Science.gov

Sample records for agency astronaut andre

  1. Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA),

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA), set up an experiment at the glovebox on the Space Shuttle Columbias mid-deck. The two mission specialists joined three other astronauts and an international payload specialist for more than 16 days of research aboard Columbia.

  2. Payload specialist Jean-Jacques Favier, representing the French Space Agency (CNES), and astronaut

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Payload specialist Jean-Jacques Favier, representing the French Space Agency (CNES), and astronaut Kevin R. Kregel, pilot, perform a successful Inflight Maintenance (IFM) on the Bubble Drop Particle Unit (BDPU). The IFM technique was performed initially on the ground at the Marshall Space Flight Center (MSFC) by alternate payload specialist Pedro Duque of the European Space Agency (ESA), with the procedure being recorded on video and uplinked to the crew of the Space Shuttle Columbia to aid in the repair.

  3. Major Andre

    ERIC Educational Resources Information Center

    Henisch, B. A.; Henisch, H. K.

    1976-01-01

    If most Revolutionary era people seem two-dimensional their lives simpler to understand than ours, it may be only that history, with the benefit of hindsight, clarifies. Examines a profile of Major John Andre, the British liaison officer in Benedict Arnold's plan to surrender West Point, as both hero and villain to show the complexity of early…

  4. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  5. Universal values of Canadian astronauts

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena; Della-Rossa, Irina

    2012-11-01

    Values are desirable, trans-situational goals, varying in importance, that guide behavior. Research has demonstrated that universal values may alter in importance as a result of major life events. The present study examines the effect of spaceflight and the demands of astronauts' job position as life circumstances that affect value priorities. We employed thematic content analysis for references to Schwartz's well-established value markers in narratives (media interviews, journals, and pre-flight interviews) of seven Canadian astronauts and compared the results to the values of National Aeronautics and Space Administration (NASA) and Russian Space Agency (RKA) astronauts. Space flight did alter the level of importance of Canadian astronauts' values. We found a U-shaped pattern for the values of Achievement and Tradition before, during, and after flight, and a linear decrease in the value of Stimulation. The most frequently mentioned values were Achievement, Universalism, Security, and Self-Direction. Achievement and Self Direction are also within the top 4 values of all other astronauts; however, Universalism was significantly higher among the Canadian astronauts. Within the value hierarchy of Canadian astronauts, Security was the third most frequently mentioned value, while it is in seventh place for all other astronauts. Interestingly, the most often mentioned value marker (sub-category) in this category was Patriotism. The findings have important implications in understanding multi-national crew relations during training, flight, and reintegration into society.

  6. Female Astronauts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronauts Dr. N. Jan Davis (left) and Dr. Mae C. Jemison (right) were mission specialists on board the STS-47 mission. Born on November 1, 1953 in Cocoa Beach, Florida, Dr. N. Jan Davis received a Master degree in Mechanical Engineering in 1983 followed by a Doctorate in Engineering from the University of Alabama in Huntsville in 1985. In 1979 she joined NASA Marshall Space Flight Center as an aerospace engineer. A veteran of three space flights, Dr. Davis has logged over 678 hours in space since becoming an astronaut in 1987. She flew as a mission specialist on STS-47 in 1992 and STS-60 in 1994, and was the payload commander on STS-85 in 1997. In July 1999, she transferred to the Marshall Space Flight Center, where she became Director of Flight Projects. Dr. Mae C. Jemison, the first African-American woman in space, was born on October 17, 1956 in Decatur, Alabama but considers Chicago, Illinois her hometown. She received a Bachelor degree in Chemical Engineering (and completed the requirements for a Bachelor degree in African and Afro-American studies) at Stanford University in 1977, and a Doctorate degree in medicine from Cornell University in 1981. After receiving her doctorate, she worked as a General Practitioner while attending graduate engineering classes in Los Angeles. She was named an astronaut candidate in 1987, and flew her first flight as a science mission specialists on STS-47, Spacelab-J, in September 1992, logging 190 hours, 30 minutes, 23 seconds in space. In March 1993, Dr. Jemison resigned from NASA, thought she still resides in Houston, Texas. She went on to publish her memoirs, Find Where the Wind Goes: Moments from My Life, in 2001. The astronauts are shown preparing to deploy the lower body negative pressure (LBNP) apparatus in this 35mm frame taken in the science module aboard the Earth-orbiting Space Shuttle Endeavor. Fellow astronauts Robert L. Gibson (Commander), Curtis L. Brown (Junior Pilot), Mark C. Lee (Payload Commander), Jay Apt

  7. Astronaut Administrator Richard Truly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronaut Richard H. Truly, pilot of the Space Shuttle Columbia on mission STS-2 and Commander of Shuttle Challenger on mission STS-8, became NASA's eighth Administrator on July 1, 1989. One day earlier he concluded a 30 year Naval career retiring as a Vice Admiral. He was the first astronaut to head the nation's civilian space agency. Truly became Deputy Associate Administrator for Space Flight on February 20, 1986. In this position, he led the painstaking rebuilding of the Space Shuttle program less than one month after the Challenger disaster. This was highlighted by the much heralded 'Return to Flight' on September 29, 1988 with the launch of Shuttle Discovery, 32 months after Challenger's final flight. On February 12th, 1992 Richard Truly resigned as NASA Administrator at the request of President George Bush.

  8. Astronaut Virgil Grissom and Astronaut John Glenn

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil Grissom chats with Astronaut John Glenn prior to entering the Liberty Bell 7 capsule for the MR-4 Mission. The MR-4 mission was the second manned suborbital flight using the Mercury-Redstone booster, which was developed by the Marshall Space Flight Center.

  9. Astronaut John H. Glenn

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut John H. Glenn, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-6 mission, boosted by the Mercury-Atlas vehicle, was the first manned orbital launch by the United States, and carried Astronaut Glenn aboard the Friendship 7 spacecraft to orbit the Earth.

  10. Astronauts Working in Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.

  11. Astronaut Virgil I. Grissom

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut Virgil I. 'Gus' Grissom, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MR-4 mission, boosted by the Mercury-Redstone vehicle, made the second marned suborbital flight. The capsule, Liberty Bell 7, sank into the sea after the splashdown.

  12. Astronauts' menu problem.

    NASA Technical Reports Server (NTRS)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  13. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  14. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  15. Shuttle Astronauts Play Chess

    NASA Video Gallery

    STS-134 astronauts Greg Johnson and Greg Chamitoff ponder their next move for the Earth vs. Space chess match. The shuttle crew members also discuss their activities aboard the International Space ...

  16. Building An Astronaut Core

    NASA Video Gallery

    Train to improve the strength in your abdominal and back muscles by performing the "Commander Crunch" and "Pilot Plank" exercises. The Train Like an Astronaut project uses the excitement of explora...

  17. ISS Update: Astronaut's Perspective

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews veteran NASA astronaut Cady Coleman about what it's like to receive visitors on the International Space Station as well as her other experience...

  18. Astronauts Practice Station Spacewalk

    NASA Video Gallery

    Astronauts Cady Coleman and Suni Williams conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Space St...

  19. Astronaut John Young's Career

    NASA Video Gallery

    John Young served as a NASA astronaut for over four decades, flying on Gemini, Apollo and the Space Shuttle. He walked on the moon during Apollo 16 in 1972 and commanded the first shuttle mission, ...

  20. EAC: The European Astronauts Centre

    NASA Astrophysics Data System (ADS)

    Ripoll, Andres

    The newly established European Astronauts Centre (EAC) in Cologne represents the European Astronauts Home Base and will become a centre of expertise on European astronauts activities. The paper gives an overview of the European approach to man-in-space, describes the European Astronauts Policy and presents the major EAC roles and responsibilities including the management of selection, recruitment and flight assignment of astronauts; the astronauts support and medical surveillance; the supervision of the astronauts' non-flight assignments; crew safety; the definition of the overall astronauts training programme; the scheduling and supervision of the training facilities; the implementation of Basic Training; the recruitment, training and certification of instructors, and the interface to NASA in the framework of the Space Station Freedom programme. An overview is given on the organisation of EAC, and on the European candidate astronauts selection performed in 1991.

  1. Assessments of astronaut effectiveness

    NASA Technical Reports Server (NTRS)

    Rose, Robert M.; Helmreich, Robert L.; Fogg, Louis; Mcfadden, Terry J.

    1993-01-01

    This study examined the reliability and convergent validity of three methods of peer and supervisory ratings of the effectiveness of individual NASA astronauts and their relationships with flight assignments. These two techniques were found to be reliable and relatively convergent. Seniority and a peer-rated Performance and Competence factor proved to be most closely associated with flight assignments, while supervisor ratings and a peer-rated Group Living and Personality factor were found to be unrelated. Results have implications for the selection and training of astronauts.

  2. Astronaut Conrad tweaks Astronaut Cooper's beard for the cameramen

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Charles Conrad Jr. tweaks Astronaut L. Gordon Cooper's eight-day growth of beard for the cameramen while onboard the prime recovery vessel after their Gemini 5 flight. The NASA Headquarter alternative photo number is 65-H-680.

  3. Mission X: Train Like an Astronaut Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  4. Expedition 30 Departs for Launch Site

    NASA Video Gallery

    Three Expedition 30 flight engineers -- NASA astronaut Don Pettit, Russian cosmonaut Oleg Kononenko and European Space Agency astronaut Andre Kuipers -- departed Star City, Russia on Thursday for t...

  5. Astronaut Pedro Duque Watches A Water Bubble

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  6. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  7. Motivational profile of astronauts at the International Space Station

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena

    2010-11-01

    Research has demonstrated that the motive triad of needs for achievement, power, and affiliation can predict variables such as occupational success and satisfaction, innovation, aggressiveness, susceptibility to illness, cooperation, conformity, and many others. The present study documents the motivational profiles of astronauts at three stages of their expedition. Thematic content analysis was employed for references to Winter's well-established motive markers in narratives (media interviews, journals, and oral histories) of 46 astronauts participating in International Space Station (ISS) expeditions. Significant pre-flight differences were found in relation to home agency and job status. NASA astronauts, compared with those from the Russian Space Agency, are motivated by higher need for power, as are commanders in comparison to flight engineers. The need for affiliation motive showed a significant change from pre-flight to in-flight stages. The implications of the relationship between the motivational profile of astronauts and the established behavioural correlates of such profiles are discussed.

  8. Astronaut Sharnon Lucid in Mir Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this photograph, Astronaut Shannon W. Lucid, Ph.D., communicates with the ground support team inside the Core Module of the Mir Space Station. Launched aboard the STS-76, the third Shuttle/Mir docking mission, in March 1996, to join the Mir crew in the orbiting laboratory, Astronaut Lucid returned to Earth aboard STS-79 in September 1996. Astronaut Lucid made the U.S. longest record of 188 days in space. Prior to this endeavor, Astronaut Lucid served as a mission specialist on STS-51G in June 1985, STS-34 in October 1989, STS-43 in August 1991, and STS-58 in October 1993. She had logged 5,354 hours (223 days) in space and holds both an international record for the most flight hours in orbit by any non-Russian, and the record for the most flight hours in orbit by any woman in the world. In February 2002. Dr. Lucid was selected as NASA's Chief Scientist at NASA Headquarters in Washington D.C., with responsibility for developing and communicating the agency's science and research objectives to the outside world.

  9. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  10. Astronaut Charles Conrad trims hair of Astronaut Paul Weitz

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, trims the hair of Astronaut Paul J. Weitz, Skylab 2 pilot, during the 28-day Skylab 2 mission in Earth orbit. They are in the crew quarters wardroom of the Orbital Workshop of the Skylab 1 and 2 space station. Weitz is holding a vacuum hose in his right hand. This picture was taken by Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot.

  11. STS-35: Astronaut Departure

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was the round-the-clock observations of the celestial sphere in ultraviolet and X ray astronomy with ASTRO-1. The mission was commanded by Vance D. Brand. The crew consisted of the pilot Guy S. Gardner, the mission Specialists Jeffery Hoffman, John Lounge, and Robert Parker, and the payload specialists Samuel Durrance, and Ronald Parise. This videotape shows the astronauts leaving the Kennedy Space Center after one of the attempts to launch the mission was scrubbed due to hydrogen leaks aboard the shuttle Columbia.

  12. Astronaut training manual

    NASA Technical Reports Server (NTRS)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  13. Neuropsychological Testing of Astronauts

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher; Vander Ark, Steve; Eksuzian, Daniel; Sipes, Walter; Kane, Robert; Vanderploeg, Rodney; Retzlaff, Paul; Elsmore, Tim; Moore, Jeffrey

    2004-01-01

    The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is a computer program that administers a battery of five timed neuro-cognitive tests. WinSCAT was developed to give astronauts an objective and automated means of assessing their cognitive functioning during space flight, as compared with their own baseline performances measured during similar prior testing on the ground. WinSCAT is also intended for use by flight surgeons to assess cognitive impairment after exposure of astronauts to such cognitive assaults as head trauma, decompression sickness, and exposure to toxic gas. The tests were selected from among a group of tests, denoted the Automated Neuropsychological Assessment Metrics, that were created by the United States Navy and Army for use in evaluating the cognitive impairment of military personnel who have been subjected to medication or are suspected to have sustained brain injuries. These tests have been validated in a variety of clinical settings and are now in the public domain. The tests are presented in a Microsoft Windows shell that facilitates administration and enables immediate reporting of test scores in numerical and graphical forms.

  14. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  15. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.

  16. Astronaut Virgil Grissom with Astronaut Walter Schirra in ready room

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Virgil I. Grissom (right), the command pilot of the Gemini-Titan 3 three-orbit mission, is shown with Astronaut Walter M. Schirra Jr., in the ready room at Pad 16. The GT-3 was launched from Pad 19 the same day. Schirra was the command pilot of the backup crew.

  17. Astronaut Bruce McCandless tests astronaut maneuvering unit

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Bruce McCandless II, backup pilot for Skylab 2, tests the balance and control of an astronaut maneuvering unit (AMU) test model at Martin Marietta Corporation's Denver division. The jet-powered backpack can fly for 30 minutes and can be worn over normal clothing or space suit.

  18. Educating Astronauts About Conservation Biology

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  19. Space Shuttle Era: Astronaut Support Personnel

    NASA Video Gallery

    Astronauts rely on other astronauts on launch day to help them get rady for liftoff and the misison ahead. The helpful cadre are known formally as Astronaut Support Personnel but are called ASPs or...

  20. Train Like an Astronaut Educational Outreach

    NASA Technical Reports Server (NTRS)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  1. Astronauts Exercising in Space Video

    NASA Technical Reports Server (NTRS)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  2. Astronaut Paul Weitz gets physical examination from Astronaut Joseph Kerwin

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Paul J. Weitz, Skylab 2 pilot, gets a physical examination by a fellow crewman during the 28-day Skylab 2 mission. Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot and a doctor of medicine, uses a stethoscope to check the Weitz's heartbeat. They are in the Orbital Workshop crew quarters of the Skylab 1 and 2 space station in Earth orbit. This photograph was taken by Charles Conrad Jr., Skylab 2 commander.

  3. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the forward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  4. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  5. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  6. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  7. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  8. Astronaut Maurizio Cheli, mission specialist, works with the Tether Optical Phenomenon System (TOPS)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Maurizio Cheli, mission specialist, works with the Tether Optical Phenomenon System (TOPS) on the flight deck of the Earth-orbiting Space Shuttle Columbia. Cheli, representing the European Space Agency (ESA), joined four other astronauts and an international payload specialists for 16 days of scientific research in Earth-orbit.

  9. NASA's New Educator Astronauts Face Long Wait for Their Shuttle Missions

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2006-01-01

    When the U.S. space agency pinned badges on the 11 newest members of its astronaut corps this winter, it also increased by three its cadre of educator astronauts. Three former teachers-Dorothy M. Metcalf-Lindenburger, Richard R. Arnold II, and Joseph M. Acaba-graduated from NASA's grueling training program. The gauntlet of fitness test, survival…

  10. Private Astronaut Training Prepares Commercial Crews of Tomorrow

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A new company that includes a handful of former NASA personnel is already taking applications for the first comprehensive commercial astronaut training approved by the Federal Aviation Administration. Waypoint 2 Space, located at Johnson Space Center, hopes to draw space tourists and enthusiasts and future commercial crewmembers with first-hand NASA know-how, as well as agency training technology.

  11. Astronaut Steve Swanson Visits Goddard

    NASA Video Gallery

    On Tuesday, 3 March 2015, a special guest visited NASA Goddard Space Flight Center during his time back on Earth. Steven Swanson, NASA astronaut, intrigued the audience by highlighting his adventur...

  12. Astronauts Practice Station Spacewalk Underwater

    NASA Video Gallery

    Astronauts Robert Satcher Jr. and Rick Sturckow conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Sp...

  13. Astronautics and psychology. Recommendations for the psychological training of astronauts

    NASA Astrophysics Data System (ADS)

    Haupt, Gerhard F.

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  14. Philosophy on astronaut protection: Perspective of an astronaut

    SciTech Connect

    Baker, E.

    1997-04-30

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.

  15. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The deployment of the early Apollo scientific experiments package is photographed by Astronaut Neil A. Armstrong during the Apollo 11 EVA. Here, Astronaut Aldrin is deploying the passive seismic experiments package. Already deployed is the Lunar ranging retro- reflector, which can be seen to the left and farther in the background. In the right background is the Lunar Module (LM). A flag of the United States is deployed near the LM. In the far left background is the deployed black and white lunar surface television camera. Armstrong took this picture with the 70mm lunar surface camera.

  16. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). He is wearing a pressure suit for this run of the M509 experiment, but other ASMU tests are done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  17. The Role of the International Astronautical Federation in Building Capacity

    NASA Astrophysics Data System (ADS)

    Steinberg, Marilyn

    The International Astronautical Federation (IAF) is an international non-governmental and non-profit organisation. The Federation was founded in London in the framework of the Second International Astronautical Congress (IAC). The Federation encourages the advancement of knowledge about space and the development and application of space assets for the benefit of humanity. It plays an important role in disseminating information, and in providing a significant worldwide network of experts in the development and utilisation of space. The IAF has 155 Members from 45 different countries. Members include: Astronautical societies and other professional societies, space agencies and international organisations, Space industries and companies, universities and research institutes, non-profit organisations with interests in space matters. Through its various Congresses, Workshops and Committees, the IAF offers emerging space nations at all levels of development a rich spectrum of opportunities to network, exchange information and enhance awareness awareness and interest in global space activities among students and young professionals.

  18. My Session With André.

    PubMed

    Eigen, Michael

    2015-10-01

    The author shares personal reminiscences of a therapy session with André Green, as well as impressions of professional meetings, readings, and clinical work. He describes personal help he received and aspects of Green's writings on dynamics of madness, as well as the latter's end-of-life discussion of therapeutic limits. PMID:26485484

  19. The Challenges and Opportunities of a Commercial Astronaut Mission to the ISS

    NASA Astrophysics Data System (ADS)

    Mirra, C.; Carl, S.

    2002-01-01

    ISS flight opportunities for ESA astronauts are considered as a vital source to meet the objectives (utilisation, operation and political), which Europe has established in participating to the International Space Station programme. Recent internal ESA assessments have demonstrated that, in order to satisfy the objectives drawn in the ESA ISS Exploitation programme, a rate of three flights per year for European Astronauts should be maintained as minimum objective. Since the establishment of a single European Astronaut Corps and having regard of the ISS flight opportunities provided through national space agencies, the current European astronauts flight rate is rather lower than the above three flights per year. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, the Agency contracted Intospace to develop the conditions for the establishment of ESA astronaut missions with the financial support of both ESA and the private sector or, in future, the latter only. The study led to the definition of a "commercial astronaut", as a member of the European Astronaut Corp that will be assigned the responsibility to perform research and commercial space projects in a given ISS mission scenario. This paper will present the recent outcomes of a detailed study phase, including highlights on possible implementation of a private sector-supported astronaut mission to the ISS.

  20. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  1. Astronaut Thomas Stafford and Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Thomas P. Stafford, commander of the Apollo 10 lunar orbit mission, takes time out from his preflight training activities to have his picture made with Snoopy, the character from Charles Schulz's syndicated comic strip, 'Peanuts'. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules.

  2. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  3. Astronaut Gordon Cooper After Recovery

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut Gordon Cooper leaves the Faith 7 (MA-9) spacecraft after a successful recovery operation. The MA-9 mission, the last flight of the Mercury Project, was launched on May 15, 1963, orbited the Earth 22 times, and lasted for 1-1/2 days.

  4. Origins of astronautics in Switzerland

    NASA Technical Reports Server (NTRS)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  5. Astronaut space suit communication antenna

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F., III; Nason, G. H.

    1968-01-01

    Astronaut space suit communication antenna consists of a spring steel monopole in a blade-type configuration. This antenna is mounted in a copper cup filled with a potting compound that is recessed in the center to facilitate bending the blade flat for stowing when not in use.

  6. Astronaut Curbeam in Quest Airlock

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, smiles for the camera in the Quest Airlock of the International Space Station (ISS). Curbeam had just completed the mission's first space walk in which the P6 truss installation was conducted.

  7. Hall Opens Doors to Astronaut Heroes

    NASA Video Gallery

    Space shuttle astronauts Bonnie Dunbar, Curt Brown and Eileen Collins joined an elite group of American space heroes as they were inducted into the U.S. Astronaut Hall of Fame on April 20, during a...

  8. Official portrait of astronaut Charles J. Precourt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Official portrait of astronaut Charles J. Precourt. Precourt, a member of Astronaut Class 13 and United States Air Force (USAF), wears blue flight suit and poses with space shuttle orbiter model with a United States flag creating the backdrop.

  9. Astronaut Virgil Grissom preparing for centrifuge training

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom, wearing the new Mercury pressure suit, is preparing for centrifuge training. He is talking with Astronaut L. Gordon Cooper and two others before the training session.

  10. Astronaut Jean-Francois Clervoy chats with STS-66 crewmates

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Jean-Francois Clervoy (center), STS-66 international mission specialist, chats with payload crew mates during a training session on emergency egress procedures. Wearing training versions of the launch and entry suits, the crew members are, left to right, Scott E. Parazynski, Joseph P. Tanner, Clervoy and Ellen Ochoa. Ochoa is the payload commander, Tanner and Parazynski are NASA mission specialists and Clervoy represents the European Space Agency (ESA) as a mission specialist.

  11. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  12. Otomi de San Andres Cuexcontitlan, Estado de Mexico (Otomi of San Andres Cuexcontitlan, State of Mexico).

    ERIC Educational Resources Information Center

    Lastra, Yolanda

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Otomi, an indigenous language of Mexico spoken in San Andres Cuexcontitlan, in the state of Mexico. The objective of collecting such a representative…

  13. Astronaut Health Participant Summary Application

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy; Krog, Ralph; Rodriguez, Seth; Wear, Mary; Volpe, Robert; Trevino, Gina; Eudy, Deborah; Parisian, Diane

    2011-01-01

    The Longitudinal Study of Astronaut Health (LSAH) Participant Summary software captures data based on a custom information model designed to gather all relevant, discrete medical events for its study participants. This software provides a summarized view of the study participant s entire medical record. The manual collapsing of all the data in a participant s medical record into a summarized form eliminates redundancy, and allows for the capture of entire medical events. The coding tool could be incorporated into commercial electronic medical record software for use in areas like public health surveillance, hospital systems, clinics, and medical research programs.

  14. Pharmacologic considerations for Shuttle astronauts

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Bungo, Michael W.

    1991-01-01

    Medication usage by crewmembers in the preflight and inflight mission periods is common in the Shuttle Program. The most common medical reports for which medication is used are: space motion sickness (SMS), sleeplessness, headache, and backache. A number of medications are available in the Shuttle Medical Kit to treat these problems. Currently, astronauts test all frequently used medications before mission assignment to identify potential side-effects, problems related to performance, personal likes/dislikes, and individual therapeutic effect. However, microgravity-induced changes in drug pharmacokinetics, in combination with multiple operational factors, may significantly alter crewmember responses inflight. This article discusses those factors that may impact pharmacologic efficacy during Shuttle missions.

  15. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  16. Exposure fluctuations of astronauts due to orientation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Wood, James S.; Qualls, Gary; Atwell, William; Shinn, Judy L.; Simonsen, Lisa C.

    1993-01-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  17. Exposure fluctuations of astronauts due to orientation

    SciTech Connect

    Wilson, J.W.; Nealy, J.E.; Wood, J.S.; Qualls, G.; Atwell, W.; Shinn, J.L.; Simonsen, L.C.

    1993-09-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  18. Shoulder Injury Incidence Rates in NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  19. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  20. Astronaut 'Checks In' From Space Station

    NASA Video Gallery

    NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

  1. Designing Interfaces for Astronaut Autonomy in Space

    NASA Technical Reports Server (NTRS)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  2. [Health levels in San Andres Cholula].

    PubMed

    Alvarez Martinez, A; Corro Fernandez, G; Balmaceda, M

    1991-12-01

    In matters of health and curing, the community of San Andres Cholula in Puebla, Mexico, demonstrates a syncretism similar to religious syncretism. Perspectives on illness and health consistent with the traditional medical practices of curanderos coexist with modern medical practices. Curanderos and physicians often treat the same patients. A curandero's powers are viewed as a special gift transmitted by God or the saints during a dream. The curandero effects a cure not only through knowledge of the medicinal plants, rites, and ceremonies, but by understanding the context of the patient. The Western medical concept of disease emphasizes a biological model and technological control, to the detriment of mental, behavioral, and social factors and determinants. The traditional medical concept stresses the relationship of the individual to the social and ecological environment. Improvements in life expectancy in the developing countries in recent years have been attributed to improved levels of living or to importation of vaccination programs, antibiotics, and similar technologies from the developed countries. The vital register of San Andres Cholula records many deaths whose cause cannot be easily interpreted according to the World Health Organization International Classification of Diseases. It is clear, however, that the root cause of many deaths is malnutrition. The proportion of deaths caused by infectious diseases has declined in Mexico since 1940, but Puebla is still included among the states with the highest incidence. There are great regional and rural-urban mortality differentials in Mexico. In the past 50 years, the infant mortality rate has declined from 250 to 40/1000 live births in San Andres Cholula, more as a result of vaccination campaigns than of improved levels of living. 89% of children have been vaccinated, but the population still lives in about the same state of material comfort as it has for generations except that most households have televisions

  3. Apollo Project - Astronaut Roger Chaffee

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Roger Chaffee on the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil, described the simulator as follows: 'When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 377; A.W. Vigil, 'Discussion of Existing

  4. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, 1998 astronaut candidates (ASCAN) Barbara R. Morgan, Patricia C. Hilliard (M.D.) and Bjarni V. Tryggvason look at the hardware exhibits, such as the engine actuator on the table. Tryggvason is with the Canadian Space Agency. The 1998 ASCAN class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. Other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the other international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, and Marcos Pontes.

  5. Robonaut: A Robotic Astronaut Assistant

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.; Diftler, Myron A.

    2001-01-01

    NASA's latest anthropomorphic robot, Robonaut, has reached a milestone in its capability. This highly dexterous robot, designed to assist astronauts in space, is now performing complex tasks at the Johnson Space Center that could previously only be carried out by humans. With 43 degrees of freedom, Robonaut is the first humanoid built for space and incorporates technology advances in dexterous hands, modular manipulators, lightweight materials, and telepresence control systems. Robonaut is human size, has a three degree of freedom (DOF) articulated waist, and two, seven DOF arms, giving it an impressive work space for interacting with its environment. Its two, five fingered hands allow manipulation of a wide range of tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems.

  6. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  7. Astronaut Virgil Grissom Entering Liberty Bell 7

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Assisted by Astronaut John Glenn, Astronaut Virgil Grissom enters the Mercury capsule, Liberty Bell 7, for the MR-4 mission on July 21, 1961. Boosted by the Mercury-Redstone vehicle, the MR-4 mission was the second manned suborbital flight.

  8. Astronaut Clothing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  9. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. This data has been identified as being useful for determining appropriate occupational surveillance targets and requirements. Colonoscopies in the astronaut corps can be used for: (a) Assessing overall colon health, (b) A point of reference for future tests in current and former astronauts, (c) Following-up and tracking rates of colorectal cancer and polyps; and (d) Comparison to military and other terrestrial populations. In 2003, medical screening requirements for the active astronaut corps changed to require less frequent colonoscopies. Polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer and decreases the individual's risk for colon cancer.

  10. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  11. Behind the Scenes: Astronauts Keep Trainers in BBQ Bliss

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, astronaut Mike Massimino talks with astronaut Terry Virts as well as Stephanie Turner, one of the people who keeps the astronaut corps in line. Mass also ...

  12. Mission X: Train Like an Astronaut Pilot Study

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  13. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  14. STS-116 Astronauts Curbeam and Fuglesang Perform Space Walk

    NASA Technical Reports Server (NTRS)

    2006-01-01

    STS-116 astronaut and mission specialist, Robert Curbeam, along with the European Space Agency's (ESA) Christer Fuglesang (partially out of the frame), are anchored to the International Space Station's Canadarm2 foot restraints. The two were working on the port overhead solar array wing on the Station's P6 truss during the mission's fourth session of Extra Vehicular Activity (EVA). For 6 hours and 38 minutes, the space walkers used specially prepared, tape insulated tools to guide the array wing neatly inside its blanket box.

  15. Astronauts Visit LaRC

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Linda M. Godwin, trains with the Mir Environmental Effects Payload (MEEP) in a NASA Langley Research Center clean room. During a space walk in late March 1996, STS-76 astronauts Godwin and Michael R. Clifford will attach the four MEEP experiments to handrails on the shuttle docking module of the Russian space station Mir. Once they have attached the four MEEP experiment containers to Mir, Godwin and Clifford will open the containers to expose the experiment materials to space and orbital debris. MEEP will remain attached to Mir until late 1997, when the four experiment containers will be retrieved by another space shuttle crew (STS-86) and returned to Earth for study. The four experiment containers that make up MEEP will be attached to the outside of the Russian space station to study how often space debris strike the station and the effects of those collisions. MEEP will study both human-made and natural debris. MEEP will also expose selected and proposed International Space Station materials to the effects of space and orbital debris. These materials include paint samples, glass coatings, multi-layer insulation and a variety of metallic samples. Flying MEEP aboard Mir is the best way to test materials for the International Space Station because the new space station will be placed in approximately the same Earth orbit as Mir. The four MEEP experiments are contained in four separate Passive Experiment Carriers (PEC). Each PEC consists of a sidewall carrier for attachment to the payload bay of Atlantis (STS-76), a handrail clamp for attachment to the Mir shuttle docking module, and the experiment container to house the individual experiment. The four PEC handrail clamps will be stored in a Spacehab locker aboard Atlantis and will be used to orient the MEEP experiments during the spacewalk. The PECs were designed and built at NASA Langley Research Center. NASA Langley, which manages the MEEP project, was also responsible for ensuring that the MEEP

  16. Satellite Movie Shows Andres Weaken to a Tropical Storm

    NASA Video Gallery

    This animation of imagery from NOAA's GOES-West satellite from June 1 to 3 shows Hurricane Andres eye disappear and weaken to a tropical storm in the Eastern Pacific Ocean, south of Baja California...

  17. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, some of the 1998 astronaut candidate class (group 17) take a close look at the Saturn V rocket on display. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters.

  18. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Some of the 1998 astronaut candidate class (group 17) take a close look at displays in the Apollo/Saturn V Center at KSC. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters.

  19. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, some of the 1998 astronaut candidate class (group 17) line up for a photo while standing under the engines of the Saturn V rocket on display. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters.

  20. 1998 astronaut candidates tour KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, some of the 1998 astronaut candidate class (group 17) line up for a photo during a tour of facilities at KSC. The U.S. candidates include Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and international candidates Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF and the crew headquarters.

  1. Expedition 30 Prepares for Dec. 21 Launch

    NASA Video Gallery

    NASA astronaut Don Pettit, Russian cosmonaut Oleg Kononenko and European Space Agency astronaut Andre Kuipers arrive at the Baikonur Cosmodrome in Kazakhstan to begin the final phase of preparation...

  2. Expedition 30 Docking

    NASA Video Gallery

    The Soyuz TMA-03M spacecraft carrying NASA astronaut Don Pettit, Russian cosmonaut Oleg Kononenko and European Space Agency astronaut Andre Kuipers docks to the International Space Station’s Rass...

  3. Astronautical Hygiene - A New Discipline to Protect the Health of Astronauts Working in Space

    NASA Astrophysics Data System (ADS)

    Cain, J. R.

    This paper outlines the rationale for a new scientific discipline namely astronautical hygiene. Astronautical hygiene is an applied science that utilises a knowledge of space toxicology, space medicine, astronautics, occupational hygiene etc. to identify the hazards, assess the exposure risks to health, and thereby determine the measures to mitigate exposure to protect the health of astronauts during living and working in space. This paper describes the nature of the hazards (i.e. physical, chemical, microbial and psychological) encountered during space flight. It discusses exposure risk assessment and the use of sampling techniques to assess astronaut health risks. This paper then discusses the measures used to mitigate exposure to the exposure hazards during space exploration. A case study of the application of the principles of astronautical hygiene to control lunar dust exposure is then described.

  4. NASA Now: Path of an Astronaut

    NASA Video Gallery

    Mike Foreman is one of the shuttle astronauts who has lived and worked on the ISS. He flew on space shuttle Endeavour in March of 2008, and he returned to the station in on space shuttle Atlantis i...

  5. Behind the Scenes: Astronauts Get Float Training

    NASA Video Gallery

    In this episode of "NASA Behind the Scenes," astronaut Mike Massimino continues his visit with safety divers and flight doctors at the Johnson Space Center's Neutral Buoyancy Laboratory as they com...

  6. ISS Update: NASA Astronaut Mike Fincke

    NASA Video Gallery

    NASA Public Affairs Officer Rob Navias talks with NASA Astronaut Mike Fincke inside the Mission Control Center at Johnson Space Center. They discuss the current activities taking place aboard the I...

  7. Astronaut Neil Armstrong participates in simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  8. Astronaut Suni Williams on Value of Education

    NASA Video Gallery

    In this public service announcement, NASA astronaut Suni Williams stresses the importance of studying science, technology, engineering and math. What you learn in school today will help you reach f...

  9. Portrait of Astronaut Richard F. Gordon Jr.

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Richard F. Gordon Jr., Prime Crew Command Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  10. Portrait of Astronaut Alan L. Bean

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Alan L. Bean, Prime Crew Lunar Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  11. Students Speak With NASA Astronaut Mike Foreman

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Mike Foreman participates in a Digital Learning Network (DLN) event with fifth grade students at Berry Elementary Sch...

  12. Official portrait of astronaut Richard N. Richards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Official portrait of Richard N. Richards, United States Navy (USN) Captain, member of Astronaut Class 9 (1980), and space shuttle pilot. Richards wears a blue pressure suit with space shuttle orbiter model displayed on table on his left.

  13. Cosmonauts and astronauts during medical operations training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Cosmonaut Alexandr F. Poleshchuk (right) inventories medical supplies with Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Poleshchuk, a Mir reserve crew member, and a number of other cosmonauts and astronauts participati

  14. Cosmonauts and astronauts during medical operations training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Cosmonaut Gennadiy M. Strekalov (right), Mir-18 flight engineer, is briefed on medical supplies by Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Strekalov and a number of other cosmonauts and astronauts participating in

  15. Astronaut Eileen Collins in Full Fuselage Trainer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in STS-63 training at JSC's Shuttle mockup and integration laboratory. Collins is seated at the pilot's station in the Full Fuselage Trainer (FFT).

  16. Official portrait Astronaut Ellison S. Onizuka

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Official portrait of Astronaut Ellison S. Onizuka in the blue shuttle flight suit with an American flag in the background. There is a small model of the shuttle and a helmet on the table in front of him.

  17. Students Speak With NASA Astronaut Mario Runco

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students in the Newell School District in Ne...

  18. Astronaut Doug Wheelock Speaks with Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Doug Wheelock participates in a Digital Learning Network (DLN) event with students at Clark Creek STEM Academy in Acwo...

  19. Astronaut Alvin Drew Speaks With Phoenix Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Alvin Drew participates in a Digital Learning Network (DLN) event with students at Monterey Park in Phoenix. The DLN c...

  20. Space Campers Speak With Astronaut Mike Fossum

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students at a space camp at the Kennedy Space ...

  1. NASA Astronaut Mike Fossum Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA Astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students from Clark Creek STEM Academy in Ackw...

  2. Astronaut Charles Conrad using the bicycle ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, during an exercise session on the bicycle ergometer in the crew quarters of the Skylab Orbital Workshop (OWS) in the Skylab 2 space station cluster in Earth orbit.

  3. Astronaut Virgil Grissom during water egress training

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom, wearing the new Mercury Space Suit, stands outside of a mock-up of the Mercury capsule on the deck of a ship taking him to emergency water egress training activities.

  4. Astronauts Meade tests SAFER system during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Carl J. Meade tests the new Simplified Aid for EVA Rescue (SAFER) system some 130 nautical miles above Earth. The end of the Remote Manipulator System's (RMS) robot arm, with an unoccupied foot restraint attached, is at frame's edge.

  5. Astronauts Call Tucson for Educational Event

    NASA Video Gallery

    Commander Mark Kelly, Pilot Greg Johnson and Expedition 28 Flight Engineer Ron Garan participate from space in a community gathering in Tucson, Ariz. The three astronauts answer questions about the...

  6. Astronauts and cosmonauts sign Gagarin's diary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In keeping with Russian tradition, astronaut Norman E. Thagard (left), guest researcher, signs the diary of the late Yuriy A. Gagarin, the first Russian cosmonaut, as his Mir 18 crew mates members look on. Cosmonauts Vladimir Dezhurov (center), misson com

  7. Philadelphia Eagles Honor NASA Astronaut Chris Ferguson

    NASA Video Gallery

    NASA astronaut Chris Ferguson returned to his hometown on Nov. 7 to serve as the Philadelphia Eagles' Honorary Captain during the NFL's "Monday Night Football" game. The Eagles hosted the Chicago B...

  8. Students Speak With NASA Astronaut Scott Kelly

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  9. Astronaut Neil Armstrong during thermovacuum training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  10. Latent Herpes Viral Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  11. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  12. First Class of Female Astronauts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979. Shannon W. Lucid was born on January 14, 1943 in Shanghai, China but considers Bethany, Oklahoma to be her hometown. She spent many years at the University of Oklahoma, receiving a Bachelor in chemistry in 1963, a Master in biochemistry in 1970, and a Doctorate in biochemistry in 1973. Dr. Lucid flew on the STS-51G Discovery, STS-34 Atlantis, STS-43 Atlantis, and STS-58 Columbia shuttle missions, setting the record for female astronauts by logging 838 hours and 54 minutes in space. She also currently holds the United States single mission space flight endurance record for her 188 days on the Russian Space Station Mir. From February 2002 to September 2003, she served as chief scientist at NASA Headquarters before returning to JSC to help with the Return to Flight program after the STS-107 accident. Born November 8, 1947, in Murfreesboro, Tennessee, Margaret Rhea Seddon received a Doctorate of Medicine in 1973 from the University of Tennessee. She flew on space missions STS-51 Discovery, STS-40 Columbia, and STS-58 Columbia for a total of over 722 hours in space. Dr. Seddon retired from NASA in November 1997, taking on a position as the Assistant Chief Medical Officer of the Vanderbilt Medical Group in Nashville, Tennessee. Kathryn Sullivan was born October 3, 1951 in Patterson, New Jersey but considers Woodland Hills, California to be her hometown. She received a Bachelor in Earth Sciences from the University of California, Santa Cruz in 1973 and a Doctorate in Geology from Dalhousie University in Halifax, Nova Scotia in 1978. She flew on space missions STS-41G, STS-31, and STS-45 and logged a total of 532 hours in space. Dr. Sullivan left NASA in August 1992 to

  13. The Lifetime Surveillance of Astronaut Health Newsletter

    NASA Technical Reports Server (NTRS)

    Lee, Lesley

    2011-01-01

    The June 2010 LSAH newsletter introduced the change from the Longitudinal Study of Astronaut Health research study to the new Lifetime Surveillance of Astronaut Health program (An Overview of the New Occupational Surveillance Program for the Astronaut Corps). Instead of performing research-focused retrospective analyses of astronaut medical data compared to a JSC civil servant control population, the new program is focused on prevention of disease and prospective identification and mitigation of health risks in each astronaut due to individual exposure history and the unique occupational exposures experienced by the astronaut corps. The new LSAH program has 5 primary goals: (1) Provide a comprehensive medical exam for each LSAH participant; (2) Conduct occupational surveillance; (3) Improve communication, data accessibility, integrity and storage; (4) Support operational and healthcare analyses; and (5) Support NASA research objectives. This article will focus primarily on the first goal, the comprehensive medical exam. Future newsletters will outline in detail the plans and processes for addressing the remaining program goals.

  14. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  15. An overview of international issues in astronaut psychological selection.

    PubMed

    Santy, P A; Jones, D R

    1994-10-01

    The NASA Johnson Space Center Medical Sciences Division convened an In-House Working Group on Psychiatric and Psychological Selection of Astronauts in 1988. Working with the European Space Agency (ESA) and the National Space Development Agency (NASDA) of Japan, psychiatrists and psychologists experienced in selecting individuals for training as astronauts or analogous duties studied the development of appropriate criteria. Psychiatric criteria generally concern the detection of pathological conditions, and thus "select-out" applicants by disqualification. Psychological criteria may be used to identify specific affirmative criteria that make an individual particularly well-qualified for such duties, and thus concern "select-in" processes for operational crews. As space missions grow longer, and as crews become larger and more demographically diversified, the long-ignored questions, "What sort of healthy individuals should be selected for such missions," and "How do we know this?" will become more critical to the success of space exploration. The papers included in this Panel concern the results of these investigations, and represent long-needed quantification of these two selection processes, select-out and select-in, in several cultures. PMID:7832730

  16. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    NASA Technical Reports Server (NTRS)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  17. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts. PMID:11604058

  18. Space Shuttle Underside Astronaut Communications Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  19. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Onboard Space Shuttle Columbia (STS-65) Payload Specialist Chiaki Mukai is ready to begin one of her busy twelve hour shifts as she enters the International Microgravity Laboratory 2 (IML-2) spacelab science module via the spacelab turnel (note hatch opening behind her). The tunnel connects the IML-2 module with the Orbiter Vehicle's (OV) crew compartment. Mounted on a rack handrail and on a forward end cone bracket are video cameras that will record the two weeks of experimenting inside the module. Mukai is a representative from the National Space Development Agency (NASDA) of Japan.

  20. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  1. André Danjon et l'informatique.

    NASA Astrophysics Data System (ADS)

    Arsac, J.

    There is not any paper by André Danjon about computer science. The only way to know his ideas about it is through his action. At the end of the fifties, several scientists in astronomy and astrophysics had been convinced that a computer would be of great help in their research works. André Danjon immediatly agreed that it was a good idea. He greatly supported them in the process of having a computer bought by the Meudon Observatory. A computing center was started there in 1959. As soon as 1957, André Danjon had initiated a French association for computing, the "association française de calcul". This association provoked a world meeting of associations for information processing in Paris in 1959, where the IFIPS has been created.

  2. Psychological training of German science astronauts

    NASA Astrophysics Data System (ADS)

    Manzey, Dietrich; Schiewe, Albrecht

    Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".

  3. The Digital Astronaut Project Bone Remodeling Model

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem; Lewandowski, Beth E.; Thompson, William K.; Sibonga, Jean D.

    2014-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development.

  4. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a media conference in the Apollo/Saturn V Center, former Apollo astronaut Edwin 'Buzz' Aldrin, who flew on Apollo 11, the launch to the moon, demonstrates a point in his comment for the press. Joining him in the conference are other Apollo astronauts Neil A. Armstrong (left), who also flew on Apollo 11 and was the first man to set foot on the moon; Gene Cernan (right), who flew on Apollo 10 and 17; and Walt Cunningham (back to camera), who flew on Apollo 7. In the background is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  5. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  6. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  7. Management of Asymptomatic Renal Stones in Astronauts

    NASA Technical Reports Server (NTRS)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  8. Changes in Monocyte Functions of Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.

    2004-01-01

    Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.

  9. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Photographers and cameramen fill the stands of the Apollo/Saturn V Center for a press conference with former Apollo astronauts (seated, left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. At left is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  10. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1985-01-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.

  11. Social desirability bias in personality testing: Implications for astronaut selection

    NASA Astrophysics Data System (ADS)

    Sandal, Gro M.; Musson, Dave; Helmreich, Robert. L.; Gravdal, Lene

    2005-07-01

    The assessment of personality is recognized by space agencies as an approach to identify candidates likely to perform optimally during spaceflights. In the use of personality scales for selection, the impact of social desirability (SD) has been cited as a concern. Study 1 addressed the impact of SD on responses to the Personality Characteristic Inventory (PCI) and NEO-FFI. This was achieved by contrasting scores from active astronauts (N=65) with scores of successful astronaut applicants (N=63), and between pilots applicants (N=1271) and pilot research subjects (N=120). Secondly, personality scores were correlated with scores on the Marlow Crown Social Desirability Scale among applicants to managerial positions (N=120). The results indicated that SD inflated scores on PCI scales assessing negative interpersonal characteristics, and impacted on four of five scales in NEO-FFI. Still, the effect sizes were small or moderate. Study 2 addressed performance implications of SD during an assessment of males applying to work as rescue personnel operations in the North Sea (N=22). The results showed that SD correlated negatively with cognitive test performance, and positively with discrepancy in performance ratings between self and two observers. In conclusion, caution is needed in interpreting personality scores in applicant populations. SD may be a negative predictor for performance under stress.

  12. Identification of Psychological Stresses for Astronauts and Cosmonauts

    NASA Astrophysics Data System (ADS)

    Marsh, Melinda

    As humans continue to explore and expand in the solar system, psychological problems brought about by high stress of living in the space environment will continue to increase. Unfortunately, due to many reasons, including relative difficulties with gaining access to astronauts and cosmonauts and to gather psychological data from them regarding stressors, this area is not very well known and discussed. Five astronauts and cosmonauts from three space agencies: ESA, RSA, and JAXA were unoffi- cially surveyed regarding their experiences with ten general categories of psychological stressors as well as eight subcategories of interpersonal conflict stressors accepted in space related community of psychologists. The two subjects in space for longer periods of time reported more stressors and were likely to rate stressors as having a greater effect on the chance of mission failure. Shorter duration flyers reported nearly all general stressors were likely to increase in the event of a longer duration space flight. With the increased interest in long duration spaceflight, psychological stressors are more likely to affect mission success.

  13. Using computer graphics to enhance astronaut and systems safety.

    PubMed

    Brown, J W

    1985-02-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses. PMID:11542840

  14. Beyond astronaut's capabilities: The current state of the art.

    PubMed

    Gemignani, Jessica; Gheysens, Tom; Summerer, Leopold

    2015-08-01

    Space agencies have developed extensive expertise with sustaining human presence in low earth orbits and microgravity. Prolonged human presence in space beyond EarthâĂŹs orbit presents additional, some still unsolved issues. These are linked to the distance to Earth (impossibility of effective tele-operation, psychological effects linked to remoteness from Earth, required autonomy, the handling of emergencies, long mission durations), and to the environments beyond the Earth magnetosphere (radiation levels, local environments including atmospheres, dust, gravity, day-night cycles). These issues have impacts on the spacecraft design, the mission operations, astronaut selection and preparation and required supporting/ enabling technologies. This paper builds upon previous work by Rossini et al. , in critically reviewing and updating the current state of scientific research on enhancing astronaut's capabilities to face some of these challenges. In particular, it discusses the pertinence and feasibility of two approaches aiming at enhancing the chances of success of human missions: induced hibernation state and brain-machine interfaces. PMID:26737075

  15. Social desirability bias in personality testing: implications for astronaut selection.

    PubMed

    Sandal, Gro M; Musson, Dave; Helmreich, Robert L; Gravdal, Lene

    2005-01-01

    The assessment of personality is recognized by space agencies as an approach to identify candidates likely to perform optimally during spaceflights. In the use of personality scales for selection, the impact of social desirability (SD) has been cited as a concern. Study 1 addressed the impact of SD on responses to the Personality Characteristic Inventory(PCI) and NEO-FFI. This was achieved by contrasting scores from active astronauts (N=65) with scores of successful astronaut applicants (N=63), and between pilots applicants (N=1271) and pilot research subjects (N=120). Secondly, personality scores were correlated with scores on the Marlow Crown Social Desirability Scale among applicants to managerial positions (N=120). The results indicated that SD inflated scores on PCI scales assessing negative interpersonal characteristics, and impacted on four of five scales in NEO-FFI. Still, the effect sizes were small or moderate. Study 2 addressed performance implications of SD during an assessment of males applying to work as rescue personnel operations in the North Sea (N=22). The results showed that SD correlated negatively with cognitive test performance, and positively with discrepancy in performance ratings between self and two observers. In conclusion, caution is needed in interpreting personality scores in applicant populations. SD maybe a negative predictor for performance under stress. PMID:16010763

  16. Astronaut Richard M. Linnehan prepares to draw blood from astronaut Charles J. Brady.

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Astronaut Richard M. Linnehan prepares to draw blood from astronaut Charles J. Brady. The two mission specialists ultimately joined three other NASA astronauts and two international payload specialists for almost 17-days of research in the Life and Microgravity Spacelab (LMS-1) Science Module in the Space Shuttle Columbias cargo bay. Part of a battery of metabolic studies, blood draws, along with fecal and urine samples of each crew member, are used to measure calcium loss and to determine how and where this loss occurs during spaceflight.

  17. Anthropometric survey of the astronaut applicants and astronauts from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Klute, Glenn K.

    1993-01-01

    The Anthropometry and Biomechanics Laboratory at the Johnson Space Center has been collecting anthropometric data from astronaut applicants since 1977. These anthropometric measurements had been taken from 473 applicants. Based on the position they applied for, these applicants were classified as either mission specialists, payload specialists, pilots, or observers. The main objective was to document the variations among these applicants and tabulate the percentile data for each anthropometric dimension. The percentile and the descriptive statistics data were tabulated and graphed for the whole astronaut candidate population; for the male and female groups; for each subject classification such as pilot, mission specialist, and payload specialist; and finally, for those who were selected as astronauts.

  18. Astronaut Gordon Cooper in centrifuge for tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  19. Astronaut John Glenn Enters Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  20. Astronaut Glenn in the Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  1. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  2. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, stands in 'golden slippers' on the Lunar Module 3 porch during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. This photograph was taken from inside the Lunar Module 'Spider'. The Command/Service Module and Lunar Module were docked. Schweickart is wearing an Extravehicular Mobility Unit (EMU).

  3. Astronaut James Buchli wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).

  4. Astronaut Bonnie Dunbar wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Bonnie J. Dunbar, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Dunbar is not wearing a helmet.

  5. STS-118 Astronaut Tracy Caldwell During Training

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Tracy E. Caldwell, STS-118 astronaut and mission specialist, listens as a crew trainer briefs her on the usage of parachute gear during an emergency egress training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Caldwell is wearing a training version of her shuttle launch and entry suit

  6. Astronaut Gordon Cooper smiles for recovery crew

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., has a smile for the recovery crew of the U.S.S. Kearsarge, after he is on board from a successful 22 orbit mission of the earth in his spacecraft 'Faith 7'. Cooper is still sitting in his capsule, with his helmet off.

  7. Astronaut Alan Bean shaves while aboard Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, uses battery powered shaver while in the crew quarters of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  8. Official portrait of Astronaut Vance D. Brand

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Official portrait of Astronaut Vance D. Brand. Brand is in the dark blue shuttle flight suit with his helmet under his arm and an American flag behind him. Above and to the right of his head is a view of the shuttle flying.

  9. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  10. Astronaut Eileen Collins in Full Fuselage Trainer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in STS-63 training at JSC's Shuttle mockup and integration laboratory. Collins is seated at the pilot's station in the Full Fuselage Trainer (FFT) (48403-4); Collins looks out the aft flight deck window in the Shuttle mockup trainer (48405).

  11. SPEECH DURATIONS OF ASTRONAUT AND GROUND COMMUNICATOR.

    PubMed

    MATARAZZO, J D; WIENS, A N; SASLOW, G; DUNHAM, R M; VOAS, R B

    1964-01-10

    Laboratory studies suggest that an interviewer can influence the speech duration of an interviewee by modifications in his own speech duration. What appears to be a related association between the speech duration of communicators on the ground and an astronaut in orbital flight was found. PMID:14075727

  12. Original 7 Astronauts Inspect Mercury Model

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The original seven Mercury astronauts were from left, front row: Virgil 'Gus' Grissom. Scott Carpenter, Donald 'Deke' Slayton and Gordon Cooper; back row: Alan Shepard, Walter Schirra and John Glenn. The Mercury 7 astronauts were introduced to the American public in April 1959. The seven criteria for selection were as follows: 1. less than 40 years old; 2. less than 5 foot 11 inches tall: 3. excellent physical condition; 4. bachelor's degree in engineering or equivalent; 5. test-pilot school graduate; 6. minimum of 1,500 hours flying time; 7. qualified jet pilot. However, the process of choosing the first astronauts was elaborate and rigorous. The Langley Space Task Group believed that one of the most important prerequisites was being a test pilot. Langley engineer Charles Donlan and test pilot Robert Champine played important roles in the screening and selection process. Once selected, the astronauts began their training program at Langley. This included a 'little of everything' ranging from a graduate-level course in introductory space science to simulator training and scuba-diving. Training continued until the Langley Space Task Group was transferred to Houston, Texas.

  13. Apollo 11 Astronauts During Press Conference

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The night before launch day, Apollo 11 crew members (R-L) Michael Collins, Neil Armstrong, and Edwin Aldrin, participated in a closed circuit press conference the night before they began their historic lunar landing mission. At far left is chief astronaut and director of flight crew operations, Donald K. Slayton. The press conference with questions via intercom, was held under semi-isolation conditions to avoid exposing the astronauts to possible illness at the last minute. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Astronaut Gordon Cooper during flight tests

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  15. Astronaut Virgil Grissom preparing for centrifuge training

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom, wearing the new Mercury pressure suit, is preparing for centrifuge training. He is receiving assistance in adjusting the breathing apparatus which is attached to a data recording device at his feet. Assisting him is Dr. Jackson.

  16. STS-120 Astronaut Stephanie D. Wilson

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Attired in a training version of her shuttle launch and entry suit, astronaut Stephanie D. Wilson, STS-120 mission specialist, awaits the start of a training session in the Space Vehicle Mockup Facility at Johnson Space Center. Wilson was preparing for her launch aboard Space Shuttle Discovery which occurred on October 23, 2007.

  17. Astronauts and cosmonauts sign Gagarin's diary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In keeping with Russian tradition, astronaut Norman E. Thagard (seated, left), guest researcher, watches as Vladimir N. Dezhurov (seated, center), signs the diary of the late Yuriy A. Gagarin, the first Russian cosmonaut, as his Mir 18 crew mates and the

  18. Astronauts and cosmonauts sign Gagarin's diary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In keeping with Russian tradition, astronaut Bonnie J. Dunbar (left), STS-71 mission specialist, signs the diary of the late Yuriy A. Gagarin, the first Russian cosmonaut, as her STS-71 crew mates members look on. Cosmonauts Anatoliy Y. Solovyov (center),

  19. Astronaut Scott Parazynski during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (partially visible in foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  20. Astronauts Ochoa and Tanner during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Wearing the training versions of the launch and entry suits, astronauts Ellen Ochoa, STS-66 payload commander, and Joseph P. Tanner, STS-66 mission specialist, await the beginning of a training session on emergency egress procedures. The training was held in the crew compartment trainer (CCT) at JSC's Shuttle mock-up and integration laboratory.

  1. STS-120 Astronaut Pamela A. Melroy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    While seated at the commander's station, astronaut Pamela A. Melroy, STS-120 commander, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Preparing for the STS-120 mission which launched October 23, 2007, Melroy is wearing a training version of her shuttle launch and entry suit.

  2. Astronaut Scott Parazynski during egress training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  3. STS-118 Astronaut Tracy Caldwell During Training

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Tracy E. Caldwell, STS-118 astronaut and mission specialist, participates in a training session on the usage of a special device, used to lower oneself from a troubled shuttle, in the Space Vehicle Mockup Facility at the Johnson Space Center. Caldwell is wearing a training version of her shuttle launch and entry suit.

  4. Astronaut Peggy Whitson and Lemonade Droplet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson is having fun with a blob of lemonade on the International Space Station (ISS). A Fluids physicist, however, sees much more than just a blob of lemonade floating around. Using sound waves and air flows, technology development to shape and position liquid droplets for containerless processing or fluid clean up is possible.

  5. How Can "Weightless" Astronauts Be Weighed?

    ERIC Educational Resources Information Center

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…

  6. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  7. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    opened in March 1997 and is the current site for US EVA training. Other space agencies also have used water to simulate weightlessness and train for EVAs. Russia has a training facility similar to the NBL named the Hydro Lab. The Hydro Lab began operations at the Gagarin Cosmonaut Training Center (GCTC) in 1980 and has been used extensively to the present. Although a majority of training in the Hydro Lab uses the Russian Orlan suit, a small number of sessions have been conducted using a NASA suit. The Japanese Weightlessness Environment Test System (WETS) went into service at the Tsukuba Space Center in 1997 but was closed in 2011 due to extensive earthquake damage. Several sessions were performed using a NASA suit, but these sessions were short and considered "development" runs. LSAH has assembled records from the WETF, NBL and Hydro Lab. Recording of the EVA training data has changed considerably from 1967 to present. The goal of early record keeping was to track use of hardware components, and the person involved was treated as a suited operator, not as a focus of interest. Records from the past two decades are fairly precise with the person, date, suit type and size noted. On occasion the length of the session was listed, but this data is not included on all records. Records were merged from data sources and extensive cleaning of the records was required since the multiple sources frequently overlapped and duplicated records. To date the LSAH EVA training dataset includes over 12,500 EVA training sessions performed by NASA astronauts since 1981. The following variables are included for most records: Name, Sex, Event date, Event name, HUT type, HUT size, Facility, and Estimated run time. For a smaller subset of records, the following variables are available: Actual run time, Time inverted, and the suit components Waist bearing type, Shoulder harness, Shoulder pads, and Teflon inserts. The LSAH dataset is currently the most complete resource for data regarding EVA

  8. Official portrait of 1987 astronaut candidate Bruce E. Melnick

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Official portrait of 1987 astronaut candidate Bruce E. Melnick. Melnick, a member of the United States Coast Guard (USCG) and Astronaut Class 12, wears navy blue flight suit and holds space shuttle orbiter model.

  9. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  10. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  11. A torque balance control moment gyroscope assembly for astronaut maneuvering

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Driskill, G. W.

    1972-01-01

    A control moment gyroscope assembly is described for use in an astronaut maneuvering research vehicle. This vehicle (backpack) will be used by astronauts inside the orbiting Skylab for evaluation of various maneuvering systems.

  12. Astronaut Richard Richards looks out of Discovery's flight deck window

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Richard N. Richards, mission commander, looks through one of the Space Shuttle Discovery's overhead flight deck windows to view the space walk activities of astronauts Carl J. Meade, who took this picture, and Mark C. Lee.

  13. Astronaut Richard Truly and Candidate Frederick Hauck in shuttle simulator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronaut Richard Truly and Astronaut Candidate Frederick Hauck in the Shuttle Mission Simulator in bldg 5 (Mission Simulation and Training Facility).They are in the flight deck seated at the commander and pilots seats checking documentation before simulation begins.

  14. Astronaut William Gregory prepares to exit his sleep quarters

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, ejects a cassette and prepares to bail out of his sleep quarters aboard the Earth orbiting Space Shuttle Endeavour. The astronaut was about to begin a shift of support to the red team.

  15. 3. Historic American Buildings Survey, John Andre, November 15, 1777, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, John Andre, November 15, 1777, Henry E. Huntington Library, San Marino, California, See Catalog of Graphic Material #44, PHOTOCOPY OF 'MUD ISLAND WITH THE OPERATIONS FOR REDUCING IT'. - Fort Mifflin, Mud Island, Marine & Penrose Ferry Roads, Philadelphia, Philadelphia County, PA

  16. Metals in sediments of San Andres lagoon, Tamaulipas, Mexico

    SciTech Connect

    Vazquez, F.G.; Aguilera, L.G. ); Sharma, V.K. )

    1994-03-01

    Heavy metal pollution in water is generally associated with industrial and municipal discharges into rivers, estuaries and lagoons. Once metals are in the water column, they may be taken up by organisms, deposited in the sediments or remain for some period in the water itself. The deposition rate in sediments depends on, among other factors, metal concentration in surface sediments. The concentrations of heavy metals in sediments of coastal, estuarine and lagoon environments have been determined by many workers. For the past several years, we have been interested in determining trace and heavy metal concentrations in the lagoons in Mexico to establish the levels of metal pollution. The work reported here is the completion of our ongoing study in San Andres lagoon. San Andres lagoon is located north of two industrial ports, Tampico and Altamira. In this industrial zone, the basins of the Panuco and Tamesi Rivers are localized and have industrial effluent throughout the year. All these activities and the input of the Tigre River, which runs through an agricultural and cattle-raising region, may affect the biogeochemistry of the San Andres lagoon. In the present work, we report concentrations of Cd, Co, Cu, Fe, Mn, Ni, Zn and Pb in sediments of San Andres lagoon. The measurements were made in different seasons; Rain-84 (August-September 1984); North (October-December 1984); Dry (April 1985); and Rain-85 (April-June 1985). 13 refs., 1 fig., 2 tabs.

  17. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  18. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of astronaut candidates....

  19. Component of astronauts survival equipment backpack - medical injectors

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The automatic medical injectors were carried on the Mercury-Atlas 9 flight. The injectors provide the astronaut with injection tubes of Tigan, for preventing motion sickness and Demerol, for relieving pain. The tubes encased in the block are stowed in the astronauts survival kit. The single injection tubes are placed in a pocket of the astronauts space suit.

  20. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    BACKGROUND: Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. Recently this historical data has been identified as being useful for developing an occupational surveillance requirement. It can be used to assess overall colon health and to have a point of reference for future tests in current and former astronauts, as well as to follow-up and track rates of colorectal cancer and polyps. These rates can be compared to military and other terrestrial populations. In 2003, the active astronaut colonoscopy requirements changed to require less frequent colonoscopies. Since polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer, the procedure decreases the individual's risk for colon cancer. The objective of this study is to evaluate the possible effect of increased follow-up times between colonoscopies on the number and severity of polyps identified during the procedures among both current and former NASA astronauts. Initial results and forward work regarding astronaut colonoscopy screenings will be presented. METHODS: A retrospective study of all colonoscopy procedures performed on NASA astronauts between 1962 and 2015 (both during active career and retirement) was conducted by review of the JSC Clinic Electronic Medical Record and Lifetime Surveillance of Astronaut Health (LSAH) database for colonoscopy screening procedures and pathology reports. The timeframe of interest was from the time of selection into the Astronaut Corps through May 2015 or death. For each colonoscopy report, the following data were captured: date of procedure, age at time of procedure, reason for procedure, quality of bowel prep, completion of procedure and/or reason for termination of procedure, findings of procedure, subsequent treatment (if any), recommended follow-up interval, actual follow up interval, family history of polyps or colon cancer

  1. Summary of astronaut inputs concerning automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    An assessment of the potential for increased productivity on Space Station Freedom through advanced automation and robotics was recently completed. Sponsored by the Office of Space Station, the study involved reviews of on-orbit operations experience documentation, interviews with 23 current and former astronauts/payload specialists as well as other NASA and contractor personnel, and a survey of 32 astronauts and payload specialists. Assessed areas of related on-orbit experience included Skylab, space shuttle, Spacelab, and the Soviet space program, as well as the U.S. nuclear submarine program and Antarctic research stations analogs. The survey questionnaire asked the respondents to rate the desirability of advanced automation, EVA robotics, and IVA robotics. They were also asked to rate safety impacts of automated fault diagnosis, isolation, and recovery (FDIR); automated exception reporting and alarm filtering; and an EVA retriever. The respondents were also asked to evaluate 26 specific applications of advanced automation and robotics related to perceived impact on productivity.

  2. Evident Biological Effects of Space Radiation in Astronauts

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2004-01-01

    Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.

  3. Astronaut John Young displays drawing of Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Snoopy in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated.

  4. Extravehicular mobility unit training and astronaut injuries

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  5. Astronaut Jack Lousma taking hot bath

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A closeup view of Astronaut Jack R. Lousma, Skylab 3 pilot, taking a hot bath in the crew quarters of the Orbital Workshop (OWS) of the Skylab space station cluster in Earth orbit. In deploying the shower facility, the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  6. STS-96 Astronauts Adjust Unity Hatch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aboard the International Space Station (ISS), astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S. built Unity node. The task was part of an overall effort of seven crew members to prepare the existing portion of the International Space Station (ISS). Launched on May 27, 1999, aboard the Orbiter Discovery, the STS-96 mission was the second ISS assembly flight and the first shuttle mission to dock with the station.

  7. Former Astronaut Neil A. Armstrong Visits MSFC

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  8. End effector with astronaut foot restraint

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  9. Enhancing astronaut performance using sensorimotor adaptability training.

    PubMed

    Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561

  10. Enhancing astronaut performance using sensorimotor adaptability training

    PubMed Central

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments—enhancing their ability to “learn to learn.” We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561

  11. NASA Astronaut Urinary Conditions Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Cole, Richard; Young, Millennia H.; Mason, Sara

    2016-01-01

    INTRODUCTION: Spaceflight is associated with many factors which may promote kidney stone formation, urinary retention, and/or Urinary Tract Infection (UTI). According to ISS mission predictions supplied by NASA's Integrated Medical Model, kidney stone is the second and sepsis (urosepsis as primary driver) the third most likely reason for emergent medical evacuation from the International Space Station (ISS). METHODS: Inflight and postflight medical records of NASA astronauts were reviewed for urinary retention, UTI and kidney stones during Mercury, Gemini, Apollo, Mir, Shuttle, and ISS expeditions 1-38. RESULTS: NASA astronauts have had 7 cases of kidney stones in the 12 months after flight. Three of these cases occurred within 90 to 180 days after landing and one of the seven cases occurred in the first 90 days after flight. There have been a total of 16 cases (0.018 events per person-flights) of urinary retention during flight. The event rates per mission are nearly identical between Shuttle and ISS flights (0.019 vs 0.021 events per person-flights). In 12 of the 16 cases, astronauts had taken at least one space motion sickness medication. Upon further analysis, it was determined that the odds of developing urinary retention in spaceflight is 3 times higher among astronauts who took promethazine. The female to male odds ratio for inflight urinary retention is 11:14. An astronaut with urinary retention is 25 times more likely to have a UTI with a 17% infection rate per mission. There have been 9 reported UTIs during spaceflight. DISCUSSION: It is unclear if spaceflight carries an increased post-flight risk of kidney stones. Regarding urinary retention, the female to male odds ratio is higher during flight compared to the general population where older males comprise almost all cases due to prostatic hypertrophy. This female prevalence in spaceflight is even more concerning given the fact that there have been many more males in space than females. Terrestrial

  12. Astronaut Medical Selection and Flight Medicine Care During the Shuttle ERA 1981 to 2011

    NASA Technical Reports Server (NTRS)

    Johnston, S.; Jennings, R.; Stepaniak, P.; Schmid, J.; Rouse, B.; Gray, G.; Tarver, B.

    2011-01-01

    The NASA Shuttle Program began with congressional budget approval in January 5, 1972 and the launch of STS-1 on April 12, 1981 and recently concluded with the landing of STS-135 on July 21, 2011. The evolution of the medical standards and care of the Shuttle Era Astronauts began in 1959 with the first Astronaut selection. The first set of NASA minimal medical standards were documented in 1977 and based on Air Force, Navy, Department of Defense, and the Federal Aviation Administration standards. Many milestones were achieved over the 30 years from 1977 to 2007 and the subsequent 13 Astronaut selections and 4 major expert panel reviews performed by the NASA Flight Medicine Clinic, Aerospace Medicine Board, and Medical Policy Board. These milestones of aerospace medicine standards, evaluations, and clinical care encompassed the disciplines of preventive, occupational, and primary care medicine and will be presented. The screening and retention standards, testing, and specialist evaluations evolved through periodic expert reviews, evidence based medicine, and Astronaut medical care experience. The last decade of the Shuttle Program saw the development of the International Space Station (ISS) with further Space medicine collaboration and knowledge gained from our International Partners (IP) from Russia, Canada, Japan, and the European Space Agencies. The Shuttle Program contribution to the development and implementation of NASA and IP standards and waiver guide documents, longitudinal data collection, and occupational surveillance models will be presented along with lessons learned and recommendations for future vehicles and missions.

  13. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment in the OWS

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment, as seen in this photographic reproduction taken from a television transmission made by a color television camera in the Orbital Workshop (OWS) of the Skylab space station in Earth orbit. Bean is strapped into the back-mounted, hand-controlled Automatically stabilized Maneuvering Unit (ASMU). The M509 exercise was in the forward dome area of the OWS. THe dome area is about 22 feet in diameter and 19 feet form top to bottom.

  14. Validation of astronaut psychological select-in criteria

    NASA Technical Reports Server (NTRS)

    Rose, R. M.; Helmreich, R. L.; Mcfadden, T.; Santy, P. A.; Holland, A. W.

    1992-01-01

    An optional astronaut selection strategy would select-in individuals on the basis of personality attributes associated with superior performance. Method: A test battery, the Astronaut Personal Characteristics Inventory (ASTROPCI) was developed which assesses positive and negative components of achievement, motivation, and interpersonal orientations and skills. The battery was administered to one hundred three astronaut candidates and sixty-six current U.S. Shuttle astronauts. To determine performance, a series of conceptual areas related to space flight performance were defined. Astronauts rated their peers on each of these dimensions. Ratings were obtained on all eighty-four current astronauts (excluding those selected in 1990). In addition to peer ratings, supervisor assessments of the same dimensions were obtained for each astronaut. Results: Cluster and factor analysis techniques were employed to isolate subgroups of astronauts. Those astronauts with both high achievement needs and interpersonal skills were most often rated among the top five by their peers and least often rated among the lowest five. A number of scales discriminated between astronauts rated high and low on one or more performance dimensions. Conclusions: The results parallel findings from the personality assessment of individuals in other demanding professions, including aircraft pilots and research scientists, suggesting that personality factors are significant determinants to performance in the space environment.

  15. Latent Virus Reactivation in Space Shuttle Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  16. Anomalous Cases of Astronaut Helmet Detection

    NASA Technical Reports Server (NTRS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-01-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  17. The astronaut of 1988. [training and selection

    NASA Technical Reports Server (NTRS)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  18. Latent Herpes Viruses Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth

  19. Astronaut Story Musgrave during STS-6 EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut F. Story Musgrave, STS-6 mission specialist, translates down the Challenger's payload bay door hinge line with a bag of latch tools. In the lower left foreground are three canisters containing three getaway special (GAS) experiments. Part of the starboard wing and orbital maneuvering system (OMS) pod are seen backdropped against the blackness of space. The gold-foil protected object on the right is the airborne support equipment for the now vacated inertial upper stage (IUS) which aided the deployment of the tracking and data relay satellite (TDRS).

  20. Food kit used by Mercury astronauts

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Food kit used by Mercury astronauts. Some is dehydrated and needs water, other packets are ready to eat. Size is measured relative to a ruler. Included are packets of mushroom soup, orange-grapefruit juice, cocoa beverage, pineapple juice, chicken with gravy, pears, strawberries, beef and vegetables and other assorted food containers (08742-3); mechanism for connecting water dispensor to dehydrated food containers to facilitate rehydration (08744); Group packets of ready to eat space food, with size being measured by a ruler (8745).

  1. Automatic georeferencing of astronaut auroral photography

    NASA Astrophysics Data System (ADS)

    Riechert, Maik; Walsh, Andrew P.; Gerst, Alexander; Taylor, Matthew G. G. T.

    2016-07-01

    Astronauts on board the International Space Station (ISS) have taken thousands of high-resolution colour photographs of the aurora, which could be made useful for research if their pointing information could be reconstructed. We describe a method to do this using the star field in the images, and how the reconstructed pointing can then be used to georeference the images to a similar level of accuracy in existing all-sky camera images. We have used this method to make georeferenced auroral images taken from the ISS available and here describe the resulting data set, processing software, and how to access them.

  2. Astronaut Tamara Jernigan during WETF training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Tamara E. Jernigan, STS-52 mission specialist, waves to her training staff prior to being submerged in a 25-feet deep pool in the JSC Weightless Environment Training Facility (WETF). Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Jernigan joined another STS-52 crew member in using the pool to rehearse contingency space walk chores. She was later named payload commander for the STS-67 mission aboard the Space Shuttle Endeavour.

  3. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo astronauts meet with the media at the Apollo/Saturn V Center prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. From left are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  4. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, identifies a reporter to pose a question to one of the former Apollo astronauts seated next to her. From left, they are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  5. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, relays a question from the media to former Apollo astronaut Neil A. Armstrong. Beside Armstrong are Edwin 'Buzz' Aldrin, Gene Cernan, and Walt Cunningham, all of whom also flew on Apollo missions. The four met with the media prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. The banquet celebrated the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  6. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  7. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  8. Astronaut Stephen Oswald and fellow crew members on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  9. Astronauts James Lovell and Frank Borman during preflight physical

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. Charles A. Berry, Chief of the Manned Spacecraft Center (MSC) Medical Programs, checks Astronaut James A. Lovell Jr., Gemini 7 prime crew pilot, follwoing workout on exercise machine. Results will be compared with those obtained during space flight for evaluation (60602); Astronaut Frank Borman, Gemini 7 command pilot, sits as two scalp electrodes are attached to his head. The electrodes will allow doctors to record electrical activity of the astronaut's cerebral cortex during periods of weightlessness (60603).

  10. STS-51 astronauts photographed during sleep period on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Four of the five STS-51 crew members were photographed during one of their sleep periods on Discovery's middeck. At bottom center, astronaut Frank L. Culbertson Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.

  11. Astronaut Thuot during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Space Vehicle Mockup Facility, astronaut Pierre J. Thuot retrieves gear to rehearse a suit donning exercise on the middeck. Thuot's realistic environs are provided by the shuttle crew compartment trainer (CCT). Thuot, mission specialist, and four other NASA astronauts will spend two weeks in space aboard the Space Shuttle Columbia in March of 1994. He and astronaut Andrew M. Allen have been rehearsing contingency space walks. There is no scheduled extravehicular activity (EVA) for the STS-62 flight.

  12. Apollo 11 astronaut Buzz Aldrin appears relaxed before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 astronaut Edwin E. Aldrin Jr. appears to be relaxed during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  13. Astronaut James Lovell prior to entering Gemini Mission Simulator

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut James A. Lovell Jr., prime crew command pilot of the Gemini 12 space flight, in Building 5, Mission Simulation and Training Facility, Houston, Texas. This photo was taken prior to his entering the Gemini Mission Simulator for flight training (45578); Astronaut Lovell (right) talks with Burton M. Gifford (left) and Duane K. Mosel (center), both with the Simulation Branch, Flight Crew Support Division (45579); Astronaut Lovell prepares to enter Gemini Mission Simulator (45580).

  14. Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Bhardwaj, A.; Ferrari, Franco; Kuznetsov, Nikolay; Lal, A. K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Guenther; Pinsky, Lawrence; Muszaphar Shukor, Sheikh; Singhvi, A. K.; Straube, Ulrich; Tomi, Leena; Townsend, Lawrence

    2014-11-01

    Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes

  15. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  16. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  17. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  18. Skylab Astronauts' Neutral Buoyancy Simulator Training

    NASA Technical Reports Server (NTRS)

    1970-01-01

    After the end of the Apollo missions, NASA's next adventure into space was the marned spaceflight of Skylab. Using an S-IVB stage of the Saturn V launch vehicle, Skylab was a two-story orbiting laboratory, one floor being living quarters and the other a work room. The objectives of Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. At the Marshall Space Flight Center (MSFC), astronauts and engineers spent hundreds of hours in an MSFC Neutral Buoyancy Simulator (NBS) rehearsing procedures to be used during the Skylab mission, developing techniques, and detecting and correcting potential problems. The NBS was a 40-foot deep water tank that simulated the weightlessness environment of space. This photograph shows astronaut Ed Gibbon (a prime crew member of the Skylab-4 mission) during the neutral buoyancy Skylab extravehicular activity training at the Apollo Telescope Mount (ATM) mockup. One of Skylab's major components, the ATM was the most powerful astronomical observatory ever put into orbit to date.

  19. Astronaut Clay Anderson Speaks With S.C. Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Clay Anderson participates in a Digital Learning Network (DLN) event with students at Crayton Middle School, Columbia,...

  20. New Jersey Students Speak With Astronaut Mario Runco

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students at Memorial Deptford High School in Deptfo...

  1. NRAO Scientists on Team Receiving International Astronautics Award

    NASA Astrophysics Data System (ADS)

    2005-10-01

    , a radio telescope bigger than the Earth." In addition to Fomalont and Romney, they are: Hisashi Hirabayashi, of the Institute of Space and Astronautical Science and Japan Aerospace Exploration Agency (ISAS/JAXA), Haruto Hirosawa (ISAS/JAXA), Peter Dewdney of Canada's Dominion Radio Astrophysical Observatory, Leonid Gurvits of the Joint Institute for VLBI in Europe (JIVE, The Netherlands), Makoto Inoue of the National Astronomical Observatory of Japan (NAOJ), David Jauncey of the Australia Telescope National Facility, Noriyuki Kawaguchi (NAOJ), Hideyuki Kobayashi (NAOJ), Kazuo Miyoshi (Mitsubishi Electric Corporation, Japan), Yasuhiro Murata (ISAS/JAXA), Takeshi Orii (NEC, Japan) Robert Preston of NASA's Jet Propulsion Laboratory (JPL), and Joel Smith (JPL). The International Academy of Astronautics was founded in August 1960 in Stockholm, Sweden, during the 11th International Astronautical Congress. The Academy aims to foster the development of astronautics for peaceful purposes; recognize individuals who have distinguished themselves in a related branch of science or technology; provide a program through which members may contribute to international endeavours; cooperation in the advancement of aerospace science. Previous recipients of the Laurels for Team Achievement Award are the Russian Mir Space Station Team (2001), the U.S. Space Shuttle Team (2002), the Solar and Heliospheric Observatory (SOHO) Team (2003), and the Hubble Space Telescope Team (2004). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. André Toupet: Surgeon Technician Par Excellence

    PubMed Central

    Katkhouda, Namir; Khalil, Michael R.; Manhas, Sharan; Grant, Steven; Velmahos, George C.; Umbach, Thomas W.; Kaiser, Andreas M.

    2002-01-01

    André Toupet is best known for the posterior fundoplication that bears his name, currently used for the treatment of gastroesophageal reflux disease (GERD) or completing Heller’s myotomy and subject today to intense discussions. This was not different in 1963, when Toupet proposed his technique at a time when the Nissen fundoplication was emerging as the treatment of choice for GERD. Behind the procedure, we discover a man with great surgical talent and meticulous attention to technical details who opposed criticism with hard work and strong family values. PMID:11923617

  3. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  4. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  5. Automatic Georeferencing of Astronaut Auroral Photography

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Riechert, M.; Taylor, M. G.

    2014-12-01

    Astronauts on board the International Space Station have taken thousands of high quality photographs of the aurorae borealis and australis with a high temporal and spatial resolution. A barrier to these photographs being used in research is that the cameras do not have a fixed orientation and the images therefore do not have any pointing information associated with them. Using astrometry.net and other open source libraries we have developed a software toolkit to automatically reconstruct the pointing of the images from the visible starfield and hence project the auroral images in geographic and geomagnetic coordinates. Here we explain the technique and the resulting data products, which will soon be publically available through the project website.

  6. Feeding the Astronauts During Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2010-01-01

    This slide presentation reviews the issues surrounding feeding astronauts during long duration missions. There is a brief history from the food and food packaging available during Project Mercury through the current food requirements. It shows the packaging and the requirements that have been used. The current food system includes thermostabilized and irradiated foods to reduce the potential of harmful microorganisms. There is an explanation of drinks available, rehydratable foods, and natural forms of food, (i.e., commercially available foods that are packaged in individual serving sizes). There is also discussion of the requirements for future missions, and the research gap for requirements for food that will last 5 years, with packaging and nutrients intact.

  7. Astronaut Foale is reunited with his family

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronaut C. Michael Foale is reunited with his family after an approximate four-and-a-half-month stay aboard the Russian Space Station Mir. Wife Rhonda, 5-year-old Jenna and 3-year-old Ian stayed up for the late-night homecoming after the Oct. 6 landing of the Space Shuttle orbiter Atlantis on the STS-86 mission. Foale, a member of the Mir 24 crew, was dropped off on the Russian space station during the STS-84 mission in mid-May. He joined the STS-86 crew aboard Atlantis for the return trip to Earth. STS-86 was the seventh docking of the Space Shuttle with the Mir. STS-86 Mission Specialist David A. Wolf replaced Foale on the Russian station.

  8. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, waits for photographers to take photos of former Apollo astronauts (left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. The four met with the media prior to an anniversary banquet highlighting the contributions of aerospace employees who made the Apollo program possible. The banquet celebrated the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  9. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone, chief of KSC's Media Services branch, identifies a reporter in the stands to pose a question to one of the former Apollo astronauts seated next to her. From left to right, they are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. Behind them on the lower floor are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  10. Astronaut Training in the Neutral Buoyancy Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  11. Astronaut Jerry Linenger with sheet of TIPS correspondence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With scissors in hand, astronaut Jerry M. Linenger, mission specialist, prepares to cut off a lengthy sheet of correspondence from ground controllers. Called the Thermal Imaging Printing System (TIPS), the message occupies a stowage locker on Discovery's middeck. Astronaut L. Blaine Hammond, pilot, retrieves a clothing item from a nearby locker.

  12. Astronaut James Lovell checks body temperature with oral temperature probe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  13. Astronaut James Lovell hoisted from water by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr., pilot of the Gemini 7 space flight, is hoisted from the water by a recovery helicopter from the Aircraft Carrier U.S.S. Wasp. Astronaut Frank Borman, command pilot, waits in the raft to be hoisted aboard the helicopter.

  14. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  15. Undergraduate Astronautics at the United States Naval Academy.

    ERIC Educational Resources Information Center

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  16. Astronauts Armstrong and Aldrin study rock samples during field trip

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, and Astronaut Edwin Aldrin, Lunar module pilot for Apollo 11, study rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  17. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  18. Astronaut James Newman evaluates tether devices in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, uses a 35mm camera to take a picture of fellow astronaut Carl E. Walz (out of frame) in Discovery's cargo bay. The two were engaged in an extravehicular activity (EVA) to test equipment to be used on future EVA's. Newman is tethered to the starboard side, with the orbital maneuvering system (OMS) pod just behind him.

  19. Astronauts Newman, Walz and Bursch change out lithium hydroxide canister

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Three members of the astronaut class of 1990 change out a lithium hydroxide canister beneath Discovery's middeck during STS-51 mission. Left to right are astronauts James H. Newman, Carl E. Walz and Daniel W. Bursch, all mission specialists. Note the lithium hydroxide canister floating between them.

  20. Astronauts Conrad and Kerwin practice Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Scientist-Astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC.

  1. Astronaut Gordon Cooper backs out of his spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper backs out of his spacecraft 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  2. Astronaut Gordon Cooper is assisted from his spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper stands supported by strong hands after climbing out of his spacecraft 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  3. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  4. Astronaut Alan Bean holds Special Environmental Sample Container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, holds a Special Environmental Sample Container filled with lunar soil collected during the extravehicular activity (EVA) in which Astronauts Charles Conrad Jr., commander, and Bean participated. Connrad, who took this picture, is reflected in the helmet visor of the lunar module pilot.

  5. Astronauts Weitz and Conrad suit up during prelaunch activity

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Paul J. Weitz, prime crew pilot of the first manned Skylab mission, is suited up in bldg 5 at JSC during prelaunch training activity. He is assisted by Astronaut Charles Conrad Jr., prime crew commander. The man in the left background is wearing a face mask to insure that Conrad, Joseph Kerwin, and Weitz are not exposed to disease prior to launch.

  6. Astronaut Richard Covey in the Crew Compartment trainer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Richard O. Covey sits at the pilot's station in the one-G Crew Compartment trainer (CCT) at JSC. Astronaut Frederick H. (Rick) Hauck (almost obscured at left) is in the commander's station. Covey was named as pilot for the STS 26 mission to be flown in 1988.

  7. Astronaut Story Musgrave in payload bay during EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman is reflected in the helmet visor of F. Story Musgrave as he photographs the veteran astronaut during one of the pair's three shared spacewalks. Beside Musgrave is the Wide Field/Planetary Camera (WF/PC II).

  8. Astronaut Harris checks response of muscles to microgravity

    NASA Technical Reports Server (NTRS)

    1995-01-01

    With astronaut Janice E. Voss, STS-63 mission specialist, as his test subject, astronaut Bernard A. Harris Jr., payload commander and a physician, uses a special biomedical harness/experiment to check the response of muscles to microgravity. They are on the middeck, where many of the Spacehab-3 experiments are located. The Spacehab-3 is in the cargo bay.

  9. Astronaut James Wetherbee briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut James D. Wetherbee, STS-63 mission commander, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  10. Official portrait of astronaut Robert D.Cabana

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Official portrait of astronaut Robert D.Cabana, a colonel in the United States Marine Corps (USMC) and a member of the 1985 Astronaut Class 11. Cabana is wearing a blue flight suit and poses with an American flag and asmall model of the space shuttle orbiter.

  11. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  12. Astronaut Jack Lousma egresses Skylab 3 Command Module

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, egresses the Skylab 3 Command Module aboard the prime recovery ship, U.S.S. New Orleans, during recovery operations in the Pacific Ocean. Note surgical masks on those assisting Lousma. This is to prevent the astronauts from contracting infections.

  13. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  14. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  15. The First Lunar Landing as Told by the Astronauts.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brochure contains a transcript of the Apollo 11 post-flight press conference, in which the astronauts discussed the scenes shown in 40 photographs taken during the mission. These photographs are included in the brochure. Most are in color. The conference concluded with a question and answer interview of the astronauts. (PR)

  16. 14 CFR § 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Selection of astronaut candidates. § 1214.1106 Section § 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  17. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA Astronaut Candidate Recruitment and Selection Program § 1214.1106 Selection of...

  18. Astronauts Readdy, Walz, and Newman in airlock after EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In Discovery's airlock, astronaut William F. Readdy, pilot, holds up a STS-51 slogan -- 'Ace HST Tool Testers' -- for still and video cameras to record. Readdy is flanked by astronauts Carl E. Walz (left) and James H. Newman, who had just shared a lengthy period of extravehicular activity (EVA) in and around Discovery's cargo bay.

  19. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  20. The Lifetime Surveillance of Astronaut Health (LSAH) Project

    NASA Technical Reports Server (NTRS)

    Bopp, Eugenia; Wear, Mary L.; Lee, Lesley R.; VanBaalen, Mary

    2013-01-01

    From 1989-2010 NASA conducted a research study, the Longitudinal Study of Astronaut Health, to investigate the incidence of acute and chronic morbidity and mortality in astronauts and to determine whether their occupational exposures were associated with increased risk of death or disability. In 2004, the Institute of Medicine recommended that NASA convert the longitudinal study into an occupational health surveillance program and in 2010, NASA initiated the Lifetime Surveillance of Astronaut Health project. The new program collects data on astronaut workplace exposures, especially those occurring in the training and space flight environments, and conducts operational and health care analyses to look for trends in exposure and health outcomes. Astronaut selection and retention medical standards are rigorous, requiring an extensive clinical testing regimen. As a result, this employee population has contributed to a large set of health data available for analyses. Astronauts represent a special population with occupational exposures not typically experienced by other employee populations. Additionally, astronauts are different from the general population in terms of demographic and physiologic characteristics. The challenges and benefits of conducting health surveillance for an employee population with unique occupational exposures will be discussed. Several occupational surveillance projects currently underway to examine associations between astronaut workplace exposures and medical outcomes will be described.

  1. Astronaut Wendy Lawrence participates in training session in the CCT

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  2. Astronaut Scott Carpenter examines protective material on pressure bulkhead

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Mercury Astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead in the white room facility at Hanger S, Cape Canaveral, Florida. This is the spacecraft which will carry astronaut Carpenter on the nation's second manned orbital flight.

  3. Astronaut Bernard Collins prepares to use Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Bernard A. Harris, Jr., STS-63 payload commander, prepares to make use of a Sky Genie device used in emergency egress training. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  4. Astronaut Eileen Collins is briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Eileen M. Collins, STS-63 mission pilot, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  5. Did Vertigo Kill America's Forgotten Astronaut?

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Merlin, Peter W.

    2007-01-01

    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  6. Changes in Neutrophil Functions in Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  7. Cleanliness verification process at Martin Marietta Astronautics

    NASA Astrophysics Data System (ADS)

    King, Elizabeth A.; Giordano, Thomas J.

    1994-06-01

    The Montreal Protocol and the 1990 Clean Air Act Amendments mandate CFC-113, other chlorinated fluorocarbons (CFC's) and 1,1,1-Trichloroethane (TCA) be banned from production after December 31, 1995. In response to increasing pressures, the Air Force has formulated policy that prohibits purchase of these solvents for Air Force use after April 1, 1994. In response to the Air Force policy, Martin Marietta Astronautics is in the process of eliminating all CFC's and TCA from use at the Engineering Propulsion Laboratory (EPL), located on Air Force property PJKS. Gross and precision cleaning operations are currently performed on spacecraft components at EPL. The final step of the operation is a rinse with a solvent, typically CFC-113. This solvent is then analyzed for nonvolatile residue (NVR), particle count and total filterable solids (TFS) to determine cleanliness of the parts. The CFC-113 used in this process must be replaced in response to the above policies. Martin Marietta Astronautics, under contract to the Air Force, is currently evaluating and testing alternatives for a cleanliness verification solvent. Completion of test is scheduled for May, 1994. Evaluation of the alternative solvents follows a three step approach. This first is initial testing of solvents picked from literature searches and analysis. The second step is detailed testing of the top candidates from the initial test phase. The final step is implementation and validation of the chosen alternative(s). Testing will include contaminant removal, nonvolatile residue, material compatibility and propellant compatibility. Typical materials and contaminants will be tested with a wide range of solvents. Final results of the three steps will be presented as well as the implementation plan for solvent replacement.

  8. Is Autonomic Modulation Different between European and Chinese Astronauts?

    PubMed Central

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E.

    2015-01-01

    Purpose The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Methods Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Results Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Conclusion Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc. PMID:25799561

  9. STS-118 Astronaut Williams and Expedition 15 Engineer Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  10. Robonaut: a telepresence-based astronaut assistant

    NASA Astrophysics Data System (ADS)

    Diftler, Myron; Jenks, Kenneth C.; Williams, Lorraine E. P.

    2002-02-01

    Robonaut, NASA's latest anthropomorphic robot, is designed to work in the hazards of the space environment as both an astronaut assistant and, in certain situations, an astronaut surrogate. This highly dexterous robot is now performing complex tasks under telepresence control in the Dexterous Robotics Laboratory at the Johnson Space Center that could previously only be carried out directly by humans. With 43 degrees of freedom (DOF), Robonaut is a state-of-the-art human size telemanipulator system. It has a three-DOF articulated waist and two seven-DOF arms, giving it an impressive work space for interacting with its environment. Its two five-fingered hands allow manipulation of a wide range of common tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems. Telepresence control is the main mode of operation for Robonaut. The teleoperator dons a variety of sensors to map hand, head, arm and body motions to control the robot. A distributed object-oriented network architecture links the various computers used to gather posture and joint angle data from the human operator, to control the robot, to generate video displays for the human operator and to recognize and generate human voice inputs and outputs. Distributed object-oriented software allows the same telepresence gear to be used on different robots and allows interchangable telepresence gear in the laboratory environment. New telepresence gear and new robots only need to implement a standard software interface. The Robonaut implementation is a two-tiered system using Java/Jini for distributed commands and a commercial-off-the-shelf data sharing protocol for high-speed data transmission. Experimental telepresence gear is being developed and evaluated. Force feedback devices and techniques are a focus, and their efforts on teleoperator performance of typical space operations tasks is being measured. Particularly, the augmentation of baseline

  11. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  12. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  13. Station Astronauts Do Experiment for 'Cosmos'

    NASA Video Gallery

    Aboard the International Space Station, Expedition 38 Commander Koichi Wakata of the Japan Aerospace Exploration Agency and Flight Engineer Rick Mastracchio of NASA help 'Cosmos' host Neil deGrasse...

  14. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  15. Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  16. Astronauts Truly and Engle engaged in on-board activity

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Joe H. Engle, STS-2 Commander, enjoying in-space exercise session on a treadmill specially designed for astronauts in zero gravity. He is in the middeck area of the orbiter (39570); Engle prepares a beverage by using a space squirt-gun to fill a plastic, accordion-like receptacle while another one, already filled, floats around his left knee. He is wearing the onboard constant wear garment (39571); Astronaut Richard H. Truly, STS-2 Pilot, shaves in zero gravity atmosphere (39572); Engle shaves in zero gravity atmosphere. Behind him is a fire extinguisher and a picture of George Abbey (39573).

  17. Mission X: Train Like an Astronaut. International Fitness Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  18. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, members of the 1998 astronaut candidate class (group 17) learn about the thermal protection system on the orbiters, such as Atlantis overhead. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  19. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Clayton C. Anderson practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  20. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 3, members of the 1998 astronaut candidate class (group 17) get a close-up view of the tiles, part of the thermal protection system, on the underside of the orbiter Atlantis overhead. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  1. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the 1998 astronaut candidate class (group 17) look at the aft of a Space Shuttle Main Engine (SSME) (right). The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  2. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, Ron Woods (left) shows members of the 1998 astronaut candidate class (group 17) an Apollo-style space suit and how it differs from the current suits. The class is taking part in training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  3. 1998 astronaut candidates tour CCAS facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Cape Canaveral Air Station, members of the 1998 astronaut candidate class (Group 17) pose in front of the Project Mercury monument at Launch Complex 14 during a tour of the station's facilities. This 13-foot-high astronomical symbol for the planet Mercury was constructed by General Dynamics, the Atlas airframe contractor, and dedicated in 1964 in honor of those who flew in the Mercury 7 capsule. The class is at Kennedy Space Center taking part in training activities, including a flight awareness program, as well as touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  4. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility (SSPF), members of the 1998 astronaut candidate class (group 17) are shown future components of the International Space Station, such as the Multi- Purpose Logistics Module at right. The class is taking part in training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSPF. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  5. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the 1998 astronaut candidate class (group 17) learn about the use of the Space Shuttle Main Engine (SSME) Processing Facility. At left is one of the main shuttle engines. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  6. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The 1998 astronaut candidate class (group 17) gather in the Space Shuttle Main Engine Processing (SSMEP) Facility. In the foreground is one of the main shuttle engines. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  7. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On a raised platform in the Orbiter Processing Facility bay 3, members of the 1998 astronaut candidate class (group 17) look at the aft fuselage of the orbiter Atlantis. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  8. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Tracy E. Caldwell (Ph.D.) practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  9. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 3, Larry Osheim (right), who is with United Space Alliance, shows members of the 1998 astronaut candidate class (group 17) a sample of Felt Reusable Surface Insulation (FRSI) blankets used on the orbiters. The class is at KSC for training activities, including fire training and a flight awareness program, plus touring the OPF, SSME Processing Facility, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center and the crew headquarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  10. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) take part in fire training. The class is taking part in training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  11. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Sunita L. Williams practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  12. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch a demonstration as part of fire training. The class is taking part in training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  13. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On their tour of KSC, members of the 1998 astronaut candidate class (group 17) stop at the Space Shuttle Main Engine (SSME) Processing Facility for a close up look at a main shuttle engine. The class is taking part in training activities, including fire training and a flight awareness program, plus touring the OPF, VAB, SSPF, launch pads, SLF, Apollo/Saturn V Center, the crew headquarters, as well as the SSME Processing Facility. The U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  14. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Patricia C. Hilliard (M.D.) practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Alan G. Poindexter, Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  15. 1998 astronaut candidates tour KSC facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of the Kennedy Space Center, members of the 1998 astronaut candidate class (Group 17) watch as candidate Alan G. Poindexter practices using firefighting equipment during fire training. The class is at KSC for training activities, including a flight awareness program, plus touring the OPF, VAB, SSPF, SSME Processing Facility, launch pads, SLF, Apollo/Saturn V Center, and the crew quarters. The other U.S. candidates in the '98 class are Clayton C. Anderson, Lee J. Archambault, Tracy E. Caldwell (Ph.D.), Gregory E. Chamitoff (Ph.D.), Timothy J. Creamer, Christopher J. Ferguson, Michael J. Foreman, Michael E. Fossum, Kenneth T. Ham, Patricia C. Hilliard (M.D.), Gregory C. Johnson, Gregory H. Johnson, Stanley G. Love (Ph.D.), Leland D. Melvin, Barbara R. Morgan, William A. Oefelein, John D. Olivas (Ph.D.), Nicholas J.M. Patrick (Ph.D.), Garrett E. Reisman (Ph.D.), Steven R. Swanson, Douglas H. Wheelock, Sunita L. Williams, Neil W. Woodward III, George D. Zamka; and the international candidates are Leopold Eyharts, Paolo Nespoli, Hans Schlegel, Roberto Vittori, Bjarni V. Tryggvason, and Marcos Pontes.

  16. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  17. Effects of HZE particles on astronauts

    SciTech Connect

    Curtis, S.B. ); Townsend, L.W.; Wilson, J.W. )

    1991-01-01

    Outside the effective shielding provided by Earth's magnetic field, space travelers will experience penetrating high-energy galactic cosmic rays, which reach the orbit of earth isotropically and with fluxes that vary smoothly over an 11-yr interval that is related to the 11-yr cycle of solar activity. This radiation consists of protons (Z=1) up to uranium (Z=92). There is an abundance of even--over odd-Z nuclei, with several local peaks in abundance when plotted as a function of Z. A prominent peak occurs in the iron abundance (Z=26) and is presumably related to the richness of iron in the galactic cosmic ray sources. The iron component is particularly important in a biological assessment of risk. High-energy particles with Z>2 have been called (high Z and energy) (HZE) particles. These particles are a concern in the evaluation of radiation risk because (a) they are highly ionizing and cause considerable damage as they penetrate biological tissue, and (b) they undergo nuclear interactions within the spacecraft shielding and the bodies of the astronauts themselves to produce lighter, more penetrating and sometimes highly ionizing secondaries. Considerably more ground-based cellular and animal experimentation is in order with high-energy heavy-ion beams before definitive statements can be made on the risk of HZE particles to humans outside the geomagnetosphere.

  18. Official Portrait of Astronaut Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Neil Armstrong, donned in his space suit, poses for his official Apollo 11 portrait. Armstrong began his flight career as a naval aviator. He flew 78 combat missions during the Korean War. Armstrong joined the NASA predecessor, NACA (National Advisory Committee for Aeronautics), as a research pilot at the Lewis Laboratory in Cleveland and later transferred to the NACA High Speed Flight Station at Edwards AFB, California. He was a project pilot on many pioneering high speed aircraft, including the 4,000 mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters, and gliders. In 1962, Armstrong was transferred to astronaut status. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971.

  19. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  20. Astronaut James van Hoften working with Syncom IV-3 satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James D. van Hoften gives a shove to the previously troubled Syncom IV-3 communications satellite. Dr. van Hoften stands on a foot restraint/extension to the remote manipulator system (RMS) arm.

  1. Astronaut Daniel Bursch with CPCG experiment on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Daniel W. Bursch, mission specialist, is pictured on Discovery's middeck with the Commercial Protein Crystal Growth (CPCG) experiment. This experiment is designed to explore the structure of specific protein molecules in space-grown crystals.

  2. Astronaut John Glenn in a State of Weightlessness During Friendship

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn photographed in space by an automatic sequence motion picture camera during his flight on 'Friendship 7.' Glenn was in a state of weightlessness traveling at 17,500 mph as these pictures were taken.

  3. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  4. Astronauts Schirra and Stafford congratulate each other on mission completion

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Walter M. Schirra Jr. (right), command pilot, and Thomas P. Stafford, pilot, shake each other's hand as they arrive aboard the aircraft carrier U.S.S. Wasp to conclude their 25 hour, 52 minute Gemini 6 space flight.

  5. Astronaut Edwin Aldrin during zero gravity ingress and egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Edwin E. Aldrin Jr., prime crew pilot of the Gemini 12 space flight, undergoes zero gravity ingress and egress training aboard an Air Force KC-135 aircraft. He practices using camera equipment.

  6. Astronauts Crippen and Payload specialist Garneau in front of SMS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Robert Crippen, left, crew commander, and Payload Specialist Marc Garneau stand in front of the Shuttle Mission Simulator (SMS) in the mockup and integration laboratory during a press conference prior to their STS 41-G mission.

  7. STS-133 Astronauts Rehearse Launch Day During TCDT

    NASA Video Gallery

    The six astronauts who will fly space shuttle Discovery to the International Space Station on STS-133 spent four days at NASA’s Kennedy Space Center to participate in a launch countdown dress reh...

  8. Astronaut Sally Ride responds to question from interviewer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut Sally K. Ride, mission specialist for STS-7, responds to a question from an interviewer during a taping session for ABC's Night Line. Dr. Ride is in the shuttle mockup and integration laboratory.

  9. Astronaut John Glenn running as part of physical training program

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, participates in a strict physical training program, as he exemplifies by frequent running. Here he pauses during an exercise period on the beach near Cape Canaveral, Florida.

  10. Space Station Live: Astronaut Photos Highlight Earth Month

    NASA Video Gallery

    Melissa Dawson, an Earth scientist with NASA’s Johnson Space Center, recently spoke by phone with Public Affairs Officer Nicole Cloutier-Lemasters to discuss the importance of astronaut photograp...

  11. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Stowe, R. P.; Feiveson, A. H.; Tyring, S. K.; Pierson, D. L.

    2000-01-01

    The reactivation of cytomegalovirus (CMV) in 71 astronauts was investigated, using polymerase chain reaction. A significantly greater (P<.0001) shedding frequency was found in urine samples from astronauts before spaceflight (10.6%) than in urine from the healthy control subject group (1.2%). Two of 4 astronauts studied during spaceflight shed CMV in urine. A significant increase (P<.0001) in CMV antibody titer, compared with baseline values, was also found 10 days before spaceflight. CMV antibody titer was further increased (P<.001) 3 days after landing, compared with 10 days before the mission. Significant increases in stress hormones were also found after landing. These results demonstrate that CMV reactivation occurred in astronauts before spaceflight and indicate that CMV may further reactivate during spaceflight.

  12. Astronaut Neil A. Armstrong during water egress training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Neil A. Armstrong, Gemini 5 backup crew command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  13. Astronaut Neil Armstrong participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  14. Astronaut Neil Armstrong studies rock samples during geological field trip

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  15. Astronauts Armstrong and Scott during photo session outside KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  16. How Can We Protect Our Astronauts in Space?

    NASA Video Gallery

    Richard Wilkins, director for the Center for Radiation Engineering and Science for Space Exploration, or CRESSE, at Prairie View A&M University, explains mitigation procedures to protect astronauts...

  17. Forty Years of Psychological and Psychiatric Selection of NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.

    2000-01-01

    The purpose of this presentation is to chronicle the history and development of the psychological selection process for NASA astronauts. For over 40 years, astronaut applicants have undergone rigorous medical testing to qualify for candidacy. Psychological selection has an equally long history, dating back to 1958, when psychological requirements were established for astronauts during the Mercury program. However, for many years, psychological selection consisted of psychiatric screening for psychopathology. As we approach the day in which the first ISS crew will live and work in space for months at a time, it becomes clear that both the psychological criteria and the selection system to detect said criteria have changed. This presentation discusses the events that led to the current, dual-phase selection system that is used to select individuals into the astronaut corps. Future directions for psychological selection will also be addressed.

  18. Astronaut Hoffman replaces fuse plugs on Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman sees to the replacement of fuse plugs on the Hubble Space Telescope (HST) during the first of five space walks. Thunderclouds are all that is visible on the dark earth in the background.

  19. Astronaut Eileen Collins during phone interview with news media

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in a telephone interview with an out of town media representative after having been announced as the pilot on NASA's STS-63 mission aboard the Space Shuttle Discovery.

  20. Astronaut Terry Hart in orbiter training in the SAIL

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Terry J. Hart, 41-C mission specialist, 'punches up' a display in an orbiter trainer in the JSC Shuttle Avionics Integration Laboratory (SAIL). The scenes Hart controls here appear in the 'windows' of the trainer.

  1. Astronaut Scott Carpenter and technician Joe Schmidt during suiting exercise

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Mercury Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, and Crew Equipment Specialist Joe Schmidt are before a suiting exercise. Schmidt is seen checking the gloves on the Carpenter's pressure suit.

  2. Astronaut James Newman with latch hook for tether device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, shows off a latch hook for a tether device used during the STS-51 extravehicular activity (EVA) on September 16, 1993. Newman, on Discovery's middeck, appears surrounded by sleep restraints.

  3. Behind the Scenes: Astronauts Pockets Deep in Mystery

    NASA Video Gallery

    Host Mike Massimino returns to the pre-launch suit up room at the Kennedy Space Center to reexamine the question: what's inside all those pockets of the astronauts' big orange suits? Find out on "N...

  4. Astronauts L. Gordon Cooper Jr. hoisted up to Navy helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut L. Gordon Cooper Jr. is hoisted up to a Navy helicopter during recovery operations in the Atlantic Ocean of the Gemini 5 spacecraft. The NASA Headquarter alternative photo number is 65-H-688.

  5. Astronaut L. Gordon Cooper Jr. during water egress training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut L. Gordon Cooper Jr., Gemini 5 command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  6. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  7. Astronaut Gordon Cooper walks to elevator to spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr. waited inside the transfer van for several minutes and then leaving the transfer van walked to the elevator which took him to the spacecraft 'Faith 7' atop the Atlas vehicle for his mission.

  8. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  9. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  10. Astronauts Stafford and Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two American ASTP crewmen, Astronauts Thomas P. Stafford (foreground) and Vance D. Brand are seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  11. Astronaut Vance Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Vance D. Brand, command module pilot of the American ASTP crew, is seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  12. Why does astronaut Reid Wiseman use social media?

    NASA Video Gallery

    Astronaut Reid Wiseman, who is living and working on the International Space Station, has taken everyone along on the incredible journey using social media. But why does he use social media? Find o...

  13. [Safety analysis for astronaut and the personal protective equipment].

    PubMed

    Chen, J D; Sun, J B; Shi, H P; Sun, H L

    1999-12-01

    Objective. To analyze and study astronaut and his personal equipment safety. Method. Three of the most widely used approaches, failure mode and effect analysis (FMEA), fault tree analysis (FTA) and system hazards analysis (SHA) were used. Result. It was demonstrated that astronaut and the personal equipment are subjected to various potential hazards, such as human errors, astronaut illness, fire or space suit emergency decompression, etc. Their causes, mechanisms, possible effects and criticality of some critical potential hazards were analyzed and identified in more details with considerations of the historic accidents of manned spaceflight. And the compensating provisions and preventive measures for each hazard were discussed. Conclusion. The analysis study may be helpful in enhancing the safety of the astronaut and its personal protective equipment. PMID:12434807

  14. Astronaut Robert Gibson prepares to use motion picture camera

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Robert L. Gibson, STS 61-C mission commander, partially floats on the aft flight deck of the Shuttle Columbia while preparing to use a motion picture camera. The windows overlooking the cargo bay are visible in the background.

  15. Space Station Live: Veteran Astronaut Talks Crew Orientation

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with NASA astronaut Cady Coleman, who lived aboard the International Space Station as Expedition 27/27 crew member from December...

  16. Astronaut Richard Covey with control box for bicycle ergometer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Richard O. Covey, mission commander, is seen with the control box for bicycle ergometer on Endeavour. During the eleven-day STS-61 mission, crew members not performing spacewalks found the ergometer to provide much needed exercise.

  17. Astronaut Richard Covey working in the Crew Compartment Trainer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Richard O. Covey retrieves a helmet from a stowed extravehicular mobility unit (EM) spacesuit in the airlock of the one-G crew compartment trainer (CCT) at JSC. Covey was training for the STS 26 flight.

  18. Astronaut Richards initiates thruster firing during SPIFEX operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    At the commander's station on the Space Shuttle Discovery's forward flight deck, astronaut Richard N. Richards, mission commander, initiates a thruster firing of the spacecraft during operations with the Shuttle Plume Impingement Flight Experiment (SPIFEX).

  19. Behind the Scenes: Rolling Room Greets Returning Astronauts

    NASA Video Gallery

    Have you ever wondered what is the first thing the shuttle crews see after they land? In this episode of NASA Behind the Scenes, astronaut Mike Massimino takes you into the Crew Transport Vehicle, ...

  20. Astronaut Karl Henize with soft drink in middeck area

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Karl Henize drinks from a special carbonated beverage dispenser labeled Pepsi while floating in the middeck area of the shuttle Challenger. Note the can appears to have its own built in straw.

  1. Astronaut James D. van Hoften examines student experiment on Challenger

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut James D. van Hoften, 41-C mission specialist, holds an aluminum box full of honeybees. The experiment in earth orbit is duplicated with another colony of the bees on earth. This is an experiment submitted by student researchers.

  2. Students Speak With NASA Astronaut Dottie Metcalf-Lindenburger

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Dottie Metcalf-Lindenburger participates in a Digital Learning Network (DLN) event with students at Heritage Middle S...

  3. Astronaut Michael Collins inspects camera during prelaunch activity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Michael Collins (left), Gemini 10 prime crew pilot, inspects camera during prelaunch activity at Cape Kennedy, Florida. In center background is Dr. Donald K. Slayton, Manned Spacecraft Center (MSC) Director of Flight Crew Operations.

  4. Astronaut's tool for withdrawing/replacing computer cards

    NASA Technical Reports Server (NTRS)

    West, R. L.

    1969-01-01

    Symmetrical tool allows astronauts to withdraw and replace Apollo Telescope Mount control computer cards. It is easily manipulated by a gloved hand, provides positive locking of a withdrawn card, and has a visible locking device.

  5. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  6. Astronauts Culbertson and Bursch brush their teeth on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Frank L. Culbertson (right), mission commander, and Daniel W. Bursch, mission specialist, brush their teeth on Discovery's middeck. Two sleep restraints form part of the backdrop for the photograph.

  7. Astronaut Gerald Carr sits on the bicycle ergometer during prelaunch

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 mission commander, sits on the bicycle ergometer as he takes part in the body mass measurement experiment during a prelaunch physical examination for the crew of the third manned mission.

  8. Astronaut Virgil Grissom and family at Patrick AFB airport

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil I. (Gus) Grissom and his family are shown at the airport at Patrick Air Force Base facing a crowd of news media representatives. Grissom is speaking into microphones for the news media.

  9. Astronaut Gerald Carr trains with Earth Resources Experiments Package

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 commander, changes a dial on the control and display panel for the Earth Resources Experiments package (EREP) during a training exercise in the Multiple Docking Adapter (MDA) one-G trainer at JSC.

  10. ISS Update: Astronaut Participates in Autonomous Mission Operations Test

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with astronaut Alvin Drew who is participating in the Autonomous Mission Operations test, which looks at how communication delays will affect future de...

  11. ISS Update: Diagnosing Astronauts in Space From Here on Earth

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly interviews Ed Powers, NASA Flight Surgeon, about how flight doctors work with the crew members on board, diagnosing astronauts in space from Earth and impact...

  12. Astronaut John Fabian show off signs on aft flight deck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut John Fabian, payload specialist, show off a series of signs on the aft flight deck of Discovery, from whose payload bay three communications satellites were deployed. The sign reads 'We deliver and deliver and deliver...'

  13. Astronaut Allen during extravehicular activity (EVA) training in CCT

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In the JSC Space Vehicle Mockup Facility, astronaut Andrew M. Allen retrieves gear to rehearse a suit-donning exercise on the middeck. Allen's very realistic environs are provided by the shuttle crew compartment trainer (CCT).

  14. Apollo 11 astronaut Buzz Aldrin takes photos during training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Flying in a KC-135 aircraft, Apollo 11 Lunar Module Pilot Edwin E. Aldrin Jr. takes pictures during training for the upcoming first manned lunar landing with astronauts Neil A. Armstrong Jr. and Michael Collins.

  15. Astronaut Bruce McCandless modeling the EMU/MMU

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Astronaut Bruce McCandless II modeling NASA's extravehicular mobility unit (EMU) spacesuit for shuttle and the backpack unit called the manned maneuvering unit (MMU). McCandless is in JSC's laboratory support facility.

  16. Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    NASA Technical Reports Server (NTRS)

    Barr, Yael; Watkins, Sharmila; Polk, J. D.

    2011-01-01

    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight.

  17. Astronauts van Hoften and Nelson conduct pre-breathing exercise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts James D. van Hoften and George D. Nelson, wearing Shuttle launch and entry helmets, conduct a pre-breathing exercise on the forward flight deck of the shuttle Challenger during the STS 41-C mission.

  18. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  19. Space Station Live: Astronaut Don Pettit on Earth Photography

    NASA Video Gallery

    In observance of Earth Day, Space Station Live commentator Pat Ryan talks with NASA astronaut Don Pettit, who along with his fellow Expedition 30/31 crew members captured more than a half a million...

  20. André Saint-Marc 1944-1988

    NASA Astrophysics Data System (ADS)

    Reme, H.; Anderson, K. A.

    Andr Śaint-Marc, professor at the Institute of Technology of the Universite Paul Sabatier (IUT), in Toulouse, France, died suddenly and unexpectedly February 17, 1988, a few months before his 44th birthday.Saint-Marc carried out a research career in cosmic rays and space plasma physics beginning in 1969 at the Centre d'Etude Spatiale des Rayonnements (CESR), a laboratory of the Centre National de la Recherche Scientifique (CNRS) and the Université Paul Sabatier. He was born in Condegaygues, France (Lotet-Garonne). His four university degrees were awarded by the Universite Paul Sabatier. His Thèse de Docteur de Specialité was earned in 1973 for work on propagation of auroral X rays in Earth's atmosphere. The highest degree, the Doctorat d'Etat, came in 1979 for his studies of beam-plasma interactions in the ionosphere.

  1. What is Tetramorium semilaeve André, 1883? (Hymenoptera, Formicidae)

    PubMed Central

    Borowiec, Lech; Galkowski, Christophe; Salata, Sebastian

    2015-01-01

    Abstract Tetramorium semilaeve André, 1883 is redescribed based on the type series and new material from terra typica (Pyrénées-Orientales). Lectotype worker is designated. Detailed descriptions of gyne and male are given. A review of material from the Mediterranean area suggests that in the past the name Tetramorium semilaeve has been applied to more than one species and the true Tetramorium semilaeve is common only in the western part of the Mediterranean basin. The structure of the male genitalia is the most reliable set of characters allowing a proper distinction of species in Tetramorium semilaeve species group. All names attributed to the former name “semilaeve” are discussed. PMID:26257559

  2. STS-102 Astronaut James Voss Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  3. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  4. Unimpaired Neuro-Adaptive Plasticity in an Elderly Astronaut

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey; Dawson, David L. (Technical Monitor)

    1999-01-01

    Quantitative analyses of a 77 year old astronaut's balance control performances on a standardized test battery revealed few differences between his neuro-adaptive responses to space flight and those of a group of younger astronauts tested following missions of similar duration. This finding suggests that the physiological changes associated with age do not necessarily impair adaptive plasticity in the human following removal and subsequent reintroduction of gravity.

  5. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, U.S.S. Pinceton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa.

  6. Astronauts Hoffman and Musgrave pose in aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two of Endeavour's busy team of astronauts share a rare moment of leisure in the aft flight deck captured by an Electronic Still Camera (ESC). Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave also are sharing three of the mission's five planned sessions of extravehicular activity (EVA). Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  7. Apollo 11 astronaut Neil Armstrong suits up before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  8. Apollo 11 astronaut Neil Armstrong looks over flight plans

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  9. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  10. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Note the front wheels of the LRV are off the ground. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charles M. Duke Jr.

  11. Astronaut John W. Young during water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut John W. Young, prime crew command pilot for the Gemini 10 space flight, sits in Static Article 5 during water egress training activity on board the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and Astronaut Michael Collins, will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division.

  12. Astronaut Alan Bean assisted with egressing command module after landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, is assisted with egressing the Apollo 12 Command Module by a U.S. Navy underwater demolition team swimmer during recovery operations in the Pacific Ocean. Already in the life raft are Astronauts Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot. The Apollo 12 splashdown occured at 2:58 p.m., November 24, 1969 near American Samoa.

  13. Astronaut Charles Duke photographed collecting lunar samples at Station 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., lunar module pilot of the Apollo 16 lunar landing mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.

  14. Three STS 26 astronauts training in the Crew Compartment trainer

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Three astronauts named in January 1987 as part of a five-member crew for NASA's first flight since the Challenger accident are shown in a photo session of July 1986. Left to right are Astronauts John M. (Mike) Lounge, Richard O. Covey and David C. Hilmers. Lounge and Hilmers will serve as Mission specialists for the STS 26 flight and Covey will serve as pilot. The three are on the middeck of JSC's one-G Crew Compartment Trainer (CCT).

  15. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  16. Astronaut Edward Gibson trains with Earth Resources Experiments Package

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Edward G. Gibson, Skylab 4 science pilot, turns on a switch on the control box of the S190B camera, one of the components of the Earth Resources Experiments Package (EREP). The single lens Earth Terrain Camera takes five-inch photographs. Behind Gibson is the stowed suits of Astronaut Gerald P. Carr, commander for the third manned mission. The exercise took place in the Orbital Workshop one-G trainer at JSC.

  17. Astronaut Assembly of a 14-Meter-Diameter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronaut Jerry Ross is shown assembling a portion of a 14-meter-diameter truss structure in NASAs Neutral Buoyancy Simulator at the Marshall Space Flight Center. The structure is part of a large microwave antenna designed for space-based monitoring of soil moisture levels and ocean temperatures. The underwater assembly tests demonstrated that two astronauts could construct the large antenna in approximately 4-6 hours in space.

  18. Astronaut Richard Truly seen working with Apollo docking mechanism model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Richard H. Truly, an Apollo Soyuz Test Project (ASTP) spacecraft communicator, is seen working with an Apollo docking mechanism in the Mission Control Center during the joint U.S.-USSR ASTP docking in Earth orbit mission. Astronaut Truly, a member of the American ASTP crew support team, was working on the docking probe problem. The crew had notified ground control that there was a problem with removing the probe from the tunnel of the Apollo Command Module.

  19. Astronaut Alan Shepard walks toward MET during first EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Alan B. Shepard Jr., foreground, Apollo 14 commander, walks toward the Modularized Equipment Transporter (MET), out of view at right, during the first Apollo 14 extravehicular activity (EVA-1). An EVA checklist is attached to Shepard's left wrist. Astronaut Edgar D. Mitchell, lunar module pilot, is in the background working at a subpackage of the Apollo Lunar Surface Experiments Package (ALSEP). The cylindrical keg-like object directly under Mitchell's extended left hand is the Passive Seismic Experiment (PSE).

  20. Memoirs of an armchair astronaut (retired)

    NASA Astrophysics Data System (ADS)

    Clarke, Arthur C.

    1993-11-01

    According to my biographer Neil McAleer, who now knows far more about me than I have any wish to, I joined the British Interplanetary Society (BIS) in the summer of 1934, when it was one year old and I was approaching seventeen. Much of the next two years was spent bombarding the Society's patient secretary, Leslie Johnson, with technical queries which he did his best to answer, and which I am sure would make embarrassing reading today. During this period I also made contact with another active BIS member, the science-fiction writer Eric Frank Russell, to whom I owe a great debt of gratitude for early encouragement. I wish I still possessed his amusing and often bawdy letters, written in the most beautiful script I have ever encountered. In 1936, escaping from the uncharted wilds of rural Somerset to the genteel environs of Whitehall (literally - my office was next door to Downing Street) I made contact with the London members of the BIS, as well as the local s.f. fans. There was a 90% overlap between the two groups, and until the outbreak of war rocketry and science fiction dominated my life, with H.M. Civil Service a very poor third. A quarter of a century later, I looked back on those days in an essay which appeared in Holiday Magazine (May, 1963) and which has since been reprinted in Voices from the Sky (1965), Astounding Days (1989) and By Space Possessed (1993). Any attempt to update it would now be both impossible and absurd: it preserves the spirit of the early Space Age like a fly in amber. Here, exactly as originally published, are 'Memoirs of an Armchair Astronaut (Retired)'.

  1. Astronautics and aeronautics, 1974: A chronology

    NASA Technical Reports Server (NTRS)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  2. Epstein-Barr virus shedding by astronauts during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  3. Congress hears from astronauts about human spaceflight

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    NASA's 15 September announcement of a new Space Launch System (SLS) design, which includes a heavy lift rocket in combination with the Orion Multi-Purpose Crew Vehicle (MPCV) already under development, generally was favorably received at a 22 September congressional hearing on NASA and human spaceflight held by the U.S. House of Representatives' Committee on Science, Space, and Technology. However, witnesses, including Apollo 11 commander Neil Armstrong, said they remain concerned about America's manned access to space, the nation's leadership in manned space exploration, and what they said is the lack of a clear direction for NASA. Armstrong said the proposal for the new heavy lift vehicle “appears to meet the intent” of a congressional mandate in the NASA Authorization Act of 2010, but he also said that the past year has been “frustrating” to NASA observers trying to understand the agency's plans and progress in the area of human space exploration. “The NASA leadership enthusiastically assured the American people that the agency was embarking on an exciting new age of discovery in the cosmos. But the realities of the termination of the shuttle program, the cancellation of existing rocket launcher and spacecraft programs, the layoffs of thousands of aerospace workers, and the outlook for American space activity throughout the next decade were difficult to reconcile with the agency assertions,” Armstrong said.

  4. IAC-11.E1-7.-A1.8.5 The Mission X: Train Like an Astronaut pilot study

    NASA Astrophysics Data System (ADS)

    Lloyd, Charles W.

    2012-12-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 11 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and to inspire and motivate students to pursue careers in science, technology, engineering and math (STEM) fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, Belgium, Czech Republic and United Kingdom hosted teams for the pilot in the spring of 2010, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing in 137 teams, more than 4000 students from over 40 cities worldwide participated in the first round of Mission X.

  5. Latent Virus Reactivation in Astronauts and Shingles Patients

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  6. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  7. Baseline characteristics of different strata of astronaut corps

    NASA Technical Reports Server (NTRS)

    Hamm, Peggy B.; Pepper, L. J.

    1993-01-01

    The Longitudinal Study of Astronaut Health (LSAH) is an epidemiological study designed to study the effects of the occupational exposures incurred by astronauts in health outcomes and changes in physiological variables. Between 1959 and 1991, 195 individuals were selected for the program. The medical standards for selection have remained essentially unchanged since the Mercury Program, but the range and stringency of these criteria have been modified. Demographic and physiological variables identified during the selection year are examined for various strata of the Astronaut Corps. Specifically, age, sex, race, education, usual occupation, military affiliation, medical history, family medical history, visual and hearing measurements, physical exam variables, and specific laboratory values are investigated. Differences are examined in astronauts for the following criteria: (1) were selected prior to 1970 (n = 73) versus those selected after 1970 (n = 122); (2) have flown multiple missions versus those who have flown less than two missions; (3) have walked in space versus all others; (4) have more than 500 hours of mission time versus all others; and (5) have gone to the Moon versus all others. Length of time served in the Astronaut Corps is examined for each of these strata.

  8. Astronauts and Cosmonauts sightseeing at Red Square in Moscow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A group of Astronauts and their Cosmonaut hosts are photographed sightseeing on Red Square in the heart of Moscow during a tour of the Soviet capital. The Americans were in the USSR to participate in Apollo Soyuz Test Project (ASTP) familiarization training on the Soyuz systems at the Cosmonaut Training Center (Star City) near Moscow. Astronaut Thomas P. Stafford (light coat, black cap), commander of the American ASTP crew, was head of the U.S. delegation to Star City. Astronaut Eugene A. Cernan (on Stafford's left, light coat) is the Special Assistant to the American Technical Director of ASTP. The sightseeing group is walking in the direction of Lenin's Mausoleum. The structure in the background is the Cathedral of the Intercession (St. Basil's) Museum. The historic Kremlin complex is to the right.

  9. An Interactive Astronaut-Robot System with Gesture Control.

    PubMed

    Liu, Jinguo; Luo, Yifan; Ju, Zhaojie

    2016-01-01

    Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system. PMID:27190503

  10. Astronaut David Brown poses with ComBBat team

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut David Brown poses with members of the team known as ComBBat, representing Central Florida's Astronaut and Titusville high schools. ComBBat was teamed with Boeing at KSC and Brevard Community College. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition being held March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  11. An Astronaut's View of Jewel-toned Lakes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts onboard the International Space Station often observe small, otherwise unnoticed water bodies on the ground due to their unusual colors. For example, the Little Blue Run Dam and reservoir is located in western Pennsylvania, just south of the Ohio River. It is owned by Pennsylvania Power Company and used for industrial sludge impoundment. The materials suspended in the water give it a striking, turquoise color. Another lake with color linked commercial activity is Lake Gribben, just southeast of Palmer in Michigan's Upper Peninsula. Iron ore is extracted from New Richmond Mine visible just north of the lake. Images ISS004-E-10472 (Little Blue Run, April 4, 2002) and ISS004-E-10319 (Gribben, April 22, 2002) were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  12. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. smiles during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi honoring his space career. During the ceremony, Haise was presented with NASA's Ambassador of Exploration Award (an encased moon rock). He subsequently presented the moon rock to Gorenflo officials for display at the school. Haise is best known as one of three astronauts who nursed a crippled Apollo 13 spacecraft back to Earth during a perilous 1970 mission. Although he was unable to walk on the moon as planned for that mission, Haise ended his astronaut career having logged 142 hours and 54 minutes in space. During the ceremony, he praised all those who contributed to the space program.

  13. Psychiatric diagnoses in a group of astronaut applicants

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Faulk, Dean M.; Holland, Al W.

    1991-01-01

    Between 1959 and 1987, the psychiatric evaluation of astronaut candidates evolved from a 30-h intensive examination evaluating applicants for psychopathology, and studying their performance under stress, to a 2-h clinical interview whose structure and contents were determined by the individual examiner. Evaluations done during these years applied both psychiatric (or, 'select-out') criteria and psychological (or, 'select-in') criteria. In an attempt to more rigorously define the psychiatric, 'select-out' component, a standardized, semistructured clinical interview was developed to identify the presence or history of psychiatric disorders listed in the Diagnostic and Statistical Manual of Mental Disorders, 3rd Ed. ('DSM-III'). A total of 117 astronaut applicants underwent this clinical interview as part of a comprehensive medical evaluation during a recent astronaut selection. Of the 117 applicants, 9 (7.7 percent) met DSM-III criteria for a variety of Axis I and Axis II diagnoses, including V-code diagnoses.

  14. An Interactive Astronaut-Robot System with Gesture Control

    PubMed Central

    Liu, Jinguo; Luo, Yifan; Ju, Zhaojie

    2016-01-01

    Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system. PMID:27190503

  15. Logistical Consideration in Computer-Based Screening of Astronaut Applicants

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    2000-01-01

    This presentation reviews the logistical, ergonomic, and psychometric issues and data related to the development and operational use of a computer-based system for the psychological screening of astronaut applicants. The Behavioral Health and Performance Group (BHPG) at the Johnson Space Center upgraded its astronaut psychological screening and selection procedures for the 1999 astronaut applicants and subsequent astronaut selection cycles. The questionnaires, tests, and inventories were upgraded from a paper-and-pencil system to a computer-based system. Members of the BHPG and a computer programmer designed and developed needed interfaces (screens, buttons, etc.) and programs for the astronaut psychological assessment system. This intranet-based system included the user-friendly computer-based administration of tests, test scoring, generation of reports, the integration of test administration and test output to a single system, and a complete database for past, present, and future selection data. Upon completion of the system development phase, four beta and usability tests were conducted with the newly developed system. The first three tests included 1 to 3 participants each. The final system test was conducted with 23 participants tested simultaneously. Usability and ergonomic data were collected from the system (beta) test participants and from 1999 astronaut applicants who volunteered the information in exchange for anonymity. Beta and usability test data were analyzed to examine operational, ergonomic, programming, test administration and scoring issues related to computer-based testing. Results showed a preference for computer-based testing over paper-and -pencil procedures. The data also reflected specific ergonomic, usability, psychometric, and logistical concerns that should be taken into account in future selection cycles. Conclusion. Psychological, psychometric, human and logistical factors must be examined and considered carefully when developing and

  16. Instrument for measuring the mass of an astronaut

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Shimada, Kazuhito

    2006-10-01

    A practical and lightweight instrument for measuring the mass of astronauts under microgravity conditions is proposed. The principle of our 'space balance' is as follows. Connect the subject astronaut to the base with a rubber cord. Use a force transducer to measure the force acting on the subject and an optical interferometer to measure the acceleration of the subject. The subject's mass is calculated as the force divided by the acceleration, i.e. M = F/a. For the proof-of-concept ground model developed for this paper, linear motion of the mass with a negligible external force was achieved using an aerostatic linear bearing.

  17. Exercise-training protocols for astronauts in microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.

    1989-01-01

    Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.

  18. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronauts Neil A. Armstrong (in center) commander; and Edwin E. Aldrin Jr. (on right), lunar module pilot, are seen standing near their Lunar Module in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California. President Richard M. Nixon had just spoken to the two astronauts by radio and Aldrin, a colonel in the U.S. Air Force, is saluting the president.

  19. Astronauts Carl Meade and Mark Lee test SAFER during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Backdropped against the darkness of space some 130 nautical miles above Earth, astronaut Mark C. Lee (red stripe on EVA suit) tests the new Simplified Aid for EVA Rescue (SAFER) system. Astronaut Carl J. Meade, tethered to Discovery, at bottom center, got his turn later using the new SAFER hardware. The scen was captured with a 70mm handheld Hasselblad camera operated by a fellow crew member in the shirt-sleeve environment of the Space Shuttle Discovery's cabin. Part of the hardware for the Lidar-In-space Technology Experiment (LITE) is in left foreground.

  20. Eating in space--from an astronaut's perspective.

    PubMed

    Kerwin, Joseph; Seddon, Rhea

    2002-10-01

    Food systems and meal components are constantly under review and development at the National Aerospace and Space Administration. The goal of this work is to generate a diet that meets the nutrient requirements of astronauts and satiates them. The constraints involved in shorter- and longer-term missions are described. The insight provided by observations of astronauts from the Skylab and Shuttle eras will allow researchers to consider the fact that, for any nutritional regimen to work, it must consider the limitations and taste buds of the individuals involved. Otherwise, the best diet design generated by their work may never be consumed. PMID:12361788

  1. Eating in space--from an astronaut's perspective

    NASA Technical Reports Server (NTRS)

    Kerwin, Joseph; Seddon, Rhea

    2002-01-01

    Food systems and meal components are constantly under review and development at the National Aerospace and Space Administration. The goal of this work is to generate a diet that meets the nutrient requirements of astronauts and satiates them. The constraints involved in shorter- and longer-term missions are described. The insight provided by observations of astronauts from the Skylab and Shuttle eras will allow researchers to consider the fact that, for any nutritional regimen to work, it must consider the limitations and taste buds of the individuals involved. Otherwise, the best diet design generated by their work may never be consumed.

  2. Astronaut Charles Conrad checks out Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The reference sphere with a magnetic rod is used by the astronaut to indicate body orientation non-visually. The litter chair in which he is seated can be rotated by a motor at its base or, when not being rotated, can tilt forward, backward or to either side.

  3. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  4. Conceptual design of an astronaut hand anthropometry device

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert

    1993-01-01

    In a microgravity environment, fluid equalizes throughout the body, causing the upper body to swell. This causes the hands to swell which can cause problems for astronauts trying to do work in pressurized EVA (extravehicular activity) gloves. To better design these gloves, accurate measurements of the astronauts swollen hands are needed. Five concepts were developed in this report from an original field of 972 possible concepts. These five concepts were based on mold impression, ultrasound, laser topography, white light photography, and video imaging. From a decision matrix based on nine weighted criteria, the video imaging technique was found to be the best design to pursue.

  5. Astronaut tool development: An orbital replaceable unit-portable handhold

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.

    1989-01-01

    A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.

  6. Astronaut Story Musgrave in EMU in thermal vacuum chamber

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut F. Story Musgrave, wearing a training version of the extravehicular activity unit (EMU), particpates in a dry run for tests in thermal vacuum chamber. The test, conducted in Chamber B ofthe Space Environment and Simulation Laboratory at JSC, verified that the tools being designed for the mission will work in the cold vacuum of space. Others pictured, from the left, are Andrea Tullar and Donna Fender, test directors; Leonard S. Nicholson, acting Director of engineering; and Astronauts Thomas D. Akers and Kathryn C. Thornton, STS-61 mission specialists, along with Musgrave.

  7. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  8. Astronaut Edgar Mitchell addresses MSC personnel and news media

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Edgar D. Mitchell, right, the Apollo 14 lunar module pilot, addresses JSC/MSC personnel and news media representatives and other visitors soon after he and his fellow crewmen were released from a 15-day confinement period in the Lunar Receiving Laboratory. Pictured with Mitchell in front of the LRL, MSC bldg 37, are Astronauts Alan B. Shepard Jr., left, commander; and Stuart A Roosa, command module pilot, Mrs Mitchell is at right and Mrs. Roosa, near left. Roosa is flanked by his four children, left to right, Christopher A., Stuart A. Roosa Jr., John D. and Rosemary D.

  9. Astronaut Jack Lousma in Lower Body Negative Pressure Device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A medium close-up view of Astronaut Jack R. Lousma, Skylab 3 pilot, in the Lower Body Negative Pressure Device (LBNPD), as Astronaut Alan L. Bean, commander, works around the leg band area. This portion of the LBNPD MO-92 experiment was televised on August 7, 1973. The LBNPD experiment is to provide information concerning the time course of cardiovascular adaptation during flight, and to provide inflight data for predicting the degree of orthostatic intolerence and impairment of physical capacity to be expected upon returning to Earth environment. The bicycle ergometer is in the background, partially visible behind Bean.

  10. Astronaut Virgil Grissom at Gemini 3 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Virgil I. Grissom (second from left), command pilot of the Gemini-Titan 3 flight, is shown during a steak breakfast which he was served about two hours prior to the launch. Others seated at the table are (left to right), Donald K. Slayton, Assistant Director for Flight Crew Operations; Walter Burke (back to camera), General Mangaer of McDonnell Aircraft Corportation Spacecraft and Missiles; Walter C. Williams, former Deputy Director of the Manned Spacecraft Center; and Astronaut Alan B. Shepard Jr.

  11. Astronautics and Aeronautics: A Chronology, 2001-2005

    NASA Technical Reports Server (NTRS)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  12. Astronautics and Aeronautics: A Chronology, 1996-2000

    NASA Technical Reports Server (NTRS)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  13. Use of personal characteristics in the selection of astronauts.

    PubMed

    Fogg, L F; Rose, R M

    1995-03-01

    Which personal characteristics are used in selecting astronauts? We decided to examine this question using National Aeronautics and Space Administration (NASA) archival data collected on 2288 applicants. Undergraduate grade point average, graduate grade point average, and several facets of aviation experience were the best predictors of who was interviewed and then selected to be an astronaut. Adjustments were made to insure that a sufficient number of women and minority group members were selected, while still maintaining high selection standards. The selection process seems well-designed, and follows explicit NASA guidelines. We suggest simplifying the selection process by using a single discriminant function as an interview and/or selection criterion. PMID:7661827

  14. Former Apollo astronauts speak at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo astronauts Neil Armstrong (left) and Gene Cernan entertain the audience during an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin 'Buzz' Aldrin and Walt Cunningham. Armstrong was the first man to walk on the moon; Cernan was the last.

  15. Former Apollo astronauts speak at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo astronauts Neil Armstrong (left) and Gene Cernan entertain the audience during an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Edwin 'Buzz' Aldrin and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last.

  16. Former Apollo astronauts speak at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo astronauts Edwin 'Buzz' Aldrin (left) and Gene Cernan share stories about their missions for an audience attending an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were astronauts Wally Schirra, Gene Cernan and Walt Cunningham. Neil Armstrong was the first man to walk on the moon; Gene Cernan was the last.

  17. Astronaut James Wetherbee briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In preparation for his February 1995 spaceflight, Astronaut James D. Wetherbee, STS-63 mission commander, dons a training version of a partial pressure suit worn during Shuttle ascent and entry phases. He is accompanied by fellow crew members assigned to NASA's STS-63 mission. In the background are astronauts Bernard A. Harris, payload commander, along with Janice E. Voss and Russia's Vladimir Titov, both mission specialists. The training exercise was conducted in the Shuttle mockup and integration laboratory, where full-scale trainers provide the props for various training exercises at JSC.

  18. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  19. Astronaut Susan Helms in the ISS Unity Node

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  20. Energy Transition Initiative: Island Energy Snapshot - San Andres and Providencia (Fact Sheet); NREL(National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This profile provides a snapshot of the energy landscape of the Archipelago of San Andres, Providencia, and Santa Catalina (unpopulated), also known as San Andres and Providencia, which is equidistant between Costa Rica and Jamaica and 775 kilometers northwest of Colombia. The archipelago is part of Colombia, though Nicaragua has also laid claim to it.

  1. Access to Archived Astronaut Data for Human Research Program Researchers: Update on Progress and Process Improvements

    NASA Technical Reports Server (NTRS)

    Lee, L. R.; Montague, K. A.; Charvat, J. M.; Wear, M. L.; Thomas, D. M.; Van Baalen, M.

    2016-01-01

    Since the 2010 NASA directive to make the Life Sciences Data Archive (LSDA) and Lifetime Surveillance of Astronaut Health (LSAH) data archives more accessible by the research and operational communities, demand for astronaut medical data has increased greatly. LSAH and LSDA personnel are working with Human Research Program on many fronts to improve data access and decrease lead time for release of data. Some examples include the following: Feasibility reviews for NASA Research Announcement (NRA) data mining proposals; Improved communication, support for researchers, and process improvements for retrospective Institutional Review Board (IRB) protocols; Supplemental data sharing for flight investigators versus purely retrospective studies; Work with the Multilateral Human Research Panel for Exploration (MHRPE) to develop acceptable data sharing and crew consent processes and to organize inter-agency data coordinators to facilitate requests for international crewmember data. Current metrics on data requests crew consenting will be presented, along with limitations on contacting crew to obtain consent. Categories of medical monitoring data available for request will be presented as well as flow diagrams detailing data request processing and approval steps.

  2. HAMLET -Human Model MATROSHKA for Radiation Exposure Determination of Astronauts -Current status and results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit

    The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements

  3. Astronaut Eugene Cernan eating a meal aboard Apollo 17 spacecraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fellow crewman took this photograph of Astronaut Eugene A. Cernan, Apollo 17 mission commander, eating a meal under the weightless conditions of space during the final lunar landing mission in the Apollo program. Cernan appears to be eating chocolate pudding.

  4. Advanced degrees in astronautical engineering for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2014-10-01

    Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.

  5. Astronaut James van Hoften working with Syncom IV-3 satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A 16mm motion picture camera was used to show Astronaut James D. van Hoften as he gives a shove to the previously troubled Syncom IV-3 communications satellite. Dr. van Hoften stands on a foot restraint/extension to the remote manipulator system (RMS) arm.

  6. Blue Hills Regional Grad Fulfills Dream, Becomes Astronaut

    ERIC Educational Resources Information Center

    Bass, Judy

    2012-01-01

    This article features Scott D. Tingle, a former career and technical education (CTE) student who always aimed high. November 4, 2011 marked the official culmination of a cherished, virtually lifelong dream of his--becoming an astronaut. It was a goal he had in mind even when he was a high school student in the 1980s at Blue Hills Regional…

  7. Astronaut John Glenn practices insertion into Mercury spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, practices insertion into the Mercury 'Friendship 7' spacecraft during MA-6 preflight training activity at Cape Canveral, Florida. He is wearing the full pressure suit and helmet (00993); Glenn practices insertion into Mercury capsule with help of a McDonnell Aircraft Corporation technician (00994).

  8. Astronaut Frank Borman hoisted from water by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Frank Borman, command pilot of the Gemini 7 space flight, is hoisted from the water by a recovery helicopter from the Aircraft Carrier U.S.S. Wasp. Below him, Navy divers sit in the life raft next to the Gemini spacecraft.

  9. Astronaut David Wolf in medical experiment in SLS-2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf, mission specialist, participates in an experiment that investigates in-space distribution and movement of blood and gas in the pulmonary system. The data gathered during the two-week flight will be compared with results of tests performed on Earth to determine the changes that occur in pulmonary functions.

  10. A survey of Rocketry and astronautics in Spain

    NASA Technical Reports Server (NTRS)

    Maluquer, J. J.

    1977-01-01

    The entire field of rocketry and astronautics in Spain was studied. Congreve war rockets in military actions were emphasized in the African war, the Cuban campaign and the Spanish Civil War. Rockets in space travel were also summarized along with space science fiction.

  11. Astronaut Norman Thagard changes tray in RAHF for rodents

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Norman Thagard changes a tray in the research animal holding facility (RAHF) for rodents at the Ames double rack facility aboard the Spacelab 3 science module in the cargo bay of the shuttle Challenger. Lending a hand is payload specialist Lodewijk van den Berg. Both men are wearing protective clothing and surgical masks for this procedure.

  12. Cosmonaut Aleksey Leonov displays drawing of Astronaut Thomas Stafford

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP crew, displays a drawing of Astronaut Thomas P. Stafford during the joint U.S.-U.S.S.R. Apollo-Soyuz Test Project docking in Earth orbit mission. He is in the Soyuz Orbital module. This picture was taken by an American ASTP crewmen with a 35mm camera.

  13. Astronaut Linda Godwin uses Shuttle Amateur Radio Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Onboard the Space Shuttle Endeavour, Astronaut Linda M. Godwin uses the Shuttle Amateur Radio Experiment (SAREX). The payload commander, as well as several other STS-59 crew members, spent some off-duty time using the amateur radio experiment to communicate with 'Hams' and students on Earth.

  14. Astronaut Charles Conrad during visual acuity experiments over Laredo

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Charles Conrad Jr., pilot for the prime crew on the Gemini 5 space flight, takes pictures of predetermined land areas during visual acuity experiments over Laredo, Texas. The experiments will aid in learning to identify known terrestrial features under controlled conditions.

  15. Astronaut Blaine Hammond talks to students on Earth via SAREX

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut L. Blaine Hammond, pilot, talks to students on Earth via the Shuttle Amateur Radio Experiment (SAREX) on the Space Shuttle Discovery's flight deck. The recently licensed 'Ham' operator and several other STS-64 crew members throughout the mission were connected with schools around the world with the aid of a number of amateur radio operators.

  16. Astronaut Linenger uses SAREX to communicate with students on Earth

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Jerry M. Linenger uses the Shuttle Amateur Radio Experiment (SAREX) to communicate with students on Earth. Various members of the crew made contact with a number of other 'hams' around the world during the almost 11-day mission in Earth-orbit.

  17. STS-79 astronauts have prelaunch meal in O&C

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Already on an altered schedule in preparation for their spaceflight, the STS-79 astronauts are having lunch around midnight in the Operations and Checkout Building. From left are Mission Specialist Jay Apt; Pilot Terrence W. Wilcutt; Commander William F. Readdy; and Mission Specialists Thomas D. Akers, Carl E. Walz and John E. Blaha. After receiving a weather briefing, the astronauts will don their launch/entry suits and depart for Launch Pad 39A. Awaiting them is the Space Shuttle Atlantis, slated to lift off at approximately 4:54 a.m. EDT, Sept. 16, during a seven-minute window. The 79th Shuttle flight will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir and the first in a series of U.S. crew exchanges. Blaha will transfer to Mir and fellow U.S. astronaut Shannon Lucid will return to Earth with the other STS-79 astronauts after a record-setting stay on the station.

  18. Exercise-training protocols for astronauts in microgravity.

    PubMed

    Greenleaf, J E; Bulbulian, R; Bernauer, E M; Haskell, W L; Moore, T

    1989-12-01

    The question of the composition of exercise protocols for use by astronauts in microgravity is unresolved. Based on our knowledge of physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100% of ground-based levels; the other assumes that maximal aerobic power in flight can be reduced by 10% of the ground-based level. A recommended prescription for in-flight prevention or partial suppression of calcium (bone) loss cannot be written until further research findings are obtained that elucidate the site, the magnitude, and the mechanism of the changes. Hopefully these proposed exercise prescriptions will stimulate further research and discussion resulting in even more efficient protocols that will help ensure the optimal health and well-being of our astronauts. PMID:2691487

  19. Astronauts McNair and Stewart prepare for reentry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  20. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface siumlation training on April 18, 1969 in bldg 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. At the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module Mockup.

  1. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  2. Astronaut Neil Armstrong participates in lunar surface simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  3. Astronauts Armstrong and Scott during photo session outside KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. Both men are wearing full space suits and carring their helmets.

  4. Astronauts Scott and Armstrong undergoe water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  5. Astronauts Scott and Armstrong undergoe water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott (right), pilot of the Gemini 8 prime crew, are suited up for water egress training aboard the NASA Motor Vessel Retriever in the Gulf of Mexico. At left is Dr. Kenneth N. Beers, M.D., Flight Medicine Branch, Center Medical Office.

  6. Astronaut Mark Lee floats free of tether during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark C. Lee tests the new Simplified Aid for EVA Rescue (SAFER) system 130 nautical miles above Earth. The forward cargo bay is reflected in Lee's helmet visor in the 35mm frame, exposed through the Space Shuttle Discovery's aft flight deck windows. Part of the hardware for the LIDAR-in-Space Technology Experiment (LITE) is in center foreground.

  7. Astronaut Mark Lee test SAFER system during EVA

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Backdropped against the blue and white Earth, 130 nautical miles below, astronaut Mark C. Lee test the new Simplified Aid for EVA Rescue (SAFER) system. The scen was captured with a 70mm handheld Hasselblad camera with a 30mm lens attached.

  8. Astronaut John W. Young egresses the Space Shuttle orbiter Columbia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut John W. Young egresses the Space Shuttle orbiter Columbia after landing on Rogers dry lake bed at Edwards Air Force Base. George W.S. Abbey, director of flight operations at JSC congratulates him at the bottom of the stairs. Dr. Craig L. Fischer, head of medical operations at JSC is at the top of the stairs preparing to enter the orbiter.

  9. Astronaut James Newman evaluates tether devices in Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, evaluates various tether devices to be used during the Hubble Space Telescope (HST) servicing mission scheduled for later this year. Newman is tethered to the starboard side, with the orbital maneuvering system (OMS) pod just behind him.

  10. Astronaut James Newman works with computers and GPS

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On Discovery's middeck, Astronaut James H. Newman, mission specialist, works with an array of computers, including one devoted to Global Positioning System (GPS) operations, a general portable onboard computer displaying a tracking map, a portable audio data modem and another payload and general support computer.

  11. Astronautics and aeronautics, 1972. [a chronology of events

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  12. Astronauts Conrad and Gordon demonstrate tethering procedures for news media

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Charles Conrad (left), command pilot, and Richard F. Gordon (right), pilot, demonstrate tether procedure between their Gemini 11 spacecraft and the Agena Target Docking Vehicle at the post flight press conference. They use models of their spacecraft and its Agena to illustrate maneuvers.

  13. Astronaut Gordon Cooper assisted into his Mercury Spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., is assisted into his 'Faith 7' Mercury Spacecraft early Tuesday (May 14, 1963) morning. Cooper remained in the spacecraft for approximately 5 hours and then climbed out again as the mission was delayed because of trouble at a tracking station.

  14. Astronaut C. Gordon Fullerton in suit donning/doffing exercise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, takes part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Mission Specialist William F. Fisher, far left, holds a mirror to assist Fullerton with hose and cable linkups to his suit. Fullerton is wearing an extravehicular mobility unit (EMU) minus gloves and helmet.

  15. Astronaut Gordon Cooper assisted into his Mercury Spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., pilot of the Mercury-Atlas 9 (MA-9) earth-orbital space mission, is assisted into his 'Faith 7' Mercury Spacecraft during the prelaunch countdown. MA-9 was launched on May 15, 1963, and the flight lasted for 34 hours and 20 minutes.

  16. Astronaut C. Gordon Fullerton in donning/doffing exercise experiences

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, experiences free fall while taking part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Fullerton is wearing an extravehicular mobility unit (EMU) complete with gloves and helmet.

  17. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  18. Astronauts Conrad and Gordon demonstrate tethering procedures for news media

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Charles Conrad (center), command pilot, and Richard F. Gordon (right), pilot, demonstrate tether procedure between their Gemini 11 spacecraft and the Agena Target Docking Vehicle at the post flight press conference. They use models of their spacecraft and its Agena to illustrate maneuvers. At left is George Low, Deputy Director, Manned Spacecraft Center, Houston.

  19. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  20. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  1. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  2. Astronauts give Hubble a new lease of life

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-06-01

    Astronauts successfully repaired and upgraded the Hubble Space Telescope last month by performing five space walks each lasting more than six hours. The mission will improve Hubble's "observational power" by up to a factor of 100. The upgrade will also enable the 19-year-old instrument to carry on obtaining images of the early universe until 2014.

  3. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a pre-launch Native American ceremony, Radmilla Cody, the 2001 Miss Navaho Nation, sings the 'Star Spangled Banner' in her native language. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  4. Astronaut Richard H. Truly gets practice eating in weghtlessness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Richard H. Truly, STS-2 pilot, gets some practice eating in a weightless environment during moments of zero gravity on the KC-135 aircraft. He holds a spoon in his right hand and a package of dehydrated food in his left hand and is in the process of swallowing.

  5. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Chickasaw Dance troupe member Tim Harjo (second from left) leads Joyce and James Herrington in a dance honoring their son, STS-113 Mission Specialist John Herrington. The dance was part of a Native American ceremony at the Rocket Garden in the KSC Visitor Complex commemorating Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission.

  6. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Chickasaw Dance Troupe performs an Honor Dance during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  7. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Chickasaw Dance Troupe performs an Honor Dance for John Herrington's parents during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  8. Astronaut Story Musgrave recieves assistance during suiting for WETF training

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Larry Kasallis of Hamilton Standard assists Astronaut Story Musgrave as the STS-6 mission specialist suits up for an underwater training session in the Weightless environment training facility (WETF). Kasallis is assisting Musgrave to don the extravehicular mobility unit's gloves. Musgrave is already wearing the EMU and the communication carrier assembly but not the helmet.

  9. Astronaut Story Musgrave deploys HST solar array panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut F. Story Musgrave, anchored to a foot restraint on the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm, aids the deployment of one of the solar array panels on the Hubble Space Telescope (HST). The action came during the final of five STS-61 space walks.

  10. Astronaut William Thornton observes monkey in the RAHF

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut William E. Thornton, 51-B/Spacelab 3 mission specialist, observes one of two squirel monkeys (cage #1) in the research animal holding facility (RAHF) at the Ames double rack facility aboard the Spacelab 3 science module in the cargo bay of the shuttle Challenger.

  11. Fitness variables and the lipid profile in United States astronauts

    NASA Technical Reports Server (NTRS)

    Berry, M. A.; Squires, W. G.; Jackson, A. S.

    1980-01-01

    The study examines the relationship between several measures of fitness and the lipid profile in United States astronauts. Data were collected on 89 astronauts, previously selected (PSA) and newly selected (NSA), during their annual physical examinations. Several similarities were seen in the two groups. The PSA (mean age of 46.1) had a lower maximum oxygen capacity (41.7 ml kg/min vs. 47.5 ml kg/min); when adjusted for age, it was no different from the NSA (mean age 33.5). The PSA had similar body composition with 15.7% - lower than expected for age. The lipid profiles of the two groups were basically the same with the differences being a function of age. Compared to a normative population, the astronauts had similar cholesterols, lower triglycerides, and higher HDLs. The astronaut profiles were generally more favorable than the age-matched controls, which is felt to be a result of the self-supervised conditioning program and annual preventive medicine consultation and education.

  12. 1990 astronaut candidate Chiao determines location during wilderness training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Leroy Chiao determines his location in order to specify directions for a helicopter pickup during wilderness survival training at Fairchild Air Force Base. Chiao, one of 23 1990 Group 13 astronaut candidates, participated in the training near Spokane, Washington, 08-26-90 through 08-30-90.

  13. Astronaut John Glenn during training exercise in Mercury Procedures Trainer

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Mercury Astronaut John H. Glenn Jr. runs through a training exercise in the Mercury Procedures Trainer in use at Space Task Group, Langley Field, Virginia. This Link-type spacecraft simulator permits the practice of both normal and emergency modes of systems operations.

  14. Astronaut William McArthur prepares for a training exercise

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Wearing training versions of the partial pressure launch and entry garment, Astronaut William S. McArthur prepares to rehearse emergency egress procedures for the STS-58 mission. He is standing outside of the side hatch to the full fuselage trainer.

  15. Astronauts Newman and Bursch participate in DSO 622

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts James H. Newman (left) and Daniel W. Bursch, mission specialists, participate in a Detailed Supplementary Objective (DSO) dealing with the gastro-intestinal function during extended duration flight (DSO 622). The two are on the Discovery's middeck. Bursch holds himself in position with his left hand grasping the emergency escape pole.

  16. Official portrait of Astronaut Charles F. Bolden, Jr.

    NASA Technical Reports Server (NTRS)

    1986-01-01

    New Official portrait of Astronaut Charles F. Bolden Jr. Bolden is in the blue shuttle flight suit with his helmet under his arm and an American flag behind him. Above and to the right of his head is a view of the shuttle flying.

  17. Apollo 11 Astronaut Michael Collins Prepares for Weightless Conditions

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, astronaut Collins (left) and chief astronaut and director of flight crew operations, Donald K. Slayton, walk away from a T-38 jet plane at Patrick Air Force Base. The two had been flying arcs to give Collins more time under weightless conditions. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  18. Astronaut William Gregory works with pharmaceutical experiments on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, works with a pharmaceutical experiment on the middeck of the Earth-orbiting Space Shuttle Endeavour. Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiments (CMIX-03) includes not only pharmaceutical but also biotechnology, cell biology, fluids and crystal growth investigations.

  19. Astronaut Daniel Brandenstein shows of Father's Day card

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Daniel Brandenstein, STS 51-G mission commander, shows of Father's Day card from his daughter. The card reads 'To the world's best Dad,' and contains artwork. He is in the aft flight deck near the remote manipulator system (RMS) controls.

  20. Quarantined Apollo 11 Astronauts Watch Cake Cutting Ceremony

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days following the mission. In this photograph, the Hornet crew and honor guard snap to attention to begin the official cake cutting ceremony for the Apollo 11 astronauts. Astronauts Armstrong and Aldrin are visible in the window of the MQF.