of the age of the fish. Coupled with the growth model, this approach appeared suitable for modeling the growth of Indian Ocean yellowfin and is consistent with findings of previous studies. The simulations showed that the choice of the ageing method can strongly affect growth estimates with subsequent implications for age-structured data used as inputs for population models. Finally, our modeling approach revealed particularly useful to reflect uncertainty around age estimates into the process of growth estimation and it can be applied to any

  2. AgedCare+GP: description and evaluation of an in-house model of general practice in a residential aged-care facility.

    PubMed

    Pain, Tilley; Stainkey, Lesley; Chapman, Sue

    2014-01-01

    This paper describes a medical model to provide in-house GP services to residents of aged-care facilities. Access to GP services for aged-care residents is decreasing, partially due to the changing demographic of the Australian GP workforce. The model we have developed is an in-house GP (AgedCare+GP) trialled in a publicly funded residential aged-care facility (RACF). The service model was based on the GP cooperative used in our after-hours general practice (AfterHours+GP). Briefly, the service model involves rostering a core group of GPs to provide weekly sessional clinics at the RACF. Financial contributions from appropriate Medicare Benefits Schedule (MBS) items for aged-care planning (including chronic conditions) provided adequate funds to operate the clinic for RACF residents. Evaluation of the service model used the number of resident transfers to the local emergency department as the primary outcome measure. There were 37 transfers of residents in the 3 months before the commencement of the AgedCare+GP and 11 transfers over a 3-month period at the end of the first year of operation; a reduction of almost 70%. This project demonstrates that AgedCare+GP is a successful model for GP service provision to RACF residents, and it also reduces the number of emergency department transfers. PMID:24134857

  3. A behavioral stages model of classical (Pavlovian) conditioning: application to cognitive aging.

    PubMed

    Powell, D A

    1999-01-01

    In the present article, it is argued that a five-stage sequential model of the behavioral and neurophysiological events that occur when organisms are exposed to signals predicting significant events suggests that classical conditioning produces multiple memory traces involving both excitatory and inhibitory processes. Further, these multiple brain structures and associated neurophysiological mechanisms are beginning to be understood; thus, using Pavlovian conditioning techniques to study aging and cognitive functions may provide insights into which brain structures or mechanisms are responsible for more general age-related declines in associative learning and memory. The evidence for this model is briefly reviewed and studies suggesting age-related effects on classical conditioning of various response systems are described within the context of the brain structures implicated by the model.

  4. Nrf2 Signaling and the Slowed Aging Phenotype: Evidence from Long-Lived Models

    PubMed Central

    Bruns, Danielle R.; Drake, Joshua C.; Biela, Laurie M.; Peelor, Frederick F.; Miller, Benjamin F.; Hamilton, Karyn L.

    2015-01-01

    Studying long-lived animals provides novel insight into shared characteristics of aging and represents a unique model to elucidate approaches to prevent chronic disease. Oxidant stress underlies many chronic diseases and resistance to stress is a potential mechanism governing slowed aging. The transcription factor nuclear factor (erythroid-derived 2)-like 2 is the “master regulator” of cellular antioxidant defenses. Nrf2 is upregulated by some longevity promoting interventions and may play a role in regulating species longevity. However, Nrf2 expression and activity in long-lived models have not been well described. Here, we review evidence for altered Nrf2 signaling in a variety of slowed aging models that accomplish lifespan extension via pharmacological, nutritional, evolutionary, genetic, and presumably epigenetic means. PMID:26583062

  5. Dynamic analysis of a hepatitis B model with three-age-classes

    NASA Astrophysics Data System (ADS)

    Zhang, Suxia; Zhou, Yicang

    2014-07-01

    Based on the fact that the likelihood of becoming chronically infected is dependent on age at primary infection Kane (1995) [2], Edmunds et al. (1993) [3], Medley et al. (2001) [4], and Ganem and Prince (2004) [6], we formulate a hepatitis B transmission model with three age classes. The reproduction number, R0 is defined and the dynamical behavior of the model is analyzed. It is proved that the disease-free equilibrium is globally stable if R0<1, and there exists at least one endemic equilibrium and that the disease is uniformly persistent if R0>1. The unique endemic equilibrium and its global stability is obtained in a special case. Simulations are also conducted to compare the dynamical behavior of the model with and without age classes.

  6. Aging and percolation dynamics in a Non-Poissonian temporal network model

    NASA Astrophysics Data System (ADS)

    Moinet, Antoine; Starnini, Michele; Pastor-Satorras, Romualdo

    2016-08-01

    We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Activity Driven (NoPAD) model [Moinet et al., Phys. Rev. Lett. 114, 108701 (2015), 10.1103/PhysRevLett.114.108701], a temporal network model incorporating the empirically observed bursty nature of social interactions. We focus on the aging effects emerging from the non-Poissonian dynamics of link activation, and on their effects on the topological properties of time-integrated networks, such as the degree distribution. Analytic expressions for the degree distribution of integrated networks as a function of time are derived, exploring both limits of vanishing and strong aging. We also address the percolation process occurring on these temporal networks, by computing the threshold for the emergence of a giant connected component, highlighting the aging dependence. Our analytic predictions are checked by means of extensive numerical simulations of the NoPAD model.

  7. Aging and percolation dynamics in a Non-Poissonian temporal network model.

    PubMed

    Moinet, Antoine; Starnini, Michele; Pastor-Satorras, Romualdo

    2016-08-01

    We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Activity Driven (NoPAD) model [Moinet et al., Phys. Rev. Lett. 114, 108701 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.108701], a temporal network model incorporating the empirically observed bursty nature of social interactions. We focus on the aging effects emerging from the non-Poissonian dynamics of link activation, and on their effects on the topological properties of time-integrated networks, such as the degree distribution. Analytic expressions for the degree distribution of integrated networks as a function of time are derived, exploring both limits of vanishing and strong aging. We also address the percolation process occurring on these temporal networks, by computing the threshold for the emergence of a giant connected component, highlighting the aging dependence. Our analytic predictions are checked by means of extensive numerical simulations of the NoPAD model. PMID:27627326

  8. Modeling the multiday evolution and aging of secondary organic aerosol during MILAGRO 2006.

    PubMed

    Dzepina, Katja; Cappa, Christopher D; Volkamer, Rainer M; Madronich, Sasha; Decarlo, Peter F; Zaveri, Rahul A; Jimenez, Jose L

    2011-04-15

    In this study, we apply several recently proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at an altitude of ∼3.5 km during three days of aging, in a way that is directly comparable to simulations in regional and global models. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) when using a non-aging SOA parameterization cannot explain the observed SOA concentrations in aged pollution, despite the increasing importance of the low-NO(x) channel. However, when using an aging SOA parameterization, V-SOA alone is similar to the regional aircraft observations, highlighting the wide diversity in current V-SOA formulations. When the SOA formed from oxidation of semivolatile and intermediate volatility organic vapors (SI-SOA) is computed following Robinson et al. (2007) the model matches the observed SOA mass, but its O/C is ∼2× too low. With the parameterization of Grieshop et al. (2009), the total SOA mass is ∼2× too high, but O/C and volatility are closer to the observations. Heating or dilution cause the evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs dilution. Lifting of the airmass to the free-troposphere during dry convection substantially increases SOA by condensation of semivolatile vapors; this effect is reduced by aging. PMID:21425791

  9. Modeling the formation and aging of secondary organic aerosols during CalNex 2010

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Ahmadov, R.; McKeen, S. A.; Washenfelder, R. A.; Alvarez, S.; Rappenglueck, B.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Zotter, P.; Prevot, A. S.; Kleindienst, T. E.; Offenberg, J. H.; Jimenez, J. L.

    2012-12-01

    Several traditional and recently proposed models are applied to predict the concentrations and properties of secondary organic aerosols (SOA) and organic gases at the Pasadena ground site during the CalNex campaign. The models are constrained with and compared against results from available observations. The CalNex campaign and specifically the Pasadena ground site featured a large and sophisticated suite of aerosol and gas phase instrumentation, and thus, it provides a unique opportunity to test SOA models under conditions of strong urban emissions at a range of low photochemical ages. The oxidation of volatile organic compounds (VOCs) using an updated traditional model cannot explain the observed ambient SOA, and under-predicts the measurements by a factor of ~40. Similarly, after accounting for the multi-generation oxidation of VOCs using a volatility basis set (VBS) approach as described by Tsimpidi et al. (2010), SOA is still under-predicted by a factor of ~8. For SOA formed from VOCs (V-SOA) the dominant precursors are aromatics (xylenes, toluene, and trimethylbenzenes). The model SOA formed from the oxidation of primary semivolatile and intermediate volatility organic compounds (P-S/IVOCs, producing SI-SOA) is also predicted using the parameterizations of Robinson et al. (2007) and Grieshop et al. (2009), and the properties of V-SOA + SI-SOA are compared against the measured O:C and volatility. We also compare the results of the different models against fossil/non-fossil carbon measurements as well as tracers of different SOA precursors. Potential Aerosol Mass (PAM) measurements of the SOA forming potential of the Pasadena air masses are also compared against that predicted by the models. The PAM analysis allows for model/measurement comparisons of SOA properties over a range of photochemical ages spanning almost two weeks. Using the V-SOA model, at low photochemical ages (< 1 day) the modeled PAM V-SOA is less than the measured PAM SOA, similar to the

  10. A Validated Age-Related Normative Model for Male Total Testosterone Shows Increasing Variance but No Decline after Age 40 Years

    PubMed Central

    Kelsey, Thomas W.; Li, Lucy Q.; Mitchell, Rod T.; Whelan, Ashley; Anderson, Richard A.; Wallace, W. Hamish B.

    2014-01-01

    The diagnosis of hypogonadism in human males includes identification of low serum testosterone levels, and hence there is an underlying assumption that normal ranges of testosterone for the healthy population are known for all ages. However, to our knowledge, no such reference model exists in the literature, and hence the availability of an applicable biochemical reference range would be helpful for the clinical assessment of hypogonadal men. In this study, using model selection and validation analysis of data identified and extracted from thirteen studies, we derive and validate a normative model of total testosterone across the lifespan in healthy men. We show that total testosterone peaks [mean (2.5–97.5 percentile)] at 15.4 (7.2–31.1) nmol/L at an average age of 19 years, and falls in the average case [mean (2.5–97.5 percentile)] to 13.0 (6.6–25.3) nmol/L by age 40 years, but we find no evidence for a further fall in mean total testosterone with increasing age through to old age. However we do show that there is an increased variation in total testosterone levels with advancing age after age 40 years. This model provides the age related reference ranges needed to support research and clinical decision making in males who have symptoms that may be due to hypogonadism. PMID:25295520

  11. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model

    PubMed Central

    Conley, Melissa N.; Wong, Carmen P.; Duyck, Kyle M.; Hord, Norman; Ho, Emily

    2016-01-01

    Introduction. Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging.” While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results. We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age. Discussion. Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age

  12. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model.

    PubMed

    Conley, Melissa N; Wong, Carmen P; Duyck, Kyle M; Hord, Norman; Ho, Emily; Sharpton, Thomas J

    2016-01-01

    Introduction. Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as "inflammaging." While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of our study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results. We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 stratify individuals by age. Discussion. Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age

  13. Modeling early-onset post-ischemic seizures in aging mice

    PubMed Central

    Wu, Chiping; Wang, Justin; Peng, Jessie; Patel, Nisarg; Huang, Yayi; Gao, Xiaoxing; Aljarallah, Salman; Eubanks, James H; McDonald, Robert; Zhang, Liang

    2016-01-01

    Stroke is the leading cause of seizures and epilepsy in the aged population, with post-stroke seizures being a poor prognostic factor. The pathological processes underlying post-stroke seizures are not well understood and studies of these seizures in aging/aged animals remain scarce. Therefore, our primary objective was to model post-stroke seizures in aging mice (C57 black strain, 16–20 month-old), with a focus on early-onset, convulsive seizures that occur within 24-hours of brain ischemia. We utilized a middle cerebral artery occlusion model and examined seizure activity and brain injury using combined behavioral and electroencephalographic monitoring and histological assessments. Aging mice exhibited vigorous convulsive seizures within hours of the middle cerebral artery occlusion. These seizures manifested with jumping, rapid running, barrel-rolling and/or falling all in the absence of hippocampal-cortical electrographic discharges. Seizure development was closely associated with severe brain injury and acute mortality. Anticonvulsive treatments after seizure occurrence offered temporary seizure control but failed to improve animal survival. A separate cohort of adult mice (6–8 months-old) exhibited analogous early-onset convulsive seizures following the middle cerebral artery occlusion but had better survival outcomes following anticonvulsive treatment. Collectively, our data suggest that early-onset convulsive seizures are a result of severe brain ischemia in aging animals. PMID:25943585

  14. Modeling early-onset post-ischemic seizures in aging mice.

    PubMed

    Wu, Chiping; Wang, Justin; Peng, Jessie; Patel, Nisarg; Huang, Yayi; Gao, Xiaoxing; Aljarallah, Salman; Eubanks, James H; McDonald, Robert; Zhang, Liang

    2015-09-01

    Stroke is the leading cause of seizures and epilepsy in the aged population, with post-stroke seizures being a poor prognostic factor. The pathological processes underlying post-stroke seizures are not well understood and studies of these seizures in aging/aged animals remain scarce. Therefore, our primary objective was to model post-stroke seizures in aging mice (C57 black strain, 16-20 months-old), with a focus on early-onset, convulsive seizures that occur within 24-hours of brain ischemia. We utilized a middle cerebral artery occlusion model and examined seizure activity and brain injury using combined behavioral and electroencephalographic monitoring and histological assessments. Aging mice exhibited vigorous convulsive seizures within hours of the middle cerebral artery occlusion. These seizures manifested with jumping, rapid running, barrel-rolling and/or falling all in the absence of hippocampal-cortical electrographic discharges. Seizure development was closely associated with severe brain injury and acute mortality. Anticonvulsive treatments after seizure occurrence offered temporary seizure control but failed to improve animal survival. A separate cohort of adult mice (6-8 months-old) exhibited analogous early-onset convulsive seizures following the middle cerebral artery occlusion but had better survival outcomes following anticonvulsive treatment. Collectively, our data suggest that early-onset convulsive seizures are a result of severe brain ischemia in aging animals.

  15. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    SciTech Connect

    Williams, R W; Gaffney, A M; Kristo, M J; Hutcheon, I D

    2009-05-28

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.

  16. Structural modeling of age specific fertility curves in Peninsular Malaysia: An approach of Lee Carter method

    NASA Astrophysics Data System (ADS)

    Hanafiah, Hazlenah; Jemain, Abdul Aziz

    2013-11-01

    In recent years, the study of fertility has been getting a lot of attention among research abroad following fear of deterioration of fertility led by the rapid economy development. Hence, this study examines the feasibility of developing fertility forecasts based on age structure. Lee Carter model (1992) is applied in this study as it is an established and widely used model in analysing demographic aspects. A singular value decomposition approach is incorporated with an ARIMA model to estimate age specific fertility rates in Peninsular Malaysia over the period 1958-2007. Residual plots is used to measure the goodness of fit of the model. Fertility index forecast using random walk drift is then utilised to predict the future age specific fertility. Results indicate that the proposed model provides a relatively good and reasonable data fitting. In addition, there is an apparent and continuous decline in age specific fertility curves in the next 10 years, particularly among mothers' in their early 20's and 40's. The study on the fertility is vital in order to maintain a balance between the population growth and the provision of facilities related resources.

  17. A four-component model of age-related memory change.

    PubMed

    Healey, M Karl; Kahana, Michael J

    2016-01-01

    We develop a novel, computationally explicit, theory of age-related memory change within the framework of the context maintenance and retrieval (CMR2) model of memory search. We introduce a set of benchmark findings from the free recall and recognition tasks that include aspects of memory performance that show both age-related stability and decline. We test aging theories by lesioning the corresponding mechanisms in a model fit to younger adult free recall data. When effects are considered in isolation, many theories provide an adequate account, but when all effects are considered simultaneously, the existing theories fail. We develop a novel theory by fitting the full model (i.e., allowing all parameters to vary) to individual participants and comparing the distributions of parameter values for older and younger adults. This theory implicates 4 components: (a) the ability to sustain attention across an encoding episode, (b) the ability to retrieve contextual representations for use as retrieval cues, (c) the ability to monitor retrievals and reject intrusions, and (d) the level of noise in retrieval competitions. We extend CMR2 to simulate a recognition memory task using the same mechanisms the free recall model uses to reject intrusions. Without fitting any additional parameters, the 4-component theory that accounts for age differences in free recall predicts the magnitude of age differences in recognition memory accuracy. Confirming a prediction of the model, free recall intrusion rates correlate positively with recognition false alarm rates. Thus, we provide a 4-component theory of a complex pattern of age differences across 2 key laboratory tasks.

  18. Bacteria as a new model system for aging studies: investigations using light microscopy.

    PubMed

    Ackermann, Martin

    2008-04-01

    Aging-the decline in an individual's condition over time-is at the center of an active research field in medicine and biology. Some very basic questions have, however, remained unresolved, the most fundamental being: do all organisms age? Or are there organisms that would continue to live forever if not killed by external forces? For a long time it was believed that aging only affected organisms such as animals, plants, and fungi. Bacteria, in contrast, were assumed to be potentially immortal and until recently this assertion remained untested. We used phase-contrast microscopy (on an Olympus BX61) to follow individual bacterial cells over many divisions to prove that some bacteria show a distinction between an aging mother cell and a rejuvenated daughter, and that these bacteria thus age. This indicates that aging is a more fundamental property of organisms than was previously assumed. Bacteria can now be used as very simple model system for investigating why and how organisms age. PMID:18476823

  19. Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation.

    PubMed

    Buga, A-M; Di Napoli, Mario; Popa-Wagner, A

    2013-12-01

    Age is the principal nonmodifiable risk factor for stroke. Over the past 10 years, suitable models for stroke in aged rats have been established. At genetic and cellular level there are significant differences in behavioral, cytological and genomics responses to injury in old animals as compared with the young ones. Behaviorally, the aged rats have the capacity to recover after cortical infarcts albeit to a lower extent than the younger counterparts. Similarly, the increased vulnerability of the aged brain to stroke, together with a decreased interhemisphere synchrony after stroke, assessed by different experimental methods (MRI, fMRI, in vivo microscopy, EEG) leads to unfavorable recovery of physical and cognitive functions in aged people and may have a prognostic value for the recovery of stroke patients. Furthermore, in elderly, comorbidities like diabetes or arterial hypertension are associated with higher risk of stroke, increased mortality and disability, and poorer functional status and quality of life. Aging brain reacts strongly to ischemia-reperfusion injury with an early inflammatory response. The process of cellular senescence can be an important additional contributor to chronic post-stroke by creating a "primed" inflammatory environment in the brain. Overall, these pro-inflammatory reactions promote early scar formation associated with tissue fibrosis and reduce functional recovery. A better understanding of molecular factors and signaling pathways underlying the contribution of comorbidities to stroke-induced pathological sequelae, may be translated into successful treatment or prevention therapies for age-associated diseases which would improve lifespan and quality of life.

  20. Ovarian Aging-Like Phenotype in the Hyperandrogenism-Induced Murine Model of Polycystic Ovary

    PubMed Central

    Rezvanfar, Mohammad Amin; Shojaei Saadi, Habib A.; Gooshe, Maziar; Abdolghaffari, Amir Hosein; Baeeri, Maryam; Abdollahi, Mohammad

    2014-01-01

    There are prominently similar symptoms, effectors, and commonalities in the majority of characteristics between ovarian aging and polycystic ovarian syndrome (PCOS). Despite the approved role of oxidative stress in the pathogenesis of PCOS and aging, to our knowledge, the link between the PCO(S) and aging has not been investigated yet. In this study we investigated the possible exhibition of ovarian aging phenotype in murine model of PCO induced by daily oral administration of letrozole (1 mg/kg body weight) for 21 consecutive days in the female Wistar rats. Hyperandrogenization showed irregular cycles and histopathological characteristics of PCO which was associated with a significant increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) and decrease in total antioxidant capacity (TAC) in serum and ovary. Moreover, serum testosterone, insulin and tumor necrosis factor-alpha (TNF-α) levels, and ovarian matrix metalloproteinase-2 (MMP-2) were increased in PCO rats compared with healthy controls, while estradiol and progesterone diminished. Almost all of these findings are interestingly found to be common with the characteristics identified with (ovarian) aging showing that hyperandrogenism-induced PCO in rat is associated with ovarian aging-like phenotypes. To our knowledge, this is the first report that provides evidence regarding the phenomenon of aging in PCO. PMID:24693338

  1. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  2. Mechanisms of Muscle Denervation in Aging: Insights from a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Park, Kevin H.J

    2015-01-01

    Muscle denervation at the neuromuscular junction (NMJ) is thought to be a contributing factor in age-related muscle weakness. Therefore, understanding the mechanisms that modulate NMJ innervation is a key to developing therapies to combat age-related muscle weakness affecting the elderly. Two mouse models, one lacking the Cu/Zn superoxide dismutase (SOD1) gene and another harboring the transgenic mutant human SOD1 gene, display progressive changes at the NMJ, including muscle endplate fragmentation, nerve terminal sprouting, and denervation. These changes at the NMJ share many of the common features observed in the NMJs of aged mice. In this review, research findings demonstrating the effects of PGC-1α, IGF-1, GDNF, MyoD, myogenin, and miR-206 on NMJ innervation patterns in the G93A SOD1 mice will be highlighted in the context of age-related muscle denervation. PMID:26425392

  3. Renal Pathology in a Nontraditional Aging Model: The Naked Mole-Rat (Heterocephalus glaber).

    PubMed

    Delaney, M A; Kinsel, M J; Treuting, P M

    2016-03-01

    The naked mole-rat (NMR; Heterocephalus glaber) is growing in popularity as a model for aging research due to its extreme longevity (up to 30 years), highly adapted physiology, and resistance to cancer, particularly when compared with traditional aging models such as laboratory mice and rats. Despite the NMR's seemingly lengthy health span, several age-related lesions have been documented. During a 15-year retrospective evaluation of a zoo-housed population, histologic changes in the kidneys were reported in 127 of 138 (92%) adult NMRs. Of these, renal tubular mineralization was very common (115 of 127; 90.6%) and found in NMRs without concurrent renal lesions (36 of 127; 28.3%). Many of the other described lesions were considered progressive stages of a single process, generally referred to as chronic nephritis or nephropathy, and diagnosed in 73 of 127 (57.5%), while end-stage renal disease was reported in only 12 (9.4%) NMRs. Renal lesions of these NMRs were comparable to disease entities reported in laboratory rats and certain strains of inbred and noninbred mice. Although many lesions of NMR kidneys were similar to those found in aged laboratory rodents, some common urinary diseases were not represented in the examined colonies. The goal of this study was to describe renal lesions in NMRs from a zoologic setting to familiarize investigators and pathologists with an apparently common and presumably age-related disease in this nontraditional model.

  4. High Voltage Breakdown, Partial Discharge and Aging in Lapped Tape Insulated Cold Dielectric Model Cables

    NASA Astrophysics Data System (ADS)

    Sauers, I.; James, D. R.; Pace, M. O.; Ellis, A. R.; Muller, A. C.

    2004-06-01

    High temperature superconducting (HTS) power cables generally follow either of two generic designs, cold dielectric and warm dielectric. In the cold dielectric design, lapped tape insulation and liquid nitrogen are used in combination to provide the electrical insulation between the conductor and the ground shield of an HTS cable. Lapped tape insulated model cables have been tested at high voltage, including AC breakdown, negative impulse breakdown, partial discharge, and long term aging under AC stress. Tapes tested include Cryoflex™ (a proprietary tape developed by Southwire) and PPLP® (a commercial semi synthetic tape). Two high voltage cryostats have been built for short and long term aging studies that permit testing of model cables under the combined conditions of high electric stress, cryogenic temperature and elevated pressures up to 15 bar. For the aging studies, a log-log plot of electric stress versus time-to-breakdown has yielded an estimate of cable lifetime. Since aging at cryogenic temperatures is not expected to have a thermal cause, dielectric wear in HTS cables reduces to partial discharge as the primary aging mechanism. Phase and amplitude resolved partial discharge data of model cables in liquid nitrogen will be presented.

  5. A Validated Normative Model for Human Uterine Volume from Birth to Age 40 Years

    PubMed Central

    Ginbey, Eleanor; Chowdhury, Moti M.; Bath, Louise E.; Anderson, Richard A.; Wallace, W. Hamish B.

    2016-01-01

    Transabdominal pelvic ultrasound and/or pelvic Magnetic Resonance Imaging are safe, accurate and non-invasive means of determining the size and configuration of the internal female genitalia. The assessment of uterine size and volume is helpful in the assessment of many conditions including disorders of sex development, precocious or delayed puberty, infertility and menstrual disorders. Using our own data from the assessment of MRI scans in healthy young females and data extracted from four studies that assessed uterine volume using transabdominal ultrasound in healthy females we have derived and validated a normative model of uterine volume from birth to age 40 years. This shows that uterine volume increases across childhood, with a faster increase in adolescence reflecting the influence of puberty, followed by a slow but progressive rise during adult life. The model suggests that around 84% of the variation in uterine volumes in the healthy population up to age 40 is due to age alone. The derivation of a validated normative model for uterine volume from birth to age 40 years has important clinical applications by providing age-related reference values for uterine volume. PMID:27295032

  6. Age estimation based on pelvic ossification using regression models from conventional radiography.

    PubMed

    Zhang, Kui; Dong, Xiao-Ai; Fan, Fei; Deng, Zhen-Hua

    2016-07-01

    To establish regression models for age estimation from the combination of the ossification of iliac crest and ischial tuberosity. One thousand three hundred and seventy-nine conventional pelvic radiographs at the West China Hospital of Sichuan University between January 2010 and June 2012 were evaluated retrospectively. The receiver operating characteristic analysis was performed to measure the value of estimation of 18 years of age with the classification scheme for the iliac crest and ischial tuberosity. Regression analysis was performed, and formulas for calculating approximate chronological age according to the combination developmental status of the ossification for the iliac crest and ischial tuberosity were developed. The areas under the receiver operating characteristic (ROC) curves were above 0.9 (p < 0.001), indicating a good prediction of the grading systems, and the cubic regression model was found to have the highest R-square value (R (2) = 0.744 for female and R (2) = 0.753 for male). The present classification scheme for apophyseal iliac crest ossification and the ischial tuberosity may be used for age estimation. And the present established cubic regression model according to the combination developmental status of the ossification for the iliac crest and ischial tuberosity can be used for age estimation. PMID:27169673

  7. THE TRANSMISSION AND PERSISTENCE OF 'URBAN LEGENDS': SOCIOLOGICAL APPLICATION OF AGE-STRUCTURED EPIDEMIC MODELS.

    PubMed

    Noymer, Andrew

    2001-01-01

    This paper describes two related epidemic models of rumor transmission in an age-structured population. Rumors share with communicable disease certain basic aspects, which means that formal models of epidemics may be applied to the transmission of rumors. The results show that rumors may become entrenched very quickly and persist for a long time, even when skeptics are modeled to take an active role in trying to convince others that the rumor is false. This is a macrophenomeon, because individuals eventually cease to believe the rumor, but are replaced by new recruits. This replacement of former believers by new ones is an aspect of all the models, but the approach to stability is quicker, and involves smaller chance of extinction, in the model where skeptics actively try to counter the rumor, as opposed to the model where interest is naturally lost by believers. Skeptics hurt their own cause. The result shows that including age, or a variable for which age is a proxy (e.g., experience), can improve model fidelity and yield important insights.

  8. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1

    PubMed Central

    Fujitsuka, N; Asakawa, A; Morinaga, A; Amitani, M S; Amitani, H; Katsuura, G; Sawada, Y; Sudo, Y; Uezono, Y; Mochiki, E; Sakata, I; Sakai, T; Hanazaki, K; Yada, T; Yakabi, K; Sakuma, E; Ueki, T; Niijima, A; Nakagawa, K; Okubo, N; Takeda, H; Asaka, M; Inui, A

    2016-01-01

    Caloric restriction (CR) is known to retard aging and delay functional decline as well as the onset of diseases in most organisms. Ghrelin is secreted from the stomach in response to CR and regulates energy metabolism. We hypothesized that in CR ghrelin has a role in protecting aging-related diseases. We examined the physiological mechanisms underlying the ghrelin system during the aging process in three mouse strains with different genetic and biochemical backgrounds as animal models of accelerated or normal human aging. The elevated plasma ghrelin concentration was observed in both klotho-deficient and senescence-accelerated mouse prone/8 (SAMP8) mice. Ghrelin treatment failed to stimulate appetite and prolong survival in klotho-deficient mice, suggesting the existence of ghrelin resistance in the process of aging. However, ghrelin antagonist hastened death and ghrelin signaling potentiators rikkunshito and atractylodin ameliorated several age-related diseases with decreased microglial activation in the brain and prolonged survival in klotho-deficient, SAMP8 and aged ICR mice. In vitro experiments, the elevated sirtuin1 (SIRT1) activity and protein expression through the cAMP–CREB pathway was observed after ghrelin and ghrelin potentiator treatment in ghrelin receptor 1a-expressing cells and human umbilical vein endothelial cells. Furthermore, rikkunshito increased hypothalamic SIRT1 activity and SIRT1 protein expression of the heart in the all three mouse models of aging. Pericarditis, myocardial calcification and atrophy of myocardial and muscle fiber were improved by treatment with rikkunshito. Ghrelin signaling may represent one of the mechanisms activated by CR, and potentiating ghrelin signaling may be useful to extend health and lifespan. PMID:26830139

  9. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    NASA Astrophysics Data System (ADS)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  10. Age at First Birth and Fathers' Subsequent Health: Evidence From Sibling and Twin Models

    PubMed Central

    Pudrovska, Tetyana; Carr, Deborah

    2010-01-01

    Using a sample of 540 siblings and twins from the National Survey of Midlife Development in the United States, this study examines the relationship between the age at which men become biological fathers and their subsequent health. The analysis includes both between-family models that treat brothers as independent observations and within-family models that account for unobserved genetic and early-life environmental endowments shared by brothers within families. Findings indicate that age at first birth has a positive, linear effect on men's health, and this relationship is not explained by the confounding influences of unobserved early-life characteristics. However, the effect of age at first birth on fathers' health is explained by men's socioeconomic and family statuses. Whereas most research linking birth timing to specific diseases focuses narrowly on biological mechanisms among mothers, this study demonstrates the importance of reproductive decisions for men's health and well-being. PMID:19477723

  11. Compact modeling of total ionizing dose and aging effects in MOS technologies

    SciTech Connect

    Esqueda, Ivan S.; Barnaby, Hugh J.; King, Michael Patrick

    2015-06-18

    This paper presents a physics-based compact modeling approach that incorporates the impact of total ionizing dose (TID) and stress-induced defects into simulations of metal-oxide-semiconductor (MOS) devices and integrated circuits (ICs). This approach utilizes calculations of surface potential (ψs) to capture the charge contribution from oxide trapped charge and interface traps and to describe their impact on MOS electrostatics and device operating characteristics as a function of ionizing radiation exposure and aging effects. The modeling approach is demonstrated for bulk and silicon-on-insulator (SOI) MOS device. The formulation is verified using TCAD simulations and through the comparison of model calculations and experimental I-V characteristics from irradiated devices. The presented approach is suitable for modeling TID and aging effects in advanced MOS devices and ICs.

  12. Compact modeling of total ionizing dose and aging effects in MOS technologies

    DOE PAGES

    Esqueda, Ivan S.; Barnaby, Hugh J.; King, Michael Patrick

    2015-06-18

    This paper presents a physics-based compact modeling approach that incorporates the impact of total ionizing dose (TID) and stress-induced defects into simulations of metal-oxide-semiconductor (MOS) devices and integrated circuits (ICs). This approach utilizes calculations of surface potential (ψs) to capture the charge contribution from oxide trapped charge and interface traps and to describe their impact on MOS electrostatics and device operating characteristics as a function of ionizing radiation exposure and aging effects. The modeling approach is demonstrated for bulk and silicon-on-insulator (SOI) MOS device. The formulation is verified using TCAD simulations and through the comparison of model calculations and experimentalmore » I-V characteristics from irradiated devices. The presented approach is suitable for modeling TID and aging effects in advanced MOS devices and ICs.« less

  13. Cyclostratigraphy for Chinese red clay sequences: Implications to changing previous age models and paleoclimate interpretations

    NASA Astrophysics Data System (ADS)

    Anwar, T.; Kravchinsky, V. A.; Zhang, R.

    2015-12-01

    The Chinese Loess Plateau contains red clay sequence which has continuous alternation of sedimentary cycles with recurrent paleoclimatic fluctuations. Absence of abundant fossils and inability of radiometric dating method made magnetostratigraphy a leading method to build age model for the red clay. Here magnetostratigraphic age model in red clay sequence is tested using cyclostratigraphy as orbital parameters of Earth are known. Milankovitch periodicities recorded in magnetic susceptibility and grain size in the Shilou red clay section are investigated and previously found age of 11 Ma for this section is re-evaluated. Magnetostratigraphy dating based on only visual correlation could potentially lead to erroneous age model. In this study the correlation is executed through the iteration procedure until it is supported by cyclostratigraphy; i.e. Milankovitch cycles are resolved in the best possible manner. Our new approach provides an age of 5.2 Ma for the Shilou profile. Wavelet analysis reveals that a 400 kyr eccentricity cycle is well preserved and the existence of a 100 kyr eccentricity in the red clay sequence on the eastern Chinese Loess Plateau suggests that eccentricity plays a vital role in Pliocene climate evolution. Paleomonsoon evolution is reconstructed and divided into three intervals (5.2-4.5 Ma, 4.5-3.6 Ma and 3.6-2.58 Ma). The earliest stage indicates that summer and winter monsoon cycles may rapidly alter, whereas the middle stage reflects an intensification of winter monsoon and aridification in Asia, and the youngest stage is characterized by relatively intensified summer monsoon. This study demonstrates that cyclostratigraphy can greatly assist magnetostratigraphy in dating the red clay sequences, and implies that many published age models for the red clay sequences should likely be re-assessed where possible. An evaluation of the monsoon system and climate change in eastern Asia might prominently benefit from this approach.

  14. Effects of Exendin-4 on Male Reproductive Parameters of D-Galactose Induced Aging Mouse Model

    PubMed Central

    Ahangarpour, Akram; Heidari, Hamid

    2014-01-01

    Purpose The purpose of this study was to evaluate the role of exendin-4 on reproductive alteration in a D-galactose-induced aging mouse model. Materials and Methods In this experimental study, 72 male Naval Medical Research Institute mice (20~25 g) were randomly divided into six groups: control, exendin-4 (1 nmol/kg), exendin-4 (10 nmol/kg), D-galactose (500 mg/kg), D-galactose+exendin-4 (1 nmol/kg), and D-galactose+exendin-4 (10 nmol/kg). The aging model animals were gavaged with D-galactose for six weeks, and exendin-4 was injected intraperitoneally in the last 10 days. At the end of treatment serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone levels were evaluated and the cauda epididymis and testis were removed to analyze the sperm count and testis morphology. Results The testis weight and volume decreased in the D-galactose group (p<0.01 and p<0.05) respectively. Exendin-4 (1, 10 nmol/kg) increased these parameters in the normal and aging mouse models. Serum LH and FSH levels increased and the sperm count decreased in the D-galactose group (p<0.05). Further, exendin-4 (1 nmol/kg) decreased LH and FSH levels and increased the serum testosterone level and sperm count in both normal and aging animals. Conclusions D-galactose can induce aging alternations in the male reproductive system such as decreased sperm count and increased serum LH and FSH levels through reactive oxygen species over production and reduced antioxidant enzyme activity. Further, co-administration of exendin-4 reduced reproductive complications of D-galactose in an aging mouse model. PMID:25606567

  15. All-Ages Lead Model (Aalm) Version 1.05 (External Draft Report)

    EPA Science Inventory

    The All-Ages Lead Model (AALM) Version 1.05, is an external review draft software and guidance manual. EPA released this software and associated documentation for public review and comment beginning September 27, 2005, until October 27, 2005. The public comments will be accepte...

  16. The "Village" Model: A Consumer-Driven Approach for Aging in Place

    ERIC Educational Resources Information Center

    Scharlach, Andrew; Graham, Carrie; Lehning, Amanda

    2012-01-01

    Purpose of the Study: This study examines the characteristics of the "Village" model, an innovative consumer-driven approach that aims to promote aging in place through a combination of member supports, service referrals, and consumer engagement. Design and Methods: Thirty of 42 fully operational Villages completed 2 surveys. One survey examined…

  17. The reemergence of long-term potentiation in aged Alzheimer’s disease mouse model

    PubMed Central

    Huh, Seonghoo; Baek, Soo-Ji; Lee, Kyung-Hwa; Whitcomb, Daniel J.; Jo, Jihoon; Choi, Seong-Min; Kim, Dong Hyun; Park, Man-Seok; Lee, Kun Ho; Kim, Byeong C.

    2016-01-01

    Mouse models of Alzheimer’s disease (AD) have been developed to study the pathophysiology of amyloid β protein (Aβ) toxicity, which is thought to cause severe clinical symptoms such as memory impairment in AD patients. However, inconsistencies exist between studies using these animal models, specifically in terms of the effects on synaptic plasticity, a major cellular model of learning and memory. Whereas some studies find impairments in plasticity in these models, others do not. We show that long-term potentiation (LTP), in the CA1 region of hippocampal slices from this mouse, is impared at Tg2576 adult 6–7 months old. However, LTP is inducible again in slices taken from Tg2576 aged 14–19 months old. In the aged Tg2576, we found that the percentage of parvalbumin (PV)-expressing interneurons in hippocampal CA1-3 region is significantly decreased, and LTP inhibition or reversal mediated by NRG1/ErbB signaling, which requires ErbB4 receptors in PV interneurons, is impaired. Inhibition of ErbB receptor kinase in adult Tg2576 restores LTP but impairs depotentiation as shown in aged Tg2576. Our study suggests that hippocampal LTP reemerges in aged Tg2576. However, this reemerged LTP is an insuppressible form due to impaired NRG1/ErbB signaling, possibly through the loss of PV interneurons. PMID:27377368

  18. Invariance of an Extended Technology Acceptance Model Across Gender and Age Group

    ERIC Educational Resources Information Center

    Ahmad, Tunku Badariah Tunku; Madarsha, Kamal Basha; Zainuddin, Ahmad Marzuki; Ismail, Nik Ahmad Hisham; Khairani, Ahmad Zamri; Nordin, Mohamad Sahari

    2011-01-01

    In this study, we examined the likelihood of a TAME (extended technology acceptance model), in which the interrelationships among computer self-efficacy, perceived usefulness, intention to use and self-reported use of computer-mediated technology were tested. In addition, the gender- and age-invariant of its causal structure were evaluated. The…

  19. The Hierarchical Factor Model of ADHD: Invariant across Age and National Groupings?

    ERIC Educational Resources Information Center

    Toplak, Maggie E.; Sorge, Geoff B.; Flora, David B.; Chen, Wai; Banaschewski, Tobias; Buitelaar, Jan; Ebstein, Richard; Eisenberg, Jacques; Franke, Barbara; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Thompson, Margaret; Tannock, Rosemary; Asherson, Philip; Faraone, Stephen V.

    2012-01-01

    Objective: To examine the factor structure of attention-deficit/hyperactivity disorder (ADHD) in a clinical sample of 1,373 children and adolescents with ADHD and their 1,772 unselected siblings recruited from different countries across a large age range. Hierarchical and correlated factor analytic models were compared separately in the ADHD and…

  20. Differentiation in Self-Perceived Adulthood: Extending the Confluence Model of Subjective Age Identity

    ERIC Educational Resources Information Center

    Johnson, Monica Kirkpatrick; Berg, Justin Allen; Sirotzki, Toni

    2007-01-01

    This study examines and extends the confluence model of age identity by testing whether young people's self-perceptions as adults are linked to role transitions, self-assessed personal qualities, and social location. We propose that young people's sense of adulthood and the factors associated with it vary based on socially structured experience…

  1. Crisis Model for Older Adults: Special Considerations for an Aging Population

    ERIC Educational Resources Information Center

    Jungers, Christin M.; Slagel, Leslie

    2009-01-01

    As the U.S. population ages, counselors must begin structuring their interactions to meet the unique needs of older adults, especially in the area of crisis intervention. The purposes of this article are to draw attention to the rapidly growing, often disregarded older population and to introduce the Crisis Model for Older Adults (CM-OA), an…

  2. Multi-State Physics Models of Aging Passive Components in Probabilistic Risk Assessment

    SciTech Connect

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Heasler, Patrick G.; Toloczko, Mychailo B.

    2011-03-13

    Multi-state Markov modeling has proved to be a promising approach to estimating the reliability of passive components - particularly metallic pipe components - in the context of probabilistic risk assessment (PRA). These models consider the progressive degradation of a component through a series of observable discrete states, such as detectable flaw, leak and rupture. Service data then generally provides the basis for estimating the state transition rates. Research in materials science is producing a growing understanding of the physical phenomena that govern the aging degradation of passive pipe components. As a result, there is an emerging opportunity to incorporate these insights into PRA. This paper describes research conducted under the Risk-Informed Safety Margin Characterization Pathway of the Department of Energy’s Light Water Reactor Sustainability Program. A state transition model is described that addresses aging behavior associated with stress corrosion cracking in ASME Class 1 dissimilar metal welds – a component type relevant to LOCA analysis. The state transition rate estimates are based on physics models of weld degradation rather than service data. The resultant model is found to be non-Markov in that the transition rates are time-inhomogeneous and stochastic. Numerical solutions to the model provide insight into the effect of aging on component reliability.

  3. Social Models of Aging [and] Modeles Sociaux du Vieillissement: Le Parcours de Vie, un Passage oblige? [and] Rejoinder to Haldemann.

    ERIC Educational Resources Information Center

    Marshall, Victor W.; Haldemann, Verena

    1995-01-01

    Marshall reviews four types of social models of aging: allocation, construction of life course, personality and socialization, and negotiation, concluding that the life course perspective dominates. Haldemann comments (in French) that broader research is needed to question this dominance; Marshall responds that his goal was to describe, not to…

  4. Transient earth system model simulations as age-scale generators for paleo proxy data?

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; Stockhecke, M.; Friedrich, T.; Menviel, L.

    2015-12-01

    Generating age models for paleo proxy data can be extremely difficult. Oftentimes assumptions are made which are based on hypothetical relationships between climate and orbital forcings. Whether these relationships (expressed in terms of correlation models) are physically justified and whether they are stationary is testable using transient climate model simulations. Several standard methods to generate age models for paleo-proxy data are scrutinized here, such as orbital tuning and synchronization to benthic stacks. To overcome some of the fundamental weaknesses of these methods we propose to use transient paleo climate model simulations to derive dynamically and physically consistent age models for paleo-proxy data. We illustrate this suggestion using 1) millennial-scale climate variations during MIS 2) orbital-scale climate variability during the past ~800 ka Ad 1) A physically forced MIS3 global hindcast model simulation with an earth system model, designed to match the reconstructed North Atlantic SST variability, can be used to determine the relative timing of different climate and biogeochemical variables at various locations with respect to an initial absolute reference timescale (GICC05 in our case). Corresponding leads and lags are a result of the physical equations of the climate system - not of oversimplisitic statistical assumptions (such as wiggle matching). The key assumption for this approach is that global patterns of Dansgaard-Oeschger variability are caused by centennial to millennial-scale AMOC variability. Ad 2) A transient earth system model simulation of the past ~800 ka is forced with observed greenhouse gas variations (on EDC3), orbital and estimated ice-sheet forcing. Simulated rainfall variations over the Eastern Mediterranean are compared with hydroclimate reconstructions from Lake Van. The simulated rainfall agrees well with the hydroclimate reconstruction (on the MoSto27 timescale) for the first 200 ka. Following this we demonstrate

  5. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model.

    PubMed

    Mellem, Daniel; Fischer, Frank; Jaspers, Sören; Wenck, Horst; Rübhausen, Michael

    2016-01-01

    Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes. PMID:26771181

  6. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model

    PubMed Central

    Mellem, Daniel; Fischer, Frank; Jaspers, Sören; Wenck, Horst; Rübhausen, Michael

    2016-01-01

    Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes. PMID:26771181

  7. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model.

    PubMed

    Mellem, Daniel; Fischer, Frank; Jaspers, Sören; Wenck, Horst; Rübhausen, Michael

    2016-01-01

    Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.

  8. Characterization and modeling of viscoelastic composite laminates with nonisothermal physical aging

    NASA Astrophysics Data System (ADS)

    Bradshaw, Roger Dean

    Advanced fiber-reinforced composite materials are often used at temperatures that lead to time-dependent material behavior; such behavior must be understood and accounted for to ensure adequate design. This dissertation considers the time-dependence caused by physical aging, which is the evolution towards the equilibrium state in glassy solids, and its effect upon the mechanical response of a viscoelastic composite laminate. A predictive methodology is presented to determine the laminate stress-strain response to a general loading function during an arbitrary time-temperature history. This characterization assumes that the material is thermorheologically simple, that it remains linear viscoelastic, and that effective time theory can be used to incorporate the effects of physical aging. The first portion of the dissertation studies physical aging. A new method for recovering isothermal aging parameters that utilizes both load and unload test data is demonstrated; the results compare favorably to the traditional approach. The Kohlrausch compliance function, commonly used in physical aging studies, is shown to be an invalid material function at long times; a Prony series is a preferable representation. This method is then extended to characterize nonisothermal physical aging. It is demonstrated that a new parameter, called "effective aging time," adequately describes the nonisothermal aging state. A model to predict this parameter given the thermal history is presented and shown to adequately describe experimental results. Once the effective aging time is known, classical lamination theory (CLT) can be used with linear viscoelasticity to predict mechanical response. An approach is presented to calculate modulus behavior (convenient for CLT) from compliance behavior (typical result of testing). A prediction method is developed to incorporate the resulting modulus functions into CLT while maintaining the distinct aging behavior in the shear and transverse directions for

  9. A statistical model for the study of U-Nb aging (u)

    SciTech Connect

    Hemphill, Geralyn M; Hackenberg, Robert E

    2009-01-01

    This study was undertaken to model the aging response of U-Nb alloys in order to quantify property and lifetime predictions and uncertainties, in response to concerns that aging during long-term stockpile storage may change the microstructure and properties of U-6 wt%Nb alloy components in ways adversely affecting performance. U-6Nb has many desirable properties, but is a complex material because of its gross compositional inhomogeneity (its chemical banding spans 4-8 wt%), its metastable starting microstructure, and the fact that a variety of external factors such as temperature, stress, and gaseous species can cause aging through multiple mechanisms. The most significant aging mechanism identified in earlier studies [2007hac2] is age hardening, phenomenologically defined as increasing hardness and strength and decreasing ductility observed as a function of increasing aging time-at-temperature. The scientific fundamentals of age hardening at temperatures relevant to U-6Nb material processing ({le}200 C) and stockpile storage ({le}60 C) remain unresolved in spite of significant experimental efforts [2007hac2, 2009cla]. Equally problematic is the lack of a well-established U-6Nb component failure criterion. These limitations make the most desirable approach of property response and lifetime prediction - that based on fundamental physics - unattainable at the present time. Therefore, a semi-empirical approach was taken to model the phenomenological property evolution during aging. This enabled lifetime estimates to be made from an assumed failure criterion (derived from a manufacturing acceptance criterion) couched in terms of an age-sensitive property, namely quasi-static tensile elongation to failure. The predictions of this and other age-sensitive properties are also useful for U-6Nb component surveillance studies. Drawing upon a large body of artificial aging data obtained from nonbanded (chemically homogeneous) U-5.6Nb and U-7.7Nb material [2007hacJ ] over 100

  10. Does the Village model help to foster age-friendly communities?

    PubMed

    Scharlach, Andrew E; Davitt, Joan K; Lehning, Amanda J; Greenfield, Emily A; Graham, Carrie L

    2014-01-01

    This article explores the potential role of the Village model, a social initiative that emphasizes member involvement and service access, in helping communities to become more age-friendly. A survey of 86.3% of operational Villages examined activities designed to help members access a variety of supports and services consistent with the World Health Organization's (WHO) Global Network of Age-Friendly Cities and Communities program model, as well as other potential contributions to community age friendliness. Analysis revealed that 85.5% of Villages provided assistance with at least six of the eight WHO domains, but only 10.1% implemented features of all eight; more than one-third were engaged in direct or indirect efforts to improve community physical or social infrastructures or improve community attitudes toward older persons. These findings suggest that Villages and other social organizations may have untapped potential for enhancing their members' ability to age in place consistent with the goals of age-friendly initiatives while also promoting constructive changes in the overall community. PMID:24224776

  11. Modeling the paraelectric aging effect in the acceptor doped perovskite ferroelectrics: role of oxygen vacancy.

    PubMed

    Zhou, Yumei; Xue, Dezhen; Ding, Xiangdong; Zhang, Lixue; Sun, Jun; Ren, Xiaobing

    2013-10-30

    The time dependence of physical properties in the paraelectric phase was probed recently in a Mn(3+) doped (Ba0.8Sr0.2)TiO3 ceramic, providing a simple situation (without spontaneous polarization or domain walls) to quantify the role of the oxygen vacancy during aging. In the present study, we propose a quantitative model for paraelectric aging to understand how the distribution of the oxygen vacancy evolves with time and consequently influences the dielectric response of the paraelectric phase. First, by comparing dielectric behavior of paraelectric aging in a Mn(3+) doped (Ba0.75Sr0.25)TiO3 ceramic and the dielectric tunable effect, an internal bias field E(in) related to the oxygen vacancy is shown to exist in the paraelectric phase. Second, by introducing such a time dependent E(in) in a Landau-type model, we reproduce the dielectric response of Mn(3+) doped (Ba0.8Sr0.2)TiO3 ceramic during paraelectric aging. It is suggested that the increase of dielectric permittivity can be ascribed to the decrease of E(in) with time. The investigation of paraelectric aging is helpful for understanding the role of the oxygen vacancy in influencing the physical properties of ferroelectric materials.

  12. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Schiff, C.J.; Kaufman, D.S.; Wallace, K.L.; Werner, A.; Ku, T.-L.; Brown, T.A.

    2008-01-01

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS 14C ages, along with the 137Cs and 210Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of the core, and to determine the age of each tephra deposit. The selected age model is based on a mixed-effect regression that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages ??105 yr (95% confidence intervals). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7/500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of one every 130 yr. ?? 2007 Elsevier Ltd. All rights reserved.

  13. Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice.

    PubMed

    Nakashima, Yuya; Ohsawa, Ikuroh; Konishi, Fumiko; Hasegawa, Takashi; Kumamoto, Shoichiro; Suzuki, Yoshihiko; Ohta, Shigeo

    2009-10-30

    Oxidative stress is one of the major causes of age-dependent memory loss and cognitive decline. Cytotoxic aldehydes are derived from lipid peroxides and their accumulation may be responsible for age-dependent neurodegeneration, including Alzheimer's disease. Since aldehyde dehydrogenases detoxify such aldehydes, we constructed transgenic mice with mitochondrial aldehyde dehydrogenase 2 (ALDH2) activity deficiency (DAL101 mice) as an age-dependent dementia model. This model animal is age-dependently progressed by persistent oxidative stress, and thus enables us to investigate foods that prevent dementia. Since Chlorella, a kind of alga, exhibits various anti-oxidative effects, we investigated whether Chlorella has the potential to prevent age-dependent cognitive impairment. We fed Chlorella to DAL101 mice and investigated its effects on oxidative stress and the progression of cognitive decline using the Morris water-maze and object recognition tests. The diet with Chlorella tended to reduce oxidative stress and significantly prevented the decline of cognitive ability, as shown by both methods. Moreover, consumption of Chlorella decreased the number of activated astrocytes in the DAL101 brain. These findings suggest that the prolonged consumption of Chlorella has the potential to prevent the progression of cognitive impairment.

  14. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    SciTech Connect

    Schiff, C J; Kaufman, D S; Wallace, K L; Werner, A; Ku, T L; Brown, T A

    2007-02-25

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS {sup 14}C ages, along with the {sup 137}Cs and {sup 210}Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of sediment, and to determine the age of each tephra deposit. The age model is based on a cubic smooth spline function that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages {+-} 105 yr (1{sigma}). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7 per 500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of once every 130 yr.

  15. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  16. Development of the Thai healthy aging model: A grounded theory study.

    PubMed

    Thiamwong, Ladda; McManus, Michael S; Suwanno, Jom

    2013-06-01

    To develop a model of healthy aging from the perspective of Thais, a grounded theory approach, including in-depth interviews and focus groups, was used. A purposive sample of 39 community-dwelling adults aged 40-85 years old was interviewed. The Thai healthy aging model composed of three themes: normality, nature, and dharma. In Thai, they are called tham-ma-da, tham-ma-chat, and tham-ma, or "Thai 3Ts". The theme of normality encompasses subthemes of staying physically active by being involved in plenty of physical activities, and being mentally active with creative and thoughtful hobbies and work. The theme of nature encompasses subthemes of living simply and being careful with money. The theme of dharma encompasses subthemes of enjoyment through helping family and participating in community activities, staying away from stress and worries by talking openly and honestly with someone, making merit, and helping other people without expecting anything in return. A greater understanding of healthy aging is a benefit for older adults and healthcare providers in an intervention-design process. Research can contribute valuable information to shape policy for healthy aging as well.

  17. Stability analysis of a model gene network links aging, stress resistance, and negligible senescence

    PubMed Central

    Kogan, Valeria; Molodtsov, Ivan; Menshikov, Leonid I.; Reis, Robert J. Shmookler; Fedichev, Peter

    2015-01-01

    Several animal species are considered to exhibit what is called negligible senescence, i.e. they do not show signs of functional decline or any increase of mortality with age. Recent studies in naked mole rat and long-lived sea urchins showed that these species do not alter their gene-expression profiles with age as much as other organisms do. This is consistent with exceptional endurance of naked mole rat tissues to various genotoxic stresses. We conjectured, therefore, that the lifelong transcriptional stability of an organism may be a key determinant of longevity. We analyzed the stability of a simple genetic-network model and found that under most common circumstances, such a gene network is inherently unstable. Over a time it undergoes an exponential accumulation of gene-regulation deviations leading to death. However, should the repair systems be sufficiently effective, the gene network can stabilize so that gene damage remains constrained along with mortality of the organism. We investigate the relationship between stress-resistance and aging and suggest that the unstable regime may provide a mathematical basis for the Gompertz “law” of aging in many species. At the same time, this model accounts for the apparently age-independent mortality observed in some exceptionally long-lived animals. PMID:26316217

  18. Are invertebrates relevant models in ageing research? Focus on the effects of rapamycin on TOR.

    PubMed

    Erdogan, Cihan Suleyman; Hansen, Benni Winding; Vang, Ole

    2016-01-01

    Ageing is the organisms increased susceptibility to death, which is linked to accumulated damage in the cells and tissues. Ageing is a complex process regulated by crosstalk of various pathways in the cells. Ageing is highly regulated by the Target of Rapamycin (TOR) pathway activity. TOR is an evolutionary conserved key protein kinase in the TOR pathway that regulates growth, proliferation and cell metabolism in response to nutrients, growth factors and stress. Comparing the ageing process in invertebrate model organisms with relatively short lifespan with mammals provides valuable information about the molecular mechanisms underlying the ageing process faster than mammal systems. Inhibition of the TOR pathway activity via either genetic manipulation or rapamycin increases lifespan profoundly in most invertebrate model organisms. This contribution will review the recent findings in invertebrates concerning the TOR pathway and effects of TOR inhibition by rapamycin on lifespan. Besides some contradictory results, the majority points out that rapamycin induces longevity. This suggests that administration of rapamycin in invertebrates is a promising tool for pursuing the scientific puzzle of lifespan prolongation.

  19. Does the Village model help to foster age-friendly communities?

    PubMed

    Scharlach, Andrew E; Davitt, Joan K; Lehning, Amanda J; Greenfield, Emily A; Graham, Carrie L

    2014-01-01

    This article explores the potential role of the Village model, a social initiative that emphasizes member involvement and service access, in helping communities to become more age-friendly. A survey of 86.3% of operational Villages examined activities designed to help members access a variety of supports and services consistent with the World Health Organization's (WHO) Global Network of Age-Friendly Cities and Communities program model, as well as other potential contributions to community age friendliness. Analysis revealed that 85.5% of Villages provided assistance with at least six of the eight WHO domains, but only 10.1% implemented features of all eight; more than one-third were engaged in direct or indirect efforts to improve community physical or social infrastructures or improve community attitudes toward older persons. These findings suggest that Villages and other social organizations may have untapped potential for enhancing their members' ability to age in place consistent with the goals of age-friendly initiatives while also promoting constructive changes in the overall community.

  20. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  1. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  2. Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Cappa, C. D.; Volkamer, R.; Madronich, S.; Decarlo, P. F.; Zaveri, R. A.; Jimenez, J. L.

    2010-12-01

    In this study we apply several recently-proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at an altitude of ~3.5 km during three days of aging. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) alone cannot explain the observed mass loadings in aged pollution. Over the regional scale ~5% of the model SOA is due to the low-NOx aromatic V-SOA pathway, which has a higher yield and produces comparably “low-volatility” species that remain in the particle phase as dilution proceeds and more volatile components evaporate. The model SOA formed from oxidation of both semivolatile and intermediate volatility organic vapors (SI-SOA) accounts for most of the predicted SOA mass concentration. With the SI-SOA parameterization of Robinson et al. (2007) the model matches the observed SOA mass, but its O/C is too low by a factor of 2. With the parameterization of Grieshop et al. (2009) the total SOA mass is overpredicted by a factor of ~2 but O/C and volatility are much closer to the observations. Heating or dilution of the air results in evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs. dilution. Finally, lifting of the airmass to the free-troposphere during dry convection results in a substantial increase of SOA by condensation of semivolatile vapors, with this effect being reduced by aging.

  3. Racial disparities in age at time of homicide victimization: a test of the multiple disadvantage model.

    PubMed

    Lo, Celia C; Howell, Rebecca J; Cheng, Tyrone C

    2015-01-01

    This study sought the factors associated with race/ethnicity disparities in the age at which homicide deaths tend to occur. We used the multiple disadvantage model to take race into account as we evaluated associations between age at time of homicide victimization and several social structural, mental health-related, and lifestyle factors. Data were derived from the 1993 National Mortality Followback Survey, a cross-sectional interview study of spouses, next of kin, other relatives, and close friends of individuals 15 years and older who died in the United States in 1993. Our results showed age at time of homicide mortality to be related to the three types of factors; race moderated some of these relationships. In general, being employed, married, and a homeowner appeared associated with reduced victimization while young. The relationship of victimization age and employment was not uniform across racial groups, nor was the relationship of victimization age and marital status uniform across groups. Among Blacks, using mental health services was associated with longer life. Homicide by firearm proved important for our Black and Hispanic subsamples, while among Whites, alcohol's involvement in homicide exerted significant effects. Our results suggest that programs and policies serving the various racial/ethnic groups can alleviate multiple disadvantages relevant in homicide victimization at an early age.

  4. [Variation characteristics and mathematical model of humic substances in landfill leachates with different landfill ages].

    PubMed

    Huang, You-Fu; Xu, Xin-Ya; Fan, Liang-Xin; Fang, Yi-Min

    2014-07-01

    The influence of municipal landfill age on the characteristics of humic substances in leachate on the basis of investigating 12 different kinds of leachates from landfills in Fujian province is presented in this study. It was shown that the concentration and percentage of fulvic acid (FA) were obviously higher than those of humic acid (HA). As the landfill age increased, the concentrations of HA, FA and humic substances (HS) increased, moreover, the percentage of HA first increased and then decreased. While the percentages of FA and HS first increased and then fluctuated with the landfill age. The UV-Vis analytical results of HA and FA through E280, E300/E400 and E465/E665 revealed that HA had a relatively higher content of aromatic compounds and higher molecular weight than FA. The humification of FA had a tendency to increase as the landfill age increased, while HA had opposite result. The E300/E400 and E465/E665 of HA and FA fluctuated with increasing landfill age. A mathematical model simulating the concentration of humic substances varied with the landfill age was presented and demonstrated based on degradation kinetics. The simulated results were close to the measured values with a correlation coefficient R2 of 0.820, 0.932 and 0.946, respectively, indicating that the concentrations of HA, FA and HS could be accurately forecasted.

  5. Modelling age-heterogeneous Schistosoma haematobium and S. mansoni survey data via alignment factors

    PubMed Central

    2011-01-01

    Background Reliable maps of the geographical distribution, number of infected individuals and burden estimates of schistosomiasis are essential tools to plan, monitor and evaluate control programmes. Large-scale disease mapping and prediction efforts rely on compiled historical survey data obtained from the peer-reviewed literature and unpublished reports. Schistosomiasis surveys usually focus on school-aged children, whereas some surveys include entire communities. However, data are often reported for non-standard age groups or entire study populations. Existing geostatistical models ignore either the age-dependence of the disease risk or omit surveys considered too heterogeneous. Methods We developed Bayesian geostatistical models and analysed existing schistosomiasis prevalence data by estimating alignment factors to relate surveys on individuals aged ≤ 20 years with surveys on individuals aged > 20 years and entire communities. Schistosomiasis prevalence data for 11 countries in the eastern African region were extracted from an open-access global database pertaining to neglected tropical diseases. We assumed that alignment factors were constant for the whole region or a specific country. Results Regional alignment factors indicated that the risk of a Schistosoma haematobium infection in individuals aged > 20 years and in entire communities is smaller than in individuals ≤ 20 years, 0.83 and 0.91, respectively. Country-specific alignment factors varied from 0.79 (Ethiopia) to 1.06 (Zambia) for community-based surveys. For S. mansoni, the regional alignment factor for entire communities was 0.96 with country-specific factors ranging from 0.84 (Burundi) to 1.13 (Uganda). Conclusions The proposed approach could be used to align inherent age-heterogeneity between school-based and community-based schistosomiasis surveys to render compiled data for risk mapping and prediction more accurate. PMID:21774790

  6. The Effects of Topography on Shortwave solar radiation modelling: The JGrass-NewAge System way

    NASA Astrophysics Data System (ADS)

    Abera, Wuletawu; Formetta, Giuseppe; Rigon, Riccardo

    2013-04-01

    The NewAGE-SwRB and NewAGE-DEC-MOD's are the two components of JGrass-NewAge hydrological modeling system to estimate the shortwave incident radiation. Shortwave solar radiation at the land surface is influenced by topographic parameters such as slope, aspect, altitude, and skyview factor, hence, detail analyses and discussions on their effect is the way to improve the modeling approach. The NewAGE-SwRB accounts for slope, aspect, shadow and the topographical information of the sites to estimate the cloudless irradiance. The first part of the paper is on the topographic parameter analysis using Udig GIS spatial toolbox, which is integrated in JGrass-NewAge system, and indicates the effect of each topographic parameters on the shortwave radiation. A statistical study on station topographic geometry (slope, aspect, altitude and Sky-view factor) and correlation of pairs of measurements of station analyzed to get closer look at the impact of rugged topography. The jackknife correlation coefficients has been used to analyze the estimate bias between shortwave radiations in different topographic geometric position, thereby helping to develop generalized linear models to explain the impacts of those topographic features. In addition to the NewAGE-SwRB accounts for the topographical parameters, there are three (an estimation of the visibility extent(V), the single-scattering albedo fraction of incident energy scattered to total attenuation by aerosols (Wo), and fraction of forward scattering to total scattering (Fs )) parameter needed to run the NewAGE-DEC-MOD's component. Sufficient knowledge regarding the magnitude and spatial distribution of the these parameters are very crucial. In this paper, the particle swarm NewAge component of the NewAge System used for automatic calibration of NewAGE-DEC-MOD's parameters for each stations based on different optimization and objective functions. Finally, the estimated parameters for all measurements station are interpolated in

  7. Testing seismic hazard models with Be-10 exposure ages for precariously balanced rocks

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Anooshehpoor, R.; Balco, G.; Brune, J.; Brune, R.; Ludwig, L. Grant; Kendrick, K.; Purvance, M.; Saleeby, I.

    2012-04-01

    Currently, the only empirical tool available to test maximum earthquake ground motions spanning timescales of 10 ky-1 My is the use of fragile geologic features, including precariously balanced rocks (PBRs). The ages of PBRs together with their areal distribution and mechanical stability ("fragility") constrain probabilistic seismic hazard analysis (PSHA) over long timescales; pertinent applications include the USGS National Seismic Hazard Maps (NSHM) and tests for ground motion models (e.g., Cybershake). Until recently, age constraints for PBRs were limited to varnish microlamination (VML) dating techniques and sparse cosmogenic nuclide data; however, VML methods yield minimum limiting ages for individual rock surfaces, and the interpretations of cosmogenic nuclide data were ambiguous because they did not account for the exhumation history of the PBRs or the complex shielding of cosmic rays. We have recently published a robust method for the exposure dating of PBRs combining Be-10 profiles, a numerical model, and a three-dimensional model for each PBR constructed using photogrammetry (Balco et al., 2011, Quaternary Geochronology). Here, we use this method to calculate new exposure ages and fragilities for 6 PBRs in southern California (USA) near the San Andreas, San Jacinto, and Elsinore faults at the Lovejoy Buttes, Round Top, Pacifico, Beaumont South, Perris, and Benton Road sites (in addition to the recently published age of 18.7 +/- 2.8 ka for a PBR at the Grass Valley site). We combine our ages and fragilities for each PBR, and use these data to test the USGS 2008 NSHM PGA with 2% in 50 year probability, USGS 2008 PSHA deaggregations, and basic hazard curves from USGS 2002 NSHM data.

  8. Testing seismic hazard models with Be-10 exposure ages for precariously balanced rocks

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Anooshehpoor, R.; Balco, G.; Biasi, G. P.; Brune, J. N.; Brune, R.; Grant Ludwig, L.; Kendrick, K. J.; Purvance, M.; Saleeby, I.

    2012-12-01

    Currently, the only empirical tool available to test maximum earthquake ground motions spanning timescales of 10 ky-1 My is the use of fragile geologic features, including precariously balanced rocks (PBRs). The ages of PBRs together with their areal distribution and mechanical stability ("fragility") constrain probabilistic seismic hazard analysis (PSHA) over long timescales; pertinent applications include the USGS National Seismic Hazard Maps (NSHM) and tests for ground motion models (e.g., Cybershake). Until recently, age constraints for PBRs were limited to varnish microlamination (VML) dating techniques and sparse cosmogenic nuclide data; however, VML methods yield minimum limiting ages for individual rock surfaces, and the interpretations of cosmogenic nuclide data were ambiguous because they did not account for the exhumation history of the PBRs or the complex shielding of cosmic rays. We have recently published a robust method for the exposure dating of PBRs combining Be-10 profiles, a numerical model, and a three-dimensional shape model for each PBR constructed using photogrammetry (Balco et al., 2011, Quaternary Geochronology). Here, we use our published method to calculate new exposure ages for PBRs at 6 sites in southern California near the San Andreas, San Jacinto, and Elsinore faults, including: Lovejoy Buttes (9 +/- 1 ka), Round Top (35 +/- 1 ka), Pacifico (19 +/- 1 ka, but with a poor fit to data), Beaumont South (17 +/- 2 ka), Perris (24 +/- 2 ka), and Benton Road (40 +/- 1 ka), in addition to the recently published age of 18.5 +/- 2.0 ka for a PBR at the Grass Valley site. We combine our ages and fragilities for each PBR, and use these data to test the USGS 2008 NSHM PGA with 2% in 50 year probability, USGS 2008 PSHA deaggregations, and basic hazard curves from USGS 2002 NSHM data. Precariously balanced rock in southern California

  9. Modelling of the aging behavior of polyamide 12 powder during laser melting process

    NASA Astrophysics Data System (ADS)

    Drummer, Dietmar; Wudy, Katrin; Drexler, Maximilian

    2015-05-01

    Concerning individualization, the requirements to products have increased. Additive manufacturing technologies, such as selective laser melting allow manufacturing of complex parts without tools and forms. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. Due to the high temperature during processing, a degradation of the used plastic powder occurs. The non-molten material in the building chamber, the so-called partcake, can be removed after building from the finished component and reused for another process. To realize reproducible part properties refreshing of partcake powder with 30 up to 50 % virgin powder is necessary. However, these refreshing strategies lead to varying component properties due to an undefined aging state. Previous investigations on oven aged powder for selective laser melting showed for short periods of storage near the melting point thermally induced post condensation is the predominate aging effect. Due to post condensation the molecular weight and thus the viscosity increases. This paper focuses on the modeling of the post condensation process to define the aging state of polyamide 12 powder in laser melting process. Therefore the rheological behavior of PA 12 powder in dependency of time and temperature is investigated. Isothermal viscosity measurements are conducted in order to describe the post condensation reaction with a model. With knowledge of the kinetics of the post condensation reaction the state of aging can be predicted in a second step. Thus expected useful life of the powder can be calculated in dependency of the building chamber temperature. These results are then compared with viscosity values of defined aged PA 12 powder to validate the determined model.

  10. Comprehensive stellar population models and the disentanglement of age and metallicity effects

    NASA Technical Reports Server (NTRS)

    Worthey, Guy

    1994-01-01

    The construction of detailed models for intermediate and old stellar populations is described. Input parameters include metallicity (-2 less than (Fe/H) less than 0.5), single-burst age (between 1.5 and 17 Gyr), and initial mass function (IMF) exponent. Quantities output include broadband magnitudes, spectral energy distributions, surface brightness fluctuation magnitudes, and a suite of 21 absorption feature indices. The models are checked against a wide variety of available observations. Examinations of model output yield the following conclusions. (1) If the percentage change delta age/delta Z approximately equals 3/2 for two populations, they will appear almost identical in most indices. A few indices break this degeneracy by being either more abundance sensitive (Fe4668, Fe5015, Fe5709, and Fe5782) or more age sensitive (G4300, H beta, and presumably higher order Balmer lines) than usual. (2) Present uncertainties in stellar evolution are of the same magnitude as the effects of IMF and Y in the indices studied. (3) Changes in abundance ratios (like (Mg/Fe)) are predicted to be readily apparent in the spectra of old stellar populations. (4) The I-band flux of a stellar population is predicted to be nearly independent of metallicity and only modestly sensitive to age. The I band is therefore recommended for standard candle work or studies of M/L in galaxies. Other conclusions stem from this work. (1) Intercomparison of models and observations of two TiO indices seem to indicate variation of the (V/Ti) ratio among galaxies, but it is not clear how this observation ties into the standard picture of chemical enrichment. (2) Current estimates of (Fe/H) for the most metal-rich globulars that are based on integrated indices are probably slightly too high. (3) Colors of population models from different authors exhibit a substantial range. At solar metallicity and 13 Gyr, this range corresponds to an age error of roughly +/- 7 Gyr. Model colors from different authors

  11. Epigenetic contribution to age distribution of mortality within the Penna model.

    PubMed

    Magdoń-Maksymowicz, M S; Maksymowicz, A Z

    2015-06-01

    Some modifications of the simple asexual Penna model, enriched by epigenetic contributions, are presented. The standard bit-string Penna model of biological aging and population evolution is based on an inherited DNA structure which defines the future life of a newly born individuals, when genes are activated by the biological clock, and the predefined genetic death is fully controlled by the number of defected genes. Epigenomes allow to introduce additional mechanism of gene activation or silencing without affecting the DNA genome itself. It may be either inherited or may reflect external, environmental factors. In the presented model, information read from the introduced epigenome may alter gene expression that may be stopped or re-activated. We concentrate on the influence of epigenetics on the age a distribution of genetic mortality m(a). Changes in m(a) are strong for the case of inherited epigenetic contribution with nearly perfect inheritance and 'positive' epigenome that partly ignores the 'bad' mutations. We conclude that the epigenetic contribution may influence population structure m(a) and could be, at least partly, responsible for deviation of m(a) distribution from the Gompertz law. In short, we claim that proposed epigenetic contribution may be seen as a candidate for possible explanation of observed deviation from the Gompertz law, also among senior members of society. A very simple model was used in this paper and many crucial mechanisms of biological aging were omitted. Therefore, further work based on a more realistic models is necessary. PMID:25666268

  12. Markov models of breast tumor progression: some age-specific results.

    PubMed

    Duffy, S W; Day, N E; Tabár, L; Chen, H H; Smith, T C

    1997-01-01

    Researchers have noted that mammographic screening has a reduced effect on breast cancer mortality in women in their forties compared to older women. Explanations for this include poorer sensitivity in younger women due to denser breast tissue, as well as more rapid tumor progression, giving a shorter mean sojourn time (the average duration of the preclinical screen-detectable period). To test these hypotheses, we developed a series of Markov-chain models to estimate tumor progression rates and sensitivity. Parameters were estimated using tumor data from the Swedish two-county trial of mammographic screening for breast cancer. The mean sojourn time was shorter in women aged 40-49 compared to women aged 50-59 and 60-69 (2.44, 3.70, and 4.17 years, respectively). Sensitivity was lower in the 40-49 age group compared to the two older groups (83%, 100%, and 100%, respectively). Thus, both rapid progression and poorer sensitivity are associated with the 40-49 age group. We also modeled tumor size, node status, and malignancy grade together with subsequent breast cancer mortality and found that, to achieve a reduction in mortality commensurate with that in women over 50, the interscreening interval for women in their forties should be less than two years. We conclude that Markov models and the use of tumor size, node status, and malignancy grade as surrogates for mortality can be useful in design and analysis of future studies of breast cancer screening.

  13. Markov models of breast tumor progression: some age-specific results.

    PubMed

    Duffy, S W; Day, N E; Tabár, L; Chen, H H; Smith, T C

    1997-01-01

    Researchers have noted that mammographic screening has a reduced effect on breast cancer mortality in women in their forties compared to older women. Explanations for this include poorer sensitivity in younger women due to denser breast tissue, as well as more rapid tumor progression, giving a shorter mean sojourn time (the average duration of the preclinical screen-detectable period). To test these hypotheses, we developed a series of Markov-chain models to estimate tumor progression rates and sensitivity. Parameters were estimated using tumor data from the Swedish two-county trial of mammographic screening for breast cancer. The mean sojourn time was shorter in women aged 40-49 compared to women aged 50-59 and 60-69 (2.44, 3.70, and 4.17 years, respectively). Sensitivity was lower in the 40-49 age group compared to the two older groups (83%, 100%, and 100%, respectively). Thus, both rapid progression and poorer sensitivity are associated with the 40-49 age group. We also modeled tumor size, node status, and malignancy grade together with subsequent breast cancer mortality and found that, to achieve a reduction in mortality commensurate with that in women over 50, the interscreening interval for women in their forties should be less than two years. We conclude that Markov models and the use of tumor size, node status, and malignancy grade as surrogates for mortality can be useful in design and analysis of future studies of breast cancer screening. PMID:9709283

  14. Analyzing aging under oscillatory strain field through the soft glassy rheology model.

    PubMed

    Kaushal, Manish; Joshi, Yogesh M

    2016-06-28

    In this work, we solve the Soft Glassy Rheology (SGR) model under application of oscillatory deformation field with varying magnitudes of strain as well as frequency for different noise temperatures. In the glassy domain, the SGR model undergoes time evolution of elastic modulus. Increase in strain magnitude beyond the linear regime is observed to enhance the rate of aging as manifested by a faster evolution of elastic modulus with increase in strain amplitude due to overaging. However at higher strain magnitudes, the rejuvenation effect starts dominating over the aging, thereby reducing the rate at which elastic modulus evolves. We also plot the aging phase diagram describing an occurrence of the linear, the overaging, and the rejuvenation regimes as a function of strain and frequency for different noise temperatures. The aging phase diagram suggests that while the linear regime remains unaffected by the changes in frequency and noise temperature, the width of the overaging regime increases with increase in frequency and noise temperature. We also study the time evolution of the shapes of relaxation time spectra as a function of strain amplitude, which renders further insight into the overaging and the rejuvenation behavior. While the phenomenon of overaging is observed to be an inherent character of the SGR model, experimentally not all the materials demonstrate overaging. Such a discrepancy suggests that the energy well depths before and after a yielding event may not be completely uncorrelated as assumed in the SGR formalism. PMID:27369524

  15. Basis for the ICRP`s age-specific biokinetic model for uranium

    SciTech Connect

    Leggett, R.W.

    1994-12-01

    In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is developing age-specific biokinetic models and dose coefficients for environmentally important radionuclides. This paper describes the ICRP`s age-specific biokinetic model for uranium. The model is constructed within a physiologically based framework originally developed for application to the alkaline earth elements but sufficiently general to apply to the larger class of bone-volume-seeking elements. Transfer rates for a reference adult are based mainly on: (1) measurements of uranium in blood and excreta of several human subjects who were intravenously injected with uranium; (2) postmortem measurements of uranium in tissues of some of those subjects; (3) postmortem measurements of uranium in tissues of occupationally and non-occupationally exposed subjects; (4) data on baboons, dogs, and smaller laboratory animals exposed to uranium for experimental purposes; and (5) consideration of the physiological processes thought to control retention and translocation of uranium in the body. Transfer rates for the adult are extended to children by application of a set of generic assumptions applied by the ICRP to calcium-like elements. These assumptions were derived mainly from observations of the age-specific biokinetics of the alkaline earth elements and lead in humans and laboratory animals but are consistent with available age-specific biokinetic data on uranium. 82 refs., 17 figs., 8 tabs.

  16. Modelling the ages and metallicities of early-type galaxies in Fundamental Plane space

    NASA Astrophysics Data System (ADS)

    Porter, L. A.; Somerville, R. S.; Primack, J. R.; Croton, D. J.; Covington, M. D.; Graves, G. J.; Faber, S. M.

    2014-12-01

    Recent observations have probed the formation histories of nearby elliptical galaxies by tracking correlations between the stellar population parameters, age and metallicity, and the structural parameters that enter the Fundamental Plane, size Re, and velocity dispersion σ. These studies have found intriguing correlations between these four parameters. In this work, we make use of a semi-analytic model, based on halo merger trees extracted from the Bolshoi cosmological simulation, that predicts the structural properties of spheroid-dominated galaxies based on an analytic model that has been tested and calibrated against an extensive suite of hydrodynamic+N-body binary merger simulations. We predict the Re, σ, luminosity, age, and metallicity of spheroid-dominated galaxies, enabling us to compare directly to observations. Our model predicts a strong correlation between age and σ for early-type galaxies, and no significant correlation between age and radius, in agreement with observations. In addition, we predict a strong correlation between metallicity and σ, and a weak correlation between metallicity and Re, in qualitative agreement with observations. We find that the correlations with σ arise as a result of the strong link between σ and the galaxy's assembly time. Minor mergers produce a large change in radius while leaving σ nearly the same, which explains the weaker trends with radius.

  17. Effect of Mild Heating on Human Lens Epithelial Cells: A Possible Model of Lens Aging

    PubMed Central

    Zhang, Keke; Zhu, Xiangjia; Lu, Yi

    2016-01-01

    This study aims to investigate the effect of mild heating on lens epithelial cells and to explore its possibility as an in vitro model for lens aging. Human lens epithelial cells (LECs) were heated at 50 °C for a cellular lens aging study. Analysis of the head group order of lens membranes was performed using Laurdan labeling. Immunofluorescence was performed to detect changes in α-crystallin expression and its cellular distribution. The chaperone-like activity of α-crystallin was also assessed. After mild heating, α-crystallin in LECs showed a tendency towards accumulation around the nucleus. The membrane head group environment of lens epithelial cells became more fluid with increasing time of exposure to mild heating, as indicated by increased water penetration. Furthermore, the chaperone activity of α-crystallin decreased, and suggests a relatively lower protective effect on other functional proteins in LECs. Thus, compared to the mild heating model based on lens tissue, this cellular model could provide a more convenient and accurate method for studying lens aging in vitro, including changes in membrane head group order in each cell, the real-time observation of crystallin distribution, and the monitoring of functional changes in the chaperone activity of crystallins as a result of aging. PMID:27725687

  18. Healing efficacy of methanol extract of leaves of Alternanthera brasiliana Kuntze in aged wound model

    PubMed Central

    Barua, Chandana Choudhury; Begum, Shameem Ara; Sarma, Dilip Kumar; Pathak, Debesh Chandra; Borah, Rumi Saikia

    2012-01-01

    The methanol extract of Alternanthera brasiliana Kuntze (Family: Amaranthaceae) leaf was investigated for its wound healing effect by excision wound model (in vivo) in aged Sprague Dawley rats. In excision wound model, compared to the control group, percent contraction of wound was significantly (P < 0.01) higher in A. brasiliana-treated group (5% w/w ointment). The collagen, elastin, and hydroxyproline contents of the granulation tissue of A. brasiliana-treated group increased significantly (P < 0.01) compared to the control group, indicating better wound healing activity of the test plant. These findings were also confirmed by histopathological examination. The results suggested that methanol extract of A. brasiliana possesses significant wound healing potential in aged animal wound model. PMID:24826048

  19. Age-Period-Cohort Models in Cancer Surveillance Research: Ready for Prime Time?

    PubMed Central

    Rosenberg, Philip S.; Anderson, William F.

    2011-01-01

    Standard descriptive methods for the analysis of cancer surveillance data include canonical plots based on the lexis diagram, directly age-standardized rates (ASR), estimated annual percentage change (EAPC), and joinpoint regression. The age-period-cohort (APC) model has been used less often. Here, we argue that it merits much broader use. Firstly, we describe close connections between estimable functions of the model parameters and standard quantities such as the ASR, EAPC, and joinpoints. Estimable functions have the added value of being fully adjusted for period and cohort effects, and generally more precise. Secondly, the APC model provides the descriptive epidemiologist with powerful new tools, including rigorous statistical methods for comparative analyses and the ability to project the future burden of cancer. We illustrate these principles using invasive female breast cancer incidence in the United States, but these concepts apply equally well to other cancer sites for incidence or mortality. PMID:21610223

  20. Impairments of Synaptic Plasticity in Aged Animals and in Animal Models of Alzheimer's Disease

    PubMed Central

    Balietti, Marta; Tamagnini, Francesco; Fattoretti, Patrizia; Burattini, Costanza; Casoli, Tiziana; Platano, Daniela; Lattanzio, Fabrizia

    2012-01-01

    Abstract Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. PMID:22533439

  1. Mathematical analysis of an age-structured model for malaria transmission dynamics.

    PubMed

    Forouzannia, Farinaz; Gumel, Abba B

    2014-01-01

    A new deterministic model for assessing the role of age-structure on the transmission dynamics of malaria in a community is designed. Rigorous qualitative analysis of the model reveals that it undergoes the phenomenon of backward bifurcation, where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the associated reproduction number (denoted by R0) is less than unity. It is shown that the backward bifurcation phenomenon is caused by the malaria-induced mortality in humans. A special case of the model is shown to have a unique endemic equilibrium whenever the associated reproduction threshold exceeds unity. Further analyses reveal that adding age-structure to a basic model for malaria transmission in a community does not alter the qualitative dynamics of the basic model, with respect to the existence and asymptotic stability of the associated equilibria and the backward bifurcation property of the model. Numerical simulations of the model show that the cumulative number of new cases of infection and malaria-induced mortality increase with increasing average lifespan and birth rate of mosquitoes.

  2. Ice-age simulations with a caving ice-sheet model

    SciTech Connect

    Pollard, D.

    1982-01-01

    Further extensions and results of a simple northern hemispheric ice-sheet model are described for the Quaternary ice ages. The basic model predicts ice thickness and bedrock deformation in a north-south cross section, with a prescribed snow-budget distribution shifted uniformly in space to represent the orbital perturbations. An ice calving parameterization crudely representing proglacial lakes or marine incursions can attack the ice whenever the tip drops below sea level. As in Pollard (1982a) the basic model produces a large approx. 100,000-yr response and agrees fairly well with the delta/sup 18/O deep-sea core records. Three extensions of the model are described: an alternative treatment of bedrock deformation, a more realistic ice-shelf model of ice calving, and a generalized parameterization for such features as the North Atlantic deglacial meltwater layer. Much the same ice-age simulations and agreement with the delta/sup 18/O records as with the original model are still obtained. The observed phase-correlation between the 100,000-yr cycles and eccentricity is examined. First, the model is shown to give a approx. 100,000-yr response to nearly any kind of higher-frequency forcing. Although over the last two million years the model phase is mainly controlled by the precessional modulation due to eccentricity, over just the last 600,000-yr the observed phase can also be simulated with eccentricity held constant. A definitive conclusion on the phase-control of the Quaternary ice ages is prevented by uncertainty in the deep-sea core time scales before approx. 600,000-yr B.P. In an appendix the model is applied to West Antarctica where unforced internal oscillations occur with periods of about 50,000-yr.

  3. The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni.

    PubMed Central

    Chan, M. S.; Guyatt, H. L.; Bundy, D. A.; Booth, M.; Fulford, A. J.; Medley, G. F.

    1995-01-01

    Mathematical models are potentially useful tools to aid in the design of control programmes for parasitic diseases. In this paper, a fully age structured epidemiological model of human schistosomiasis is developed and parameterized, and used to predict trends in infection prevalence, intensity and prevalence of heavy infections over age and time during several rounds of mass and age targeted treatment. The model is validated against data from a Schistosoma mansoni control programme in Kenya. Images Fig. 3 (a)-(c) PMID:7589272

  4. A Hero for the Aged? The Townsend Movement, the Political Mediation Model, and U.S. Old-Age Policy, 1934-1950.

    ERIC Educational Resources Information Center

    Amenta, Edwin; And Others

    1992-01-01

    Examines the Depression era Townsend Movement that pressed for old age pensions. Compares this movement with a model social movement to explore what facilitates the development of movements and what determines their success or failure. Concludes that the political mediation model explains successes as reinforced political action with strong member…

  5. Positive mutations and mutation-dependent Verhulst factor in Penna ageing model

    NASA Astrophysics Data System (ADS)

    Moss de Oliveira, S.; Stauffer, D.; de Oliveira, P. M. C.; Sá Martins, J. S.

    2004-02-01

    We modify twice the Penna model for biological ageing. First, we introduce back (good) mutations and a memory for them into the model. It allows us to observe an improvement of the species fitness over long-time scales as well as punctuated equilibrium. Second, we adopt a food/space competition factor that depends on the number of accumulated mutations in the individuals genomes, and get rid of the fixed limiting number of allowed mutations. Besides reproducing the main results of the standard model, we also observe a mortality maximum for the oldest old.

  6. From CIE 2006 physiological model to improved age-dependent and average colorimetric observers.

    PubMed

    Sarkar, Abhijit; Autrusseau, Florent; Viénot, Françoise; Le Callet, Patrick; Blondé, Laurent

    2011-10-01

    In the context of color perception on modern wide-gamut displays with narrowband spectral primaries, we performed a theoretical analysis on various aspects of physiological observers proposed by CIE TC 1-36 (CIEPO06). We allowed certain physiological factors to vary, which was not considered in the CIEPO06 framework. For example, we analyzed that the long-wave-sensitive (LWS) or medium-wave-sensitive (MWS) peak wavelength shift in the photopigment absorption spectra, a factor not modeled in CIEPO06, contributed more toward observer variability than some of the factors considered in the model. Further, we compared the color-matching functions derived from the CIEPO06 model and the CIE 10° standard colorimetric observer to the average observer data from three distinct subgroups of Stiles-Burch observers, formed on the basis of observer ages (22-23 years, 27-29 years, and 49-50 years). The errors in predicting the x(λ) and y(λ) color-matching functions of the intragroup average observers in the long-wave range and in the medium-wave range, respectively, were generally more in the case of the CIEPO06 model compared to the 10° standard colorimetric observer and manifested in both spectral and chromaticity space. In contrast, the short-wave-sensitive z₁₀(λ) function of the 10° standard colorimetric observer performed poorly compared to the CIEPO06 model for all three subgroups. Finally, a constrained nonlinear optimization on the CIEPO06 model outputs showed that a peak wavelength shift of photopigment density alone could not improve the model prediction errors at higher wavelengths. As an alternative, two optimized weighting functions for each of the LWS and MWS cone photopigment densities led to significant improvement in the prediction of intra-age-group average data for both the 22-23 year and 49-50 year age groups. We hypothesize that the assumption in the CIEPO06 model that the peak optical density of visual pigments does not vary with age is false and is

  7. Overexpression of Pa_1_10620 encoding a mitochondrial Podospora anserina protein with homology to superoxide dismutases and ribosomal proteins leads to lifespan extension.

    PubMed

    Grimm, Carolin; Böhl, Lena; Osiewacz, Heinz D

    2015-02-01

    In biological systems, reactive oxygen species (ROS) represent 'double edged swords': as signaling molecules they are essential for proper development, as reactive agents they cause molecular damage and adverse effects like degeneration and aging. A well-coordinated control of ROS is therefore of key importance. Superoxide dismutases (SODs) are enzymes active in the detoxification of superoxide. The number of isoforms of these proteins varies among species. Here we report the characterization of the putative protein encoded by Pa_1_10620 that has been previously annotated to code for a mitochondrial ribosomal protein but shares also sequence domains with SODs. We report that the gene is transcribed in P. anserina cultures of all ages and that the encoded protein localizes to mitochondria. In strains overexpressing Pa_1_10620 in a genetic background in which PaSod3, the mitochondrial MnSOD of P. anserina, is deleted, no SOD activity could be identified in isolated mitochondria. However, overexpression of the gene leads to lifespan extension suggesting a pro-survival function of the protein in P. anserina. PMID:25151510

  8. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging

    PubMed Central

    Zhang, Weiqi; Li, Jingyi; Suzuki, Keiichiro; Qu, Jing; Wang, Ping; Zhou, Junzhi; Liu, Xiaomeng; Ren, Ruotong; Xu, Xiuling; Ocampo, Alejandro; Yuan, Tingting; Yang, Jiping; Li, Ying; Shi, Liang; Guan, Dee; Pan, Huize; Duan, Shunlei; Ding, Zhichao; Li, Mo; Yi, Fei; Bai, Ruijun; Wang, Yayu; Chen, Chang; Yang, Fuquan; Li, Xiaoyu; Wang, Zimei; Aizawa, Emi; Goebl, April; Soligalla, Rupa Devi; Reddy, Pradeep; Esteban, Concepcion Rodriguez; Tang, Fuchou; Liu, Guang-Hui; Belmonte, Juan Carlos Izpisua

    2015-01-01

    Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging. PMID:25931448

  9. Estimating Modifying Effect of Age on Genetic and Environmental Variance Components in Twin Models.

    PubMed

    He, Liang; Sillanpää, Mikko J; Silventoinen, Karri; Kaprio, Jaakko; Pitkäniemi, Janne

    2016-04-01

    Twin studies have been adopted for decades to disentangle the relative genetic and environmental contributions for a wide range of traits. However, heritability estimation based on the classical twin models does not take into account dynamic behavior of the variance components over age. Varying variance of the genetic component over age can imply the existence of gene-environment (G×E) interactions that general genome-wide association studies (GWAS) fail to capture, which may lead to the inconsistency of heritability estimates between twin design and GWAS. Existing parametricG×Einteraction models for twin studies are limited by assuming a linear or quadratic form of the variance curves with respect to a moderator that can, however, be overly restricted in reality. Here we propose spline-based approaches to explore the variance curves of the genetic and environmental components. We choose the additive genetic, common, and unique environmental variance components (ACE) model as the starting point. We treat the component variances as variance functions with respect to age modeled by B-splines or P-splines. We develop an empirical Bayes method to estimate the variance curves together with their confidence bands and provide an R package for public use. Our simulations demonstrate that the proposed methods accurately capture dynamic behavior of the component variances in terms of mean square errors with a data set of >10,000 twin pairs. Using the proposed methods as an alternative and major extension to the classical twin models, our analyses with a large-scale Finnish twin data set (19,510 MZ twins and 27,312 DZ same-sex twins) discover that the variances of the A, C, and E components for body mass index (BMI) change substantially across life span in different patterns and the heritability of BMI drops to ∼50% after middle age. The results further indicate that the decline of heritability is due to increasing unique environmental variance, which provides more

  10. Annual fishes of the genus Nothobranchius as a model system for aging research.

    PubMed

    Genade, Tyrone; Benedetti, Mauro; Terzibasi, Eva; Roncaglia, Paola; Valenzano, Dario Riccardo; Cattaneo, Antonino; Cellerino, Alessandro

    2005-10-01

    Aging research in vertebrates is hampered by the lack of short-lived models. Annual fishes of the genus Nothobranchius live in East African seasonal ponds. Their life expectancy in the wild is limited by the duration of the wet season and their lifespan in captivity is also short. Nothobranchius are popular aquarium fishes and many different species are kept as captive strains, providing rich material for comparative studies. The present paper aims at reviving the interest in these fishes by reporting that: (1) Nothobranchius can be cultured, and their eggs stored dry at room temperature for months or years, offering inexpensive methods of embryo storage; (2) Nothobranchius show accelerated growth and expression of aging biomarkers at the level of histology and behaviour; (3) the species Nothobranchius furzeri has a maximum lifespan of only 3 months and offers the possibility to perform investigations thus far unthinkable in a vertebrate, such as drug screening with life-long pharmacological treatments and experimental evolution; (4) when the lifespan of different species is compared, a general correlation is found between wet season duration in their natural habitat and longevity in captivity; and (5) vertebrate aging-related genes, such as p66Shc and MTP, can be easily isolated in Nothobranchius by homology cloning. These fishes can become excellent models for aging studies. They can be employed to test the effects of experimental manipulation on aging at a pace comparable with that of Drosophila and to probe the effects of natural selection on the evolution of aging-related genes. PMID:16164422

  11. An in vitro tissue model to study the effect of age on nucleus pulposus cells

    PubMed Central

    Hamilton, D.; Séguin, C.; Li, S.-Q.; Arana, C.; Pilliar, R.

    2007-01-01

    Differentiation between age (physiological) and disease-induced changes in the nucleus pulposus will facilitate our understanding of the mechanism(s) leading to the development of degenerative disc disease. The aim of this study was to develop an in vitro model that would allow the study of age-induced alterations of cell function in nucleus pulposus. Nucleus pulposus (NP) cells were isolated from intervertebral discs obtained from either calves (<9 months) or cows (>18 months). The cells were placed in culture and grown for 19 days. Although nucleus pulposus tissue was formed by the cells of the two different ages the more mature (older) cells formed less tissue as determined histologically by light microscopy. This was confirmed biochemically as the wet weight and proteoglycan content of the tissue formed by the older cells were significantly less than that of the younger tissue. The older cells accumulated less proteoglycans as determined by quantifying radioisotope incorporation. The older cells showed lower constitutive gene expression of collagen type II and aggrecan whereas collagen type I and link protein levels were similar to those of the younger cells. Metalloprotease (MMP) 13 gene and protein expression increased with age. There was no change in the levels of gene expression of MMP 2 and TIMP 1, 2, or 3 with age. Cells obtained from NP tissue harvested from younger or mature animals showed both genotypic and phenotypic differences in vitro that resulted in the inability of the older cells to reconstitute their extracellular matrix to the same extent as the younger cells. This suggests that this in vitro NP tissue model will be suitable to determine the mechanism(s) regulating age-induced changes. PMID:17710448

  12. Estimating risks of heat strain by age and sex: a population-level simulation model.

    PubMed

    Glass, Kathryn; Tait, Peter W; Hanna, Elizabeth G; Dear, Keith

    2015-05-18

    Individuals living in hot climates face health risks from hyperthermia due to excessive heat. Heat strain is influenced by weather exposure and by individual characteristics such as age, sex, body size, and occupation. To explore the population-level drivers of heat strain, we developed a simulation model that scales up individual risks of heat storage (estimated using Myrup and Morgan's man model "MANMO") to a large population. Using Australian weather data, we identify high-risk weather conditions together with individual characteristics that increase the risk of heat stress under these conditions. The model identifies elevated risks in children and the elderly, with females aged 75 and older those most likely to experience heat strain. Risk of heat strain in males does not increase as rapidly with age, but is greatest on hot days with high solar radiation. Although cloudy days are less dangerous for the wider population, older women still have an elevated risk of heat strain on hot cloudy days or when indoors during high temperatures. Simulation models provide a valuable method for exploring population level risks of heat strain, and a tool for evaluating public health and other government policy interventions.

  13. In vitro model adapted to the study of skin ageing induced by air pollution.

    PubMed

    Lecas, Sarah; Boursier, Elsa; Fitoussi, Richard; Vié, Katell; Momas, Isabelle; Seta, Nathalie; Achard, Sophie

    2016-09-30

    More than a barrier against environmental agents, skin reflects individual health and is a visible sign of ageing with the progressive loss of skin integrity. In order to evaluate the consequences of an environmental complex mixture, with tobacco smoke (TS) as model, on cellular and morphological changes, a 3D skin model was used. Morphologically, tissue integrity was intact after one TS-exposure while the superficial layers were drastically reduced after two TS-exposures. However, TS modified epidermal organisation at the molecular level after just one exposure. A decrease in loricrin protein staining was showed in the epidermis, while production of inflammatory cytokines (IL-8, IL-1α, IL-18) and metalloproteinase (MMP-1, MMP-3) were stimulated. Oxidative stress was also illustrated with an increase in 4-HNE protein staining. Moreover, terminal differentiation, cell-cell junction and anchorage gene expression was down-regulated in our model after one TS-exposure. In conclusion, tobacco smoke impacted the fundamental functions of skin, namely tissue anchorage, cornification and skin desquamation. Oxidative stress resulted in skin ageing. The tissue was even reactive with the inflammatory pathways, after one TS-exposure. The 3D-RHE model is appropriate for evaluating the impact of environmental pollutants on skin ageing. PMID:27480279

  14. In vitro model adapted to the study of skin ageing induced by air pollution.

    PubMed

    Lecas, Sarah; Boursier, Elsa; Fitoussi, Richard; Vié, Katell; Momas, Isabelle; Seta, Nathalie; Achard, Sophie

    2016-09-30

    More than a barrier against environmental agents, skin reflects individual health and is a visible sign of ageing with the progressive loss of skin integrity. In order to evaluate the consequences of an environmental complex mixture, with tobacco smoke (TS) as model, on cellular and morphological changes, a 3D skin model was used. Morphologically, tissue integrity was intact after one TS-exposure while the superficial layers were drastically reduced after two TS-exposures. However, TS modified epidermal organisation at the molecular level after just one exposure. A decrease in loricrin protein staining was showed in the epidermis, while production of inflammatory cytokines (IL-8, IL-1α, IL-18) and metalloproteinase (MMP-1, MMP-3) were stimulated. Oxidative stress was also illustrated with an increase in 4-HNE protein staining. Moreover, terminal differentiation, cell-cell junction and anchorage gene expression was down-regulated in our model after one TS-exposure. In conclusion, tobacco smoke impacted the fundamental functions of skin, namely tissue anchorage, cornification and skin desquamation. Oxidative stress resulted in skin ageing. The tissue was even reactive with the inflammatory pathways, after one TS-exposure. The 3D-RHE model is appropriate for evaluating the impact of environmental pollutants on skin ageing.

  15. Estimating Risks of Heat Strain by Age and Sex: A Population-Level Simulation Model

    PubMed Central

    Glass, Kathryn; Tait, Peter W.; Hanna, Elizabeth G.; Dear, Keith

    2015-01-01

    Individuals living in hot climates face health risks from hyperthermia due to excessive heat. Heat strain is influenced by weather exposure and by individual characteristics such as age, sex, body size, and occupation. To explore the population-level drivers of heat strain, we developed a simulation model that scales up individual risks of heat storage (estimated using Myrup and Morgan’s man model “MANMO”) to a large population. Using Australian weather data, we identify high-risk weather conditions together with individual characteristics that increase the risk of heat stress under these conditions. The model identifies elevated risks in children and the elderly, with females aged 75 and older those most likely to experience heat strain. Risk of heat strain in males does not increase as rapidly with age, but is greatest on hot days with high solar radiation. Although cloudy days are less dangerous for the wider population, older women still have an elevated risk of heat strain on hot cloudy days or when indoors during high temperatures. Simulation models provide a valuable method for exploring population level risks of heat strain, and a tool for evaluating public health and other government policy interventions. PMID:25993102

  16. Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    PubMed Central

    Kriete, Andres; Bosl, William J.; Booker, Glenn

    2010-01-01

    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype. PMID:20585546

  17. Constructing Regional Groundwater Models from Geophysical Data of Varying Type, Age, and Quality

    NASA Astrophysics Data System (ADS)

    Christiansen, A. V.; Auken, E.; Marker, P. A.; Vilhelmsen, T. N.; Foged, N.; Wernberg, T.; Bauer-Gottwein, P.

    2015-12-01

    Regional hydrological models are important tools in water resources management, but prediction uncertainties are often high due to non-uniqueness of the hydrostratigraphical model. This model is often based on borehole lithology only. However, a much better resolution can be obtained from large geophysical datasets covering the entire domain. Using boreholes to link between hydrostratigraphical classes and resistivity is efficient and emphasizes the need for an all-inclusive data interpretation procedure that can be integrated in groundwater model calibration. We present an automatic method for parameterization of a 3D model of the subsurface, integrating lithological information from boreholes with resistivity models. The objective is to create a direct input to regional groundwater models for sedimentary areas, where the sand/clay distribution governs the groundwater flow. The resistivity input is all-inclusive in the sense that we include data from a variety of instruments (DC and EM, ground-based and airborne), with a varying spatial density and varying ages and quality. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters, which is calibrated against observed lithological data. In other words, the translator function interprets the geophysical resistivities into a 3D clay fraction model and the 3D clay fraction model is then turned into a zonation for the hydrological model by a K-means clustering. We present the methodology by show-casing a study from Denmark were a regional groundwater model is constructed by including lithological information from 3100 boreholes over an 710 sqkm area. The geophysical models spans more than 30 years of data collection and includes approx. 225,000 DC models, and 35,000 EM models, airborne as well as groundbased. The final model was calibrated giving parameters that were comparable with existing models based on thorough and time-consuming manual

  18. Forest carbon uptake in North America's aging temperate deciduous forests: A data-theory-model mismatch?

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Curtis, P.; Bond-Lamberty, B. P.; Hardiman, B. S.; Scheuermann, C. M.; Nave, L. E.; Nadelhoffer, K. J.

    2015-12-01

    Century-old temperate deciduous forests in the US upper Midwest and Northeast power much of North America's terrestrial carbon sink, but these forests' carbon uptake capacity is expected to soon decline. But will this really happen? We marshal empirical data and ecological theory to show that declines in carbon uptake are not imminent in regrown temperate deciduous forests during coming decades, despite long-held assumptions and modeling results that predict declining carbon uptake during middle stages of ecosystem development. Age and production data for temperate deciduous forests, synthesized from published literature, do not provide evidence for declining net primary and ecosystem production (NPP and NEP, respectively) within the age-range most regional forests will occupy over the next half-century. Ecological theory suggests a mechanism for sustained carbon uptake in the region's aging forests in which high-frequency, low-severity disturbances maintain NPP and NEP by increasing ecosystem complexity. This theoretical model is supported by observations from the Forest Accelerated Succession Experiment in Michigan, USA, but such mechanisms sustaining production in old forests are not broadly represented in ecosystem models. Ecosystems experiencing low-frequency, high-severity disturbances that simplify ecosystem complexity do exhibit declining production during middle stages of succession, but we suggest that such scenarios have exerted a disproportionate influence on prevailing modeling and ecological assumptions regarding age-related declines in forest production. We conclude that there is wide ecological space for forests to sustain high rates of carbon uptake during middle stages of ecosystem development, and that advancing mechanistic understanding of long-term forest carbon cycle dynamics is essential to modeling the continent's future carbon sink strength.

  19. Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006

    SciTech Connect

    Dzepina, K.; Cappa, Christopher D.; Volkamer, Rainer M.; Madronich, Sasha; DeCarlo, Peter; Zaveri, Rahul A.; Jimenez, Jose L.

    2011-03-22

    In this study we apply several recently-proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at an altitude of ~3.5 km during three days of aging. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) when using the aromatic SOA parameterization of Ng et al. (2007) cannot explain the observed SOA concentrations in aged pollution, even as the low-NOx channel becomes more important away from the city. However, when using the aromatic SOA parameterization of Tsimpidi et al. (2010), V-SOA alone is similar to the regional aircraft observations, highlighting the wide diversity in current V-SOA formulations. When the SOA formed from oxidation of both semivolatile and intermediate volatility organic vapors (SI-SOA) is computed following Robinson et al. (2007) the model matches the observed SOA mass, but its O/C is too low by a factor of 2. With the parameterization of Grieshop et al. (2009) the total SOA mass is overpredicted by a factor of ~2 but O/C and volatility are closer to the observations. Heating or dilution of the air results in evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs. dilution. Finally, lifting of the airmass tothe free-troposphere during dry convection results in a substantial increase of SOA bycondensation of semivolatile vapors, with this effect being reduced by aging.

  20. A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval

    ERIC Educational Resources Information Center

    Spaniol, Julia; Madden, David J.; Voss, Andreas

    2006-01-01

    Two experiments investigated adult age differences in episodic and semantic long-term memory tasks, as a test of the hypothesis of specific age-related decline in context memory. Older adults were slower and exhibited lower episodic accuracy than younger adults. Fits of the diffusion model (R. Ratcliff, 1978) revealed age-related increases in…

  1. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue.

    PubMed

    Waffenschmidt, Tobias; Cilla, Myriam; Sáez, Pablo; Pérez, Marta M; Martínez, Miguel A; Menzel, Andreas; Peña, Estefanía

    2016-08-16

    The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age. PMID:26924660

  2. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue.

    PubMed

    Waffenschmidt, Tobias; Cilla, Myriam; Sáez, Pablo; Pérez, Marta M; Martínez, Miguel A; Menzel, Andreas; Peña, Estefanía

    2016-08-16

    The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age.

  3. Complex maze learning in rodents as a model of age-related memory impairment.

    PubMed

    Ingram, D K

    1988-01-01

    Research is reviewed concerning the age-related learning deficit observed in a 14-unit T-maze (Stone maze). Rats and mice of several strains representing different adult age groups are first trained to criterion in one-way active avoidance in a straight runway. Then training in the Stone maze is conducted which involves negotiation of five maze segments to avoid footshock. Results indicate a robust age-related impairment in acquisition observed in males and females, and in outbred, inbred, and hybrid strains. Pharmacological studies using the muscarinic antagonist, scopolamine, in young and aged rats indicate cholinergic involvement for accurate encoding during acquisition of this task. Retention aspects of storage and retrieval do not appear to be affected by scopolamine treatment. Bilateral electrolytic lesions to the fimbria-fornix of young rats also produce an acquisition deficit to implicate involvement of the septo-hippocampal cholinergic system in Stone maze learning. A salient feature of Stone maze performance is the tendency to demonstrate an alternation strategy in solving the maze. This strategy is exacerbated by impairment of cholinergic neurotransmission with either scopolamine treatment or fimbria-fornix lesions. Various models of hippocampal function are applied toward the psychological characterization of the Stone maze task without complete success. Future research is outlined to provide more thorough psychological characterization of maze performance, to analyze the specificity of cholinergic involvement in the task, and to test possible therapeutic interventions for alleviating the age-related impairments observed.

  4. A Computational Model of Inferior Colliculus Responses to Amplitude Modulated Sounds in Young and Aged Rats

    PubMed Central

    Rabang, Cal F.; Parthasarathy, Aravindakshan; Venkataraman, Yamini; Fisher, Zachery L.; Gardner, Stephanie M.; Bartlett, Edward L.

    2012-01-01

    The inferior colliculus (IC) receives ascending excitatory and inhibitory inputs from multiple sources, but how these auditory inputs converge to generate IC spike patterns is poorly understood. Simulating patterns of in vivo spike train data from cellular and synaptic models creates a powerful framework to identify factors that contribute to changes in IC responses, such as those resulting in age-related loss of temporal processing. A conductance-based single neuron IC model was constructed, and its responses were compared to those observed during in vivo IC recordings in rats. IC spike patterns were evoked using amplitude-modulated tone or noise carriers at 20–40 dB above threshold and were classified as low-pass, band-pass, band-reject, all-pass, or complex based on their rate modulation transfer function tuning shape. Their temporal modulation transfer functions were also measured. These spike patterns provided experimental measures of rate, vector strength, and firing pattern for comparison with model outputs. Patterns of excitatory and inhibitory synaptic convergence to IC neurons were based on anatomical studies and generalized input tuning for modulation frequency. Responses of modeled ascending inputs were derived from experimental data from previous studies. Adapting and sustained IC intrinsic models were created, with adaptation created via calcium-activated potassium currents. Short-term synaptic plasticity was incorporated into the model in the form of synaptic depression, which was shown to have a substantial effect on the magnitude and time course of the IC response. The most commonly observed IC response sub-types were recreated and enabled dissociation of inherited response properties from those that were generated in IC. Furthermore, the model was used to make predictions about the consequences of reduction in inhibition for age-related loss of temporal processing due to a reduction in GABA seen anatomically with age. PMID:23129994

  5. Spectroscopic age and metallicity for a sample of Globular Clusters from Stellar Population Models

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Calderón, P.

    2009-05-01

    We present spectroscopic age and metallicity predictions for a sample of 20 Globular Clusters in the massive E0 galaxy NGC 1407 (data from Cenarro et al. 2007, AJ, 134, 391) and for the Galacic Globular Clusters data from the Library of Integrated Spectra of Galactic Globular Clusters (GGC's) from Schiavon et al. (2005, ApJS, 160, 163) including the widely studied 47 Tuc cluster. Using index-index plots we compared model Single Stellar Populations (SSP's) spectra to the integrated spectra of both samples of Globular Clusters using high resolution line strength indices (Stock, in prep.) and the syntethic SSP's models from P. Coelho (2007, private comm.) as well as the CB07 solar models. For the GC's in NGC1407, the predictions from the syntethic models's with [α /Fe]=0.4 are in good agreement with the results from Cenarro et al. (2007, AJ, 134, 391), taking into account that the dispersion is partially due to the fact that the mean [α/Fe] ratio of the sample is ≈ 0.3 dex, resulting in younger ages and lower metallicities (Thomas et al. 2003, A&A, 401, 429). We observe a bimodal distribution of the Fe4383+ index which is in turn an indicator of metallicity, also seen in Cenarro et al. (2005). The CB07 models predict ages that are widely spread over the plot yielding ages greater than 14 Gyrs. The metallicity derived from these models are very low for almost all the objects (Z < 0.008). The distribution of the GGC's on the syntethic model grid shows a trend in the sense that metal poor clusters are younger than metal rich ones, but this effect might not be real (de Angeli et al. 2005, AJ, 130, 116). For 47 Tuc we estimate an age of ≈ 10 Gyr, and metallicity Z < 0.011 (<[Fe/H]= -0.5) which are both comparable with the values reported in the literature (Carretta et al. 2000; Liu & Chaboyer 2000, ApJ, 544, 818; Schiavon et al. 2002, ApJ, 580, 873; Gratton et al. 2003, A&A, 408, 529).

  6. Cscibox: A Software System for Age-Model Construction and Evaluation

    NASA Astrophysics Data System (ADS)

    Bradley, E.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; White, J. W. C.; Anderson, D. M.

    2014-12-01

    CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmetal archives, both directly dated and cross dated. The time has come to encourage cross-pollinization between earth science and computer science in dating paleorecords. This project addresses that need. The CSciBox code, which is being developed by a team of computer scientists and geoscientists, is open source and freely available on github. The system employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form. This makes it possible to do analysis on the whole core at once, in an interactive fashion, or to tailor the analysis to a subset of the core without loading the entire data file. CSciBox provides a number of 'components' that perform the common steps in age-model construction and evaluation: calibrations, reservoir-age correction, interpolations, statistics, and so on. The user employs these components via a graphical user interface (GUI) to go from raw data to finished age model in a single tool: e.g., an IntCal09 calibration of 14C data from a marine sediment core, followed by a piecewise-linear interpolation. CSciBox's GUI supports plotting of any measurement in the core against any other measurement, or against any of the variables in the calculation of the age model-with or without explicit error representations. Using the GUI, CSciBox's user can import a new calibration curve or other background data set and define a new module that employs that information. Users can also incorporate other software (e.g., Calib, BACON) as 'plug ins.' In the case of truly large data or significant computational effort, CSciBox is parallelizable across modern multicore processors, or clusters, or even the cloud. The next generation of the CSciBox code, currently in the testing stages, includes an automated reasoning engine that supports a more-thorough exploration of plausible age models

  7. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens

    PubMed Central

    Sheil, Conor J.; Goncharov, Alexander V.

    2016-01-01

    The purpose of this manuscript is to introduce a new age-dependent model of the human lens with two GRIN power distributions (axial and radial) that allow decoupling of its refractive power and axial optical path length. The aspect ratio of the lens core can be held constant under accommodation, as well as the lens volume by varying the asphericity of the lens external surfaces. The spherical aberration calculated by exact raytracing is shown to be in line with experimental data. The proposed model is compared to previous GRIN models from the literature, and it is concluded that the features of the new model will be useful for GRIN reconstruction in future experimental studies; in particular, studies of the accommodation-dependent properties of the ageing human eye. A proposed logarithmic model of the lens core enables decoupling of three fundamental optical characteristics of the lens, namely axial optical path length, optical power and third-order spherical aberration, without changing the external shape of the lens. Conversely, the near-surface GRIN structure conforms to the external shape of the lens, which is necessary for accommodation modelling. PMID:27231637

  8. Age- and bite-structured models for vector-borne diseases.

    PubMed

    Rock, K S; Wood, D A; Keeling, M J

    2015-09-01

    The biology and behaviour of biting insects is a vitally important aspect in the spread of vector-borne diseases. This paper aims to determine, through the use of mathematical models, what effect incorporating vector senescence and realistic feeding patterns has on disease. A novel model is developed to enable the effects of age- and bite-structure to be examined in detail. This original PDE framework extends previous age-structured models into a further dimension to give a new insight into the role of vector biting and its interaction with vector mortality and spread of disease. Through the PDE model, the roles of the vector death and bite rates are examined in a way which is impossible under the traditional ODE formulation. It is demonstrated that incorporating more realistic functions for vector biting and mortality in a model may give rise to different dynamics than those seen under a more simple ODE formulation. The numerical results indicate that the efficacy of control methods that increase vector mortality may not be as great as predicted under a standard host-vector model, whereas other controls including treatment of humans may be more effective than previously thought. PMID:26342239

  9. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.

    PubMed

    Sheil, Conor J; Goncharov, Alexander V

    2016-05-01

    The purpose of this manuscript is to introduce a new age-dependent model of the human lens with two GRIN power distributions (axial and radial) that allow decoupling of its refractive power and axial optical path length. The aspect ratio of the lens core can be held constant under accommodation, as well as the lens volume by varying the asphericity of the lens external surfaces. The spherical aberration calculated by exact raytracing is shown to be in line with experimental data. The proposed model is compared to previous GRIN models from the literature, and it is concluded that the features of the new model will be useful for GRIN reconstruction in future experimental studies; in particular, studies of the accommodation-dependent properties of the ageing human eye. A proposed logarithmic model of the lens core enables decoupling of three fundamental optical characteristics of the lens, namely axial optical path length, optical power and third-order spherical aberration, without changing the external shape of the lens. Conversely, the near-surface GRIN structure conforms to the external shape of the lens, which is necessary for accommodation modelling. PMID:27231637

  10. Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging.

    PubMed

    Head, E; Nukala, V N; Fenoglio, K A; Muggenburg, B A; Cotman, C W; Sullivan, P G

    2009-11-01

    Dogs develop cognitive decline and a progressive accumulation of oxidative damage. In a previous longitudinal study, we demonstrated that aged dogs treated with either an antioxidant diet or with behavioral enrichment show cognitive improvement. The antioxidant diet included cellular antioxidants (vitamins E and C, fruits and vegetables) and mitochondrial cofactors (lipoic acid and carnitine). Behavioral enrichment consisted of physical exercise, social enrichment, and cognitive training. We hypothesized that the antioxidant treatment improved neuronal function through increased mitochondrial function. Thus, we measured reactive oxygen species (ROS) production and bioenergetics in mitochondria isolated from young, aged, and treated aged animals. Aged canine brain mitochondria show significant increases in ROS production and a reduction in NADH-linked respiration. Mitochondrial function (ROS and NADH-linked respiration) was improved selectively in aged dogs treated with an antioxidant diet. In contrast, behavioral enrichment had no effect on any mitochondrial parameters. These results suggest that an antioxidant diet improves cognition by maintaining mitochondrial homeostasis, which may be an independent molecular pathway not engaged by behavioral enrichment.

  11. Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging.

    PubMed

    Head, E; Nukala, V N; Fenoglio, K A; Muggenburg, B A; Cotman, C W; Sullivan, P G

    2009-11-01

    Dogs develop cognitive decline and a progressive accumulation of oxidative damage. In a previous longitudinal study, we demonstrated that aged dogs treated with either an antioxidant diet or with behavioral enrichment show cognitive improvement. The antioxidant diet included cellular antioxidants (vitamins E and C, fruits and vegetables) and mitochondrial cofactors (lipoic acid and carnitine). Behavioral enrichment consisted of physical exercise, social enrichment, and cognitive training. We hypothesized that the antioxidant treatment improved neuronal function through increased mitochondrial function. Thus, we measured reactive oxygen species (ROS) production and bioenergetics in mitochondria isolated from young, aged, and treated aged animals. Aged canine brain mitochondria show significant increases in ROS production and a reduction in NADH-linked respiration. Mitochondrial function (ROS and NADH-linked respiration) was improved selectively in aged dogs treated with an antioxidant diet. In contrast, behavioral enrichment had no effect on any mitochondrial parameters. These results suggest that an antioxidant diet improves cognition by maintaining mitochondrial homeostasis, which may be an independent molecular pathway not engaged by behavioral enrichment. PMID:19703441

  12. Comparative modeling of Bronze Age land use in the Malatya Plain (Turkey)

    NASA Astrophysics Data System (ADS)

    Arıkan, Bülent; Restelli, Francesca Balossi; Masi, Alessia

    2016-03-01

    Computational modeling in archeology has proven to be a useful tool in quantifying changes in the paleoenvironment. This especially useful method combines data from diverse disciplines to answer questions focusing on the complex and non-linear aspects of human-environment interactions. The research presented here uses various proxy records to compare the changes in climate during the Bronze Age in the Malatya Plain in eastern Anatolia, which is situated at the northern extremity of northern Mesopotamia. Extensive agropastoral land use modeling was applied to three sites of different size and function in the Malatya Plain during the Early Bronze Age I period to simulate the varying scale and intensity of human impacts in relation to changes in the level of social organization, demography, and temporal length. The results suggest that even in land use types subjected to a light footprint, the scale and intensity of anthropogenic impacts change significantly in relation to the level of social organization.

  13. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics

    PubMed Central

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-01-01

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas. PMID:25908601

  14. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging

    NASA Astrophysics Data System (ADS)

    Edouard, C.; Petit, M.; Forgez, C.; Bernard, J.; Revel, R.

    2016-09-01

    In this work, a simplified electrochemical and thermal model that can predict both physicochemical and aging behavior of Li-ion batteries is studied. A sensitivity analysis of all its physical parameters is performed in order to find out their influence on the model output based on simulations under various conditions. The results gave hints on whether a parameter needs particular attention when measured or identified and on the conditions (e.g. temperature, discharge rate) under which it is the most sensitive. A specific simulation profile is designed for parameters involved in aging equations in order to determine their sensitivity. Finally, a step-wise method is followed to limit the influence of parameter values when identifying some of them, according to their relative sensitivity from the study. This sensitivity analysis and the subsequent step-wise identification method show very good results, such as a better fitting of the simulated cell voltage with experimental data.

  15. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  16. A new age model for the early-middle Miocene in the North Alpine Foreland Basin

    NASA Astrophysics Data System (ADS)

    Reichenbacher, Bettina; Krijgsman, Wout; Pippèrr, Martina; Sant, Karin; Kirscher, Uwe

    2016-04-01

    The establishment of high-resolution age models for sedimentary successions is crucial for numerous research questions in the geosciences and related disciplines. Such models provide an absolute chronology that permits precise dating of depositional episodes and related processes such as mountain uplift or climate change. Recently, our work in the Miocene sediments of the North Alpine Foreland Basin (NAFB) has revealed a significantly younger age (16.6 Myr) for sediments that were thought to have been deposited 18 Myr ago. This implies that a fundamentally revised new age model is needed for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB (20 to 15-Myr). Our new data also indicate that previously published reconstructions of early-middle Miocene palaeogeography, sedimentation dynamics, mountain uplift and climate change in the NAFB all require a critical review and revision. Further, the time-span addressed is of special interest, since it encompasses the onset of a global warming phase. However, it appears that a fundamentally revised new age model for the entire suite of lower-middle Miocene sedimentary rocks in the NAFB can only be achieved based on a 500 m deep drilling in the NAFB for which we currently seek collaboration partners to develop a grant application to the International Continental Deep Drilling Program (ICDP). Reference: Reichenbacher, B., W. Krijgsman, Y. Lataster, M. Pippèrr, C. G. C. Van Baak, L. Chang, D. Kälin, J. Jost, G. Doppler, D. Jung, J. Prieto, H. Abdul Aziz, M. Böhme, J. Garnish, U. Kirscher, and V. Bachtadse. 2013. A new magnetostratigraphic framework for the Lower Miocene (Burdigalian/Ottnangian, Karpatian) in the North Alpine Foreland Basin. Swiss Journal of Geosciences 106:309-334.

  17. Generative FDG-PET and MRI model of aging and disease progression in Alzheimer's disease.

    PubMed

    Dukart, Juergen; Kherif, Ferath; Mueller, Karsten; Adaszewski, Stanislaw; Schroeter, Matthias L; Frackowiak, Richard S J; Draganski, Bogdan

    2013-04-01

    The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological changes in Alzheimer's Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80 patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology, uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.

  18. Optimal Harvesting in an Age-Structured Predator-Prey Model

    SciTech Connect

    Fister, K. Renee Lenhart, Suzanne

    2006-06-15

    We investigate optimal harvesting control in a predator-prey model in which the prey population is represented by a first-order partial differential equation with age-structure and the predator population is represented by an ordinary differential equation in time. The controls are the proportions of the populations to be harvested, and the objective functional represents the profit from harvesting. The existence and uniqueness of the optimal control pair are established.

  19. Time-evolution of age-dependent mortality patterns in mathematical model of heterogeneous human population.

    PubMed

    Avraam, Demetris; Arnold-Gaille, Séverine; Jones, Dyfan; Vasiev, Bakhtier

    2014-12-01

    The widely-known Gompertz law of mortality states the exponential increase of mortality with age in human populations. Such an exponential increase is observed at the adulthood span, roughly after the reproductive period, while mortality data at young and extremely old ages deviate from it. The heterogeneity of human populations, i.e. the existence of subpopulations with different mortality dynamics, is a useful consideration that can explain age-dependent mortality patterns across the whole life-course. A simple mathematical model combining the heterogeneity of populations with an assumption that the mortality in each subpopulation grows exponentially with age has been proven to be capable of reproducing the entire mortality pattern in a human population including the observed peculiarities at early- and late-life intervals. In this work we fit this model to actual (Swedish) mortality data for consecutive periods and consequently describe the evolution of mortality dynamics in terms of the evolution of the model parameters over time. We have found that the evolution of the model parameters validates the applicability of the compensation law of mortality to each subpopulation separately. Furthermore, our study has indicated that the population structure changes so that the population tends to become more homogeneous over time. Finally, our analysis of the decrease of the overall mortality in a population over time has shown that this decrease is mainly due to a change in the population structure and to a lesser extent to a reduction of mortality in each of the subpopulations, the latter being represented by an alteration of the parameters that outline the exponential dynamics.

  20. Epidemic Spreading Model to Characterize Misfolded Proteins Propagation in Aging and Associated Neurodegenerative Disorders

    PubMed Central

    Iturria-Medina, Yasser; Sotero, Roberto C.; Toussaint, Paule J.; Evans, Alan C.

    2014-01-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders. PMID:25412207

  1. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    PubMed

    Iturria-Medina, Yasser; Sotero, Roberto C; Toussaint, Paule J; Evans, Alan C

    2014-11-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  2. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.

    PubMed

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2015-11-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18-39, 40-64, 65 +  years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of -0.03 to 0.01 METs, bias percent of -0.8 to 0.3%, and a rMSE range of 0.81-1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  3. Mathematical Model for the 0.5 Billion Years Aged Sun

    NASA Astrophysics Data System (ADS)

    Tatomir, E.

    An algorithm is given for constructing evolutionary tracks for a star with the mass equal to one solar mass. The presented model can be applied to the stars belonging to the inferior main sequence, which have the proton-proton reaction as energy source and present a radiative core and a convective shell. This paper presents an original way of solving the system of equations corresponding to the radiative nucleus by using Taylor's series in close vicinity to the center of the Sun. It also presents the numerical integration and the results for a 0.5 billion years aged solar model.

  4. AGING MODEL FOR CANE FIBERBOARD OVERPACK IN THE 9975 SHIPPING PACKAGE

    SciTech Connect

    Daugherty, W.; Harris, S.

    2010-03-05

    Many radioactive material shipping packages incorporate a cane fiberboard overpack for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. Changes in each of the properties have been fit to a model to allow predictions of degradation under various storage scenarios. Additional data continue to be collected to provide for future refinements to the model.

  5. Age models for peat deposits on the basis of coupled lead-210 and radiocarbon data.

    NASA Astrophysics Data System (ADS)

    Piotrowska, Natalia; de Vleeschouwer, François; Sikorski, Jarosław; Sensuła, Barbara; Michczyński, Adam; Fiałkiewicz-Kozieł, Barbara; Palowski, Bernard

    2010-05-01

    The study presents three examples of age-model construction based on the results of 210Pb and 14C dating methods applied to peat deposits. The three sites are ombrotrophic peat bogs: the Misten (Belgium), Slowinskie Bloto (N Poland) and Puscizna Mala (S Poland). All sites have been subjected to multiproxy studies aimed at reconstructing paleoenvironment and human activity, covering the last 1500, 1300 and 1800 years, respectively (De Vleeschouwer et al. 2009A, 2009B, in prep., Fialkiewicz-Koziel, ongoing PhD). A detailed comparison between 210Pb and post-bomb 14C results in the Misten bog has also been carried out by Piotrowska et al. (2009). In all cores, the 210Pb activity was calculated using 210Po and 208Po activities after acid-extraction from bulk samples, subsequent deposition on silver discs and measurements by alpha spectrometry. Unsupported 210Pb was detected until 35cm in Slowinskie Bloto, 15cm in the Misten and 19cm in Puscizna Mala. Constant Rate of Supply (CRS) model was then applied to compute ages of each 1-cm core interval. For the Misten and Slowinskie Bloto, radiocarbon measurements were performed on selected aboveground plant macrofossils, mainly Sphagnum spp. or Calluna vulgaris, Erica tetralix, and Andromeda polyfolia. Radiocarbon ages were determined using accelerator mass spectrometry (AMS) after acid-alkali-acid wash, combustion, purification of carbon dioxide and graphitisation. For Puscizna Mala bulk samples were dated after chemical preparation of benzene for liquid scintillation counting (LSC) or CO2 for gas proportional counting (GPC). Radiocarbon calibration was undertaken using the Intcal04 calibration curve and OxCal 4 software. As a priori information the 210Pb-derived ages were used in a P_Sequence model (Bronk Ramsey, 2008). A number of dates characterized by low agreement with stratigraphical order had to be considered as outliers and rejected from the final age model. For building a continuous age models a non-linear approach

  6. A stress-induced cellular aging model with postnatal neural stem cells.

    PubMed

    Dong, C-M; Wang, X-L; Wang, G-M; Zhang, W-J; Zhu, L; Gao, S; Yang, D-J; Qin, Y; Liang, Q-J; Chen, Y-L; Deng, H-T; Ning, K; Liang, A-B; Gao, Z-L; Xu, J

    2014-01-01

    Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging. PMID:24625975

  7. Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging.

    PubMed

    Pageon, Hervé; Zucchi, Hélène; Dai, Zhenyu; Sell, David R; Strauch, Christopher M; Monnier, Vincent M; Asselineau, Daniel

    2015-01-01

    Advanced glycation end products (AGEs) accumulate in the aging skin. To understand the biological effects of individual AGEs, skin reconstructed with collagen selectively enriched with N(ɛ)-(carboxymethyl)-lysine (CML), N(ɛ)-(carboxyethyl)-lysine (CEL), methylglyoxal hydroimidazolone (MG-H1), or pentosidine was studied. Immunohistochemistry revealed increased expression of α6 integrin at the dermal epidermal junction by CEL and CML (p<0.01). Laminin 5 was diminished by CEL and MG-H1 (p<0.05). Both CML and CEL induced a robust increase (p<0.01) in procollagen I. In the culture medium, IL-6, VEGF, and MMP1 secretion were significantly decreased (p<0.05) by MG-H1. While both CEL and CML decreased MMP3, only CEL decreased IL-6 and TIMP1, while CML stimulated TIMP1 synthesis significantly (p<0.05). mRNA expression studies using qPCR in the epidermis layer showed that CEL increased type 7 collagen (COL7A1), β1, and α6 integrin, while CML increased only COL7A1 (p<0.05). MG-H1-modified collagen had no effect. Importantly, in the dermis layer, MMP3 mRNA expression was increased by both CML and MG-H1. CML also significantly increased the mRNAs of MMP1, TIMP1, keratinocyte growth factor (KGF), IL-6, and monocyte chemoattractant protein 1 (MCP1) (p<0.05). Mixed effects were present in CEL-rich matrix. Minimally glycoxidized pentosidine-rich collagen suppressed most mRNAs of the genes studied (p<0.05) and decreased VEGF and increased MCP1 protein expression. Taken together, this model of the aging skin suggests that a combination of AGEs tends to counterbalance and thus minimizes the detrimental biological effects of individual AGEs. PMID:26309782

  8. The problem of calibration: A possible way to overcome the drawbacks of age models

    NASA Astrophysics Data System (ADS)

    Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Kurths, J.

    2012-04-01

    Constructing a meaningful age model from a set of radiocarbon age-depth measurements made on a palaeoclimatic archive is the crucial backbone of all proxy-based research carried out thereafter. Significant progress in the development of Monte Carlo based interpolation techniques and Bayesian methods has been made recently, targeting the uncertainties of radiocarbon dating, which then reflect meaningfully as time domain errors in the proxy vs. time relationship. However, one primary limitation of these approaches is the debatable assumption of Gaussianity of the errors in calibrated ages as calibration often results in highly irregular and non-trivial probability distributions of the age for every measurement. Here, we present a method that circumvents this limitation by focussing on the construction of the proxy vs. time relationship rather than emphasising on the estimation of an age-depth relation as the intermediary step. Our method is based on a simple analysis of the involved probabilistic uncertainties and the use of (preferably non-parametric) regression methods that give an estimate of the uncertainty of regression at every point as well. With the appropriate use of Bayes' Theorem we then provide a regression-based estimator for the proxy measurements and compute the respective distribution parameters (such as mean and variance) that quantify the uncertainties of the proxy in the time domain. We verify this method with the help of an artificial data set involving the accumulation history of a simulated core and noisy radiocarbon dating and proxy measurements made on it. To our best knowledge, this is the first method that manages to overcome the fundamental problem of irregular distributions induced by calibration of radiocarbon ages. We feel that this approach shall enable us to look at the problem of dating uncertainties in a new light and open up newer possibilities for studying not only speleothem proxies but, more generally, from other palaeoclimatic

  9. Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception

    PubMed Central

    Dowlati, Ehsan; Adams, Sarah E.; Stiles, Alexandra B.; Moran, Rosalyn J.

    2016-01-01

    Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to Lingual gyrus (LIN) by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology. PMID:27064235

  10. Preparing the Workforce for Healthy Aging Programs: The Skills for Healthy Aging Resources and Programs (SHARP) Model

    ERIC Educational Resources Information Center

    Frank, Janet C.; Altpeter, Mary; Damron-Rodriguez, JoAnn; Driggers, Joann; Lachenmayr, Susan; Manning, Colleen; Martinez, Dana M.; Price, Rachel M.; Robinson, Patricia

    2014-01-01

    Current public health and aging service agency personnel have little training in gerontology, and virtually no training in evidence-based health promotion and disease management programs for older adults. These programs are rapidly becoming the future of our community-based long-term care support system. The purpose of this project was to develop…

  11. The Role of a Model's Age for Young Children's Imitation: A Research Review

    ERIC Educational Resources Information Center

    Zmyj, Norbert; Seehagen, Sabine

    2013-01-01

    The influence of a model's age on young children's behaviour has been a subject of considerable debate among developmental theorists. Despite the recent surge of interest, controversy remains about the nature of peer influence in early life. This article reviews studies that investigated the influence of a model's age on young…

  12. A Multidisciplinary Model of Health Promotion Incorporating Spirituality into a Successful Aging Intervention with African American and White Elderly Groups.

    ERIC Educational Resources Information Center

    Parker, Michael W.; Bellis, Jeffrey M.; Bishop, Phillip; Harper, Mary; Allman, Richard M.; Moore, Cynthia; Thompson, Paula

    2002-01-01

    Faculty from academic, medical, state, and religious institutions presented workshops at a community and faith-based conference attended by seniors. Lifestyle changes and forms of spirituality were affirmed using a model of successful aging. Model has the potential to help unify the religious community around promoting successful aging. African…

  13. Models for preclinical studies in aging-related disorders: One is not for all

    PubMed Central

    Santulli, Gaetano; Borras, Consuelo; Bousquet, Jean; Calzà, Laura; Cano, Antonio; Illario, Maddalena; Franceschi, Claudio; Liotta, Giuseppe; Maggio, Marcello; Molloy, William D.; Montuori, Nunzia; O’Caoimh, Rónán; Orfila, Francesc; Rauter, Amelia P.; Santoro, Aurelia; Iaccarino, Guido

    2015-01-01

    Preclinical studies are essentially based on animal models of a particular disease. The primary purpose of preclinical efficacy studies is to support generalization of treatment–effect relationships to human subjects. Researchers aim to demonstrate a causal relationship between an investigational agent and a disease-related phenotype in such models. Numerous factors can muddle reliable inferences about such cause-effect relationships, including biased outcome assessment due to experimenter expectations. For instance, responses in a particular inbred mouse might be specific to the strain, limiting generalizability. Selecting well-justified and widely acknowledged model systems represents the best start in designing preclinical studies, especially to overcome any potential bias related to the model itself. This is particularly true in the research that focuses on aging, which carries unique challenges, mainly attributable to the fact that our already long lifespan makes designing experiments that use people as subjects extremely difficult and largely impractical. PMID:27042427

  14. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure.

    PubMed

    Silva, M J; Gibson, L J

    1997-08-01

    Age-related reductions in the thickness and number of trabeculae in vertebral trabecular bone have been documented by several workers, yet the relative effects of these changes on mechanical properties are not known. We developed a two-dimensional model of human vertebral trabecular bone and investigated its mechanical behavior using finite element analysis. The stress-strain behavior, failure mode, and strain distributions predicted using the model were consistent with those observed for vertebral trabecular bone under compressive loading. Random reductions in the number of trabeculae reduced the modulus and strength of the models two to five times more than uniform reductions in the thickness of trabeculae that caused the same loss of bone volume. For example, randomly removing longitudinal trabeculae to achieve a reduction in density of 10% reduced the strength by approximately 70%, whereas removing the same amount of bone by uniformly reducing the thickness of the longitudinal trabeculae only reduced the strength by approximately 20%. For a simulation of aged bone, in which the thickness and number of trabeculae were reduced concurrently, the strength was 23% of its intact ("young") value. When the bone mass of the aged model was restored to its intact level by increasing the thickness but not the number of trabeculae, the strength increased by 60%, but was still only 37% of its intact value. These combined findings, based on a two-dimensional, idealized model of vertebral trabecular bone, illustrate the importance of maintaining trabecular number and suggest that it may not be possible to restore bone strength following a period of advanced bone loss if a substantial number of trabeculae have been resorbed. Thus, until treatments exist that can increase trabecular number, the most effective treatment strategy is to prevent the degradation of bone strength by maintaining the number of trabeculae at a healthy level.

  15. A ternary age-mixing model to explain contaminant occurrence in a deep supply well.

    PubMed

    Jurgens, Bryant C; Bexfield, Laura M; Eberts, Sandra M

    2014-09-01

    The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post-1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of (14) C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions.

  16. A ternary age-mixing model to explain contaminant occurrence in a deep supply well

    USGS Publications Warehouse

    Jurgens, Bryant; Bexfield, Laura M.; Eberts, Sandra

    2014-01-01

    The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post- 1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of 14C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions.

  17. A Ternary Age-Mixing Model to Explain Contaminant Occurrence in a Deep Supply Well

    PubMed Central

    Jurgens, Bryant C; Bexfield, Laura M; Eberts, Sandra M

    2014-01-01

    The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post-1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of 14C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions. PMID:24597520

  18. Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation

    PubMed Central

    Palko, Joel R.; Morris, Hugh J.; Pan, Xueliang; Harman, Christine D.; Koehl, Kristin L.; Gelatt, Kirk N.; Plummer, Caryn E.; Komáromy, András M.; Liu, Jun

    2016-01-01

    Soft tissue often displays marked age-associated stiffening. This study aims to investigate how age affects scleral biomechanical properties in a canine glaucoma model with ADAMTS10 mutation, whose extracellular matrix is concomitantly influenced by the mutation and an increased mechanical load from an early age. Biomechanical data was acquired from ADAMTS10-mutant dogs (n = 10, 21 to 131 months) and normal dogs (n = 5, 69 to 113 months). Infusion testing was first performed in the whole globes to measure ocular rigidity. After infusion experiments, the corneas were immediately trephined to prepare scleral shells that were mounted on a pressurization chamber to measure strains in the posterior sclera using an inflation testing protocol. Dynamic viscoelastic mechanical testing was then performed on dissected posterior scleral strips and the data were combined with those reported earlier by our group from the same animal model (Palko et al, IOVS 2013). The association between age and scleral biomechanical properties was evaluated using multivariate linear regression. The relationships between scleral properties and the mean and last measured intraocular pressure (IOP) were also evaluated. Our results showed that age was positively associated with complex modulus (p<0.001) and negatively associated with loss tangent (p<0.001) in both the affected and the normal groups, suggesting an increased stiffness and decreased mechanical damping with age. The regression slopes were not different between the groups, although the complex modulus was significantly lower in the affected group (p = 0.041). The posterior circumferential tangential strain was negatively correlated with complex modulus (R = -0.744, p = 0.006) showing consistent mechanical evaluation between the testing methods. Normalized ocular rigidity was negatively correlated with the last IOP in the affected group (p = 0.003). Despite a mutation that affects the extracellular matrix and a chronic IOP elevation in

  19. Transit times and age distributions for reservoir models represented as nonlinear non-autonomuous systems

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Meztler, Holger; Glatt, Anna; Sierra, Carlos

    2016-04-01

    We present theoretical methods to compute dynamic residence and transit time distributions for non-autonomous systems of pools governed by coupled nonlinear differential equations. Although transit time and age distributions have been used to describe reservoir models for a long time, a closer look to their assumptions reveals two major restrictions of generality in previous studies. First, the systems are assumed to be in equilibrium; and second, the equations under consideration are assumed to be linear. While both these assumptions greatly ease the computation and interpretation of transit time and age distributions they are not applicable to a wide range of problems. Moreover, the transfer of previous results learned from linear systems in steady state to the more complex nonlinear non-autonomous systems that do not even need to have equilibria, can be dangerously misleading. Fortunately the topic of time dependent age and transit time distributions has received some attention recently in hydrology, we aim to compute these distributions for systems of multiple reservoirs. We will discuss how storage selection functions can augment the information represented in an ODE system describing a system of reservoirs. We will present analytical and numerical algorithms and a Monte Carlo simulator to compute solutions for system transit time and age distributions for system-wide storage selection functions including the most simple, but important case of well mixed pools.

  20. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks.

    PubMed

    Knipl, Diána H; Röst, Gergely

    2011-01-01

    Finding optimal policies to reduce the morbidity and mortality of the ongoing pandemic is a top public health priority. Using a compartmental model with age structure and vaccination status, we examined the effect of age specific scheduling of vaccination during a pandemic influenza outbreak, when there is a race between the vaccination campaign and the dynamics of the pandemic. Our results agree with some recent studies on that age specificity is paramount to vaccination planning. However, little is known about the effectiveness of such control measures when they are applied during the outbreak. Comparing five possible strategies, we found that age specific scheduling can have a huge impact on the outcome of the epidemic. For the best scheme, the attack rates were up to 10% lower than for other strategies. We demonstrate the importance of early start of the vaccination campaign, since ten days delay may increase the attack rate by up to 6%. Taking into account the delay between developing immunity and vaccination is a key factor in evaluating the impact of vaccination campaigns. We provide a general framework which will be useful for the next pandemic waves as well. PMID:21361404

  1. Time evolution of damage due to environmentally assisted aging in a fiber bundle model

    NASA Astrophysics Data System (ADS)

    Lennartz-Sassinek, S.; Main, I. G.; Danku, Z.; Kun, F.

    2013-09-01

    Damage growth in composite materials is a complex process which is of interest in many fields of science and engineering. We consider this problem in a fiber bundle model where fibers undergo an aging process due to the accumulation of damage driven by the locally acting stress in a chemically active environment. By subjecting the bundle to a constant external load, fibers fail either when the load on them exceeds their individual intrinsic strength or when the accumulated internal damage exceeds a random threshold. We analyze the time evolution of the breaking process under low external loads where aging of fibers dominates. In the mean field limit, we show analytically that the aging system continuously accelerates in a way which can be characterized by an inverse power law of the event rate with a singularity that defines a failure time. The exponent is not universal; it depends on the details of the aging process. For localized load sharing, a more complex damage process emerges which is dominated by distinct spatial regions of the system with different degrees of stress concentration. Analytical calculations revealed that the final acceleration to global failure is preceded by a stationary accumulation of damage. When the disorder is strong, the accelerating phase has the same functional behavior as in the mean field limit. The analytical results are verified by computer simulations.

  2. Aging Face Recognition: A Hierarchical Learning Model Based on Local Patterns Selection.

    PubMed

    Li, Zhifeng; Gong, Dihong; Li, Xuelong; Tao, Dacheng

    2016-05-01

    Aging face recognition refers to matching the same person's faces across different ages, e.g., matching a person's older face to his (or her) younger one, which has many important practical applications, such as finding missing children. The major challenge of this task is that facial appearance is subject to significant change during the aging process. In this paper, we propose to solve the problem with a hierarchical model based on two-level learning. At the first level, effective features are learned from low-level microstructures, based on our new feature descriptor called local pattern selection (LPS). The proposed LPS descriptor greedily selects low-level discriminant patterns in a way, such that intra-user dissimilarity is minimized. At the second level, higher level visual information is further refined based on the output from the first level. To evaluate the performance of our new method, we conduct extensive experiments on the MORPH data set (the largest face aging data set available in the public domain), which show a significant improvement in accuracy over the state-of-the-art methods. PMID:26930681

  3. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation.

    PubMed

    Fan, Ruoxun; Gong, He; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  4. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  5. Bias in the reporting of sex and age in biomedical research on mouse models

    PubMed Central

    Flórez-Vargas, Oscar; Brass, Andy; Karystianis, George; Bramhall, Michael; Stevens, Robert; Cruickshank, Sheena; Nenadic, Goran

    2016-01-01

    In animal-based biomedical research, both the sex and the age of the animals studied affect disease phenotypes by modifying their susceptibility, presentation and response to treatment. The accurate reporting of experimental methods and materials, including the sex and age of animals, is essential so that other researchers can build on the results of such studies. Here we use text mining to study 15,311 research papers in which mice were the focus of the study. We find that the percentage of papers reporting the sex and age of mice has increased over the past two decades: however, only about 50% of the papers published in 2014 reported these two variables. We also compared the quality of reporting in six preclinical research areas and found evidence for different levels of sex-bias in these areas: the strongest male-bias was observed in cardiovascular disease models and the strongest female-bias was found in infectious disease models. These results demonstrate the ability of text mining to contribute to the ongoing debate about the reproducibility of research, and confirm the need to continue efforts to improve the reporting of experimental methods and materials. DOI: http://dx.doi.org/10.7554/eLife.13615.001 PMID:26939790

  6. A mathematical model of physiological processes and its application to the study of aging

    NASA Technical Reports Server (NTRS)

    Hibbs, A. R.; Walford, R. L.

    1989-01-01

    The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.

  7. Effects of room temperature aging on two cryogenic temperature sensor models used in aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Krause, John

    2012-06-01

    Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.

  8. Methodology for the Incorporation of Passive Component Aging Modeling into the RAVEN/ RELAP-7 Environment

    SciTech Connect

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua; Alfonsi, Andrea; Askin Guler; Tunc Aldemir

    2014-11-01

    Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper represents an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation

  9. Anti-aging Effect of Transplanted Amniotic Membrane Mesenchymal Stem Cells in a Premature Aging Model of Bmi-1 Deficiency.

    PubMed

    Xie, Chunfeng; Jin, Jianliang; Lv, Xianhui; Tao, Jianguo; Wang, Rong; Miao, Dengshun

    2015-09-15

    To determine whether transplanted amniotic membrane mesenchymal stem cells (AMSCs) ameliorated the premature senescent phenotype of Bmi-1-deficient mice, postnatal 2-day-old Bmi-1(-/-) mice were injected intraperitoneally with the second-passage AMSCs from amniotic membranes of β-galactosidase (β-gal) transgenic mice or wild-type (WT) mice labeled with DiI. Three reinjections were given, once every seven days. Phenotypes of 5-week-old β-gal(+) AMSC-transplanted or 6-week-old DiI(+) AMSC-transplanted Bmi-1(-/-) mice were compared with vehicle-transplanted Bmi-1(-/-) and WT mice. Vehicle-transplanted Bmi-1(-/-) mice displayed growth retardation and premature aging with decreased cell proliferation and increased cell apoptosis; a decreased ratio and dysmaturity of lymphocytic series; premature osteoporosis with reduced osteogenesis and increased adipogenesis; redox imbalance and DNA damage in multiple organs. Transplanted AMSCs carried Bmi-1 migrated into multiple organs, proliferated and differentiated into multiple tissue cells, promoted growth and delayed senescence in Bmi-1(-/-) transplant recipients. The dysmaturity of lymphocytic series were ameliorated, premature osteoporosis were rescued by promoting osteogenesis and inhibiting adipogenesis, the oxidative stress and DNA damage in multiple organs were inhibited by the AMSC transplantation in Bmi-1(-/-) mice. These findings indicate that AMSC transplantation ameliorated the premature senescent phenotype of Bmi-1-deficient mice and could be a novel therapy to delay aging and prevent aging-associated degenerative diseases.

  10. Anomalous diffusion, localization, aging, and subaging effects in trap models at very low temperature.

    PubMed

    Monthus, Cécile

    2003-09-01

    We study in detail the dynamics of the one-dimensional symmetric trap model via a real-space renormalization procedure which becomes exact in the limit of zero temperature. In this limit, the diffusion front in each sample consists of two delta peaks, which are completely out of equilibrium with each other. The statistics of the positions and weights of these delta peaks over the samples allows to obtain explicit results for all observables in the limit T-->0. We first compute disorder averages of one-time observables, such as the diffusion front, the thermal width, the localization parameters, the two-particle correlation function, and the generating function of thermal cumulants of the position. We then study aging and subaging effects: our approach reproduces very simply the two different aging exponents and yields explicit forms for scaling functions of the various two-time correlations. We also extend the real-space renormalization group method to include systematic corrections to the previous zero temperature procedure via a series expansion in T. We then consider the generalized trap model with parameter alpha in [0,1] and obtain that the large scale effective model at low temperature does not depend on alpha in any dimension, so that the only observables sensitive to alpha are those that measure the "local persistence," such as the probability to remain exactly in the same trap during a time interval. Finally, we extend our approach at a scaling level for the trap model in d=2 and obtain the two relevant time scales for aging properties.

  11. NewAge: a semi-distributed hydrological model as a dynamical system, and something more.

    NASA Astrophysics Data System (ADS)

    Rigon, Riccardo; Franceschi, Silvia; Antonello, Andrea; Endrizzi, Stefano; Formetta, Giuseppe

    2010-05-01

    We describe and analyse the performances of the semi-distributed hydrological model NewAGE. This model itself is made-up of five main parts: the radiation budget estimation, the snow modelling, the evapotranspiration part, the hillslope runoff budget and the runoff aggregation in the river network, and finally the flood propagation. The model concept is based on the idea the elementary units are the hillslopes for each one the model gives the estimates of the prognostic simulated variables (one estimate for variable). Each "hillslope" does not need to coincide to the real hillslope, and can actually cover a small basin, up to some square kilometres. It constitutes the elementary "grid" element of the model. Each "hillslope" is connected to the others by the channel network. In turn, this is represented by an oriented graph, whose links are numbered through a generalisation of the Pfafstetter ordering. The topological partition of the basin is performed by a proper set of tools in JGrass. The mass budget for each hillslope is performed according to a suitable modification of Duffy (1996) dynamical model of hillslope runoff. Discharge in each link of the river network is evaluated according to Cuencas (2005). Radiation is calculated accounting for the sub-hillslope-variability in accord to a suitable scheme described in this contribution. Evapotranspiration estimation uses the Penman-Monteith formula, and includes hillslope variability in land use, soil cover and hydrological state. Flood wave propagation for the main streams can be estimated with a solver of the 1D de Saint Venant equation. Snow is modelled by a custom implementation of the Utah Energy Balance concepts. This model can simulate all the parts of the hydrological cycle, but besides being also a model of the physical processes, it also implements the infrastructure dealing with human works and reservoirs. These modelling parts are supported by appropriate ancillary modules for the treatment of the

  12. ISSLS PRIZE WINNER: INHIBITION OF NF-κB ACTIVITY AMELIORATES AGE-ASSOCIATED DISC DEGENERATION IN A MOUSE MODEL OF ACCELERATED AGING

    PubMed Central

    Nasto, Luigi A.; Seo, Hyoung-Yeon; Robinson, Andria R.; Tilstra, Jeremy S.; Clauson, Cheryl L.; Sowa, Gwendolyn A.; Ngo, Kevin; Dong, Qing; Pola, Enrico; Lee, Joon Y.; Niedernhofer, Laura J.; Kang, James D.; Robbins, Paul D.; Vo, Nam V.

    2012-01-01

    Study Design NF-κB activity was pharmacologically and genetically blocked in an accelerated aging mouse model to mitigate age-related disc degenerative changes. Objective To study the mediatory role of NF-κB signaling pathway in age-dependent intervertebral disc degeneration. Summary of Background Data Aging is a major contributor to intervertebral disc degeneration (IDD), but the molecular mechanism behind this process is poorly understood. NF-κB is a family of transcription factors which play a central role in mediating cellular response to damage, stress, and inflammation. Growing evidence implicates chronic NF-κB activation as a culprit in many aging-related diseases, but its role in aging-related IDD has not been adequately explored. We studied the effects of NF-κB inhibition on IDD using a DNA repair-deficient mouse model of accelerated aging (Ercc1-/Δ mice) previously been reported to exhibit age-related IDD. Methods Systemic inhibition of NF-κB activation was achieved either genetically by deletion of one allele of the NF-κB subunit p65 (Ercc1-/Δp65+/- mice) or pharmacologically by chronic intra-peritoneal administration of the Nemo Binding Domain (8K-NBD) peptide to block the formation of the upstream activator of NF-κB, IκB Inducible Kinase (IKK), in Ercc1-/Δ mice. Disc cellularity, total proteoglycan content and proteoglycan synthesis of treated mice and untreated controls were assessed. Results Decreased disc matrix proteoglycan content, a hallmark feature of IDD, and elevated disc NF-κB activity were observed in discs of progeroid Ercc1-/Δ mice and naturally aged wild-type compared to young WT mice. Systemic inhibition of NF-κB by the 8K-NBD peptide in Ercc1-/Δ mice increased disc proteoglycan synthesis and ameriolated loss disc cellularity and matrix proteoglycan. These results were confirmed genetically by using the p65 haploinsufficient Ercc1-/Δp65+/- mice. Conclusion These findings demonstrate that the IKK/NF-κB signaling pathway

  13. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    PubMed Central

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, vmax decreased significantly (P < 0.05) and KM increased (although not always significantly) with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  14. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    SciTech Connect

    Brown, Geoffrey W; Sandstrom, Mary M; Giambra, Anna M; Archuleta, Jose G; Monroe, Deirde C

    2009-01-01

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  15. Impact of demographic characteristics in pet ownership: modeling animal count according to owners income and age.

    PubMed

    Martins, Camila Marinelli; Mohamed, Ahmed; Guimarães, Ana Marcia Sá; de Barros, Cristiane da Conceição; Pampuch, Raquel Dos Santos; Svoboda, Walfrido; Garcia, Rita de Cassia Maria; Ferreira, Fernando; Biondo, Alexander Welker

    2013-05-01

    Pet owner characteristics such as age, gender, income/social class, marital status, rural/urban residence and household type have been shown to be associated with the number of owned pets. However, few studies to date have attempted to evaluate these associations in Brazil. Accordingly, the aim of this study was to evaluate the association between age and income of owners and the number of owned dogs and cats in a Brazilian urban center. Pinhais, metropolitan area of Curitiba, Southern Brazil, the seventh largest city in Brazil, was chosen for this study. Questionnaires were administered door-to-door between January and February 2007 and data were analyzed by zero-inflated negative binomial (ZINB) models. A total of 13,555 of 30,380 (44.62%) households were interviewed. The majority (62.43%) of households reported having one or more dogs, with one or two dogs being the most common (29.97% and 19.71%, respectively). Cat ownership per household was much lower (P=0.001) than dog ownership, with 90% of the households reported having no owned cats. ZINB analyses indicated that income is not associated with the number of both dogs and cats among households that have pets. However, households from higher income categories were more likely to have dogs (but not cats) when compared to the lowest income category (P<0.05), contradicting a common belief that the poorer the family, the more likely they have pets. Certain age categories were significantly associated with the number of dogs or cats in households that have pets. In addition, most age categories were significantly associated with having dogs and/or cats (P<0.05). In conclusion, our study has found that age but not household income is associated with the number of dogs or cats in households that have pets; higher income households were more likely to have dogs when compared to low-income households.

  16. A Combination Cocktail Improves Spatial Attention in a Canine Model of Human Aging and Alzheimer's disease

    PubMed Central

    Head, Elizabeth; Murphey, Heather L.; Dowling, Amy L.S.; McCarty, Katie L.; Bethel, Samuel R.; Nitz, Jonathan A.; Pleiss, Melanie; Vanrooyen, Jenna; Grossheim, Mike; Smiley, Jeffery R.; Murphy, M. Paul; Beckett, Tina L.; Pagani, Dieter; Bresch, Frederick; Hendrix, Curt

    2014-01-01

    Alzheimer's disease (AD) involves multiple pathological processes in the brain, including increased inflammation and oxidative damage, as well as the accumulation of beta-amyloid (Aβ) plaques. We hypothesized that a combinatorial therapeutic approach to target these multiple pathways may provide cognitive and neuropathological benefits for AD patients. To test this hypothesis, we used a canine model of human aging and AD. Aged dogs naturally develop learning and memory impairments, human-type Aβ deposits and oxidative damage in the brain. Thus, 9 aged beagles (98-115 months) were treated with a medical food cocktail containing (1) an extract of turmeric containing 95% curcuminoids; (2) an extract of green tea containing 50% epigallocatechingallate; (3) N-acetyl cysteine; (4) R-alpha lipoic acid; and (5) an extract of black pepper containing 95% piperine. Nine similarly aged dogs served as placebo-treated controls. After 3 months of treatment, 13 dogs completed a variable distance landmark task used as a measure of spatial attention. As compared to placebo-treated animals, dogs receiving the medical food cocktail had significantly lower error scores (t(11)=4.3, p=0.001) and were more accurate across all distances (F(1,9)=20.7, p=0.001), suggesting an overall improvement in spatial attention. Measures of visual discrimination learning, executive function and spatial memory, and levels of brain and CSF Aβ were unaffected by the cocktail. Our results indicate that this medical food cocktail may be beneficial for improving spatial attention and motivation deficits associated with impaired cognition in aging and AD. PMID:22886019

  17. A combination cocktail improves spatial attention in a canine model of human aging and Alzheimer's disease.

    PubMed

    Head, Elizabeth; Murphey, Heather L; Dowling, Amy L S; McCarty, Katie L; Bethel, Samuel R; Nitz, Jonathan A; Pleiss, Melanie; Vanrooyen, Jenna; Grossheim, Mike; Smiley, Jeffery R; Murphy, M Paul; Beckett, Tina L; Pagani, Dieter; Bresch, Frederick; Hendrix, Curt

    2012-01-01

    Alzheimer's disease (AD) involves multiple pathological processes in the brain, including increased inflammation and oxidative damage, as well as the accumulation of amyloid-β (Aβ) plaques. We hypothesized that a combinatorial therapeutic approach to target these multiple pathways may provide cognitive and neuropathological benefits for AD patients. To test this hypothesis, we used a canine model of human aging and AD. Aged dogs naturally develop learning and memory impairments, human-type Aβ deposits, and oxidative damage in the brain. Thus, 9 aged beagles (98-115 months) were treated with a medical food cocktail containing (1) an extract of turmeric containing 95% curcuminoids; (2) an extract of green tea containing 50% epigallocatechingallate; (3) N-acetyl cysteine; (4) R-alpha lipoic acid; and (5) an extract of black pepper containing 95% piperine. Nine similarly aged dogs served as placebo-treated controls. After 3 months of treatment, 13 dogs completed a variable distance landmark task used as a measure of spatial attention. As compared to placebo-treated animals, dogs receiving the medical food cocktail had significantly lower error scores (t11 = 4.3, p = 0.001) and were more accurate across all distances (F(1,9) = 20.7, p = 0.001), suggesting an overall improvement in spatial attention. Measures of visual discrimination learning, executive function and spatial memory, and levels of brain and cerebrospinal fluid Aβ were unaffected by the cocktail. Our results indicate that this medical food cocktail may be beneficial for improving spatial attention and motivation deficits associated with impaired cognition in aging and AD. PMID:22886019

  18. Toward an animal model of extinction-induced despair: focus on aging and physiological indices.

    PubMed

    Huston, Joseph P; Schulz, Daniela; Topic, Bianca

    2009-08-01

    Behaviors that are under the control of positive or negative reinforcers undergo extinction when the anticipated reward/reinforcer is withheld. Despair, an important symptom of environmentally determined depression in humans, can be generated by extinction, or the failure of expected reward to accrue. Although well known to clinicians dealing with depressive patients, an animal model has not been available for extinction-induced depression. We have made a beginning towards validating such a model, based on the extinction of negatively reinforced behavior in the rat, i.e., upon removal of the possibility to escape onto a safety platform in the water maze. As a marker for despair, we employed behavioral immobility, i.e., the cessation of swimming in the attempt to find safety from the water, presumably, a type of learned helplessness. This measure was sensitive to antidepressants and correlated with neurotransmitter contents, neurotrophins and hypothalamus-pituitary adrenal axis markers in selected sites of the brain. Given that some cases of depression in the elderly may be biologically distinct from others and from early-onset depression, and since particularly the aged are prone to experience extinction-induced despair, we compared aged (ca. 24 months old) animals with adults in most of our studies. We found a number of distinct differences in behavioral and biological measures, indicative of differences in propensity to, as well as response to, extinction-induced despair between aged and adults. Our results add to the body of evidence for differences in the neurobiological substrates of depressive disorders between aged and adults, with the implication for the requirement of different treatment strategies in these two populations. PMID:19350220

  19. Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling

    PubMed Central

    González, Oscar C.; Krishnan, Giri P.; Chauvette, Sylvain; Timofeev, Igor; Sejnowski, Terrence

    2015-01-01

    Homeostatic synaptic plasticity (HSP) has been implicated in the development of hyperexcitability and epileptic seizures following traumatic brain injury (TBI). Our in vivo experimental studies in cats revealed that the severity of TBI-mediated epileptogenesis depends on the age of the animal. To characterize mechanisms of these differences, we studied the properties of the TBI-induced epileptogenesis in a biophysically realistic cortical network model with dynamic ion concentrations. After deafferentation, which was induced by dissection of the afferent inputs, there was a reduction of the network activity and upregulation of excitatory connections leading to spontaneous spike-and-wave type seizures. When axonal sprouting was implemented, the seizure threshold increased in the model of young but not the older animals, which had slower or unidirectional homeostatic processes. Our study suggests that age-related changes in the HSP mechanisms are sufficient to explain the difference in the likelihood of seizure onset in young versus older animals. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is one of the leading causes of intractable epilepsy. Likelihood of developing epilepsy and seizures following severe brain trauma has been shown to increase with age. Specific mechanisms of TBI-related epileptogenesis and how these mechanisms are affected by age remain to be understood. We test a hypothesis that the failure of homeostatic synaptic regulation, a slow negative feedback mechanism that maintains neural activity within a physiological range through activity-dependent modulation of synaptic strength, in older animals may augment TBI-induced epileptogenesis. Our results provide new insight into understanding this debilitating disorder and may lead to novel avenues for the development of effective treatments of TBI-induced epilepsy. PMID:26424890

  20. Large impact crater histories of Mars: The effect of different model crater age techniques

    NASA Astrophysics Data System (ADS)

    Robbins, Stuart J.; Hynek, Brian M.; Lillis, Robert J.; Bottke, William F.

    2013-07-01

    Impact events that produce large craters primarily occurred early in the Solar System's history because the largest bolides were remnants from planetary formation. Determining when large impacts occurred on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System which, in turn, can constrain other planetary processes such as the timing and magnitude of resurfacing and the history of the martian core dynamo. We have used a large, global planetary database in conjunction with geomorphologic mapping to identify craters superposed on the rims of 78 larger craters with diameters D ⩾ 150 km on Mars, ≈78% of which have not been previously dated in this manner. The densities of superposed craters with diameters larger than 10, 16, 25, and 50 km, as well as isochron fits were used to derive model crater ages of these larger craters and basins from which we derived an impact flux. In discussing these ages, we point out several internal inconsistencies of crater-age modeling techniques and chronology systems and, all told, we explain why we think isochron-fitting is the most reliable indicator of an age. Our results point to a mostly obliterated crater record prior to ˜4.0 Ga with the oldest preserved mappable craters on Mars dating to ˜4.3-4.35 Ga. We have used our results to constrain the cessation time of the martian core dynamo which we found to have occurred between the formation of Ladon and Prometheus basins, approximately 4.06-4.09 Ga. We also show that, overall, surfaces on Mars older than ˜4.0-4.1 Ga have experienced >1 km of resurfacing, while those younger than ˜3.8-3.9 Ga have experienced significantly less.

  1. Age Differences in the Demand–Control Model of Work Stress

    PubMed Central

    Shultz, Kenneth S.; Wang, Mo; Crimmins, Eileen M.; Fisher, Gwenith G.

    2010-01-01

    There have been many tests of Karasek’s demand–control model of work stress. However, no studies have examined how the model may differentially apply to older versus younger workers. Due to age changes in cognitive processing, the psychological demands of jobs may interact differently with controls for younger versus older workers. Therefore, the study uses data from the Eurobarometer to examine how the demand–control model of work stress may function differently for older versus younger workers. The results indicate that different controls may in fact buffer different types of job demands for younger versus older workers. The findings reveal that only the interaction between problem solving and time to complete tasks was significant for younger workers. For older workers, however, the interactions between time deadlines and having sufficient time to complete tasks, autonomy, and the interaction between problem solving and schedule flexibility are significant predictors of self-reported stress. PMID:20948986

  2. Nonfixed Retirement Age for University Professors: Modeling Its Effects on New Faculty Hires.

    PubMed

    Larson, Richard C; Diaz, Mauricio Gomez

    2012-03-01

    We model the set of tenure-track faculty members at a university as a queue, where "customers" in queue are faculty members in active careers. Arrivals to the queue are usually young, untenured assistant professors, and departures from the queue are primarily those who do not pass a promotion or tenure hurdle and those who retire. There are other less-often-used ways to enter and leave the queue. Our focus is on system effects of the elimination of mandatory retirement age. In particular, we are concerned with estimating the number of assistant professor slots that annually are no longer available because of the elimination of mandatory retirement. We start with steady-state assumptions that require use of Little's Law of Queueing, and we progress to a transient model using system dynamics. We apply these simple models using available data from our home university, the Massachusetts Institute of Technology.

  3. Fourth-Order Method for Numerical Integration of Age- and Size-Structured Population Models

    SciTech Connect

    Iannelli, M; Kostova, T; Milner, F A

    2008-01-08

    In many applications of age- and size-structured population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model.

  4. An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing.

    PubMed

    Mund, A; Kuttler, C; Pérez-Velázquez, J; Hense, B A

    2016-09-21

    Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs. PMID:26796220

  5. Nonfixed Retirement Age for University Professors: Modeling Its Effects on New Faculty Hires

    PubMed Central

    Larson, Richard C.; Diaz, Mauricio Gomez

    2013-01-01

    We model the set of tenure-track faculty members at a university as a queue, where “customers” in queue are faculty members in active careers. Arrivals to the queue are usually young, untenured assistant professors, and departures from the queue are primarily those who do not pass a promotion or tenure hurdle and those who retire. There are other less-often-used ways to enter and leave the queue. Our focus is on system effects of the elimination of mandatory retirement age. In particular, we are concerned with estimating the number of assistant professor slots that annually are no longer available because of the elimination of mandatory retirement. We start with steady-state assumptions that require use of Little’s Law of Queueing, and we progress to a transient model using system dynamics. We apply these simple models using available data from our home university, the Massachusetts Institute of Technology. PMID:23936582

  6. Relationship between the complement system, risk factors and prediction models in age-related macular degeneration.

    PubMed

    Bora, Nalini S; Matta, Bharati; Lyzogubov, Valeriy V; Bora, Puran S

    2015-02-01

    Studies performed over the past decade in humans and experimental animals have been a major source of information and improved our understanding of how dysregulation of the complement system contributes to age-related macular degeneration (AMD) pathology. Drusen, the hall-mark of dry-type AMD are reported to be the by-product of complement mediated inflammatory processes. In wet AMD, unregulated complement activation results in increased production of angiogenic growth factors leading to choroidal neovascularization both in humans and in animal models. In this review article we have linked the complement system with modifiable and non-modifiable AMD risk factors as well as with prediction models of AMD. Understanding the association between the complement system, risk factors and prediction models will help improve our understanding of AMD pathology and management of this disease.

  7. An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing.

    PubMed

    Mund, A; Kuttler, C; Pérez-Velázquez, J; Hense, B A

    2016-09-21

    Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.

  8. Future challenges for clinical care of an ageing population infected with HIV: a modelling study

    PubMed Central

    Smit, Mikaela; Brinkman, Kees; Geerlings, Suzanne; Smit, Colette; Thyagarajan, Kalyani; Sighem, Ard van; de Wolf, Frank; Hallett, Timothy B

    2015-01-01

    Summary Background The population infected with HIV is getting older and these people will increasingly develop age-related non-communicable diseases (NCDs). We aimed to quantify the scale of the change and the implications for HIV care in the Netherlands in the future. Methods We constructed an individual-based model of the ageing HIV-infected population, which followed patients on HIV treatment as they age, develop NCDs—including cardiovascular disease (hypertension, hypercholesterolaemia, myocardial infarctions, and strokes), diabetes, chronic kidney disease, osteoporosis, and non-AIDS malignancies—and start co-medication for these diseases. The model was parameterised by use of data for 10 278 patients from the national Dutch ATHENA cohort between 1996 and 2010. We made projections up to 2030. Findings Our model suggests that the median age of HIV-infected patients on combination antiretroviral therapy (ART) will increase from 43·9 years in 2010 to 56·6 in 2030, with the proportion of HIV-infected patients aged 50 years or older increasing from 28% in 2010 to 73% in 2030. In 2030, we predict that 84% of HIV-infected patients will have at least one NCD, up from 29% in 2010, with 28% of HIV-infected patients in 2030 having three or more NCDs. 54% of HIV-infected patients will be prescribed co-medications in 2030, compared with 13% in 2010, with 20% taking three or more co-medications. Most of this change will be driven by increasing prevalence of cardiovascular disease and associated drugs. Because of contraindications and drug–drug interactions, in 2030, 40% of patients could have complications with the currently recommended first-line HIV regimens. Interpretation The profile of patients in the Netherlands infected with HIV is changing, with increasing numbers of older patients with multiple morbidities. These changes mean that, in the near future, HIV care will increasingly need to draw on a wide range of medical disciplines, in addition to evidence

  9. Self-oscillating Vocal Fold Model Mechanics: Healthy, Diseased, and Aging

    NASA Astrophysics Data System (ADS)

    Hiubler, Elizabeth P.; Pollok, Lucas F. E.; Apostoli, Adam G.; Hancock, Adrienne B.; Plesniak, Michael W.

    2014-11-01

    Voice disorders have been estimated to have a substantial economic impact of 2.5 billion annually. Approximately 30% of people will suffer from a voice disorder at some point in their lives. Life-sized, self-oscillating, synthetic vocal fold (VF) models are fabricated to exhibit material properties representative of human VFs. These models are created both with and without a polyp-like structure, a pathology that has been shown to produce rich viscous flow structures not normally observed for healthy VFs during normal phonation. Pressure measurements are acquired upstream of the VFs and high-speed images are captured at varying flow rates during VF oscillation to facilitate an understanding of the characteristics of healthy and diseased VFs. The images are analyzed using a videokymography line-scan technique. Clinically-relevant parameters calculated from the volume-velocity output of a circumferentially-vented mask (Rothenberg mask) are compared to human data collected from two groups of males aged 18-30 and 60-80. This study extends the use of synthetic VF models by assessing their ability to replicate behaviors observed in human subject data to advance a means of investigating changes associated with normal, pathological, and the aging voice. Supported by the GWU Institute for Biomedical Engineering (GWIBE) and GWU Center for Biomimetics and Bioinspired Engineering (COBRE).

  10. Educating social workers to meet the challenge of an aging urban population: a promising model.

    PubMed

    Volland, Patricia J; Berkman, Barbara

    2004-12-01

    As Americans live longer, they will require more health and social services to address the onset of acute and chronic conditions. The persistent changes in health care delivery and the increasingly diverse older adult population in urban settings, coupled with the high expectation for families to be responsible for home care needs, challenge social workers, who work alongside physicians, nurses, and other health care professionals, to provide services effectively. Because social workers are becoming more essential, social work education must increase the numbers of social workers with the knowledge and skills necessary for practice in the current U.S. health, mental health, and social service systems, particularly in caring for the aging populations in urban settings. A New York Academy of Medicine study identified the need for increased synergy between the two components of graduate social work education: the field experience and classroom instruction. One educational model, the Practicum Partnership Program, which is designed to better integrate field and classroom, is being tested at six sites. Early results from over 300 graduates are encouraging, with evidence that students' knowledge and skills regarding aging adults have increased, their satisfaction with the experience was very high, and those who were trained reflect the diversity of the population of older adults. The early success of this program suggests that innovative educational models that expose graduate social work students to diverse populations across the continuum of care are possible. Such models will be essential for the nation to be successful in producing a social work labor force qualified to meet the challenge of an aging urban population.

  11. Three layer functional model and energy exchange concept of aging process

    PubMed Central

    Mihajlovic, William

    2006-01-01

    and the proposed functional model, the decreased integrity of a human body's external envelope membrane is a first cause of the structural degradation and aging of the entire organism. The aging process than progresses externally to internally, as in single cell organisms, suggesting that much of the efforts towards the restoration and maintenance of the mechanisms responsible for structural development should be focused accordingly, on the membrane, i.e., the skin. Numerous reports indicate that all parts of the human body, like: bones, blood with blood vessels, muscles, skin, and so on, have some ability for restoration. Therefore, actual revival of not only aging tissue of the human body's membrane, but the entire human body enclosed within, with all internal organs, might be expected. We assess several aging theories within the context of our model and provide suggestions on how to activate the body's own anti-aging mechanisms and increase longevity. This paper presents some analogies and some distinctions that exist between the living dissipative structure matter and inanimate matter, discusses the aging process and proposes certain aging reversal solutions. PMID:23598683

  12. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    NASA Astrophysics Data System (ADS)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  13. Aging and orthopedics: how a lifespan development model can inform practice and research.

    PubMed

    Gautreau, Sylvia; Gould, Odette N; Forsythe, Michael E

    2016-08-01

    Orthopedic surgical care, like all health care today, is in flux owing to an aging population and to chronic medical conditions leading to an increased number of people with illnesses that need to be managed over the lifespan. The result is an ongoing shift from curing acute illnesses to the management and care of chronic illness and conditions. Theoretical models that provide a useful and feasible vision for the future of health care and health care research are needed. This review discusses how the lifespan development model used in some disciplines within the behavioural sciences can be seen as an extension of the biopsychosocial model. We posit that the lifespan development model provides useful perspectives for both orthopedic care and research. We present key concepts and recommendations, and we discuss how the lifespan development model can contribute to new and evolving perspectives on orthopedic outcomes and to new directions for research. We also offer practical guidelines on how to implement the model in orthopedic practice.

  14. Testing Models of Psychopathology in Preschool-aged Children Using a Structured Interview-based Assessment

    PubMed Central

    Dougherty, Lea R.; Bufferd, Sara J.; Carlson, Gabrielle A.; Klein, Daniel N.

    2014-01-01

    A number of studies have found that broadband internalizing and externalizing factors provide a parsimonious framework for understanding the structure of psychopathology across childhood, adolescence, and adulthood. However, few of these studies have examined psychopathology in young children, and several recent studies have found support for alternative models, including a bi-factor model with common and specific factors. The present study used parents’ (typically mothers’) reports on a diagnostic interview in a community sample of 3-year old children (n=541; 53.9 % male) to compare the internalizing-externalizing latent factor model with a bi-factor model. The bi-factor model provided a better fit to the data. To test the concurrent validity of this solution, we examined associations between this model and paternal reports and laboratory observations of child temperament. The internalizing factor was associated with low levels of surgency and high levels of fear; the externalizing factor was associated with high levels of surgency and disinhibition and low levels of effortful control; and the common factor was associated with high levels of surgency and negative affect and low levels of effortful control. These results suggest that psychopathology in preschool-aged children may be explained by a single, common factor influencing nearly all disorders and unique internalizing and externalizing factors. These findings indicate that shared variance across internalizing and externalizing domains is substantial and are consistent with recent suggestions that emotion regulation difficulties may be a common vulnerability for a wide array of psychopathology. PMID:24652485

  15. Aging and orthopedics: how a lifespan development model can inform practice and research

    PubMed Central

    Gautreau, Sylvia; Gould, Odette N.; Forsythe, Michael E.

    2016-01-01

    Orthopedic surgical care, like all health care today, is in flux owing to an aging population and to chronic medical conditions leading to an increased number of people with illnesses that need to be managed over the lifespan. The result is an ongoing shift from curing acute illnesses to the management and care of chronic illness and conditions. Theoretical models that provide a useful and feasible vision for the future of health care and health care research are needed. This review discusses how the lifespan development model used in some disciplines within the behavioural sciences can be seen as an extension of the biopsychosocial model. We posit that the lifespan development model provides useful perspectives for both orthopedic care and research. We present key concepts and recommendations, and we discuss how the lifespan development model can contribute to new and evolving perspectives on orthopedic outcomes and to new directions for research. We also offer practical guidelines on how to implement the model in orthopedic practice. PMID:27240129

  16. Modeling of Late Blooming Phases and Precipitation Kinetics in Aging Reactor Pressure Vessel (RPV) Steels

    SciTech Connect

    Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner

    2013-09-01

    The principle work at the atomic scale is to develop a predictive quantitative model for the microstructure evolution of RPV steels under thermal aging and neutron radiation. We have developed an AKMC method for the precipitation kinetics in bcc-Fe, with Cu, Ni, Mn and Si being the alloying elements. In addition, we used MD simulations to provide input parameters (if not available in literature). MMC simulations were also carried out to explore the possible segregation/precipitation morphologies at the lattice defects. First we briefly describe each of the simulation algorithms, then will present our results.

  17. Measurement and modeling of engineered nanoparticle transport and aging dynamics in a reactive porous medium

    NASA Astrophysics Data System (ADS)

    Naftaly, Aviv; Dror, Ishai; Berkowitz, Brian

    2016-07-01

    A continuous time random walk particle tracking (CTRW-PT) method was employed to model flow cell experiments that measured transport of engineered nanoparticles (ENPs) in a reactive porous medium. The experiments involved a water-saturated medium containing negatively charged, polyacrylamide beads, resembling many natural soils and aquifer materials, and having the same refraction index as water. Negatively and positively charged ENPs were injected into a uniform flow field in a 3-D horizontal flow cell, and the spatial and temporal concentrations of the evolving ENP plumes were obtained via image analysis. As a benchmark, and to calibrate the model, Congo red tracer was employed in 1-D column and 3-D flow cell experiments, containing the same beads. Negatively charged Au and Ag ENPs demonstrated migration patterns resembling those of the tracer but were slightly more dispersive; the transport was well represented by the CTRW-PT model. In contrast, positively charged AgNPs displayed an unusual behavior: establishment of an initial plume of essentially immobilized ENPs, followed by development of a secondary, freely migrating plume. The mobile plume was found to contain ENPs that, with aging, exhibited aggregation and charge inversion, becoming negatively charged and mobile. In this case, the CTRW-PT model was modified to include a probabilistic law for particle immobilization, to account for the decreasing tendency (over distance and time) of the positively charged AgNPs to attach to the porous medium. The agreement between experimental results and modeling suggests that the CTRW-PT framework can account for the non-Fickian and surface-charge-dependent transport and aging exhibited by ENPs in porous media.

  18. An age-specific kinetic model of lead metabolism in humans.

    PubMed Central

    Leggett, R W

    1993-01-01

    Although considerable progress has been made in recent years in reducing human exposures to lead, the potential for high intake of this contaminant still exists in millions of homes and in many occupational settings. Moreover, there is growing evidence that levels of lead intake considered inconsequential just a few years ago can result in subtle, adverse health effects, particularly in children. Consequently, there have been increased efforts by health protection agencies to develop credible, versatile methods for relating levels of lead in environmental media to levels in blood and tissues of exposed humans of all ages. In a parallel effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age-specific biokinetic models for calculating radiation doses from environmentally important radionuclides, including radioisotopes of lead. This paper describes a new age-specific biokinetic model for lead originally developed for the ICRP but expanded to include additional features that are useful for consideration of lead as a chemical toxin. The model is developed within a generic, physiologically motivated framework designed to address a class of calciumlike elements. This framework provides a useful setting in which to synthesize experimental, occupational, and environmental data on lead and exploit common physiological properties of lead and the alkaline earth elements. The modular design is intended to allow researchers to modify specific parameter values or model components to address special problems in lead toxicology or to incorporate new information. Transport of lead between compartments is assumed to follow linear, first-order kinetics provided the concentration in red blood cells remains below a nonlinear threshold level, but a nonlinear relation between plasma lead and red blood cell lead is modeled for concentrations above that level. The model is shown to be consistent

  19. Biological reaction to polyethylene particles in a murine calvarial model is highly influenced by age.

    PubMed

    Langlois, Jean; Zaoui, Amine; Bichara, David A; Nich, Christophe; Bensidhoum, Morad; Petite, Hervé; Muratoglu, Orhun K; Hamadouche, Moussa

    2016-04-01

    Particle-induced osteolysis is driven by multiple factors including bone metabolism, inflammation, and age. The objective of this study was to determine the influence of age on polyethylene (PE) particle-induced osteolysis in a murine calvarial model comparing 2-month-old (young) versus 24-month-old (old) mice. After PE particle implantation, calvaria were assessed at days (D) 3, D7, D14, and D21 via chemoluminescent imaging for inflammation (L-012 probe). In addition micro-computed tomography (micro-CT) and histomorphometry end points addressed the bone reaction. Inflammation peaked at D7 in young mice and D14 in old mice. Using micro-CT, a nadir of mature bone was recorded at D7 for young mice, versus D21 for old mice. Besides, regenerating bone peaked at distinct timepoints: D7 for young mice versus D21 for old mice. In the young mice group, the histomorphometric findings correlated with micro-CT regenerating bone findings at D7, associated with ample osteoïd deposition. No osteoïd could be histologically quantified in the old mice group at D7. This study demonstrated that the biological reaction to polyethylene particles is highly influenced by age. PMID:26375608

  20. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model.

    PubMed

    Ardeljan, Christopher P; Ardeljan, Daniel; Abu-Asab, Mones; Chan, Chi-Chao

    2014-01-01

    The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope-particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death. PMID:25580276

  1. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging.

    PubMed

    van Ham, Tjakko J; Thijssen, Karen L; Breitling, Rainer; Hofstra, Robert M W; Plasterk, Ronald H A; Nollen, Ellen A A

    2008-03-01

    Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders. PMID:18369446

  2. Mediational Role of Age of Onset in Gambling Disorder, a Path Modeling Analysis.

    PubMed

    Jiménez-Murcia, Susana; Granero, Roser; Tárrega, Salomé; Angulo, Ariadna; Fernández-Aranda, Fernando; Arcelus, Jon; Fagundo, Ana B; Aymamí, Neus; Moragas, Laura; Sauvaget, Anne; Grall-Bronnec, Marie; Gómez-Peña, Mónica; Menchón, José M

    2016-03-01

    The aim of the study is to assess a mediational pathway, which includes patients' sex, personality traits, age of onset of gambling disorder (GD) and gambling-related variables. The South Oaks Gambling Screen, the Symptom Checklist (SCL-90-R) and the Temperament and Character Inventory-R were administered to a large sample of 1632 outpatients attending a specialized outpatient GD unit. Sociodemographic variables were also recorded. A Structural Equation Model was adjusted to assess the pathway. Age of onset mediated between personality profile (novelty seeking and self-transcendence) and GD severity and depression symptoms (measured by SCL-90-R). Sex had a direct effect on GD onset and depression symptoms: men initiated the GD earlier and reported fewer depression symptoms. Age of onset is a mediating variable between sex, personality traits, GD severity and depression symptoms. These empirical results provide new evidence about the underlying etiological process of dysfunctional behaviors related to gambling, and may help to guide the development of more effective treatment and prevention programs aimed at high-risk groups such as young men with high levels of novelty seeking and self-transcendence.

  3. Thermal characterization and model free kinetics of aged epoxies and foams using TGA and DSC methods.

    SciTech Connect

    Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April

    2013-10-01

    Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition. From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.

  4. Modeling tracers of young stellar population age in star-forming galaxies

    SciTech Connect

    Levesque, Emily M.; Leitherer, Claus

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  5. Development of the Japanese reference man model for age-specific phantoms.

    PubMed

    Kawamura, Hisao

    2012-03-01

    Recent interest in improving methods for calculating radiation doses to atomic bomb survivors necessitates reinforcing the data on masses of organs of the Japanese population in 1945, including those that are not calculated by DS02, as well as increasing the number of phantoms for different ages. Reference is made to published data on the masses of organs in normal Japanese subjects of 0-90 y of age with more than 5000 samples during 1970-80, as well as the weight and size of the total body. The first Japanese Reference Man model, primarily based on these data and following the ICRP Reference Man concept, is briefly explained. It provides a set of reference values for males and females of six age groups, i.e. 3 months, 1, 5, 10, 15 and 20-50 y. To consider the organ masses of the Japanese population in 1945, the data during the period 1970-80 are compared with the literature data of normal Japanese reported in 1952. Differences between the two sets of organ data in adults are discussed in relation to changes in the national status of nutrition. Additional organ masses of current interest for the Japanese population in 1945 are preliminarily considered.

  6. Pharmacologic approaches to cerebral aging and neuroplasticity: insights from the stroke model.

    PubMed

    Chollet, François

    2013-03-01

    Brain plasticity is an intrinsic characteristic of the nervous system that allows continuous remodeling of brain funct