Science.gov

Sample records for agency astronaut andre

  1. Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA),

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA), set up an experiment at the glovebox on the Space Shuttle Columbias mid-deck. The two mission specialists joined three other astronauts and an international payload specialist for more than 16 days of research aboard Columbia.

  2. The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight.

    PubMed

    Lambrecht, Gunda; Petersen, Nora; Weerts, Guillaume; Pruett, Casey; Evetts, Simon; Stokes, Maria; Hides, Julie

    2017-01-01

    Spaceflight and exposure to microgravity have wide-ranging effects on many systems of the human body. At the European Space Agency (ESA), a physiotherapist plays a key role in the multidisciplinary ESA team responsible for astronaut health, with a focus on the neuro-musculoskeletal system. In conjunction with a sports scientist, the physiotherapist prepares the astronaut for spaceflight, monitors their exercise performance whilst on the International Space Station (ISS), and reconditions the astronaut when they return to Earth. This clinical commentary outlines the physiotherapy programme, which was developed over nine long-duration missions. Principles of physiotherapy assessment, clinical reasoning, treatment programme design (tailored to the individual) and progression of the programme are outlined. Implications for rehabilitation of terrestrial populations are discussed. Evaluation of the reconditioning programme has begun and challenges anticipated after longer missions, e.g. to Mars, are considered.

  3. Major Andre

    ERIC Educational Resources Information Center

    Henisch, B. A.; Henisch, H. K.

    1976-01-01

    If most Revolutionary era people seem two-dimensional their lives simpler to understand than ours, it may be only that history, with the benefit of hindsight, clarifies. Examines a profile of Major John Andre, the British liaison officer in Benedict Arnold's plan to surrender West Point, as both hero and villain to show the complexity of early…

  4. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  5. Universal values of Canadian astronauts

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena; Della-Rossa, Irina

    2012-11-01

    Values are desirable, trans-situational goals, varying in importance, that guide behavior. Research has demonstrated that universal values may alter in importance as a result of major life events. The present study examines the effect of spaceflight and the demands of astronauts' job position as life circumstances that affect value priorities. We employed thematic content analysis for references to Schwartz's well-established value markers in narratives (media interviews, journals, and pre-flight interviews) of seven Canadian astronauts and compared the results to the values of National Aeronautics and Space Administration (NASA) and Russian Space Agency (RKA) astronauts. Space flight did alter the level of importance of Canadian astronauts' values. We found a U-shaped pattern for the values of Achievement and Tradition before, during, and after flight, and a linear decrease in the value of Stimulation. The most frequently mentioned values were Achievement, Universalism, Security, and Self-Direction. Achievement and Self Direction are also within the top 4 values of all other astronauts; however, Universalism was significantly higher among the Canadian astronauts. Within the value hierarchy of Canadian astronauts, Security was the third most frequently mentioned value, while it is in seventh place for all other astronauts. Interestingly, the most often mentioned value marker (sub-category) in this category was Patriotism. The findings have important implications in understanding multi-national crew relations during training, flight, and reintegration into society.

  6. Female Astronauts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Astronauts Dr. N. Jan Davis (left) and Dr. Mae C. Jemison (right) were mission specialists on board the STS-47 mission. Born on November 1, 1953 in Cocoa Beach, Florida, Dr. N. Jan Davis received a Master degree in Mechanical Engineering in 1983 followed by a Doctorate in Engineering from the University of Alabama in Huntsville in 1985. In 1979 she joined NASA Marshall Space Flight Center as an aerospace engineer. A veteran of three space flights, Dr. Davis has logged over 678 hours in space since becoming an astronaut in 1987. She flew as a mission specialist on STS-47 in 1992 and STS-60 in 1994, and was the payload commander on STS-85 in 1997. In July 1999, she transferred to the Marshall Space Flight Center, where she became Director of Flight Projects. Dr. Mae C. Jemison, the first African-American woman in space, was born on October 17, 1956 in Decatur, Alabama but considers Chicago, Illinois her hometown. She received a Bachelor degree in Chemical Engineering (and completed the requirements for a Bachelor degree in African and Afro-American studies) at Stanford University in 1977, and a Doctorate degree in medicine from Cornell University in 1981. After receiving her doctorate, she worked as a General Practitioner while attending graduate engineering classes in Los Angeles. She was named an astronaut candidate in 1987, and flew her first flight as a science mission specialists on STS-47, Spacelab-J, in September 1992, logging 190 hours, 30 minutes, 23 seconds in space. In March 1993, Dr. Jemison resigned from NASA, thought she still resides in Houston, Texas. She went on to publish her memoirs, Find Where the Wind Goes: Moments from My Life, in 2001. The astronauts are shown preparing to deploy the lower body negative pressure (LBNP) apparatus in this 35mm frame taken in the science module aboard the Earth-orbiting Space Shuttle Endeavor. Fellow astronauts Robert L. Gibson (Commander), Curtis L. Brown (Junior Pilot), Mark C. Lee (Payload Commander), Jay Apt

  7. Astronaut Virgil Grissom and Astronaut John Glenn

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut Virgil Grissom chats with Astronaut John Glenn prior to entering the Liberty Bell 7 capsule for the MR-4 Mission. The MR-4 mission was the second manned suborbital flight using the Mercury-Redstone booster, which was developed by the Marshall Space Flight Center.

  8. Astronaut Scott Carpenter

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut Scott Carpenter, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. Boosted by the Mercury-Atlas vehicle, the MA-7 mission made the second marned orbital flight by the United States, and carried Astronaut Carpenter aboard Aurora 7 spacecraft to orbit the Earth three times.

  9. Astronauts Working in Spacelab

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie captures astronaut Jan Davis and her fellow crew members working in the Spacelab, a versatile laboratory carried in the Space Shuttle's cargo bay for special research flights. Its various elements can be combined to accommodate the many types of scientific research that can best be performed in space. Spacelab consisted of an enclosed, pressurized laboratory module and open U-shaped pallets located at the rear of the laboratory module. The laboratory module contained utilities, computers, work benches, and instrument racks to conduct scientific experiments in astronomy, physics, chemistry, biology, medicine, and engineering. Equipment, such as telescopes, antennas, and sensors, is mounted on pallets for direct exposure to space. A 1-meter (3.3-ft.) diameter aluminum tunnel, resembling a z-shaped tube, connected the crew compartment (mid deck) to the module. The reusable Spacelab allowed scientists to bring experiment samples back to Earth for post-flight analysis. Spacelab was a cooperative venture of the European Space Agency (ESA) and NASA. ESA was responsible for funding, developing, and building Spacelab, while NASA was responsible for the launch and operational use of Spacelab. Spacelab missions were cooperative efforts between scientists and engineers from around the world. Teams from NASA centers, universities, private industry, government agencies and international space organizations designed the experiments. The Marshall Space Flight Center was NASA's lead center for monitoring the development of Spacelab and managing the program.

  10. Methodology for astronaut reconditioning research.

    PubMed

    Beard, David J; Cook, Jonathan A

    2017-01-01

    Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports. Astronauts and Medical Operations personnel should be involved at all levels to ensure feasibility of research protocols. There is room for creative and hybrid methodology but careful systematic observation is likely to be more achievable and fruitful than complex trial based comparisons. Multi-space agency collaboration will be critical to pool data from small groups of astronauts with the accepted use of standardised outcome measures across all agencies. Systematic reviews will be an essential component. Most limitations relate to the inherent small sample size available for human spaceflight research. Early adoption of a co-operative model for spaceflight rehabilitation research is therefore advised.

  11. Reactivity of San Andres dolomite

    SciTech Connect

    Anderson, M.S. )

    1991-05-01

    The San Andres formation is routinely stimulated with acid. Although numerous acidizing simulators are available to aid in treatment optimization, existing reactivity data were generated with quarried rock rather than formation samples. This paper presents reactivity data for five San Andres dolomite samples. These data can be used in most fracture-acidizing-design simulators to allow more accurate simulation of the acidizing process.

  12. Astronauts' menu problem.

    NASA Technical Reports Server (NTRS)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  13. Astronautics and aeronautics, 1978: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  14. Astronautics and aeronautics, 1985: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  15. Astronaut John Young's Career

    NASA Video Gallery

    John Young served as a NASA astronaut for over four decades, flying on Gemini, Apollo and the Space Shuttle. He walked on the moon during Apollo 16 in 1972 and commanded the first shuttle mission, ...

  16. Astronauts Practice Station Spacewalk

    NASA Video Gallery

    Astronauts Cady Coleman and Suni Williams conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Space St...

  17. Building An Astronaut Core

    NASA Video Gallery

    Train to improve the strength in your abdominal and back muscles by performing the "Commander Crunch" and "Pilot Plank" exercises. The Train Like an Astronaut project uses the excitement of explora...

  18. Shuttle Astronauts Play Chess

    NASA Video Gallery

    STS-134 astronauts Greg Johnson and Greg Chamitoff ponder their next move for the Earth vs. Space chess match. The shuttle crew members also discuss their activities aboard the International Space ...

  19. ISS Update: Astronaut's Perspective

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews veteran NASA astronaut Cady Coleman about what it's like to receive visitors on the International Space Station as well as her other experience...

  20. NASA Astronauts Fly Dream Chaser Simulations May 15-17

    NASA Video Gallery

    Jack Fischer was one of four NASA astronauts to fly approach and landing simulations of Sierra Nevada Corporation's Dream Chaser spacecraft at the agency's Langley Research Center in Hampton, Va. T...

  1. The European Astronaut Centre prepares for International Space Station operations.

    PubMed

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2004-04-01

    The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.

  2. Assessments of astronaut effectiveness

    NASA Technical Reports Server (NTRS)

    Rose, Robert M.; Helmreich, Robert L.; Fogg, Louis; Mcfadden, Terry J.

    1993-01-01

    This study examined the reliability and convergent validity of three methods of peer and supervisory ratings of the effectiveness of individual NASA astronauts and their relationships with flight assignments. These two techniques were found to be reliable and relatively convergent. Seniority and a peer-rated Performance and Competence factor proved to be most closely associated with flight assignments, while supervisor ratings and a peer-rated Group Living and Personality factor were found to be unrelated. Results have implications for the selection and training of astronauts.

  3. Mission X: Train Like an Astronaut Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  4. Astronaut Pedro Duque Watches A Water Bubble

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  5. Motivational profile of astronauts at the International Space Station

    NASA Astrophysics Data System (ADS)

    Brcic, Jelena

    2010-11-01

    Research has demonstrated that the motive triad of needs for achievement, power, and affiliation can predict variables such as occupational success and satisfaction, innovation, aggressiveness, susceptibility to illness, cooperation, conformity, and many others. The present study documents the motivational profiles of astronauts at three stages of their expedition. Thematic content analysis was employed for references to Winter's well-established motive markers in narratives (media interviews, journals, and oral histories) of 46 astronauts participating in International Space Station (ISS) expeditions. Significant pre-flight differences were found in relation to home agency and job status. NASA astronauts, compared with those from the Russian Space Agency, are motivated by higher need for power, as are commanders in comparison to flight engineers. The need for affiliation motive showed a significant change from pre-flight to in-flight stages. The implications of the relationship between the motivational profile of astronauts and the established behavioural correlates of such profiles are discussed.

  6. STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware

    NASA Technical Reports Server (NTRS)

    2007-01-01

    STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.

  7. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  8. Expedition 30 Departs for Launch Site

    NASA Video Gallery

    Three Expedition 30 flight engineers -- NASA astronaut Don Pettit, Russian cosmonaut Oleg Kononenko and European Space Agency astronaut Andre Kuipers -- departed Star City, Russia on Thursday for t...

  9. Astronaut Charles Conrad trims hair of Astronaut Paul Weitz

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, trims the hair of Astronaut Paul J. Weitz, Skylab 2 pilot, during the 28-day Skylab 2 mission in Earth orbit. They are in the crew quarters wardroom of the Orbital Workshop of the Skylab 1 and 2 space station. Weitz is holding a vacuum hose in his right hand. This picture was taken by Scientist-Astronaut Joseph P. Kerwin, Skylab 2 science pilot.

  10. Astronaut training manual

    NASA Technical Reports Server (NTRS)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  11. Astronauts Clown Around in Space

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a 'For Sale' sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the RMS (Remote Manipulator System) is reflected in Gardner's helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  12. Astronauts Clown Around in Space

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a 'For Sale' sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the Remote Manipulator System (RMS) is reflected in Gardner's helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  13. Astronaut health monitoring

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Gift, Alan; Maksymiuk, Paul; Farquharson, Stuart

    2006-10-01

    Extended weightlessness causes numerous deleterious changes in human physiology, including space motion sickness, cephalad fluid shifts, reduced immune response, and breakdown of muscle tissue with subsequent loss of bone mass and formation of renal stones. Furthermore, these physiological changes also influence the metabolism of drugs used by astronauts to minimize these deleterious effects. Unfortunately, the changes in human physiology in space are also reflected in drug metabolism, and current pre-flight analyses designed to set dosage are inadequate. Furthermore, current earth-based analytical laboratory methods that employ liquid or gas chromatography for separation and fluorescence or mass spectrometry for trace detection are labor intensive, slow, massive, and not cost-effective for operation in space. In an effort to overcome these instrument limitations we have been developing a sampling device to both separate these drugs and metabolites from urine, and generate surface-enhanced Raman (SER) spectra. The detailed molecular vibrational information afforded by Raman scattering allows chemical identification, while the surface-enhancement increases sensitivity by six or more orders of magnitude and allows detection of nanogram per milliliter concentrations. Generally no more than 1 milliliter of sample is required and complete analysis can be performed in 5 minutes using a portable, light-weight Raman spectrometer. Here we present the SER analysis of several drugs used by astronauts measured in synthetic urine and reconstituted urine.

  14. Neuropsychological Testing of Astronauts

    NASA Technical Reports Server (NTRS)

    Flynn, Christopher; Vander Ark, Steve; Eksuzian, Daniel; Sipes, Walter; Kane, Robert; Vanderploeg, Rodney; Retzlaff, Paul; Elsmore, Tim; Moore, Jeffrey

    2004-01-01

    The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is a computer program that administers a battery of five timed neuro-cognitive tests. WinSCAT was developed to give astronauts an objective and automated means of assessing their cognitive functioning during space flight, as compared with their own baseline performances measured during similar prior testing on the ground. WinSCAT is also intended for use by flight surgeons to assess cognitive impairment after exposure of astronauts to such cognitive assaults as head trauma, decompression sickness, and exposure to toxic gas. The tests were selected from among a group of tests, denoted the Automated Neuropsychological Assessment Metrics, that were created by the United States Navy and Army for use in evaluating the cognitive impairment of military personnel who have been subjected to medication or are suspected to have sustained brain injuries. These tests have been validated in a variety of clinical settings and are now in the public domain. The tests are presented in a Microsoft Windows shell that facilitates administration and enables immediate reporting of test scores in numerical and graphical forms.

  15. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of Astronaut Alan L. Bean, commander, in this on-board photograph from the Skylab Orbital Workshop (OWS). Bean holds a vacuum hose to gather in loose hair.

  16. Educating Astronauts About Conservation Biology

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  17. Acute urinary retention among astronauts.

    PubMed

    Stepaniak, Philip C; Ramchandani, Suneil R; Jones, Jeffrey A

    2007-04-01

    Although acute urinary retention (AUR) is not commonly thought of as a life-threatening condition, its presentation in orbit can lead to a number of medical complications that could compromise a space mission. We report on a middle-aged astronaut who developed urinary retention during two spaceflights. On the first mission of note, the astronaut initially took standard doses of promethazine and scopolamine before launch, and developed AUR immediately after entering orbit. For the first 3 d, the astronaut underwent intermittent catheterizations with a single balloon-tipped catheter. Due to the lack of iodine solution on board and the need for the astronaut to complete certain duties without interruption, the catheter was left in place for a total of 4 d. Although the ability to void returned after day 7, a bout of AUR reemerged on day 10, 1 d before landing. On return to Earth, a cystometrogram was unremarkable. During the astronaut's next mission, AUR again recurred for the first 24 h of microgravity exposure, and the astronaut was subsequently able to void spontaneously while in space. This report details the presentation of this astronaut, the precautions that were taken for space travel subsequent to the initial episode of AUR, and the possible reasons why space travel can predispose astronauts to urinary retention while in orbit. The four major causes of AUR--obstructive, pharmacologic, psychogenic, and neurogenic-are discussed, with an emphasis on how these may have played a role in this case.

  18. Space Shuttle Era: Astronaut Support Personnel

    NASA Video Gallery

    Astronauts rely on other astronauts on launch day to help them get rady for liftoff and the misison ahead. The helpful cadre are known formally as Astronaut Support Personnel but are called ASPs or...

  19. Train Like an Astronaut Educational Outreach

    NASA Technical Reports Server (NTRS)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  20. Astronaut Maurizio Cheli, mission specialist, works with the Tether Optical Phenomenon System (TOPS)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Maurizio Cheli, mission specialist, works with the Tether Optical Phenomenon System (TOPS) on the flight deck of the Earth-orbiting Space Shuttle Columbia. Cheli, representing the European Space Agency (ESA), joined four other astronauts and an international payload specialists for 16 days of scientific research in Earth-orbit.

  1. NASA's New Educator Astronauts Face Long Wait for Their Shuttle Missions

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2006-01-01

    When the U.S. space agency pinned badges on the 11 newest members of its astronaut corps this winter, it also increased by three its cadre of educator astronauts. Three former teachers-Dorothy M. Metcalf-Lindenburger, Richard R. Arnold II, and Joseph M. Acaba-graduated from NASA's grueling training program. The gauntlet of fitness test, survival…

  2. Astronauts Exercising in Space Video

    NASA Technical Reports Server (NTRS)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  3. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  4. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the forward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). This ASMU exerperiment is being done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  5. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  6. Onboard photo: Astronaut Mae Jemison working in Spacelab-J

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Space Shuttle Endeavour (STS-47) onboard photo of Astronaut Mae Jemison working in Spacelab-J module. Spacelab-J is a combined National Space Development Agency of Japan (NASDA) and NASA mission. The objectives included life sciences, microgravity and technology research.

  7. Private Astronaut Training Prepares Commercial Crews of Tomorrow

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A new company that includes a handful of former NASA personnel is already taking applications for the first comprehensive commercial astronaut training approved by the Federal Aviation Administration. Waypoint 2 Space, located at Johnson Space Center, hopes to draw space tourists and enthusiasts and future commercial crewmembers with first-hand NASA know-how, as well as agency training technology.

  8. Astronaut Atop Canadarm-2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. Back dropped by the blackness of space and Earth's horizon, astronaut Stephen K. Robinson, STS-114 mission specialist, is anchored to a foot restraint on the extended ISS's Canadarm-2.

  9. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  10. Dose limits for astronauts

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    2000-01-01

    Radiation exposures to individuals in space can greatly exceed natural radiation exposure on Earth and possibly normal occupational radiation exposures as well. Consequently, procedures limiting exposures would be necessary. Limitations were proposed by the Radiobiological Advisory Panel of the National Academy of Sciences/National Research Council in 1970. This panel recommended short-term limits to avoid deterministic effects and a single career limit (of 4 Sv) based on a doubling of the cancer risk in men aged 35 to 55. Later, when risk estimates for cancer had increased and were recognized to be age and sex dependent, the NCRP, in Report No. 98 in 1989, recommended a range of career limits based on age and sex from 1 to 4 Sv. NCRP is again in the process of revising recommendations for astronaut exposure, partly because risk estimates have increased further and partly to recognize trends in limiting radiation exposure occupationally on the ground. The result of these considerations is likely to be similar short-term limits for deterministic effects but modified career limits.

  11. Astronaut Steve Swanson Visits Goddard

    NASA Video Gallery

    On Tuesday, 3 March 2015, a special guest visited NASA Goddard Space Flight Center during his time back on Earth. Steven Swanson, NASA astronaut, intrigued the audience by highlighting his adventur...

  12. Astronauts Practice Station Spacewalk Underwater

    NASA Video Gallery

    Astronauts Robert Satcher Jr. and Rick Sturckow conduct an underwater practice spacewalk session at Johnson Space Center’s Neutral Buoyancy Laboratory. The session was used to help International Sp...

  13. Astronautics: Past, present and future

    NASA Astrophysics Data System (ADS)

    Maksimov, A. I.

    2016-10-01

    The article deals with the beginning and evolution of astronautics in XX-XXI centuries. The great attention is paid to the contribution of private companies to the further expansion of the mankind space activities in the past few decades.

  14. Philosophy on astronaut protection: Perspective of an astronaut

    SciTech Connect

    Baker, E.

    1997-04-30

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.

  15. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment in the foreward dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. Bean is strapped in to the back-mounted, hand-controlled Automatically Stabilized Maneuvering Unit (ASMU). He is wearing a pressure suit for this run of the M509 experiment, but other ASMU tests are done in shirt sleeves. The dome area where the experiment is conducted is about 22 feet in diameter and 19 feet from top to bottom.

  16. Evaluation of Space Food for Commercial Astronauts

    NASA Astrophysics Data System (ADS)

    Ahlstrom, Britt Karin

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles - not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet - one comprised of commercially available, ready-to-eat food. Yet will this diet keep astronauts nourished, satisfied with their diet, and both psychologically and physically healthy? The purpose of this parallel crossover design study was to evaluate (a) nutrient intake, (b) food satisfaction, (c) psychological health, and (d) physical health in commercial aerospace employees (N = 7) as they ate a diet of commercial, ready-to-eat food for four days, as compared to eating as normal for four days. Findings from this study showed that the ready-to-eat diet did not lead to any significant changes in caloric intake, psychological health, or physical health, aside from weight loss. It is not clear whether this weight loss was due to the loss of body fat, muscle, or water. When eating the ready-to-eat food, participants reported being slightly less satisfied with the variety, reported lower cravings for sweets, and reported the food was slightly less hedonically rewarding. In post-study interviews, participants reported they wanted to see more meats, fruits, vegetables, and desserts added to the ready-to-eat diet, so as to provide more meal-like structure. Overall, these findings show the diet could be used in commercial spaceflight after making simple changes. The diet could also be used by individuals in remote areas on Earth and to provide food assistance to individuals in disaster or emergency situations. Due to the increasing popularity of ready-to-eat food around the world, these findings also provide knowledge about the potential consequences of

  17. Parallels between astronauts and terrestrial patients - Taking physiotherapy rehabilitation "To infinity and beyond".

    PubMed

    Hides, Julie; Lambrecht, Gunda; Ramdharry, Gita; Cusack, Rebecca; Bloomberg, Jacob; Stokes, Maria

    2017-01-01

    Exposure to the microgravity environment induces physiological changes in the cardiovascular, musculoskeletal and sensorimotor systems in healthy astronauts. As space agencies prepare for extended duration missions, it is difficult to predict the extent of the effects that prolonged exposure to microgravity will have on astronauts. Prolonged bed rest is a model used by space agencies to simulate the effects of spaceflight on the human body, and bed rest studies have provided some insights into the effects of immobilisation and inactivity. Whilst microgravity exposure is confined to a relatively small population, on return to Earth, the physiological changes seen in astronauts parallel many changes routinely seen by physiotherapists on Earth in people with low back pain (LBP), muscle wasting diseases, exposure to prolonged bed rest, elite athletes and critically ill patients in intensive care. The medical operations team at the European Space Agency are currently involved in preparing astronauts for spaceflight, advising on exercises whilst astronauts are on the International Space Station, and reconditioning astronauts following their return. There are a number of parallels between this role and contemporary roles performed by physiotherapists working with elite athletes and muscle wasting conditions. This clinical commentary will draw parallels between changes which occur to the neuromuscular system in the absence of gravity and conditions which occur on Earth. Implications for physiotherapy management of astronauts and terrestrial patients will be discussed.

  18. These six astronauts have been named to fly aboard the Space Shuttle Endeavour in support of the

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 CREW PORTRAIT --- These six astronauts have been named to fly aboard the Space Shuttle Endeavour in support of the Spacehab-04 mission, scheduled for launch in May of this year. On the front row are astronauts John H. Casper (right), mission commander; and Curtis L. Brown Jr., pilot. In the rear, from the left, are astronauts Daniel W. Bursch, Mario Runco Jr., Marc Garneau and Andrew S. W. Thomas, all mission specialists. Garneau represents the Canadian Space Agency (CSA).

  19. Astronaut Gordon Cooper After Recovery

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut Gordon Cooper leaves the Faith 7 (MA-9) spacecraft after a successful recovery operation. The MA-9 mission, the last flight of the Mercury Project, was launched on May 15, 1963, orbited the Earth 22 times, and lasted for 1-1/2 days.

  20. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  1. Origins of astronautics in Switzerland

    NASA Technical Reports Server (NTRS)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  2. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  3. Astronaut Thomas Stafford and Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Thomas P. Stafford, commander of the Apollo 10 lunar orbit mission, takes time out from his preflight training activities to have his picture made with Snoopy, the character from Charles Schulz's syndicated comic strip, 'Peanuts'. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules.

  4. André Guinier (1911-2000)

    NASA Astrophysics Data System (ADS)

    Comes, R.

    2002-07-01

    André Guinier died on 3 July 2000, he was a pioneer of crystallography of crystalline imperfections and their influence on physical properties of materials. He leaves an active research school in a variety of domains. André Guinier, décédé le 3 juillet 2000, a été l'un des pionniers de la cristallographie des imperfections cristallines et de leurs influences sur les propriétés physiques des matériaux. Il laisse derrière lui une école vivante de recherche dans des domaines très variés.

  5. Hall Opens Doors to Astronaut Heroes

    NASA Video Gallery

    Space shuttle astronauts Bonnie Dunbar, Curt Brown and Eileen Collins joined an elite group of American space heroes as they were inducted into the U.S. Astronaut Hall of Fame on April 20, during a...

  6. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, watches astronaut C. Michael Foale (out of frame), mission specialist, during the late phases of their shared extravehicular activity (EVA) in the STS-63 Space Shuttle Discovery's cargo bay.

  7. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

  8. Official portrait of astronaut Robert C. Springer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Official portrait of astronaut Robert C. Springer, United Stated Marine Corps (USMC) Colonel, member of Astronaut Class 9 (1980), and mission specialist. Springer wears launch and entry suit (LES) while holding helmet.

  9. Astronaut Jean-Francois Clervoy chats with STS-66 crewmates

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Jean-Francois Clervoy (center), STS-66 international mission specialist, chats with payload crew mates during a training session on emergency egress procedures. Wearing training versions of the launch and entry suits, the crew members are, left to right, Scott E. Parazynski, Joseph P. Tanner, Clervoy and Ellen Ochoa. Ochoa is the payload commander, Tanner and Parazynski are NASA mission specialists and Clervoy represents the European Space Agency (ESA) as a mission specialist.

  10. Metabolic changes observed in astronauts

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Cintron, N. M.; Krauhs, J. M.

    1991-01-01

    Results of medical experiments with astronauts reveal rapid loss of volume (2 l) from the legs and a transient early increase in left ventricular volume index. These findings indicate that, during space flight, fluid is redistributed from the legs toward the head. In about 2 days, total body water decreases 2 to 3 percent. Increased levels of plasma renin activity and antidiuretic hormone while blood sodium and plasma volume are reduced suggest that space flight-associated factors are influencing the regulatory systems. In addition to fluid and electrolyte loss, Skylab astronauts lost an estimated 0.3 kg of protein. Endocrine factors, including increased cortisol and thyroxine and decreased insulin, are favorable for protein catabolism. The body appears to adapt to weightlessness at some physiologic cost. Readaptation to earth's gravity at landing becomes another physiologic challenge.

  11. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  12. Astronautics in an integrating world

    NASA Astrophysics Data System (ADS)

    Hansson, A.

    If Astronautics is to survive it is necessary to introduce a space transportation system that is designed not on political assessment but on engineering. It is also necessary to establish an international certification unit and separate security issues. With such a framework, it should be possible to look forward to space industrialisation as the fourth industrialisation via space power and tourism in Low Earth Orbit. This would follow the integration already at hand from space based communication.

  13. Pharmacologic considerations for Shuttle astronauts

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Bungo, Michael W.

    1991-01-01

    Medication usage by crewmembers in the preflight and inflight mission periods is common in the Shuttle Program. The most common medical reports for which medication is used are: space motion sickness (SMS), sleeplessness, headache, and backache. A number of medications are available in the Shuttle Medical Kit to treat these problems. Currently, astronauts test all frequently used medications before mission assignment to identify potential side-effects, problems related to performance, personal likes/dislikes, and individual therapeutic effect. However, microgravity-induced changes in drug pharmacokinetics, in combination with multiple operational factors, may significantly alter crewmember responses inflight. This article discusses those factors that may impact pharmacologic efficacy during Shuttle missions.

  14. Astronaut Health Participant Summary Application

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy; Krog, Ralph; Rodriguez, Seth; Wear, Mary; Volpe, Robert; Trevino, Gina; Eudy, Deborah; Parisian, Diane

    2011-01-01

    The Longitudinal Study of Astronaut Health (LSAH) Participant Summary software captures data based on a custom information model designed to gather all relevant, discrete medical events for its study participants. This software provides a summarized view of the study participant s entire medical record. The manual collapsing of all the data in a participant s medical record into a summarized form eliminates redundancy, and allows for the capture of entire medical events. The coding tool could be incorporated into commercial electronic medical record software for use in areas like public health surveillance, hospital systems, clinics, and medical research programs.

  15. Astronaut Photography of Coral Reefs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Noordeloos, Marco

    2001-01-01

    Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart

  16. Astronauts Capture Moon Illusion Photo

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many odd looking moon photos have been captured over the years by astronauts aboard the International Space Station. Even so, this photograph, taken by the crew over Russia on May 11, 2003, must have come as a surprise. The moon which is really a quarter of a million miles away, appears to be floating inside the Earth's atmosphere. The picture is tricky because of its uneven lighting. With the sun's elevation angle at only 6 degrees, night is falling on the left side of the image while it is still broad daylight on the right side. This gradient of sunlight is the key to the illusion.

  17. PT symmetric Aubry-Andre model

    NASA Astrophysics Data System (ADS)

    Yuce, C.

    2014-06-01

    PT symmetric Aubry-Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity.

  18. Shoulder Injury Incidence Rates in NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  19. Exposure fluctuations of astronauts due to orientation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Wood, James S.; Qualls, Gary; Atwell, William; Shinn, Judy L.; Simonsen, Lisa C.

    1993-01-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  20. Exposure fluctuations of astronauts due to orientation

    SciTech Connect

    Wilson, J.W.; Nealy, J.E.; Wood, J.S.; Qualls, G.; Atwell, W.; Shinn, J.L.; Simonsen, L.C.

    1993-09-01

    The dose incurred in an anisotropic environment depends on the orientation of the astronaut's body relative to the direction of the radiation field. The fluctuations in exposure of specific organs due to astronaut orientation are found to be a factor of 2 or more in a typical space habitation module and typical space radiations. An approximation function is found that overestimates astronaut exposure in most cases studied and is recommended as a shield design guide for future space missions.

  1. Designing Interfaces for Astronaut Autonomy in Space

    NASA Technical Reports Server (NTRS)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  2. Astronaut 'Checks In' From Space Station

    NASA Video Gallery

    NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

  3. Geoscience Training for NASA Astronaut Candidates

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  4. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  5. Apollo Project - Astronaut Roger Chaffee

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut Roger Chaffee on the Reduced Gravity Walking Simulator located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. A.W. Vigil, described the simulator as follows: 'When the astronauts land on the moon they will be in an unfamiliar environment involving, particularly, a gravitational field only one-sixth as strong as on earth. A novel method of simulating lunar gravity has been developed and is supported by a puppet-type suspension system at the end of a long pendulum. A floor is provided at the proper angle so that one-sixth of the subject's weight is supported by the floor with the remainder being supported by the suspension system. This simulator allows almost complete freedom in vertical translation and pitch and is considered to be a very realistic simulation of the lunar walking problem. For this problem this simulator suffers only slightly from the restrictions in lateral movement it puts on the test subject. This is not considered a strong disadvantage for ordinary walking problems since most of the motions do, in fact, occur in the vertical plane. However, this simulation technique would be severely restrictive if applied to the study of the extra-vehicular locomotion problem, for example, because in this situation complete six degrees of freedom are rather necessary. This technique, in effect, automatically introduces a two-axis attitude stabilization system into the problem. The technique could, however, be used in preliminary studies of extra-vehicular locomotion where, for example, it might be assumed that one axis of the attitude control system on the astronaut maneuvering unit may have failed.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 377; A.W. Vigil, 'Discussion of Existing

  6. Astronauts Hart and Crippen pose with MMU

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Terry J. Hart, 41-C mission specialist, poses with a mockup of the manned maneuvering unit (MMU) in the JSC mockup and integration laboratory (29463); Astronaut Robert L. Crippen, 41-C crew commander, poses with a ground training version of the MMU in the JSC mockup and integration laboratory (29464).

  7. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  8. Robonaut: A Robotic Astronaut Assistant

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.; Diftler, Myron A.

    2001-01-01

    NASA's latest anthropomorphic robot, Robonaut, has reached a milestone in its capability. This highly dexterous robot, designed to assist astronauts in space, is now performing complex tasks at the Johnson Space Center that could previously only be carried out by humans. With 43 degrees of freedom, Robonaut is the first humanoid built for space and incorporates technology advances in dexterous hands, modular manipulators, lightweight materials, and telepresence control systems. Robonaut is human size, has a three degree of freedom (DOF) articulated waist, and two, seven DOF arms, giving it an impressive work space for interacting with its environment. Its two, five fingered hands allow manipulation of a wide range of tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems.

  9. Astronaut Clothing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  10. Otomi de San Andres Cuexcontitlan, Estado de Mexico (Otomi of San Andres Cuexcontitlan, State of Mexico).

    ERIC Educational Resources Information Center

    Lastra, Yolanda

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Otomi, an indigenous language of Mexico spoken in San Andres Cuexcontitlan, in the state of Mexico. The objective of collecting such a representative…

  11. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  12. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. This data has been identified as being useful for determining appropriate occupational surveillance targets and requirements. Colonoscopies in the astronaut corps can be used for: (a) Assessing overall colon health, (b) A point of reference for future tests in current and former astronauts, (c) Following-up and tracking rates of colorectal cancer and polyps; and (d) Comparison to military and other terrestrial populations. In 2003, medical screening requirements for the active astronaut corps changed to require less frequent colonoscopies. Polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer and decreases the individual's risk for colon cancer.

  13. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  14. Changes in monocyte functions of astronauts.

    PubMed

    Kaur, Indreshpal; Simons, Elizabeth R; Castro, Victoria A; Ott, C Mark; Pierson, Duane L

    2005-11-01

    As part of the systematic evaluation of the innate immune system for long duration missions, this study focused on the antimicrobial functions of monocytes in astronauts participating in spaceflight. The study included four space shuttle missions and 25 astronauts. Nine non-astronauts served as controls. Blood specimens were collected 10 days before launch, within 3h after landing, and again 3 days after landing. The number of monocytes did not differ significantly over the interval sampled in both the astronaut or control groups. However, following 5-11 days of spaceflight, the astronauts' monocytes exhibited reductions in ability to engulf Escherichia coli, elicit an oxidative burst, and degranulate. The phagocytic index was significantly reduced following spaceflight when compared to control values. This reduction in phagocytosis was accompanied by changes in the expression of two surface markers involved in phagocytosis, CD32 and CD64. Levels of cortisol, epinephrine, and norepinephrine after spaceflight did not increase over preflight values.

  15. Mission X: Train Like an Astronaut Pilot Study

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  16. Astronaut Frank Borman in suiting trailer during prelaunch countdown

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Frank Borman, command pilot of the Gemini 7 space flight, talks with Astronaut Alan Shepard, Chief, MSC Astronaut Office, in the suiting up trailer at Launch Complex 16, during the Gemini 7 prelaunch countdown.

  17. Behind the Scenes: Astronauts Keep Trainers in BBQ Bliss

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, astronaut Mike Massimino talks with astronaut Terry Virts as well as Stephanie Turner, one of the people who keeps the astronaut corps in line. Mass also ...

  18. STS-111 Astronaut Perrin Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  19. [Health levels in San Andres Cholula].

    PubMed

    Alvarez Martinez, A; Corro Fernandez, G; Balmaceda, M

    1991-12-01

    In matters of health and curing, the community of San Andres Cholula in Puebla, Mexico, demonstrates a syncretism similar to religious syncretism. Perspectives on illness and health consistent with the traditional medical practices of curanderos coexist with modern medical practices. Curanderos and physicians often treat the same patients. A curandero's powers are viewed as a special gift transmitted by God or the saints during a dream. The curandero effects a cure not only through knowledge of the medicinal plants, rites, and ceremonies, but by understanding the context of the patient. The Western medical concept of disease emphasizes a biological model and technological control, to the detriment of mental, behavioral, and social factors and determinants. The traditional medical concept stresses the relationship of the individual to the social and ecological environment. Improvements in life expectancy in the developing countries in recent years have been attributed to improved levels of living or to importation of vaccination programs, antibiotics, and similar technologies from the developed countries. The vital register of San Andres Cholula records many deaths whose cause cannot be easily interpreted according to the World Health Organization International Classification of Diseases. It is clear, however, that the root cause of many deaths is malnutrition. The proportion of deaths caused by infectious diseases has declined in Mexico since 1940, but Puebla is still included among the states with the highest incidence. There are great regional and rural-urban mortality differentials in Mexico. In the past 50 years, the infant mortality rate has declined from 250 to 40/1000 live births in San Andres Cholula, more as a result of vaccination campaigns than of improved levels of living. 89% of children have been vaccinated, but the population still lives in about the same state of material comfort as it has for generations except that most households have televisions

  20. Ecological Landscape Classification Using Astronaut Photography

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Castle, J. V.

    2006-12-01

    Digital astronaut photography acquired from the International Space Station is a potentially useful dataset for ecologic, geologic, and land use/land cover studies as it varies greatly in resolution (6 m/pixel minimum) and temporal frequency (minimum 1 day repeat cycle). The entire digital astronaut dataset is freely available from http://eol.jsc.nasa.gov. The dataset includes imagery from 1961 to present, and includes data for much of the Earth's surface. The National Science Foundation's Long Term Ecological Research (LTER) Network provides an ideal framework for assessment of the quantitative potential of digital astronaut photography. The Network of 26 sites represent a wide range of biomes including temperate and tropical forest, deserts, grasslands, tundra, and urban human-dominated ecosystems. This wide range of sites provides an excellent database for comparison of digital astronaut photography with remotely sensed data (i.e. Landsat) as well as field-based validation and measurement data. Used with remotely-sensed satellite and airborne data, digital astronaut photography can increase the temporal resolution of observed variables such as land cover, land use change, vegetation dynamics, and surface soil processes. In contrast to traditional narrow bandwidth remote sensing instruments, digital astronaut photography is acquired using off-the-shelf digital cameras sensitive to the visible red, green, and blue wavelengths; decisions to acquire imagery are made on-the-fly by the astronaut. The wide bandpasses of the camera make traditional classification approaches difficult as discrete spectral information is not typically obtained. We apply a multilevel, object-oriented image segmentation approach to high resolution digital astronaut photography of LTER sites representing a range of continental and island biomes. This approach emphasizes spatial relationships of similar pixels in addition to spectral information. Results include comparison of classification

  1. An expert system for astronaut scientists

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1991-01-01

    A novel application of expert system technology is developed for real-time advice to an astronaut during the performance of a crew intensive experiment. The provision of an on-board computer expert, containing much of the reasoning base of the real Principal Investigator, will permit the astronaut to act more as a scientist co-worker in future Spacelab and Space Station missions. The long duration of flight increments and the large number of experiments envisioned for Space Station Freedom make the increase in astronaut productivity particularly valuable. A first version of the system was evaluated on the ground during the recent Spacelab SLS-1 flight.

  2. How Can ``Weightless'' Astronauts be Weighed?

    NASA Astrophysics Data System (ADS)

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's ``weight'' when it is in free fall. The solution shows that the ``weight'' is zero1 and this leads to a discussion of the concept of weight.2,3 There are permanent free-fall situations such as astronauts in a spacecraft orbiting the Earth, for example, the International Space Station. However, it is important for an astronaut's health to control any variations in his/her body mass while on the orbiting spacecraft. This paper examines the following scenario: How can astronauts be weighed while in free fall?

  3. Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-72 TRAINING VIEW --- Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an STS-72 training session. Wakata is a mission specialist, representing Japan's National Space Development Agency (NASDA) and Barry is a United States astronaut assigned as mission specialist for the same mission. The two are on the aft flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC).

  4. Astronautical Hygiene - A New Discipline to Protect the Health of Astronauts Working in Space

    NASA Astrophysics Data System (ADS)

    Cain, J. R.

    This paper outlines the rationale for a new scientific discipline namely astronautical hygiene. Astronautical hygiene is an applied science that utilises a knowledge of space toxicology, space medicine, astronautics, occupational hygiene etc. to identify the hazards, assess the exposure risks to health, and thereby determine the measures to mitigate exposure to protect the health of astronauts during living and working in space. This paper describes the nature of the hazards (i.e. physical, chemical, microbial and psychological) encountered during space flight. It discusses exposure risk assessment and the use of sampling techniques to assess astronaut health risks. This paper then discusses the measures used to mitigate exposure to the exposure hazards during space exploration. A case study of the application of the principles of astronautical hygiene to control lunar dust exposure is then described.

  5. NASA Now: Path of an Astronaut

    NASA Video Gallery

    Mike Foreman is one of the shuttle astronauts who has lived and worked on the ISS. He flew on space shuttle Endeavour in March of 2008, and he returned to the station in on space shuttle Atlantis i...

  6. Portrait of Astronaut Richard F. Gordon Jr.

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Richard F. Gordon Jr., Prime Crew Command Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  7. Astronaut Neil Armstrong participates in simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  8. Portrait of Astronaut Alan L. Bean

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Alan L. Bean, Prime Crew Lunar Module Pilot of the Apollo 12 Lunar Landing Mission, in his space suit minus the helmet. He is standing outside beside a mock-up of the Lunar Lander.

  9. Students Speak With NASA Astronaut Mario Runco

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students in the Newell School District in Ne...

  10. Students Speak With NASA Astronaut Mike Foreman

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Mike Foreman participates in a Digital Learning Network (DLN) event with fifth grade students at Berry Elementary Sch...

  11. Astronaut Doug Wheelock Speaks with Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Doug Wheelock participates in a Digital Learning Network (DLN) event with students at Clark Creek STEM Academy in Acwo...

  12. Students Speak With NASA Astronaut Scott Kelly

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  13. Astronaut Judith Resnik participates in WETF training

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Judith Resnik participates in extravehicular activity (EVA) training in the Weightless Environment Training Facility (WETF). She is wearing an extravehicular mobility unit (EMU) and is being assisted to don her gloves.

  14. Astronaut Alvin Drew Speaks With Phoenix Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Alvin Drew participates in a Digital Learning Network (DLN) event with students at Monterey Park in Phoenix. The DLN c...

  15. Philadelphia Eagles Honor NASA Astronaut Chris Ferguson

    NASA Video Gallery

    NASA astronaut Chris Ferguson returned to his hometown on Nov. 7 to serve as the Philadelphia Eagles' Honorary Captain during the NFL's "Monday Night Football" game. The Eagles hosted the Chicago B...

  16. Official portrait of astronaut Guy S. Gardner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Official portrait of Guy S. Gardner, United States Air Force Colonel, member of Astronaut Class 9 (1980), and space shuttle pilot. Gardner wears a launch and entry suit (LES) with the helmet displayed on his left.

  17. Astronaut Bernard Harris monitors Spacehab experiments

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris Jr., a physician and STS-63 payload commander, monitors several Spacehab-3 experiments which occupy locker space on the Space Shuttle Discovery's middeck. The Spacehab-3 module is located in the cargo bay.

  18. Astronaut Suni Williams on Value of Education

    NASA Video Gallery

    In this public service announcement, NASA astronaut Suni Williams stresses the importance of studying science, technology, engineering and math. What you learn in school today will help you reach f...

  19. Astronauts Call Tucson for Educational Event

    NASA Video Gallery

    Commander Mark Kelly, Pilot Greg Johnson and Expedition 28 Flight Engineer Ron Garan participate from space in a community gathering in Tucson, Ariz. The three astronauts answer questions about the...

  20. Cosmonauts and astronauts during medical operations training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Cosmonaut Gennadiy M. Strekalov (right), Mir-18 flight engineer, is briefed on medical supplies by Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Strekalov and a number of other cosmonauts and astronauts participating in

  1. Cosmonauts and astronauts during medical operations training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Cosmonaut Alexandr F. Poleshchuk (right) inventories medical supplies with Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Poleshchuk, a Mir reserve crew member, and a number of other cosmonauts and astronauts participati

  2. Official portrait of astronaut Linda M. Godwin

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Official portrait of Linda M. Godwin, Ph.D., member of Astronaut Class 11 (1984), and space shuttle mission specialist. Godwin wears a navy blue flight suit with space shuttle model displayed on table in front of her.

  3. Space Campers Speak With Astronaut Mike Fossum

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students at a space camp at the Kennedy Space ...

  4. Astronaut Charles Conrad using the bicycle ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., Skylab 2 commander, during an exercise session on the bicycle ergometer in the crew quarters of the Skylab Orbital Workshop (OWS) in the Skylab 2 space station cluster in Earth orbit.

  5. NASA Astronaut Mike Fossum Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA Astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students from Clark Creek STEM Academy in Ackw...

  6. Behind the Scenes: Astronauts Get Float Training

    NASA Video Gallery

    In this episode of "NASA Behind the Scenes," astronaut Mike Massimino continues his visit with safety divers and flight doctors at the Johnson Space Center's Neutral Buoyancy Laboratory as they com...

  7. Astronaut Neil Armstrong during thermovacuum training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  8. Latent Herpes Viral Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Stowe, R.

    2008-01-01

    Latent viruses are ubiquitous and reactivate during stressful periods with and without symptoms. Latent herpes virus reactivation is used as a tool to predict changes in the immune status in astronauts and to evaluate associated health risks. Methods: Viral DNA was detected by real time polymerase chain reaction in saliva and urine from astronauts before, during and after short and long-duration space flights. Results and Discussion: EpsteinBarr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivated, and viral DNA was shed in saliva (EBV and VZV) or urine (CMV). EBV levels in saliva during flight were 10fold higher than baseline levels. Elevations in EBV specific CD8+ T-cells, viral antibody titers, and specific cytokines were consistent with viral reactivation. Intracellular levels of cytokines were reduced in EBVspecific Tcells. CMV, rarely present in urine of healthy individuals, was shed in urine of 27% of astronauts during all phases of spaceflight. VZV, not found in saliva of asymptomatic individuals, was found in saliva of 50% of astronauts during spaceflight and 35 days after flight. VZV recovered from astronaut saliva was found to be live, infectious virus. DNA sequencing demonstrated that the VZV recovered from astronauts was from the common European strain of VZV. Elevation of stress hormones accompanied viral reactivation indicating involvement of the hypothalmic-pituitary-adrenal and sympathetic adrenal-medullary axes in the mechanism of viral reactivation in astronauts. A study of 53 shingles patients found that all shingles patients shed VZV DNA in their saliva and the VZV levels correlated with the severity of the disease. Lower VZV levels in shingles patients were similar to those observed in astronauts. We proposed a rapid, simple, and cost-effective assay to detect VZV in saliva of patients with suspected shingles. Early detection of VZV infection allows early medical intervention.

  9. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  10. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  11. The Lifetime Surveillance of Astronaut Health Newsletter

    NASA Technical Reports Server (NTRS)

    Lee, Lesley

    2011-01-01

    The June 2010 LSAH newsletter introduced the change from the Longitudinal Study of Astronaut Health research study to the new Lifetime Surveillance of Astronaut Health program (An Overview of the New Occupational Surveillance Program for the Astronaut Corps). Instead of performing research-focused retrospective analyses of astronaut medical data compared to a JSC civil servant control population, the new program is focused on prevention of disease and prospective identification and mitigation of health risks in each astronaut due to individual exposure history and the unique occupational exposures experienced by the astronaut corps. The new LSAH program has 5 primary goals: (1) Provide a comprehensive medical exam for each LSAH participant; (2) Conduct occupational surveillance; (3) Improve communication, data accessibility, integrity and storage; (4) Support operational and healthcare analyses; and (5) Support NASA research objectives. This article will focus primarily on the first goal, the comprehensive medical exam. Future newsletters will outline in detail the plans and processes for addressing the remaining program goals.

  12. First Class of Female Astronauts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979. Shannon W. Lucid was born on January 14, 1943 in Shanghai, China but considers Bethany, Oklahoma to be her hometown. She spent many years at the University of Oklahoma, receiving a Bachelor in chemistry in 1963, a Master in biochemistry in 1970, and a Doctorate in biochemistry in 1973. Dr. Lucid flew on the STS-51G Discovery, STS-34 Atlantis, STS-43 Atlantis, and STS-58 Columbia shuttle missions, setting the record for female astronauts by logging 838 hours and 54 minutes in space. She also currently holds the United States single mission space flight endurance record for her 188 days on the Russian Space Station Mir. From February 2002 to September 2003, she served as chief scientist at NASA Headquarters before returning to JSC to help with the Return to Flight program after the STS-107 accident. Born November 8, 1947, in Murfreesboro, Tennessee, Margaret Rhea Seddon received a Doctorate of Medicine in 1973 from the University of Tennessee. She flew on space missions STS-51 Discovery, STS-40 Columbia, and STS-58 Columbia for a total of over 722 hours in space. Dr. Seddon retired from NASA in November 1997, taking on a position as the Assistant Chief Medical Officer of the Vanderbilt Medical Group in Nashville, Tennessee. Kathryn Sullivan was born October 3, 1951 in Patterson, New Jersey but considers Woodland Hills, California to be her hometown. She received a Bachelor in Earth Sciences from the University of California, Santa Cruz in 1973 and a Doctorate in Geology from Dalhousie University in Halifax, Nova Scotia in 1978. She flew on space missions STS-41G, STS-31, and STS-45 and logged a total of 532 hours in space. Dr. Sullivan left NASA in August 1992 to

  13. Expedition 30 Prepares for Dec. 21 Launch

    NASA Video Gallery

    NASA astronaut Don Pettit, Russian cosmonaut Oleg Kononenko and European Space Agency astronaut Andre Kuipers arrive at the Baikonur Cosmodrome in Kazakhstan to begin the final phase of preparation...

  14. Satellite Movie Shows Andres Weaken to a Tropical Storm

    NASA Video Gallery

    This animation of imagery from NOAA's GOES-West satellite from June 1 to 3 shows Hurricane Andres eye disappear and weaken to a tropical storm in the Eastern Pacific Ocean, south of Baja California...

  15. 78 FR 21344 - In the Matter of: Andro Telemi, a/k/a Andre Telimi, a/k/a Andre Telemi; 8868 Bluffdale Drive, La...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Industry and Security In the Matter of: Andro Telemi, a/k/a Andre Telimi, a/k/a Andre Telemi..., in the U.S. District Court, Northern District of Illinois, Andro Telemi, a/k/a Andre Telimi, a/k/a... under home confinement, 500 hours of community service, a fine of $10,000 and a $100 assessment....

  16. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    NASA Technical Reports Server (NTRS)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  17. Astronaut candidate Koichi Wakata prepares to jump off a box during a parachute landing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    1992 ASCAN TRAINING --- Astronaut candidate Koichi Wakata prepares to jump off a box during a parachute landing demonstration at Vance Air Force Base. This portion of the training is designed to familiarize the trainees with the proper way to hit the ground following a parachute jump. Looking on are astronaut candidates Michael L. Gernhardt (left) and Andrew W. S. Thomas (second left), along with a United States Air Force (USAF) instructor. Wakata, representing Japan's National Space Development Agency (NASDA), is one of seven international mission specialist candidates who joined 19 United States astronaut candidates, including Gernhardt and Thomas, for the three-day parachute/survival training school at the Oklahoma Base.EDITORS NOTE: Since this photograph was taken, Gernhardt, Wakata and Thomas have been named as mission specialists for the STS-69, STS-72 and STS-77 missions, respectively.

  18. Mission X: Train Like an Astronaut International Fitness Challenge 2016 Annual Report

    NASA Technical Reports Server (NTRS)

    Reeves, Katherine

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams and 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenge sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the ISS. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and Denmark Astronaut Andreas Morgensen have agreed to be the MX Ambassadors for 2016 and US Astronaut Kate Rubins has agreed to be the Ambassador for 2017. The MX15 International Working Group Face-to- Face meeting and Closing Event were held at the Agenzia Spaziale Italiana (ASI) in Rome, Italy. A record number of sixteen countries participated. Austria and Norway have offered to host the 2016 and 2017 working group meetings respectively. MX16 planning began with the working group meetings. Areas of improvement included another second early challenge to accommodate

  19. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  20. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  1. Psychological training of German science astronauts

    NASA Astrophysics Data System (ADS)

    Manzey, Dietrich; Schiewe, Albrecht

    Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".

  2. The Digital Astronaut Project Bone Remodeling Model

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem; Lewandowski, Beth E.; Thompson, William K.; Sibonga, Jean D.

    2014-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development.

  3. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  4. First Astronaut- Rover Interaction Field Test

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Ross, Amy; Cabrol, Nathalie A.

    2000-01-01

    The first Astronaut - Rover (ASRO) Interaction field test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative planetary surface terrain. This test was a joint effort between the NASA Ames Research Center , Moffett Field, California and the NASA Johnson Space Center, Houston, Texas. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration , it has been determined that it is important to better understand the potential interaction and benefits of an EVA astronaut interacting with a robotic rover . This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions . This test also identified design requirements and options in an advanced space suit and robotic rover. The test objectives were: 1. To identify the operational domains where the EVA astronauts and rover are complementary and can interact and thus collaborate in a safe , productive and cost- effective way, 2. To identify preliminary requirements and recommendations for advanced space suits and rovers that facilitate their cooperative and complementary interaction, 3. To develop operational procedures for the astronaut-rover teams in the identified domains, 4. To test these procedures during representative mission scenarios during field tests by simulating the exploration of a planetary surface by an EVA crew interacting with a robotic rover, 5. To train a space suited test subject, simulated Earth-based and l or lander-based science teams, and robotic vehicle operators in mission configurations, and 6. To evaluate and understand socio-technical aspects of the astronaut - rover interaction experiment in order to guide future technologies and designs. Test results and areas for future research in the design of planetary space suits will be discussed .

  5. EAC trains its first international astronaut class.

    PubMed

    Bolender, Hans; Bessone, Loredana; Schoen, Andreas; Stevenin, Herve

    2002-11-01

    After several years of planning and preparation, ESA's ISS training programme has become operational. Between 26 August and 6 September, the European Astronaut Centre (EAC) near Cologne gave the first ESA advanced training course for an international ISS astronaut class. The ten astronauts who took part--two from NASA, four from Japan and four from ESA--had begun their advanced training programme back in 2001 with sessions at the Johnson Space Center (JSC) in Houston and at the Japanese Training Centre in Tsukuba. During their stay in Cologne, the ten astronauts participated in a total of 33 classroom lessons and hands-on training sessions, which gave them a detailed overview of the systems and subsystems of the Columbus module, the Automated Transfer Vehicle (ATV), and the related crew operations tasks. They were also introduced to the four ESA experiment facilities to be operated inside the Columbus module. After their first week of training at EAC, the astronauts were given the opportunity to see the flight model of the Columbus module being integrated at the site of ESA's ISS prime contractor, Astrium in Bremen. The second week of training at EAC included hands-on instruction on the Columbus Data Management System (DMS) using the recently installed Columbus Crew Training Facility. In preparation for the first advanced crew training session at EAC, two Training Readiness Reviews (TRR) were conducted there in June and August. These reviews were supported by training experts and astronauts from NASA, NASDA and CSA (Canada), who were introduced to ESA's advanced training concept and the development process, and then analysed and evaluated the training flow, content and instructional soundness of lessons and courses, as well as the fidelity of the training facilities and the skills of the ESA training instructors. The International Training Control Board (ITCB), made up of representatives from all of the ISS International Partners and mandated to control and

  6. Changes in Monocyte Functions of Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, I.; Simons, E.; Castro, V.; Ott, C. Mark; Pierson, Duane L.

    2004-01-01

    Monocyte cell numbers and functions, including phagocytosis, oxidative burst capacity, and degranulation and expression of related surface molecules, were studied in blood specimens from 25 astronauts and 9 healthy control subjects. Blood samples were obtained 10 days before a space flight, 3 hours after landing and 3 days after landing. The number of monocytes in astronauts did not change significantly among the three sample collection periods. Following space flight, the monocytes ability to phagocytize Escherichia coli, to exhibit an oxidative burst, and to degranulate was reduced as compared to monocytes from control subjects. These alterations in monocyte functions after space flight correlated with alterations in the expression of CD32 and CD64.

  7. Management of Asymptomatic Renal Stones in Astronauts

    NASA Technical Reports Server (NTRS)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  8. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1985-01-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.

  9. Anthropometric survey of the astronaut applicants and astronauts from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Klute, Glenn K.

    1993-01-01

    The Anthropometry and Biomechanics Laboratory at the Johnson Space Center has been collecting anthropometric data from astronaut applicants since 1977. These anthropometric measurements had been taken from 473 applicants. Based on the position they applied for, these applicants were classified as either mission specialists, payload specialists, pilots, or observers. The main objective was to document the variations among these applicants and tabulate the percentile data for each anthropometric dimension. The percentile and the descriptive statistics data were tabulated and graphed for the whole astronaut candidate population; for the male and female groups; for each subject classification such as pilot, mission specialist, and payload specialist; and finally, for those who were selected as astronauts.

  10. STS-114 Astronauts Participate in Extra-Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. In this photograph, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), participates in the mission's first scheduled session of Extra-Vehicular Activity (EVA). Noguchi and crew mate Stephen K. Robinson (out of frame) completed a demonstration of Shuttle thermal protection repair techniques and enhancements to the ISS's attitude control system during the successful 6 hour, 50 minute space walk.

  11. Astronaut Gordon Cooper smiles for recovery crew

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., has a smile for the recovery crew of the U.S.S. Kearsarge, after he is on board from a successful 22 orbit mission of the earth in his spacecraft 'Faith 7'. Cooper is still sitting in his capsule, with his helmet off.

  12. Astronaut Alan Bean shaves while aboard Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, uses battery powered shaver while in the crew quarters of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  13. Original 7 Astronauts Inspect Mercury Model

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The original seven Mercury astronauts were from left, front row: Virgil 'Gus' Grissom. Scott Carpenter, Donald 'Deke' Slayton and Gordon Cooper; back row: Alan Shepard, Walter Schirra and John Glenn. The Mercury 7 astronauts were introduced to the American public in April 1959. The seven criteria for selection were as follows: 1. less than 40 years old; 2. less than 5 foot 11 inches tall: 3. excellent physical condition; 4. bachelor's degree in engineering or equivalent; 5. test-pilot school graduate; 6. minimum of 1,500 hours flying time; 7. qualified jet pilot. However, the process of choosing the first astronauts was elaborate and rigorous. The Langley Space Task Group believed that one of the most important prerequisites was being a test pilot. Langley engineer Charles Donlan and test pilot Robert Champine played important roles in the screening and selection process. Once selected, the astronauts began their training program at Langley. This included a 'little of everything' ranging from a graduate-level course in introductory space science to simulator training and scuba-diving. Training continued until the Langley Space Task Group was transferred to Houston, Texas.

  14. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  15. Astronauts Mullane and Resnik at WETF training

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Judith A. Resnik and Richard M. (Mike) Mullane, 41-D mission specialists, participate in an underwater session in the JSC weightless environment training facility (WETF). In this close-up view, Resnik adjusts Mullane's helmet prior to his immersion in the pool.

  16. Astronaut Glenn in the Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  17. Astronaut John Glenn Enters Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  18. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.

  19. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  20. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, is photographed from the Command Module 'Gumdrop' during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command and Service Modules are docked with the Lunar Module.

  1. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, stands in 'golden slippers' on the Lunar Module 3 porch during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. This photograph was taken from inside the Lunar Module 'Spider'. The Command/Service Module and Lunar Module were docked. Schweickart is wearing an Extravehicular Mobility Unit (EMU).

  2. Official portrait of Astronaut Vance D. Brand

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Official portrait of Astronaut Vance D. Brand. Brand is in the dark blue shuttle flight suit with his helmet under his arm and an American flag behind him. Above and to the right of his head is a view of the shuttle flying.

  3. Astronautics and aeronautics, 1976. A chronology

    NASA Technical Reports Server (NTRS)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  4. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  5. STS-120 Astronaut Pamela A. Melroy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    While seated at the commander's station, astronaut Pamela A. Melroy, STS-120 commander, participates in a training session in the crew compartment trainer (CCT-2) in the Space Vehicle Mockup Facility at Johnson Space Center. Preparing for the STS-120 mission which launched October 23, 2007, Melroy is wearing a training version of her shuttle launch and entry suit.

  6. How Can "Weightless" Astronauts Be Weighed?

    ERIC Educational Resources Information Center

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…

  7. Changes in neutrophil functions in astronauts.

    PubMed

    Kaur, Indreshpal; Simons, Elizabeth R; Castro, Victoria A; Mark Ott, C; Pierson, Duane L

    2004-09-01

    Exploration class human spaceflight missions will require astronauts with robust immune systems. Innate immunity will be an essential element for the healthcare maintenance of astronauts during these lengthy expeditions. This study investigated neutrophil phagocytosis, oxidative burst, and degranulation of 25 astronauts after four space shuttle missions and in nine healthy control subjects. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch, immediately after landing, and 3 days after landing. The number of neutrophils increased by 85% at landing compared to preflight levels. The mean values for phagocytosis of Escherichia coli and oxidative burst capacity in neutrophils from astronauts on the 5-day mission were not significantly different from those observed in neutrophils from the control subjects. Before and after 9- to 11-day missions, however, phagocytosis and oxidative burst capacities were significantly lower than control mean values. No consistent changes in degranulation or expression of surface markers were observed before or after any of the space missions. This study indicates that neutrophil phagocytic and oxidative functions are affected by factors associated with space flight and this relationship may depend on mission duration.

  8. Astronaut-Deployable Geophysical and Environmental Monitoring Stations

    NASA Astrophysics Data System (ADS)

    Guzewich, S. D.; Bleacher, J. E.; Smith, M. D.; Khayat, A.; Conrad, P.

    2017-02-01

    Geophysical and environmental monitoring stations could be deployed by astronauts exploring Mars, the Moon, or asteroids, and create a broad network that would collect high-value scientific information while also enhancing astronaut safety.

  9. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  10. Astronaut Crippen prepares to join crew in training

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Robert L. Crippen, 41-G crew commander, prepares to join his crew for training in the mockup and integration laboratory at JSC. Astronaut David C. Leestma, 41-G mission specialist, left, will join the crew in training.

  11. Official portrait of 1987 astronaut candidate Bruce E. Melnick

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Official portrait of 1987 astronaut candidate Bruce E. Melnick. Melnick, a member of the United States Coast Guard (USCG) and Astronaut Class 12, wears navy blue flight suit and holds space shuttle orbiter model.

  12. Three astronauts inside Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  13. Official portrait of 1987 astronaut candidate Curtis L. Brown, Jr

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Official portrait of 1987 astronaut candidate Curtis L. Brown, Jr. Brown, a member of the United States Air Force (USAF) and Astronaut Class 12, wears a navy blue flight suit and holds a space shuttle orbiter model.

  14. Astronaut William Gregory prepares to exit his sleep quarters

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, ejects a cassette and prepares to bail out of his sleep quarters aboard the Earth orbiting Space Shuttle Endeavour. The astronaut was about to begin a shift of support to the red team.

  15. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  16. André Danjon et l'informatique.

    NASA Astrophysics Data System (ADS)

    Arsac, J.

    There is not any paper by André Danjon about computer science. The only way to know his ideas about it is through his action. At the end of the fifties, several scientists in astronomy and astrophysics had been convinced that a computer would be of great help in their research works. André Danjon immediatly agreed that it was a good idea. He greatly supported them in the process of having a computer bought by the Meudon Observatory. A computing center was started there in 1959. As soon as 1957, André Danjon had initiated a French association for computing, the "association française de calcul". This association provoked a world meeting of associations for information processing in Paris in 1959, where the IFIPS has been created.

  17. Component of astronauts survival equipment backpack - medical injectors

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The automatic medical injectors were carried on the Mercury-Atlas 9 flight. The injectors provide the astronaut with injection tubes of Tigan, for preventing motion sickness and Demerol, for relieving pain. The tubes encased in the block are stowed in the astronauts survival kit. The single injection tubes are placed in a pocket of the astronauts space suit.

  18. Skylab 2 astronauts at welcome home ceremonies at Ellington AFB

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin, science pilot for the Skylab 2 mission, speaks to a crowd at Ellington Air Force Base during welcome home ceremonies for the crew. Astronaut Paul J. Weitz, pilot, is at center; and Astronaut Charles Conrad Jr., crew commander, is at right. The wives, standing by their husbands, are (l-r) Shirley Kerwin, Suzanne Weitz and Jane Conrad.

  19. Colonoscopy Screening in the US Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    BACKGROUND: Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. Recently this historical data has been identified as being useful for developing an occupational surveillance requirement. It can be used to assess overall colon health and to have a point of reference for future tests in current and former astronauts, as well as to follow-up and track rates of colorectal cancer and polyps. These rates can be compared to military and other terrestrial populations. In 2003, the active astronaut colonoscopy requirements changed to require less frequent colonoscopies. Since polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer, the procedure decreases the individual's risk for colon cancer. The objective of this study is to evaluate the possible effect of increased follow-up times between colonoscopies on the number and severity of polyps identified during the procedures among both current and former NASA astronauts. Initial results and forward work regarding astronaut colonoscopy screenings will be presented. METHODS: A retrospective study of all colonoscopy procedures performed on NASA astronauts between 1962 and 2015 (both during active career and retirement) was conducted by review of the JSC Clinic Electronic Medical Record and Lifetime Surveillance of Astronaut Health (LSAH) database for colonoscopy screening procedures and pathology reports. The timeframe of interest was from the time of selection into the Astronaut Corps through May 2015 or death. For each colonoscopy report, the following data were captured: date of procedure, age at time of procedure, reason for procedure, quality of bowel prep, completion of procedure and/or reason for termination of procedure, findings of procedure, subsequent treatment (if any), recommended follow-up interval, actual follow up interval, family history of polyps or colon cancer

  20. Evident Biological Effects of Space Radiation in Astronauts

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2004-01-01

    Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.

  1. The Application of Leap Motion in Astronaut Virtual Training

    NASA Astrophysics Data System (ADS)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  2. Summary of astronaut inputs concerning automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    An assessment of the potential for increased productivity on Space Station Freedom through advanced automation and robotics was recently completed. Sponsored by the Office of Space Station, the study involved reviews of on-orbit operations experience documentation, interviews with 23 current and former astronauts/payload specialists as well as other NASA and contractor personnel, and a survey of 32 astronauts and payload specialists. Assessed areas of related on-orbit experience included Skylab, space shuttle, Spacelab, and the Soviet space program, as well as the U.S. nuclear submarine program and Antarctic research stations analogs. The survey questionnaire asked the respondents to rate the desirability of advanced automation, EVA robotics, and IVA robotics. They were also asked to rate safety impacts of automated fault diagnosis, isolation, and recovery (FDIR); automated exception reporting and alarm filtering; and an EVA retriever. The respondents were also asked to evaluate 26 specific applications of advanced automation and robotics related to perceived impact on productivity.

  3. Astronaut-induced disturbances in microgravity.

    PubMed

    Newman, D J; Tryfonidis, M; van Schoor, M C

    1997-01-01

    This Note describes the dynamic load sensors (DLS) spaceflight experiment that measured middeck astronaut-induced disturbances during the 14-day STS-62 Space Shuttle mission in March 1994. The DLS experiment was flown in conjunction with the reflight of the Middeck 0-Gravity Dynamics Experiment (MODE). The objective of MODE was to investigate effects of the microgravity environment on large space structures. Where Skylab experiments focused on measuring the forces exerted during vigorous soaring activities, the DLS experiment quantified the reaction forces and moments exerted by the crew going about their normal on-orbit activities. The objective of this Note is to present DLS force data and frequency analysis that characterize astronaut-induced loads during spaceflight.

  4. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this closeup viewed from above, former Apollo astronauts (seated, left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7, answer questions from the media during a press conference in the Apollo/Saturn V Center. At left is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. In the background are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  5. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Viewed from above, former Apollo astronauts (seated, left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7, answer questions from the media during a press conference in the Apollo/Saturn V Center. At left is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. In the background are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  6. STS-96 Astronauts Adjust Unity Hatch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aboard the International Space Station (ISS), astronauts Rick D. Husband and Tamara E. Jernigan adjust the hatch for the U.S. built Unity node. The task was part of an overall effort of seven crew members to prepare the existing portion of the International Space Station (ISS). Launched on May 27, 1999, aboard the Orbiter Discovery, the STS-96 mission was the second ISS assembly flight and the first shuttle mission to dock with the station.

  7. Sketches of Comet Kohoutek by Astronaut Gibson

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This pencil sketch of the Comet Kohoutek made by Skylab-4 astronaut Edward Gibson illustrates the crew's collective impressions of the comet's appearance on December 29, 1973. An early discovery of a large comet in an orbit that would reach close to the Sun at the end of 1973 prompted NASA to initiate Operation Kohoutek, a program to coordinate widespread observations of the comet from ground observatories, aircraft, balloons, rockets, unmarned satellites, and Skylab.

  8. Extravehicular mobility unit training and astronaut injuries

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  9. Astronaut Jack Lousma taking hot bath

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A closeup view of Astronaut Jack R. Lousma, Skylab 3 pilot, taking a hot bath in the crew quarters of the Orbital Workshop (OWS) of the Skylab space station cluster in Earth orbit. In deploying the shower facility, the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  10. Astronaut John Young displays drawing of Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Snoopy in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated.

  11. Former Astronaut Neil A. Armstrong Visits MSFC

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  12. End effector with astronaut foot restraint

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  13. Enhancing astronaut performance using sensorimotor adaptability training

    PubMed Central

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments—enhancing their ability to “learn to learn.” We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561

  14. Astronaut Medical Selection and Flight Medicine Care During the Shuttle ERA 1981 to 2011

    NASA Technical Reports Server (NTRS)

    Johnston, S.; Jennings, R.; Stepaniak, P.; Schmid, J.; Rouse, B.; Gray, G.; Tarver, B.

    2011-01-01

    The NASA Shuttle Program began with congressional budget approval in January 5, 1972 and the launch of STS-1 on April 12, 1981 and recently concluded with the landing of STS-135 on July 21, 2011. The evolution of the medical standards and care of the Shuttle Era Astronauts began in 1959 with the first Astronaut selection. The first set of NASA minimal medical standards were documented in 1977 and based on Air Force, Navy, Department of Defense, and the Federal Aviation Administration standards. Many milestones were achieved over the 30 years from 1977 to 2007 and the subsequent 13 Astronaut selections and 4 major expert panel reviews performed by the NASA Flight Medicine Clinic, Aerospace Medicine Board, and Medical Policy Board. These milestones of aerospace medicine standards, evaluations, and clinical care encompassed the disciplines of preventive, occupational, and primary care medicine and will be presented. The screening and retention standards, testing, and specialist evaluations evolved through periodic expert reviews, evidence based medicine, and Astronaut medical care experience. The last decade of the Shuttle Program saw the development of the International Space Station (ISS) with further Space medicine collaboration and knowledge gained from our International Partners (IP) from Russia, Canada, Japan, and the European Space Agencies. The Shuttle Program contribution to the development and implementation of NASA and IP standards and waiver guide documents, longitudinal data collection, and occupational surveillance models will be presented along with lessons learned and recommendations for future vehicles and missions.

  15. Metals in sediments of San Andres lagoon, Tamaulipas, Mexico

    SciTech Connect

    Vazquez, F.G.; Aguilera, L.G. ); Sharma, V.K. )

    1994-03-01

    Heavy metal pollution in water is generally associated with industrial and municipal discharges into rivers, estuaries and lagoons. Once metals are in the water column, they may be taken up by organisms, deposited in the sediments or remain for some period in the water itself. The deposition rate in sediments depends on, among other factors, metal concentration in surface sediments. The concentrations of heavy metals in sediments of coastal, estuarine and lagoon environments have been determined by many workers. For the past several years, we have been interested in determining trace and heavy metal concentrations in the lagoons in Mexico to establish the levels of metal pollution. The work reported here is the completion of our ongoing study in San Andres lagoon. San Andres lagoon is located north of two industrial ports, Tampico and Altamira. In this industrial zone, the basins of the Panuco and Tamesi Rivers are localized and have industrial effluent throughout the year. All these activities and the input of the Tigre River, which runs through an agricultural and cattle-raising region, may affect the biogeochemistry of the San Andres lagoon. In the present work, we report concentrations of Cd, Co, Cu, Fe, Mn, Ni, Zn and Pb in sediments of San Andres lagoon. The measurements were made in different seasons; Rain-84 (August-September 1984); North (October-December 1984); Dry (April 1985); and Rain-85 (April-June 1985). 13 refs., 1 fig., 2 tabs.

  16. "Octagon Magic": Andre Norton and Revitalizing the Girls' Book.

    ERIC Educational Resources Information Center

    Dressel, Janice Hartwick; Molson, Francis J.

    1996-01-01

    Argues that Andre Norton's "Octagon Magic" is neither a conventional girls' book, nor a witch tale, nor a time fantasy but rather a unique coming-of-age story best understood within the context of theorists such as Carol Gilligan, Mary Belenk, and Jean Baker Miller. (TB)

  17. 3. Historic American Buildings Survey, John Andre, November 15, 1777, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, John Andre, November 15, 1777, Henry E. Huntington Library, San Marino, California, See Catalog of Graphic Material #44, PHOTOCOPY OF 'MUD ISLAND WITH THE OPERATIONS FOR REDUCING IT'. - Fort Mifflin, Mud Island, Marine & Penrose Ferry Roads, Philadelphia, Philadelphia County, PA

  18. [András Jósa, the physician].

    PubMed

    Jakó, János

    2010-01-01

    András Jósa was the most important and renowned physician in county Szabolcs (Hungary) in the 19th-20th centuries. Author outlines his biography and analyses his medical activity. Present article is based on a memorial lecture given at the meeting of the Hungarian Society for the History of Medicine in Budapest 24th September 2009.

  19. NASA Astronaut Urinary Conditions Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Cole, Richard; Young, Millennia H.; Mason, Sara

    2016-01-01

    INTRODUCTION: Spaceflight is associated with many factors which may promote kidney stone formation, urinary retention, and/or Urinary Tract Infection (UTI). According to ISS mission predictions supplied by NASA's Integrated Medical Model, kidney stone is the second and sepsis (urosepsis as primary driver) the third most likely reason for emergent medical evacuation from the International Space Station (ISS). METHODS: Inflight and postflight medical records of NASA astronauts were reviewed for urinary retention, UTI and kidney stones during Mercury, Gemini, Apollo, Mir, Shuttle, and ISS expeditions 1-38. RESULTS: NASA astronauts have had 7 cases of kidney stones in the 12 months after flight. Three of these cases occurred within 90 to 180 days after landing and one of the seven cases occurred in the first 90 days after flight. There have been a total of 16 cases (0.018 events per person-flights) of urinary retention during flight. The event rates per mission are nearly identical between Shuttle and ISS flights (0.019 vs 0.021 events per person-flights). In 12 of the 16 cases, astronauts had taken at least one space motion sickness medication. Upon further analysis, it was determined that the odds of developing urinary retention in spaceflight is 3 times higher among astronauts who took promethazine. The female to male odds ratio for inflight urinary retention is 11:14. An astronaut with urinary retention is 25 times more likely to have a UTI with a 17% infection rate per mission. There have been 9 reported UTIs during spaceflight. DISCUSSION: It is unclear if spaceflight carries an increased post-flight risk of kidney stones. Regarding urinary retention, the female to male odds ratio is higher during flight compared to the general population where older males comprise almost all cases due to prostatic hypertrophy. This female prevalence in spaceflight is even more concerning given the fact that there have been many more males in space than females. Terrestrial

  20. Validation of astronaut psychological select-in criteria

    NASA Technical Reports Server (NTRS)

    Rose, R. M.; Helmreich, R. L.; Mcfadden, T.; Santy, P. A.; Holland, A. W.

    1992-01-01

    An optional astronaut selection strategy would select-in individuals on the basis of personality attributes associated with superior performance. Method: A test battery, the Astronaut Personal Characteristics Inventory (ASTROPCI) was developed which assesses positive and negative components of achievement, motivation, and interpersonal orientations and skills. The battery was administered to one hundred three astronaut candidates and sixty-six current U.S. Shuttle astronauts. To determine performance, a series of conceptual areas related to space flight performance were defined. Astronauts rated their peers on each of these dimensions. Ratings were obtained on all eighty-four current astronauts (excluding those selected in 1990). In addition to peer ratings, supervisor assessments of the same dimensions were obtained for each astronaut. Results: Cluster and factor analysis techniques were employed to isolate subgroups of astronauts. Those astronauts with both high achievement needs and interpersonal skills were most often rated among the top five by their peers and least often rated among the lowest five. A number of scales discriminated between astronauts rated high and low on one or more performance dimensions. Conclusions: The results parallel findings from the personality assessment of individuals in other demanding professions, including aircraft pilots and research scientists, suggesting that personality factors are significant determinants to performance in the space environment.

  1. Astronaut Alan Bean flies the Astronaut Maneuvering Equipment in the OWS

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, flies the M509 Astronaut Maneuvering Equipment, as seen in this photographic reproduction taken from a television transmission made by a color television camera in the Orbital Workshop (OWS) of the Skylab space station in Earth orbit. Bean is strapped into the back-mounted, hand-controlled Automatically stabilized Maneuvering Unit (ASMU). The M509 exercise was in the forward dome area of the OWS. THe dome area is about 22 feet in diameter and 19 feet form top to bottom.

  2. Mission X in Japan, an Education Outreach Program Featuring Astronautical Specialties and Knowledge

    NASA Astrophysics Data System (ADS)

    Niihori, Maki; Yamada, Shin; Matsuo, Tomoaki; Nakao, Reiko; Nakazawa, Takashi; Kamiyama, Yoshito; Takeoka, Hajime; Matsumoto, Akiko; Ohshima, Hiroshi; Mukai, Chiaki

    In the science field, disseminating new information to the public is becoming increasingly important, since it can aid a deeper understanding of scientific significance and increase the number of future scientists. As part of our activities, we at the Japan Aerospace Exploration Agency (JAXA) Space Biomedical Research Office, started work to focus on education outreach featuring space biomedical research. In 2010, we launched the Mission X education program in Japan, named after “Mission X: Train Like an Astronaut” (hereinafter called “Mission X”), mainly led by NASA and European Space Agency (ESA). Mission X is an international public outreach program designed to encourage proper nutrition and exercise and teaching young people to live and eat like astronauts. We adopted Mission X's standpoint, and modified the program based on the originals to suit Japanese culture and the students' grade. Using astronauts as examples, this mission can motivate and educate students to instill and adopt good nutrition and physical fitness as life-long practices.Here we introduce our pilot mission of the “Mission X in Japan” education program, which was held in early 2011. We are continuing the education/public outreach to promote the public understanding of science and contribute to science education through lectures on astronautical specialties and knowledge.

  3. Anomalous cases of astronaut helmet detection

    NASA Astrophysics Data System (ADS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-05-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  4. Latent Virus Reactivation in Space Shuttle Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  5. Anomalous Cases of Astronaut Helmet Detection

    NASA Technical Reports Server (NTRS)

    Dolph, Chester; Moore, Andrew J.; Schubert, Matthew; Woodell, Glenn

    2015-01-01

    An astronaut's helmet is an invariant, rigid image element that is well suited for identification and tracking using current machine vision technology. Future space exploration will benefit from the development of astronaut detection software for search and rescue missions based on EVA helmet identification. However, helmets are solid white, except for metal brackets to attach accessories such as supplementary lights. We compared the performance of a widely used machine vision pipeline on a standard-issue NASA helmet with and without affixed experimental feature-rich patterns. Performance on the patterned helmet was far more robust. We found that four different feature-rich patterns are sufficient to identify a helmet and determine orientation as it is rotated about the yaw, pitch, and roll axes. During helmet rotation the field of view changes to frames containing parts of two or more feature-rich patterns. We took reference images in these locations to fill in detection gaps. These multiple feature-rich patterns references added substantial benefit to detection, however, they generated the majority of the anomalous cases. In these few instances, our algorithm keys in on one feature-rich pattern of the multiple feature-rich pattern reference and makes an incorrect prediction of the location of the other feature-rich patterns. We describe and make recommendations on ways to mitigate anomalous cases in which detection of one or more feature-rich patterns fails. While the number of cases is only a small percentage of the tested helmet orientations, they illustrate important design considerations for future spacesuits. In addition to our four successful feature-rich patterns, we present unsuccessful patterns and discuss the cause of their poor performance from a machine vision perspective. Future helmets designed with these considerations will enable automated astronaut detection and thereby enhance mission operations and extraterrestrial search and rescue.

  6. Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan; Bhardwaj, A.; Ferrari, Franco; Kuznetsov, Nikolay; Lal, A. K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Guenther; Pinsky, Lawrence; Muszaphar Shukor, Sheikh; Singhvi, A. K.; Straube, Ulrich; Tomi, Leena; Townsend, Lawrence

    2014-11-01

    Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes

  7. The astronaut of 1988. [training and selection

    NASA Technical Reports Server (NTRS)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  8. Astronaut William Gregory activates Liquids Mixing Apparatus

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Astronaut William G. Gregory activates Liquids Mixing Apparatus (LMA) vials during STS-67. Other LMAs hang at top on the face of the middeck locker array. The experiments are sponsored under NASA's Space Product Development Program (SPD).

  9. Food kit used by Mercury astronauts

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Food kit used by Mercury astronauts. Some is dehydrated and needs water, other packets are ready to eat. Size is measured relative to a ruler. Included are packets of mushroom soup, orange-grapefruit juice, cocoa beverage, pineapple juice, chicken with gravy, pears, strawberries, beef and vegetables and other assorted food containers (08742-3); mechanism for connecting water dispensor to dehydrated food containers to facilitate rehydration (08744); Group packets of ready to eat space food, with size being measured by a ruler (8745).

  10. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command/Service Module and the Lunar Module 3 'Spider' are docked. This view was taken form the Command Module 'Gumdrop'. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in 'golden slippers' on the Lunar Module porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS).

  11. Effects of weightlessness on astronauts - A summary.

    NASA Technical Reports Server (NTRS)

    White, S. C.; Hessberg, R. R.; Berry, C. A.

    1972-01-01

    This paper reviews the adaptive changes observed in the United States astronauts during flight programs to this date. A series of postulates are offered as to what is happening in these adaptive events. A hypothesis is proposed as to the interrelationship of events observed in the body systems and functions involved. The importance of undertaking an extensive life sciences program, including an on-orbit phase of study as well as pre- and post-flight studies is discussed. Finally, the role the Skylab flight plays in the United States Space Program in achieving the future requirements for more extensive life sciences data is summarized.

  12. Latent Herpes Viruses Reactivation in Astronauts

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth

  13. Automatic georeferencing of astronaut auroral photography

    NASA Astrophysics Data System (ADS)

    Riechert, Maik; Walsh, Andrew P.; Gerst, Alexander; Taylor, Matthew G. G. T.

    2016-07-01

    Astronauts on board the International Space Station (ISS) have taken thousands of high-resolution colour photographs of the aurora, which could be made useful for research if their pointing information could be reconstructed. We describe a method to do this using the star field in the images, and how the reconstructed pointing can then be used to georeference the images to a similar level of accuracy in existing all-sky camera images. We have used this method to make georeferenced auroral images taken from the ISS available and here describe the resulting data set, processing software, and how to access them.

  14. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  15. Astronaut Stephen Oswald and fellow crew members on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  16. STS-51 astronauts photographed during sleep period on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Four of the five STS-51 crew members were photographed during one of their sleep periods on Discovery's middeck. At bottom center, astronaut Frank L. Culbertson Jr., mission commander, is barely visible, with most of his body zipped securely in the sleep restraint. Others, left to right, are astronauts Daniel W. Bursch and Carl E. Walz, mission specialists, and William F. Readdy, pilot. The photograph was taken by astronaut James H. Newman, mission specialist.

  17. Astronauts James Lovell and Frank Borman during preflight physical

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. Charles A. Berry, Chief of the Manned Spacecraft Center (MSC) Medical Programs, checks Astronaut James A. Lovell Jr., Gemini 7 prime crew pilot, follwoing workout on exercise machine. Results will be compared with those obtained during space flight for evaluation (60602); Astronaut Frank Borman, Gemini 7 command pilot, sits as two scalp electrodes are attached to his head. The electrodes will allow doctors to record electrical activity of the astronaut's cerebral cortex during periods of weightlessness (60603).

  18. Astronaut Clay Anderson Speaks With S.C. Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA astronaut Clay Anderson participates in a Digital Learning Network (DLN) event with students at Crayton Middle School, Columbia,...

  19. New Jersey Students Speak With Astronaut Mario Runco

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students at Memorial Deptford High School in Deptfo...

  20. Official Portrait of Astronaut Frank Borman

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This is the official portrait of astronaut Frank Borman. A career Air Force officer from 1950, his assignments included service as a fighter pilot, an operational pilot and instructor, an experimental test pilot and an assistant professor of thermodynamics and fluid mechanics at West Point. When selected by NASA, Frank Borman was an instructor at the Aerospace Research Pilot School at Edwards AFB, California. In 1967 he served as a member of the Apollo 204 Fire Investigation Board, investigating the causes of the fire which killed three astronauts aboard an Apollo spacecraft. Later he became the Apollo Program Resident Manager, heading the team that reengineered the Apollo spacecraft. He also served as Field Director of the NASA Space Station Task Force. Frank Borman retired from the air Force in 1970, but is well remembered as a part of American history as a pioneer in the exploration of space. He is a veteran of both the Gemini 7, 1965 Space Orbital Rendezvous with Gemini 6 and the first manned lunar orbital mission, Apollo 8, in 1968.

  1. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  2. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  3. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  4. Skylab Astronauts' Neutral Buoyancy Simulator Training

    NASA Technical Reports Server (NTRS)

    1970-01-01

    After the end of the Apollo missions, NASA's next adventure into space was the marned spaceflight of Skylab. Using an S-IVB stage of the Saturn V launch vehicle, Skylab was a two-story orbiting laboratory, one floor being living quarters and the other a work room. The objectives of Skylab were to enrich our scientific knowledge of the Earth, the Sun, the stars, and cosmic space; to study the effects of weightlessness on living organisms, including man; to study the effects of the processing and manufacturing of materials utilizing the absence of gravity; and to conduct Earth resource observations. At the Marshall Space Flight Center (MSFC), astronauts and engineers spent hundreds of hours in an MSFC Neutral Buoyancy Simulator (NBS) rehearsing procedures to be used during the Skylab mission, developing techniques, and detecting and correcting potential problems. The NBS was a 40-foot deep water tank that simulated the weightlessness environment of space. This photograph shows astronaut Ed Gibbon (a prime crew member of the Skylab-4 mission) during the neutral buoyancy Skylab extravehicular activity training at the Apollo Telescope Mount (ATM) mockup. One of Skylab's major components, the ATM was the most powerful astronomical observatory ever put into orbit to date.

  5. An explicit André-Oort type result for

    NASA Astrophysics Data System (ADS)

    Paulin, Roland

    2015-07-01

    Using class field theory we prove an explicit result of Andr\\'e-Oort type for $\\mathbb{P}^1(\\mathbb{C}) \\times \\mathbb{G}_m(\\mathbb{C})$. In this variation the special points of $\\mathbb{P}^1(\\mathbb{C})$ are the singular moduli, while the special points of $\\mathbb{G}_m(\\mathbb{C})$ are defined to be the roots of unity.

  6. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    opened in March 1997 and is the current site for US EVA training. Other space agencies also have used water to simulate weightlessness and train for EVAs. Russia has a training facility similar to the NBL named the Hydro Lab. The Hydro Lab began operations at the Gagarin Cosmonaut Training Center (GCTC) in 1980 and has been used extensively to the present. Although a majority of training in the Hydro Lab uses the Russian Orlan suit, a small number of sessions have been conducted using a NASA suit. The Japanese Weightlessness Environment Test System (WETS) went into service at the Tsukuba Space Center in 1997 but was closed in 2011 due to extensive earthquake damage. Several sessions were performed using a NASA suit, but these sessions were short and considered "development" runs. LSAH has assembled records from the WETF, NBL and Hydro Lab. Recording of the EVA training data has changed considerably from 1967 to present. The goal of early record keeping was to track use of hardware components, and the person involved was treated as a suited operator, not as a focus of interest. Records from the past two decades are fairly precise with the person, date, suit type and size noted. On occasion the length of the session was listed, but this data is not included on all records. Records were merged from data sources and extensive cleaning of the records was required since the multiple sources frequently overlapped and duplicated records. To date the LSAH EVA training dataset includes over 12,500 EVA training sessions performed by NASA astronauts since 1981. The following variables are included for most records: Name, Sex, Event date, Event name, HUT type, HUT size, Facility, and Estimated run time. For a smaller subset of records, the following variables are available: Actual run time, Time inverted, and the suit components Waist bearing type, Shoulder harness, Shoulder pads, and Teflon inserts. The LSAH dataset is currently the most complete resource for data regarding EVA

  7. NRAO Scientists on Team Receiving International Astronautics Award

    NASA Astrophysics Data System (ADS)

    2005-10-01

    , a radio telescope bigger than the Earth." In addition to Fomalont and Romney, they are: Hisashi Hirabayashi, of the Institute of Space and Astronautical Science and Japan Aerospace Exploration Agency (ISAS/JAXA), Haruto Hirosawa (ISAS/JAXA), Peter Dewdney of Canada's Dominion Radio Astrophysical Observatory, Leonid Gurvits of the Joint Institute for VLBI in Europe (JIVE, The Netherlands), Makoto Inoue of the National Astronomical Observatory of Japan (NAOJ), David Jauncey of the Australia Telescope National Facility, Noriyuki Kawaguchi (NAOJ), Hideyuki Kobayashi (NAOJ), Kazuo Miyoshi (Mitsubishi Electric Corporation, Japan), Yasuhiro Murata (ISAS/JAXA), Takeshi Orii (NEC, Japan) Robert Preston of NASA's Jet Propulsion Laboratory (JPL), and Joel Smith (JPL). The International Academy of Astronautics was founded in August 1960 in Stockholm, Sweden, during the 11th International Astronautical Congress. The Academy aims to foster the development of astronautics for peaceful purposes; recognize individuals who have distinguished themselves in a related branch of science or technology; provide a program through which members may contribute to international endeavours; cooperation in the advancement of aerospace science. Previous recipients of the Laurels for Team Achievement Award are the Russian Mir Space Station Team (2001), the U.S. Space Shuttle Team (2002), the Solar and Heliospheric Observatory (SOHO) Team (2003), and the Hubble Space Telescope Team (2004). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  9. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  10. Astronaut Gordon Cooper backs out of his spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper backs out of his spacecraft 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  11. Astronaut Gordon Cooper is assisted from his spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper stands supported by strong hands after climbing out of his spacecraft 'Faith 7' after a 600,000 mile, 22.9 orbit journey around the earth. He elected to remain in the spacecraft until it was hoisted to the deck of the Kearsarge, as did Astronaut Walter Schirra during the previous mission.

  12. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  13. Astronaut Alan Bean holds Special Environmental Sample Container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, holds a Special Environmental Sample Container filled with lunar soil collected during the extravehicular activity (EVA) in which Astronauts Charles Conrad Jr., commander, and Bean participated. Connrad, who took this picture, is reflected in the helmet visor of the lunar module pilot.

  14. Astronaut James Lovell checks body temperature with oral temperature probe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  15. The First Lunar Landing as Told by the Astronauts.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brochure contains a transcript of the Apollo 11 post-flight press conference, in which the astronauts discussed the scenes shown in 40 photographs taken during the mission. These photographs are included in the brochure. Most are in color. The conference concluded with a question and answer interview of the astronauts. (PR)

  16. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  17. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  18. Astronaut Harrison Schmitt retrieving lunar samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, with his adjustable sampling scoop, heads for a selected rock on the lunar surface to retrieve the sample for study. The action was photographed by Apollo 17 crew commander, Astronaut Eugene A. Cernan on the mission's second extravehicular activity (EVA-2), at Station 5 (Camelot Crater) at the Taurus-Littrow landing site.

  19. Astronaut James Lovell hoisted from water by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut James A. Lovell Jr., pilot of the Gemini 7 space flight, is hoisted from the water by a recovery helicopter from the Aircraft Carrier U.S.S. Wasp. Astronaut Frank Borman, command pilot, waits in the raft to be hoisted aboard the helicopter.

  20. Astronaut William Pogue using Skylab Viewfinder Tracking System experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut William R. Pogue, Skylab 4 pilot, using the Skylab Viewfinder Tracking System (S191 experiment) during a training exercise in the Multiple docking adapter (MDA) one-G trainer at JSC. In the background is Astronaut Gerald P. Carr, seated at the control panel for the Earth Resources Experiments Package (EREP). Carr is Skylab 4 crew commander, and Gibson is Science pilot.

  1. The Lifetime Surveillance of Astronaut Health (LSAH) Project

    NASA Technical Reports Server (NTRS)

    Bopp, Eugenia; Wear, Mary L.; Lee, Lesley R.; VanBaalen, Mary

    2013-01-01

    From 1989-2010 NASA conducted a research study, the Longitudinal Study of Astronaut Health, to investigate the incidence of acute and chronic morbidity and mortality in astronauts and to determine whether their occupational exposures were associated with increased risk of death or disability. In 2004, the Institute of Medicine recommended that NASA convert the longitudinal study into an occupational health surveillance program and in 2010, NASA initiated the Lifetime Surveillance of Astronaut Health project. The new program collects data on astronaut workplace exposures, especially those occurring in the training and space flight environments, and conducts operational and health care analyses to look for trends in exposure and health outcomes. Astronaut selection and retention medical standards are rigorous, requiring an extensive clinical testing regimen. As a result, this employee population has contributed to a large set of health data available for analyses. Astronauts represent a special population with occupational exposures not typically experienced by other employee populations. Additionally, astronauts are different from the general population in terms of demographic and physiologic characteristics. The challenges and benefits of conducting health surveillance for an employee population with unique occupational exposures will be discussed. Several occupational surveillance projects currently underway to examine associations between astronaut workplace exposures and medical outcomes will be described.

  2. Skylab-4 Mission Onboard Photograph - Astronaut Ed Gibson at Work

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This Skylab-4 mission onboard photograph shows Astronaut Ed Gibson at the complex control and display console for the Apollo Telescope Mount solar telescopes located in the Skylab Multiple Docking Adapter. Astronauts watched the Sun, and photographed and recorded the solar activities, such as the birth of a solar flare.

  3. Astronaut Susan Helms uses laser instrument during SPARTAN 201 operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Susan J. Helms, mission specialist, uses a laser instrument during operations with the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN 201). Helms, who spent many mission hours at the controls of the Remote Manipulator System (RMS), joined five other NASA astronauts for almost 11 days in Earth-orbit aboard the Space Shuttle Discovery.

  4. Official portrait of astronaut candidate Susan J. Helms

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Official portrait of astronaut candidate Susan J. Helms, United States Air Force (USAF) Captain, member of Astronaut Class 13 (1990), and space shuttle mission specialist candidate. Helms wears a navy blue flight suit with space shuttle model displayed on her left.

  5. European Astronaut Candidates in training in the CIS.

    PubMed

    Cheli-Merchez, M; Fuglesang, C; Duque, P

    1993-02-01

    For four weeks in October and November 1992, we--three European Astronaut Candidates from the European Astronauts Centre (EAC) in Cologne--were fortunate enough to have the opportuity to live and be trained in Star City. It proved to be a fascinating experience, both for us and the EAC Training Engineer, Antonio Torres, who accompanied us.

  6. Official portrait of 1990 astronaut candidate Bernard A. Harris, Jr.

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Official portrait of 1990 astronaut candidate Bernard A. Harris, Jr. Harris, a M.D. and a member of Astronaut Class 13, wears an orange launch and entry suit (LES) with the launch and entry helmet (LEH) displayed on table in front of him and the United States flag and space shuttle orbiter model in the background.

  7. Astronaut Harris checks response of muscles to microgravity

    NASA Technical Reports Server (NTRS)

    1995-01-01

    With astronaut Janice E. Voss, STS-63 mission specialist, as his test subject, astronaut Bernard A. Harris Jr., payload commander and a physician, uses a special biomedical harness/experiment to check the response of muscles to microgravity. They are on the middeck, where many of the Spacehab-3 experiments are located. The Spacehab-3 is in the cargo bay.

  8. Astronaut Jerry Linenger with sheet of TIPS correspondence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With scissors in hand, astronaut Jerry M. Linenger, mission specialist, prepares to cut off a lengthy sheet of correspondence from ground controllers. Called the Thermal Imaging Printing System (TIPS), the message occupies a stowage locker on Discovery's middeck. Astronaut L. Blaine Hammond, pilot, retrieves a clothing item from a nearby locker.

  9. Undergraduate Astronautics at the United States Naval Academy.

    ERIC Educational Resources Information Center

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  10. Astronaut Scott Carpenter in pressure suit awaiting simulated mission

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter smiles, in his pressure suit, prior to participating in a simulated mission run at Cape Canaveral, Florida. Astronaut Carpenter had been selected as the prime pilot on the nation's second attempt to put a man into orbit around the earth.

  11. Astronaut Scott Carpenter practices in the ALFA trainer at Langley

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter practices in the Air Lubricated Free Attitude (ALFA) trainer located at NASA's Manned Spacecraft Center at Langley AFB, Virginia. This trainer allows the astronaut to see the image of the earth's surface at his feet while manually controlling the spacecraft.

  12. Astronaut Scott Carpenter inserted into Aurora 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut M. Scott Carpenter, pilot of the Mercury-Atlas 7 space flight, is inserted into Aurora 7 spacecraft during the prelaunch countdown. Carpenter is assisted into the spacecraft by Astronaut John Glenn and Gunter Vendt, McDonnell Douglas pad capsule test conducter.

  13. Astronaut Scott Carpenter examines protective material on pressure bulkhead

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Mercury Astronaut M. Scott Carpenter examines the honeycomb protective material on the main pressure bulkhead in the white room facility at Hanger S, Cape Canaveral, Florida. This is the spacecraft which will carry astronaut Carpenter on the nation's second manned orbital flight.

  14. Astronauts Scott Carpenter and Walter Schirra completes water egress test

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronauts M. Scott Carpenter, prime pilot of the Mercury-Atlas 7, prepares to go through a water egress test. Astronaut Walter M. Schirra (back to camera), the backup MA-7 pilot is also present. Carpenter and Schirra are in the Mercury pressure suit, without the helmet. Behind them is an inflated life raft.

  15. Astronauts David Griggs and Jeff Hoffman in Egress training

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut David Griggs, wearing an extravehicular mobility unit (EMU), practices emergency egress from the space shuttle during an underwater test in the Weightless Environment Training Facility (WETF) (26473); Griggs (left) and Astronaut Jeff Hoffman train for egress in the WETF (26474).

  16. Astronaut Jack Lousma egresses Skylab 3 Command Module

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, egresses the Skylab 3 Command Module aboard the prime recovery ship, U.S.S. New Orleans, during recovery operations in the Pacific Ocean. Note surgical masks on those assisting Lousma. This is to prevent the astronauts from contracting infections.

  17. Astronaut Charles Conrad climbs from spacecraft after splashdown

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Charles Conrad Jr., command pilot of the Gemini 11 space mission, climbs from the spacecraft minutes after splashdown. Astronaut Richard F. Gordon Jr., pilot, still has his hatch closed. The U.S. Navy frogman team attached a flotation collar to the spacecraft.

  18. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charels M. Duke Jr.

  19. Astronauts Conrad and Kerwin practice Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Scientist-Astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC.

  20. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  1. Astronaut Charles Duke works at front of Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, works at front of the Lunar Roving Vehicle (LRV) parked in this rock field at a North Ray crater geological site during the Mission's third extravehicular activity (EVA-3) on April 23, 1972. Astronaut John W. Young, commander, took this picture with a 70mm Hasselblad camera.

  2. Astronaut Noriega During Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  3. Automatic Georeferencing of Astronaut Auroral Photography

    NASA Astrophysics Data System (ADS)

    Walsh, A. P.; Riechert, M.; Taylor, M. G.

    2014-12-01

    Astronauts on board the International Space Station have taken thousands of high quality photographs of the aurorae borealis and australis with a high temporal and spatial resolution. A barrier to these photographs being used in research is that the cameras do not have a fixed orientation and the images therefore do not have any pointing information associated with them. Using astrometry.net and other open source libraries we have developed a software toolkit to automatically reconstruct the pointing of the images from the visible starfield and hence project the auroral images in geographic and geomagnetic coordinates. Here we explain the technique and the resulting data products, which will soon be publically available through the project website.

  4. Feeding the Astronauts During Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2010-01-01

    This slide presentation reviews the issues surrounding feeding astronauts during long duration missions. There is a brief history from the food and food packaging available during Project Mercury through the current food requirements. It shows the packaging and the requirements that have been used. The current food system includes thermostabilized and irradiated foods to reduce the potential of harmful microorganisms. There is an explanation of drinks available, rehydratable foods, and natural forms of food, (i.e., commercially available foods that are packaged in individual serving sizes). There is also discussion of the requirements for future missions, and the research gap for requirements for food that will last 5 years, with packaging and nutrients intact.

  5. Locomotor problems of supersonic aviation and astronautics.

    PubMed

    Remes, P

    1989-04-01

    Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.

  6. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone, chief of KSC's Media Services branch, identifies a reporter in the stands to pose a question to one of the former Apollo astronauts seated next to her. From left to right, they are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. Behind them on the lower floor are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  7. Changes in Neutrophil Functions in Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  8. Cleanliness verification process at Martin Marietta Astronautics

    NASA Astrophysics Data System (ADS)

    King, Elizabeth A.; Giordano, Thomas J.

    1994-06-01

    The Montreal Protocol and the 1990 Clean Air Act Amendments mandate CFC-113, other chlorinated fluorocarbons (CFC's) and 1,1,1-Trichloroethane (TCA) be banned from production after December 31, 1995. In response to increasing pressures, the Air Force has formulated policy that prohibits purchase of these solvents for Air Force use after April 1, 1994. In response to the Air Force policy, Martin Marietta Astronautics is in the process of eliminating all CFC's and TCA from use at the Engineering Propulsion Laboratory (EPL), located on Air Force property PJKS. Gross and precision cleaning operations are currently performed on spacecraft components at EPL. The final step of the operation is a rinse with a solvent, typically CFC-113. This solvent is then analyzed for nonvolatile residue (NVR), particle count and total filterable solids (TFS) to determine cleanliness of the parts. The CFC-113 used in this process must be replaced in response to the above policies. Martin Marietta Astronautics, under contract to the Air Force, is currently evaluating and testing alternatives for a cleanliness verification solvent. Completion of test is scheduled for May, 1994. Evaluation of the alternative solvents follows a three step approach. This first is initial testing of solvents picked from literature searches and analysis. The second step is detailed testing of the top candidates from the initial test phase. The final step is implementation and validation of the chosen alternative(s). Testing will include contaminant removal, nonvolatile residue, material compatibility and propellant compatibility. Typical materials and contaminants will be tested with a wide range of solvents. Final results of the three steps will be presented as well as the implementation plan for solvent replacement.

  9. Did Vertigo Kill America's Forgotten Astronaut?

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Merlin, Peter W.

    2007-01-01

    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  10. Astronaut hazard during free-flight polar EVA

    NASA Technical Reports Server (NTRS)

    Hall, W. N.

    1985-01-01

    Extravehicular Activity (EVA) during Shuttle flights planned for the late 1980's includes several factors which together may constitute an astronaut hazard. Free-flight EVA is planned whereas prior United States Earth orbit EVA has used umbilical tethers carrying communications, coolant, and oxygen. EVA associated with missions like LANDSAT Retrieval will be in orbits through the auroral oval where charging of spacecraft may occur. The astronaut performing free flight EVA constitutes an independent spacecraft. The astronaut and the Shuttle make up a system of electrically isolated spacecraft with a wide disparity in size. Unique situations, such as the astronaut being in the wake of the Shuttle while traversing an auroral disturbance, could result in significant astronaut and Shuttle charging. Charging and subsequent arc discharge are important because they have been associated with operating upsets and even satellite failure at geosynchronous orbit. Spacecraft charging theory and experiments are examined to evaluate charging for Shuttle size spacecraft in the polar ionosphere.

  11. Is Autonomic Modulation Different between European and Chinese Astronauts?

    PubMed Central

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E.

    2015-01-01

    Purpose The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Methods Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Results Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Conclusion Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc. PMID:25799561

  12. Astronaut Susan J. Helms, payload commander, and payload specialist Jean-Jacques Favier,

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Astronaut Susan J. Helms, payload commander, and payload specialist Jean-Jacques Favier, representing the French Space Agency (CNES), insert a test container into the Bubble Drop Particle Unit (BDPU) in the Life and Microgravity Spacelab (LMS-1) Science Module aboard the Space Shuttle Columbia. The fluid in the chamber is heated and the fluid processes are observed by use of three internal cameras mounted inside the BDPU. Investigations in this facility will help characterize interfacial processes involving either bubbles, drops, liquid columns or liquid layers.

  13. Cancer Risk in Astronauts: A Constellation of Uncommon Consequences

    NASA Technical Reports Server (NTRS)

    Milder, Caitlin M.; Elgart, S. Robin; Chappell, Lori; Charvat, Jaqueline M.; Van Baalen, Mary; Huff, Janice L.; Semones, Edward J.

    2017-01-01

    Excess cancers resulting from external radiation exposures have been noted since the early 1950s, when a rise in leukemia rates was first reported in young atomic bomb survivors [1]. Further studies in atomic bomb survivors, cancer patients treated with radiotherapy, and nuclear power plant workers have confirmed that radiation exposure increases the risk of not only leukemia, but also a wide array of solid cancers [2,3]. NASA has long been aware of this risk and limits astronauts' risk of exposure-induced death (REID) from cancer by specifying permissible mission durations (PMD) for astronauts on an individual basis. While cancer is present among astronauts, current data does not suggest any excess of known radiation-induced cancers relative to a comparable population of U.S. adults; however, very uncommon cancers have been diagnosed in astronauts including nasopharyngeal cancer, lymphoma of the brain, and acral myxoinflammatory fibroblastic sarcoma. In order to study cancer risk in astronauts, a number of obstacles must be overcome. Firstly, several factors make the astronaut cohort considerably different from the cohorts that have previously been studied for effects resulting from radiation exposure. The high rate of accidents and the much healthier lifestyle of astronauts compared to the U.S. population make finding a suitable comparison population a problematic task. Space radiation differs substantially from terrestrial radiation exposures studied in the past; therefore, analyses of galactic cosmic radiation (GCR) in animal models must be conducted and correctly applied to the human experience. Secondly, a large enough population of exposed astronauts must exist in order to obtain the data necessary to see any potential statistically significant differences between the astronauts and the control population. Thirdly, confounders and effect modifiers, such as smoking, diet, and other space stressors, must be correctly identified and controlled for in those

  14. Station Astronauts Do Experiment for 'Cosmos'

    NASA Video Gallery

    Aboard the International Space Station, Expedition 38 Commander Koichi Wakata of the Japan Aerospace Exploration Agency and Flight Engineer Rick Mastracchio of NASA help 'Cosmos' host Neil deGrasse...

  15. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  16. Robonaut: a telepresence-based astronaut assistant

    NASA Astrophysics Data System (ADS)

    Diftler, Myron; Jenks, Kenneth C.; Williams, Lorraine E. P.

    2002-02-01

    Robonaut, NASA's latest anthropomorphic robot, is designed to work in the hazards of the space environment as both an astronaut assistant and, in certain situations, an astronaut surrogate. This highly dexterous robot is now performing complex tasks under telepresence control in the Dexterous Robotics Laboratory at the Johnson Space Center that could previously only be carried out directly by humans. With 43 degrees of freedom (DOF), Robonaut is a state-of-the-art human size telemanipulator system. It has a three-DOF articulated waist and two seven-DOF arms, giving it an impressive work space for interacting with its environment. Its two five-fingered hands allow manipulation of a wide range of common tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems. Telepresence control is the main mode of operation for Robonaut. The teleoperator dons a variety of sensors to map hand, head, arm and body motions to control the robot. A distributed object-oriented network architecture links the various computers used to gather posture and joint angle data from the human operator, to control the robot, to generate video displays for the human operator and to recognize and generate human voice inputs and outputs. Distributed object-oriented software allows the same telepresence gear to be used on different robots and allows interchangable telepresence gear in the laboratory environment. New telepresence gear and new robots only need to implement a standard software interface. The Robonaut implementation is a two-tiered system using Java/Jini for distributed commands and a commercial-off-the-shelf data sharing protocol for high-speed data transmission. Experimental telepresence gear is being developed and evaluated. Force feedback devices and techniques are a focus, and their efforts on teleoperator performance of typical space operations tasks is being measured. Particularly, the augmentation of baseline

  17. ESA astronauts assigned to Tethered Satellite System mission - STS-75

    NASA Astrophysics Data System (ADS)

    1995-01-01

    The TSS project is a joint NASA/ASI (Italian Space Agency) effort. On STS-75, the five-foot diameter (1.6 metre) Italia built satellite is scheduled to be deployed on the end of a 1 mile long (20 kilometre) conductive tether to study the electrodynamic effects of moving such a tether through the Earth's magnetic field. The experiment will also test techniques for managing the tethered spacecraft at great distances. Throughout the 13-day flight, additional experiments housed in the orbiter's payload bay will give scientists access to s for microgravity and fundamental science investigations. The USMP is designed to provide the foundation for advanced scientific investigations similar to those planned aboard the International Space Station. Claude Nicollier, who is Swiss, was selected by ESA in 1978 as one of three European payload specialists to train for the SPACELAB-1 mission. He was a mission specialist on STS- 46 (31 July-8 August 1992), during which the crew members deployed ESA's retrievable science platform (EURECA) and conducted the first TSS test flight. A few months after his return from this mission Claude Nicollier was selected as mission specialist for STS-61 (2-13 December 1993). He contributed considerably to the complete success of the Hubble Space Telescope repair and refurbishment mission and in particular the replacement of the ESA-provided solar arrays. Maurizio Cheli, an Italian, was selected by ESA in May 1992 along with five other young candidates to expand the corps of ESA astronauts. He has been in Houston since mid-1992 and has qualified as mission specialist at NASA's Johnson Space Center there. STS-75 will be his first Shuttle flight. Marine Corps Lt. Col. Andrew M. Allen will command Space Shuttle Columbia's STS-75 mission. Joining Allen are Air Force Major Scott J. Horowitz, pilot; payload commander Franklin R. Chang-Diaz, Ph. D; Italian Space Agency (ASI) TSS payload specialist Umberto Guidoni, Ph.D; mission specialist Jeffrey A

  18. Mission X: Train Like an Astronaut. International Fitness Challenge

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  19. Skylab-3 Mission Onboard Photograph - Astronaut Bean on Ergometer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This Skylab-3 onboard photograph shows Astronaut Allen Bean on the ergometer, breathing into the metabolic analyzer. Skylab's Metabolic Activity experiment (M171), a medical evaluation facility, was designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer.

  20. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  1. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  2. Astronauts Hoffman and Musgrave monitor Neutral Buoyancy Simulator training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Jeffrey A. Hoffman (far left) and F. Story Musgrave (second left) monitor a training session from consoles in the control room for the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC). Seen underwater in the NBS on the big screen and the monitors at the consoles is astronaut Thomas D. Akers. The three mission specialists, along with astronaut Kathryn C. Thornton, are scheduled to be involved in a total of five sessions of extravehicular activity (EVA) to service the Hubble Space Telescope (HST) in orbit during the STS-61 mission, scheduled for December 1993.

  3. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  4. Official Portrait of Astronaut Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Neil Armstrong, donned in his space suit, poses for his official Apollo 11 portrait. Armstrong began his flight career as a naval aviator. He flew 78 combat missions during the Korean War. Armstrong joined the NASA predecessor, NACA (National Advisory Committee for Aeronautics), as a research pilot at the Lewis Laboratory in Cleveland and later transferred to the NACA High Speed Flight Station at Edwards AFB, California. He was a project pilot on many pioneering high speed aircraft, including the 4,000 mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters, and gliders. In 1962, Armstrong was transferred to astronaut status. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971.

  5. Astronaut Photographs Helmet Visor During Space Walk

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. Astronaut Stephen K. Robinson, STS-114 mission specialist, used the pictured still digital camera to expose a photo of his helmet visor during the EVA. Also visible in the reflection are thermal protection tiles on Discovery's underside.

  6. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  7. Effects of HZE particles on astronauts

    SciTech Connect

    Curtis, S.B. ); Townsend, L.W.; Wilson, J.W. )

    1991-01-01

    Outside the effective shielding provided by Earth's magnetic field, space travelers will experience penetrating high-energy galactic cosmic rays, which reach the orbit of earth isotropically and with fluxes that vary smoothly over an 11-yr interval that is related to the 11-yr cycle of solar activity. This radiation consists of protons (Z=1) up to uranium (Z=92). There is an abundance of even--over odd-Z nuclei, with several local peaks in abundance when plotted as a function of Z. A prominent peak occurs in the iron abundance (Z=26) and is presumably related to the richness of iron in the galactic cosmic ray sources. The iron component is particularly important in a biological assessment of risk. High-energy particles with Z>2 have been called (high Z and energy) (HZE) particles. These particles are a concern in the evaluation of radiation risk because (a) they are highly ionizing and cause considerable damage as they penetrate biological tissue, and (b) they undergo nuclear interactions within the spacecraft shielding and the bodies of the astronauts themselves to produce lighter, more penetrating and sometimes highly ionizing secondaries. Considerably more ground-based cellular and animal experimentation is in order with high-energy heavy-ion beams before definitive statements can be made on the risk of HZE particles to humans outside the geomagnetosphere.

  8. STS-102 Astronaut Susan Helms Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  9. STS-102 Astronaut James Voss Participates in Space Walk

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  10. Astronaut Eileen Collins during phone interview with news media

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Eileen M. Collins, pilot for the STS-63 mission, participates in a telephone interview with an out of town media representative after having been announced as the pilot on NASA's STS-63 mission aboard the Space Shuttle Discovery.

  11. Astronautics and Aeronautics, 1979-1984: A chronology

    NASA Technical Reports Server (NTRS)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  12. Astronaut L. Gordon Cooper Jr. during water egress training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut L. Gordon Cooper Jr., Gemini 5 command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  13. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  14. Astronaut Gordon Cooper walks to elevator to spacecraft 'Faith 7'

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr. waited inside the transfer van for several minutes and then leaving the transfer van walked to the elevator which took him to the spacecraft 'Faith 7' atop the Atlas vehicle for his mission.

  15. Astronauts L. Gordon Cooper Jr. hoisted up to Navy helicopter

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut L. Gordon Cooper Jr. is hoisted up to a Navy helicopter during recovery operations in the Atlantic Ocean of the Gemini 5 spacecraft. The NASA Headquarter alternative photo number is 65-H-688.

  16. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Stowe, R. P.; Feiveson, A. H.; Tyring, S. K.; Pierson, D. L.

    2000-01-01

    The reactivation of cytomegalovirus (CMV) in 71 astronauts was investigated, using polymerase chain reaction. A significantly greater (P<.0001) shedding frequency was found in urine samples from astronauts before spaceflight (10.6%) than in urine from the healthy control subject group (1.2%). Two of 4 astronauts studied during spaceflight shed CMV in urine. A significant increase (P<.0001) in CMV antibody titer, compared with baseline values, was also found 10 days before spaceflight. CMV antibody titer was further increased (P<.001) 3 days after landing, compared with 10 days before the mission. Significant increases in stress hormones were also found after landing. These results demonstrate that CMV reactivation occurred in astronauts before spaceflight and indicate that CMV may further reactivate during spaceflight.

  17. Astronaut Neil Armstrong participates in simulation of moon's surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  18. Eye-Opening Research on Astronauts' Vision Problems

    MedlinePlus

    ... astronauts who spend extended periods of time in space. Now researchers have identified the likely cause of ... in zero-gravity conditions, such as exists in space, is greater than when people stand or sit ...

  19. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  20. Astronaut Alan Bean participates in lunar surface simulation

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot of the Apollo 12 lunar landing mission, participates in lunar surface simulation training in bldg 29 at the Manned Spacecraft Center. Bean is strapped to a one-sixth gravity simulator.

  1. Forty Years of Psychological and Psychiatric Selection of NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.

    2000-01-01

    The purpose of this presentation is to chronicle the history and development of the psychological selection process for NASA astronauts. For over 40 years, astronaut applicants have undergone rigorous medical testing to qualify for candidacy. Psychological selection has an equally long history, dating back to 1958, when psychological requirements were established for astronauts during the Mercury program. However, for many years, psychological selection consisted of psychiatric screening for psychopathology. As we approach the day in which the first ISS crew will live and work in space for months at a time, it becomes clear that both the psychological criteria and the selection system to detect said criteria have changed. This presentation discusses the events that led to the current, dual-phase selection system that is used to select individuals into the astronaut corps. Future directions for psychological selection will also be addressed.

  2. Astronaut Terry Hart in orbiter training in the SAIL

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Terry J. Hart, 41-C mission specialist, 'punches up' a display in an orbiter trainer in the JSC Shuttle Avionics Integration Laboratory (SAIL). The scenes Hart controls here appear in the 'windows' of the trainer.

  3. Students Speak With NASA Astronaut Dottie Metcalf-Lindenburger

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Dottie Metcalf-Lindenburger participates in a Digital Learning Network (DLN) event with students at Heritage Middle S...

  4. Mercury astronaut John Glenn and President Kennedy at survival display

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Mercury astronaut John H. Glenn Jr. gives President Kennedy a quick run-down on the display of survival gear. The Chief Executive took a quick tour of a dozen displays set up for him after the classified briefing.

  5. Astronauts Schirra and Stafford congratulate each other on mission completion

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Walter M. Schirra Jr. (right), command pilot, and Thomas P. Stafford, pilot, shake each other's hand as they arrive aboard the aircraft carrier U.S.S. Wasp to conclude their 25 hour, 52 minute Gemini 6 space flight.

  6. Astronaut Judith Resnik in the Shuttle mission simulator

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Judith A. Resnik, 41-D mission specialist, prepares to climb some steps leading to the flight deck portion of JSC's Shuttle mission simulator (SMS) in preparation for training for her 41-D mission.

  7. Astronauts van Hoften and Nelson conduct pre-breathing exercise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts James D. van Hoften and George D. Nelson, wearing Shuttle launch and entry helmets, conduct a pre-breathing exercise on the forward flight deck of the shuttle Challenger during the STS 41-C mission.

  8. Astronaut John Glenn in a State of Weightlessness During Friendship

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John Glenn photographed in space by an automatic sequence motion picture camera during his flight on 'Friendship 7.' Glenn was in a state of weightlessness traveling at 17,500 mph as these pictures were taken.

  9. Astronaut Elliot M. See Jr. during water egress training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Elliot M. See Jr., Gemini 5 backup crew pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  10. Space Station Live: Astronaut Don Pettit on Earth Photography

    NASA Video Gallery

    In observance of Earth Day, Space Station Live commentator Pat Ryan talks with NASA astronaut Don Pettit, who along with his fellow Expedition 30/31 crew members captured more than a half a million...

  11. Why does astronaut Reid Wiseman use social media?

    NASA Video Gallery

    Astronaut Reid Wiseman, who is living and working on the International Space Station, has taken everyone along on the incredible journey using social media. But why does he use social media? Find o...

  12. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  13. Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    NASA Technical Reports Server (NTRS)

    Barr, Yael; Watkins, Sharmila; Polk, J. D.

    2011-01-01

    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight.

  14. Astronauts Stafford and Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two American ASTP crewmen, Astronauts Thomas P. Stafford (foreground) and Vance D. Brand are seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  15. Astronaut Vance Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Vance D. Brand, command module pilot of the American ASTP crew, is seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  16. Astronaut Karl Henize with soft drink in middeck area

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Karl Henize drinks from a special carbonated beverage dispenser labeled Pepsi while floating in the middeck area of the shuttle Challenger. Note the can appears to have its own built in straw.

  17. Astronauts Harris and Foale ready to egress airlock for EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronauts Bernard A. Harris, Jr., payload commander, (top) and C. Michael Foale, mission specialist, are ready to egress airlock for an extravehicular activity (EVA) during the STS-63 mission on the Space Shuttle Discovery.

  18. NASA Now: How to Become and Be an Astronaut

    NASA Video Gallery

    Learn about the necessary steps to become an astronaut, the job responsibilities that a pilot on the space shuttle had, and the incredible experience of being in space. For more on becoming an astr...

  19. Astronaut Robert Gibson prepares to use motion picture camera

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Astronaut Robert L. Gibson, STS 61-C mission commander, partially floats on the aft flight deck of the Shuttle Columbia while preparing to use a motion picture camera. The windows overlooking the cargo bay are visible in the background.

  20. Space Station Live: Astronaut Photos Highlight Earth Month

    NASA Video Gallery

    Melissa Dawson, an Earth scientist with NASA’s Johnson Space Center, recently spoke by phone with Public Affairs Officer Nicole Cloutier-Lemasters to discuss the importance of astronaut photograp...

  1. Astronauts Sullivan and Ride synchronize their watches before liftoff

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Kathryn Sullivan and Sally Ride synchronize their watches in the white room on the orbiter access arm before insertion into the orbiter crew compartment. This photo was done before liftoff of the Shuttle Challenger.

  2. Astronaut Sally Ride responds to question from interviewer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut Sally K. Ride, mission specialist for STS-7, responds to a question from an interviewer during a taping session for ABC's Night Line. Dr. Ride is in the shuttle mockup and integration laboratory.

  3. Behind the Scenes: Rolling Room Greets Returning Astronauts

    NASA Video Gallery

    Have you ever wondered what is the first thing the shuttle crews see after they land? In this episode of NASA Behind the Scenes, astronaut Mike Massimino takes you into the Crew Transport Vehicle, ...

  4. ISS Update: Diagnosing Astronauts in Space From Here on Earth

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly interviews Ed Powers, NASA Flight Surgeon, about how flight doctors work with the crew members on board, diagnosing astronauts in space from Earth and impact...

  5. Astronaut Scott Carpenter and technician Joe Schmidt during suiting exercise

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Mercury Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, and Crew Equipment Specialist Joe Schmidt are before a suiting exercise. Schmidt is seen checking the gloves on the Carpenter's pressure suit.

  6. Astronaut James D. van Hoften examines student experiment on Challenger

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut James D. van Hoften, 41-C mission specialist, holds an aluminum box full of honeybees. The experiment in earth orbit is duplicated with another colony of the bees on earth. This is an experiment submitted by student researchers.

  7. Astronaut Hoffman replaces fuse plugs on Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman sees to the replacement of fuse plugs on the Hubble Space Telescope (HST) during the first of five space walks. Thunderclouds are all that is visible on the dark earth in the background.

  8. Astronaut Curtis Brown suspended by simulated parachute gear during training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Curtis L. Brown, STS-66 pilot, is suspended by a simulated parachute gear during an emergency bailout training exercise in JSC's Weightless Environment Training Facility (WETF). He is wearing his orange launch and entry suit.

  9. Astronauts Culbertson and Bursch brush their teeth on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Frank L. Culbertson (right), mission commander, and Daniel W. Bursch, mission specialist, brush their teeth on Discovery's middeck. Two sleep restraints form part of the backdrop for the photograph.

  10. Astronaut William Readdy on flight deck wearing sun glasses

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On Discovery's forward flight deck, Astronaut William F. Readdy, pilot, wears shades to block out bright sunshine. Much of the sunshine that normally would be coming through forward windows is blocked by an array of portable computers.

  11. Astronaut John Glenn running as part of physical training program

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, participates in a strict physical training program, as he exemplifies by frequent running. Here he pauses during an exercise period on the beach near Cape Canaveral, Florida.

  12. ISS Update: Astronaut Participates in Autonomous Mission Operations Test

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean talks with astronaut Alvin Drew who is participating in the Autonomous Mission Operations test, which looks at how communication delays will affect future de...

  13. Behind the Scenes: Astronauts Pockets Deep in Mystery

    NASA Video Gallery

    Host Mike Massimino returns to the pre-launch suit up room at the Kennedy Space Center to reexamine the question: what's inside all those pockets of the astronauts' big orange suits? Find out on "N...

  14. Astronaut Richard Covey with control box for bicycle ergometer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Richard O. Covey, mission commander, is seen with the control box for bicycle ergometer on Endeavour. During the eleven-day STS-61 mission, crew members not performing spacewalks found the ergometer to provide much needed exercise.

  15. Astronaut Gerald Carr sits on the bicycle ergometer during prelaunch

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 mission commander, sits on the bicycle ergometer as he takes part in the body mass measurement experiment during a prelaunch physical examination for the crew of the third manned mission.

  16. STS-133 Astronauts Rehearse Launch Day During TCDT

    NASA Video Gallery

    The six astronauts who will fly space shuttle Discovery to the International Space Station on STS-133 spent four days at NASA’s Kennedy Space Center to participate in a launch countdown dress reh...

  17. Astronaut Daniel Bursch with CPCG experiment on Discovery's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Daniel W. Bursch, mission specialist, is pictured on Discovery's middeck with the Commercial Protein Crystal Growth (CPCG) experiment. This experiment is designed to explore the structure of specific protein molecules in space-grown crystals.

  18. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  19. How Can We Protect Our Astronauts in Space?

    NASA Video Gallery

    Richard Wilkins, director for the Center for Radiation Engineering and Science for Space Exploration, or CRESSE, at Prairie View A&M University, explains mitigation procedures to protect astronauts...

  20. Astronauts Schirra and Stafford examine a star globe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts Walter M. Schirra Jr. (left), command pilot, and Thomas P. Stafford, pilot, Gemini 6 prime crew, examine a star globe for celestial pattern recognition in preparation for their forthcoming flight.

  1. [Safety analysis for astronaut and the personal protective equipment].

    PubMed

    Chen, J D; Sun, J B; Shi, H P; Sun, H L

    1999-12-01

    Objective. To analyze and study astronaut and his personal equipment safety. Method. Three of the most widely used approaches, failure mode and effect analysis (FMEA), fault tree analysis (FTA) and system hazards analysis (SHA) were used. Result. It was demonstrated that astronaut and the personal equipment are subjected to various potential hazards, such as human errors, astronaut illness, fire or space suit emergency decompression, etc. Their causes, mechanisms, possible effects and criticality of some critical potential hazards were analyzed and identified in more details with considerations of the historic accidents of manned spaceflight. And the compensating provisions and preventive measures for each hazard were discussed. Conclusion. The analysis study may be helpful in enhancing the safety of the astronaut and its personal protective equipment.

  2. Apollo 11 astronaut Neil Armstrong suits up before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  3. Apollo 11 astronaut Neil Armstrong looks over flight plans

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  4. Astronaut Alan Bean assisted with egressing command module after landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, is assisted with egressing the Apollo 12 Command Module by a U.S. Navy underwater demolition team swimmer during recovery operations in the Pacific Ocean. Already in the life raft are Astronauts Charles Conrad Jr., commander; and Richard F. Gordon Jr., command module pilot. The Apollo 12 splashdown occured at 2:58 p.m., November 24, 1969 near American Samoa.

  5. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder at Station 6 (base of North Massif) during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Notice the Lunar Roving Vehicle (LRV) in the left foreground. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  6. Unimpaired Neuro-Adaptive Plasticity in an Elderly Astronaut

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey; Dawson, David L. (Technical Monitor)

    1999-01-01

    Quantitative analyses of a 77 year old astronaut's balance control performances on a standardized test battery revealed few differences between his neuro-adaptive responses to space flight and those of a group of younger astronauts tested following missions of similar duration. This finding suggests that the physiological changes associated with age do not necessarily impair adaptive plasticity in the human following removal and subsequent reintroduction of gravity.

  7. Astronauts Stafford and Young await pickup by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, U.S.S. Pinceton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa.

  8. Fellow astronauts join Gemini 7 crew for preflight breakfast

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Fellow astronauts join the Gemini 7 prime crew for breakfeast in the Manned Spacecraft Operations Building, Merritt Island, on the day of the Gemini 7 launch. Clockwise around table, starting lower left, are Astronauts James A. Lovell Jr., Gemini 7 prime crew pilot; Walter M. Schirra Jr., Donald K. Slayton, MSC Assistant Director for Flight Crew Operations; Richard F. Gordon Jr., Gemini 8 backup crew pilot; Virgil I. Grissom, Charles Conrad Jr., and Frank Borman, Gemini 7 prime crew command pilot.

  9. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Chickasaw Tribal Elder Lee Frazier leads the dedication to the astronauts of STS-113 during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  10. Screening and Management of Asymptomatic Renal Stones in Astronauts

    NASA Technical Reports Server (NTRS)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  11. Astronaut Scott Carpenter completes top egress training in white room

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter, prime pilot of the Mercury-Atlas 7 (the nation's second manned orbital flight), completing top egress training in the white room at Cape Canaveral, Florida. The line he is holding is known as the 'man line' which attaches the survival kit to the astronaut. The bag is the survival kit he carries for contingency landings. Clearly visible around his neck is the bag containing the life vest.

  12. Astronaut Stuart Roosa hoisted inside recovery net to Navy helicopter

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Stuart A. Roosa, Apollo 14 Command Module pilot, is hoisted inside a Billy Pugh net to a Navy helicopter assisting in Apollo 14 recovery operations in the South Pacific Ocean. Visible in a life raft beside the Command Module are Astronauts Alan B. Shepard JR., commander, back to camera; and Edgar D. Mitchell (partially obscured by the spacecraft), lunar module pilot. Three Navy underwater demolition team swimmers who assisted in the recover operations are pictured in and around the life raft.

  13. Astronauts Hoffman and Musgrave pose in aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two of Endeavour's busy team of astronauts share a rare moment of leisure in the aft flight deck captured by an Electronic Still Camera (ESC). Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave also are sharing three of the mission's five planned sessions of extravehicular activity (EVA). Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  14. Astronauts Hoffman and Seddon demonstrate effect of weightlessness on slinky

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronauts Jeffrey A. Hoffman and Rhea Seddon, mission specialists, demonstrate the effect of weightlessness on a slinky toy in the middeck of the Discovery. On the middeck lockers are various logos of the universities that the astronauts are affiliated with such as: Amherst, Purdue and Tennessee. There are also stickers which read 'Fly Navy' and 'Naval Reserve'. On the top locker is a sticker which shows the STS 51-D logo.

  15. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  16. Astronaut Richard Truly seen working with Apollo docking mechanism model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Richard H. Truly, an Apollo Soyuz Test Project (ASTP) spacecraft communicator, is seen working with an Apollo docking mechanism in the Mission Control Center during the joint U.S.-USSR ASTP docking in Earth orbit mission. Astronaut Truly, a member of the American ASTP crew support team, was working on the docking probe problem. The crew had notified ground control that there was a problem with removing the probe from the tunnel of the Apollo Command Module.

  17. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  18. Apollo 11 Astronauts Swarmed by Thousands In Mexico City Parade.

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 astronauts, Neil A. Armstrong, Edwin E. Aldrin, Jr., and Michael Collins, wearing sombreros and ponchos, are swarmed by thousands in Mexico City as their motorcade is slowed by the enthusiastic crowd. The GIANTSTEP-APOLLO 11 Presidential Goodwill Tour emphasized the willingness of the United States to share its space knowledge. The tour carried the Apollo 11 astronauts and their wives to 24 countries and 27 cities in 45 days.

  19. Lunar Roving Vehicle gets speed workout by Astronaut John Young

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Lunar Roving Vehicle (LRV) gets a speed workout by Astronaut John W. Young in the 'Grand Prix' run during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Note the front wheels of the LRV are off the ground. This view is a frame from motion picture film exposed by a 16mm Maurer camera held by Astronaut Charles M. Duke Jr.

  20. Mercury astronauts at the Sam Houston Colosseum, Houston, Texas

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The original seven Mercury astronauts, each wearing new cowboy hats and a badge in the shape of a star, are pictured on stage at the Sam Houston Colosseum. A large crowd was on hand to welcome them to Houston, Texas. Left to right are astronauts M. Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Virgil I. Grissom, Walter M. Schirra Jr., Alan B. Shepard Jr., and Donald K. Slayton. Sen. John Tower (R.-Texas) is seen in far right background.

  1. Astronautics and aeronautics, 1974: A chronology

    NASA Technical Reports Server (NTRS)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  2. IAC-11.E1-7.-A1.8.5 The Mission X: Train Like an Astronaut pilot study

    NASA Astrophysics Data System (ADS)

    Lloyd, Charles W.

    2012-12-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 11 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and to inspire and motivate students to pursue careers in science, technology, engineering and math (STEM) fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, Belgium, Czech Republic and United Kingdom hosted teams for the pilot in the spring of 2010, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing in 137 teams, more than 4000 students from over 40 cities worldwide participated in the first round of Mission X.

  3. Congress hears from astronauts about human spaceflight

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    NASA's 15 September announcement of a new Space Launch System (SLS) design, which includes a heavy lift rocket in combination with the Orion Multi-Purpose Crew Vehicle (MPCV) already under development, generally was favorably received at a 22 September congressional hearing on NASA and human spaceflight held by the U.S. House of Representatives' Committee on Science, Space, and Technology. However, witnesses, including Apollo 11 commander Neil Armstrong, said they remain concerned about America's manned access to space, the nation's leadership in manned space exploration, and what they said is the lack of a clear direction for NASA. Armstrong said the proposal for the new heavy lift vehicle “appears to meet the intent” of a congressional mandate in the NASA Authorization Act of 2010, but he also said that the past year has been “frustrating” to NASA observers trying to understand the agency's plans and progress in the area of human space exploration. “The NASA leadership enthusiastically assured the American people that the agency was embarking on an exciting new age of discovery in the cosmos. But the realities of the termination of the shuttle program, the cancellation of existing rocket launcher and spacecraft programs, the layoffs of thousands of aerospace workers, and the outlook for American space activity throughout the next decade were difficult to reconcile with the agency assertions,” Armstrong said.

  4. Epstein-Barr virus shedding by astronauts during space flight

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  5. Epstein-Barr virus shedding by astronauts during space flight.

    PubMed

    Pierson, D L; Stowe, R P; Phillips, T M; Lugg, D J; Mehta, S K

    2005-05-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  6. Dense gaps in the interacting Aubry-André model

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri

    2016-06-01

    We consider the interacting Aubry-André model describing fermions on a one-dimensional lattice with an incommensurate potential and a short-range many-body interaction. The single-particle spectrum has infinitely many gaps in the extended phase and at zero temperature is an insulator for almost all the chemical potentials. The many-body interaction has the effect that the gaps are strongly decreased or increased depending on the attractive or repulsive nature of the interaction, but even the smallest gaps remain open. The system is a band insulator for generic chemical potentials even in the presence of interaction, and a quantum phase transition is excluded at weak coupling.

  7. What is Tetramorium semilaeve André, 1883? (Hymenoptera, Formicidae)

    PubMed Central

    Borowiec, Lech; Galkowski, Christophe; Salata, Sebastian

    2015-01-01

    Abstract Tetramorium semilaeve André, 1883 is redescribed based on the type series and new material from terra typica (Pyrénées-Orientales). Lectotype worker is designated. Detailed descriptions of gyne and male are given. A review of material from the Mediterranean area suggests that in the past the name Tetramorium semilaeve has been applied to more than one species and the true Tetramorium semilaeve is common only in the western part of the Mediterranean basin. The structure of the male genitalia is the most reliable set of characters allowing a proper distinction of species in Tetramorium semilaeve species group. All names attributed to the former name “semilaeve” are discussed. PMID:26257559

  8. Neurology and surrealism: André Breton and Joseph Babinski.

    PubMed

    Haan, Joost; Koehler, Peter J; Bogousslavsky, Julien

    2012-12-01

    Before he became the initiator of the surrealist movement, André Breton (1896-1966) studied medicine and worked as a student in several hospitals and as a stretcher bearer at the front during World War I. There he became interested in psychiatric diseases such as hysteria and psychosis, which later served as a source of inspiration for his surrealist writings and thoughts, in particular on automatic writing. Breton worked under Joseph Babinski at La Pitié, nearby La Salpêtrière, and became impressed by the 'sacred fever' of the famous neurologist. In this article, we describe the relationship between Breton and Babinski and try to trace back whether not only Breton's psychiatric, but also his neurological experiences, have influenced surrealism. We hypothesize that Breton left medicine in 1920 partly as a consequence of his stay with Babinski.

  9. Astronauts Alan Bean and Charles Conrad on Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn Five launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. In this photograph, one of the astronauts on the Moon's surface is holding a container of lunar soil. The other astronaut is seen reflected in his helmet. Apollo 12 safely returned to Earth on November 24, 1969.

  10. Latent Virus Reactivation in Astronauts and Shingles Patients

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  11. Baseline characteristics of different strata of astronaut corps

    NASA Technical Reports Server (NTRS)

    Hamm, Peggy B.; Pepper, L. J.

    1993-01-01

    The Longitudinal Study of Astronaut Health (LSAH) is an epidemiological study designed to study the effects of the occupational exposures incurred by astronauts in health outcomes and changes in physiological variables. Between 1959 and 1991, 195 individuals were selected for the program. The medical standards for selection have remained essentially unchanged since the Mercury Program, but the range and stringency of these criteria have been modified. Demographic and physiological variables identified during the selection year are examined for various strata of the Astronaut Corps. Specifically, age, sex, race, education, usual occupation, military affiliation, medical history, family medical history, visual and hearing measurements, physical exam variables, and specific laboratory values are investigated. Differences are examined in astronauts for the following criteria: (1) were selected prior to 1970 (n = 73) versus those selected after 1970 (n = 122); (2) have flown multiple missions versus those who have flown less than two missions; (3) have walked in space versus all others; (4) have more than 500 hours of mission time versus all others; and (5) have gone to the Moon versus all others. Length of time served in the Astronaut Corps is examined for each of these strata.

  12. Geometric illusions in astronauts during long-duration spaceflight.

    PubMed

    Clément, Gilles; Skinner, Anna; Richard, Ghislaine; Lathan, Corinna

    2012-10-24

    In our previous studies, we have shown that the occurrence of geometric illusions was reduced in vestibular patients who presented signs of otolith disorders and when healthy observers were tilted relative to gravity. We hypothesized that the alteration in the gravitational (otolith) input was responsible for this change, presumably because of a connection between vestibular and visual-spatial cognitive functions. In this study, we repeated similar experiments in astronauts during long-duration spaceflight. In agreement with the data of otolithic patients, the inverted-T geometric illusion was less present in the astronauts in 0 g than in 1g. In addition, the vertical length of drawings made by astronauts in orbit was shorter than that on the ground. This result is also comparable with the otolithic patients who perceived the vertical length of line drawings to be smaller than healthy individuals. We conclude that the impairment in the processing of gravitational input in long-duration astronauts affects their mental representation of the vertical dimension similar to the otolithic patients. The astronauts, however, recover to baseline levels within 1 week after returning to Earth.

  13. An Interactive Astronaut-Robot System with Gesture Control

    PubMed Central

    Liu, Jinguo; Luo, Yifan; Ju, Zhaojie

    2016-01-01

    Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system. PMID:27190503

  14. Astronauts and Cosmonauts sightseeing at Red Square in Moscow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A group of Astronauts and their Cosmonaut hosts are photographed sightseeing on Red Square in the heart of Moscow during a tour of the Soviet capital. The Americans were in the USSR to participate in Apollo Soyuz Test Project (ASTP) familiarization training on the Soyuz systems at the Cosmonaut Training Center (Star City) near Moscow. Astronaut Thomas P. Stafford (light coat, black cap), commander of the American ASTP crew, was head of the U.S. delegation to Star City. Astronaut Eugene A. Cernan (on Stafford's left, light coat) is the Special Assistant to the American Technical Director of ASTP. The sightseeing group is walking in the direction of Lenin's Mausoleum. The structure in the background is the Cathedral of the Intercession (St. Basil's) Museum. The historic Kremlin complex is to the right.

  15. Psychiatric diagnoses in a group of astronaut applicants

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.; Faulk, Dean M.; Holland, Al W.

    1991-01-01

    Between 1959 and 1987, the psychiatric evaluation of astronaut candidates evolved from a 30-h intensive examination evaluating applicants for psychopathology, and studying their performance under stress, to a 2-h clinical interview whose structure and contents were determined by the individual examiner. Evaluations done during these years applied both psychiatric (or, 'select-out') criteria and psychological (or, 'select-in') criteria. In an attempt to more rigorously define the psychiatric, 'select-out' component, a standardized, semistructured clinical interview was developed to identify the presence or history of psychiatric disorders listed in the Diagnostic and Statistical Manual of Mental Disorders, 3rd Ed. ('DSM-III'). A total of 117 astronaut applicants underwent this clinical interview as part of a comprehensive medical evaluation during a recent astronaut selection. Of the 117 applicants, 9 (7.7 percent) met DSM-III criteria for a variety of Axis I and Axis II diagnoses, including V-code diagnoses.

  16. An Astronaut's View of Jewel-toned Lakes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts onboard the International Space Station often observe small, otherwise unnoticed water bodies on the ground due to their unusual colors. For example, the Little Blue Run Dam and reservoir is located in western Pennsylvania, just south of the Ohio River. It is owned by Pennsylvania Power Company and used for industrial sludge impoundment. The materials suspended in the water give it a striking, turquoise color. Another lake with color linked commercial activity is Lake Gribben, just southeast of Palmer in Michigan's Upper Peninsula. Iron ore is extracted from New Richmond Mine visible just north of the lake. Images ISS004-E-10472 (Little Blue Run, April 4, 2002) and ISS004-E-10319 (Gribben, April 22, 2002) were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth

  17. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. smiles during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi honoring his space career. During the ceremony, Haise was presented with NASA's Ambassador of Exploration Award (an encased moon rock). He subsequently presented the moon rock to Gorenflo officials for display at the school. Haise is best known as one of three astronauts who nursed a crippled Apollo 13 spacecraft back to Earth during a perilous 1970 mission. Although he was unable to walk on the moon as planned for that mission, Haise ended his astronaut career having logged 142 hours and 54 minutes in space. During the ceremony, he praised all those who contributed to the space program.

  18. An Interactive Astronaut-Robot System with Gesture Control.

    PubMed

    Liu, Jinguo; Luo, Yifan; Ju, Zhaojie

    2016-01-01

    Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system.

  19. Astronaut David Brown poses with ComBBat team

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut David Brown poses with members of the team known as ComBBat, representing Central Florida's Astronaut and Titusville high schools. ComBBat was teamed with Boeing at KSC and Brevard Community College. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition being held March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.

  20. Logistical Consideration in Computer-Based Screening of Astronaut Applicants

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    2000-01-01

    This presentation reviews the logistical, ergonomic, and psychometric issues and data related to the development and operational use of a computer-based system for the psychological screening of astronaut applicants. The Behavioral Health and Performance Group (BHPG) at the Johnson Space Center upgraded its astronaut psychological screening and selection procedures for the 1999 astronaut applicants and subsequent astronaut selection cycles. The questionnaires, tests, and inventories were upgraded from a paper-and-pencil system to a computer-based system. Members of the BHPG and a computer programmer designed and developed needed interfaces (screens, buttons, etc.) and programs for the astronaut psychological assessment system. This intranet-based system included the user-friendly computer-based administration of tests, test scoring, generation of reports, the integration of test administration and test output to a single system, and a complete database for past, present, and future selection data. Upon completion of the system development phase, four beta and usability tests were conducted with the newly developed system. The first three tests included 1 to 3 participants each. The final system test was conducted with 23 participants tested simultaneously. Usability and ergonomic data were collected from the system (beta) test participants and from 1999 astronaut applicants who volunteered the information in exchange for anonymity. Beta and usability test data were analyzed to examine operational, ergonomic, programming, test administration and scoring issues related to computer-based testing. Results showed a preference for computer-based testing over paper-and -pencil procedures. The data also reflected specific ergonomic, usability, psychometric, and logistical concerns that should be taken into account in future selection cycles. Conclusion. Psychological, psychometric, human and logistical factors must be examined and considered carefully when developing and

  1. Conceptual design of an astronaut hand anthropometry device

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert

    1993-01-01

    In a microgravity environment, fluid equalizes throughout the body, causing the upper body to swell. This causes the hands to swell which can cause problems for astronauts trying to do work in pressurized EVA (extravehicular activity) gloves. To better design these gloves, accurate measurements of the astronauts swollen hands are needed. Five concepts were developed in this report from an original field of 972 possible concepts. These five concepts were based on mold impression, ultrasound, laser topography, white light photography, and video imaging. From a decision matrix based on nine weighted criteria, the video imaging technique was found to be the best design to pursue.

  2. Astronautics and Aeronautics: A Chronology, 1996-2000

    NASA Technical Reports Server (NTRS)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  3. Astronautics and Aeronautics: A Chronology, 2001-2005

    NASA Technical Reports Server (NTRS)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  4. Exercise-training protocols for astronauts in microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.

    1989-01-01

    Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.

  5. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronaut Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, an Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  6. Eating in space--from an astronaut's perspective

    NASA Technical Reports Server (NTRS)

    Kerwin, Joseph; Seddon, Rhea

    2002-01-01

    Food systems and meal components are constantly under review and development at the National Aerospace and Space Administration. The goal of this work is to generate a diet that meets the nutrient requirements of astronauts and satiates them. The constraints involved in shorter- and longer-term missions are described. The insight provided by observations of astronauts from the Skylab and Shuttle eras will allow researchers to consider the fact that, for any nutritional regimen to work, it must consider the limitations and taste buds of the individuals involved. Otherwise, the best diet design generated by their work may never be consumed.

  7. Astronaut tool development: An orbital replaceable unit-portable handhold

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.

    1989-01-01

    A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.

  8. Astronaut Susan Helms in the ISS Unity Node

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  9. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  10. Astronaut Jeffrey Hoffman on RMS robot arm during HST repairs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman, anchored to a foot restraint on the end of the Endeavour's Remote Manipulator System (RMS) robot arm, inserts the new Wide Field/Planetary Camera (WF/PC2) into its place on the Hubble Space Telescope (HST). Astronaut F. Story Musgrave, who shared the duties of replacing the camera, is partially visible at right edge of frame. Electronic still photography is technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  11. Astronaut Jeffrey Hoffman on RMS robot arm during HST repairs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman (frame center) remains secured by his feet on the end of the Endeavour's robot arm as he prepares to participate in the replacement of Hubble Space Telescope's (HST) Wide Field/Planetary Camera (WF/PC). Astronaut F. Story Musgrave (just in frame at lower left corner) assists Hoffman in removing the new camera (WF/PC2) from the Scientific Instrument Protective Enclosure (SIPE). Electronic still photography is technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  12. Astronaut Jack Lousma in Lower Body Negative Pressure Device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A medium close-up view of Astronaut Jack R. Lousma, Skylab 3 pilot, in the Lower Body Negative Pressure Device (LBNPD), as Astronaut Alan L. Bean, commander, works around the leg band area. This portion of the LBNPD MO-92 experiment was televised on August 7, 1973. The LBNPD experiment is to provide information concerning the time course of cardiovascular adaptation during flight, and to provide inflight data for predicting the degree of orthostatic intolerence and impairment of physical capacity to be expected upon returning to Earth environment. The bicycle ergometer is in the background, partially visible behind Bean.

  13. STS-51 astronauts participate in emergency bailout training in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut James H. Newman, mission specialist, looks on as a crewmate (out of frame) participates in emergency bailout training exercises at JSC's weightless environment training facility (WETF) (31927); Astronaut Carl E. Walz, mission specialist, navigates a one-person life raft during emergency bailout training exercises at JSC's WETF (31928); The three mission specialists for STS-51 mission watch as a crewmate (out of frame) simulates a parachute jump into water during training in the WETF. Left to right are Daniel W. Bursch, Carl E. Walz and James H. Newman (31929); Equipped with parachute gear, Newman participtes in bailout training at the WETF (31930).

  14. Astronaut Edgar Mitchell addresses MSC personnel and news media

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Edgar D. Mitchell, right, the Apollo 14 lunar module pilot, addresses JSC/MSC personnel and news media representatives and other visitors soon after he and his fellow crewmen were released from a 15-day confinement period in the Lunar Receiving Laboratory. Pictured with Mitchell in front of the LRL, MSC bldg 37, are Astronauts Alan B. Shepard Jr., left, commander; and Stuart A Roosa, command module pilot, Mrs Mitchell is at right and Mrs. Roosa, near left. Roosa is flanked by his four children, left to right, Christopher A., Stuart A. Roosa Jr., John D. and Rosemary D.

  15. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  16. Astronaut James Irwin keeps Lunar Roving Vehicle from sliding downhill

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, holds the Lunar Roving Vehicle from sliding downhill during the second Apollo 15 lunar surface extravehicular activity. Apparently, both of the Rover's rear wheels are off the ground. The Rover was parked facing downhill on a 15 to 20 degree slope. Astronaut David R. Scott, commander, took this photograph. Scott was performing other tasks while Irwin held the Rover. They were parked at a 'fresh' crater on the Apennine Front (Hadley Delta Mountain) slope. In the foreground a lunar rake lies atop a mound.

  17. Astronaut Charles Conrad checks out Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The reference sphere with a magnetic rod is used by the astronaut to indicate body orientation non-visually. The litter chair in which he is seated can be rotated by a motor at its base or, when not being rotated, can tilt forward, backward or to either side.

  18. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  19. Access to Archived Astronaut Data for Human Research Program Researchers: Update on Progress and Process Improvements

    NASA Technical Reports Server (NTRS)

    Lee, L. R.; Montague, K. A.; Charvat, J. M.; Wear, M. L.; Thomas, D. M.; Van Baalen, M.

    2016-01-01

    Since the 2010 NASA directive to make the Life Sciences Data Archive (LSDA) and Lifetime Surveillance of Astronaut Health (LSAH) data archives more accessible by the research and operational communities, demand for astronaut medical data has increased greatly. LSAH and LSDA personnel are working with Human Research Program on many fronts to improve data access and decrease lead time for release of data. Some examples include the following: Feasibility reviews for NASA Research Announcement (NRA) data mining proposals; Improved communication, support for researchers, and process improvements for retrospective Institutional Review Board (IRB) protocols; Supplemental data sharing for flight investigators versus purely retrospective studies; Work with the Multilateral Human Research Panel for Exploration (MHRPE) to develop acceptable data sharing and crew consent processes and to organize inter-agency data coordinators to facilitate requests for international crewmember data. Current metrics on data requests crew consenting will be presented, along with limitations on contacting crew to obtain consent. Categories of medical monitoring data available for request will be presented as well as flow diagrams detailing data request processing and approval steps.

  20. HAMLET -Human Model MATROSHKA for Radiation Exposure Determination of Astronauts -Current status and results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit

    The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements

  1. Astronaut Susan J. Helms, payload commander, measures the distance between Jean-Jacques Faviers head

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Astronaut Susan J. Helms, payload commander, measures the distance between Jean-Jacques Faviers head and the luminous torque, used for the Canal and Otolith Interaction Study (COIS) on the Life and Microgravity Spacelab (LMS-1) mission. Favier, representing the French Space Agency (CNES), is one of two international payload specialists on the almost-17-day flight. This view shows the Voluntary Head Movement (VHM) segment of the experiment. The VHM is meant to characterize how the coordination of head of head and eye movement changes as a result of spaceflight. Since most vestibular functions are influenced by gravity, the COIS experiment is meant to measure response differences in microgravity.

  2. Astronaut Gordon Cooper assisted into his Mercury Spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., is assisted into his 'Faith 7' Mercury Spacecraft early Tuesday (May 14, 1963) morning. Cooper remained in the spacecraft for approximately 5 hours and then climbed out again as the mission was delayed because of trouble at a tracking station.

  3. Astronaut C. Gordon Fullerton in donning/doffing exercise experiences

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, experiences free fall while taking part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Fullerton is wearing an extravehicular mobility unit (EMU) complete with gloves and helmet.

  4. Astronaut Gordon Cooper assisted into his Mercury Spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Astronaut L. Gordon Cooper Jr., pilot of the Mercury-Atlas 9 (MA-9) earth-orbital space mission, is assisted into his 'Faith 7' Mercury Spacecraft during the prelaunch countdown. MA-9 was launched on May 15, 1963, and the flight lasted for 34 hours and 20 minutes.

  5. Astronauts Conrad and Gordon demonstrate tethering procedures for news media

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Charles Conrad (left), command pilot, and Richard F. Gordon (right), pilot, demonstrate tether procedure between their Gemini 11 spacecraft and the Agena Target Docking Vehicle at the post flight press conference. They use models of their spacecraft and its Agena to illustrate maneuvers.

  6. Astronauts Conrad and Gordon demonstrate tethering procedures for news media

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Charles Conrad (center), command pilot, and Richard F. Gordon (right), pilot, demonstrate tether procedure between their Gemini 11 spacecraft and the Agena Target Docking Vehicle at the post flight press conference. They use models of their spacecraft and its Agena to illustrate maneuvers. At left is George Low, Deputy Director, Manned Spacecraft Center, Houston.

  7. Astronaut Frank Borman performing visual acuity tests in space

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Frank Borman is seen performing visual acuity tests in space. Views include Borman looking at the camera as light shines through the capsule window (63712); Borman is using the visual acuity device and a portable mouth thermometer during his experiment (63713).

  8. Astronauts James Lovell and Frank Borman during preflight physical

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dr. Charles A. Berry, Chief of the Manned Spacecraft Center (MSC) Medical Programs, and Astronauts James A. Lovell Jr., Gemini 7 prime crew pilot, and Frank Borman, Gemini 7 command pilot, examine a series of chest x-rays taken during the preflight physical.

  9. Astronaut Frank Borman looks over the Gemini 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Frank Borman, command pilot of the Gemini 7 prime crew, looks over the Gemini 7 spacecraft during weight and balance tests. The tests are conducted in the Pyrotechnic Installation Building, Merritt Island, Kennedy Space Center as part of preflight preparation.

  10. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  11. Astronaut Neil Armstrong participates in lunar surface simulation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  12. Astronaut Neil Armstrong participates in lunar surface siumlation training

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Neil Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface siumlation training on April 18, 1969 in bldg 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. At the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module Mockup.

  13. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  14. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  15. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  16. Fitness variables and the lipid profile in United States astronauts

    NASA Technical Reports Server (NTRS)

    Berry, M. A.; Squires, W. G.; Jackson, A. S.

    1980-01-01

    The study examines the relationship between several measures of fitness and the lipid profile in United States astronauts. Data were collected on 89 astronauts, previously selected (PSA) and newly selected (NSA), during their annual physical examinations. Several similarities were seen in the two groups. The PSA (mean age of 46.1) had a lower maximum oxygen capacity (41.7 ml kg/min vs. 47.5 ml kg/min); when adjusted for age, it was no different from the NSA (mean age 33.5). The PSA had similar body composition with 15.7% - lower than expected for age. The lipid profiles of the two groups were basically the same with the differences being a function of age. Compared to a normative population, the astronauts had similar cholesterols, lower triglycerides, and higher HDLs. The astronaut profiles were generally more favorable than the age-matched controls, which is felt to be a result of the self-supervised conditioning program and annual preventive medicine consultation and education.

  17. 128. PRESIDENT NIXON CONGRATULATES APOLLO 11 ASTRONAUTS THROUGH WINDOW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. PRESIDENT NIXON CONGRATULATES APOLLO 11 ASTRONAUTS THROUGH WINDOW OF THE MOBIL QUARANTINE VAN LOCATED IN THE HANGAR DECK. 24 JULY 1969. (NATIONAL ARCHIVES NO. 428-KN-18088) - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  18. Astronauts give Hubble a new lease of life

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-06-01

    Astronauts successfully repaired and upgraded the Hubble Space Telescope last month by performing five space walks each lasting more than six hours. The mission will improve Hubble's "observational power" by up to a factor of 100. The upgrade will also enable the 19-year-old instrument to carry on obtaining images of the early universe until 2014.

  19. Astronauts Crippen and Hart discuss duties on 41-C mission

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Robert L. Crippen, (left), crew commander, and Terry J. Hart, mission specialist, talk over an aspect of their shared 41-C duties at the aft station of a Shuttle trainer in the JSC avionics systems laboratory. A computer generated scene of the cargo bay appears on a monitor near Hart's head.

  20. Astronauts Crippen and Hart briefed on operation of IMAX camera

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Robert L. Crippen, (left), crew commander, and Terry J. Hart, mission specialist, listen to a briefing on operation of IMAX camera. The two are standing in front of the control panel in the aft station of a Shuttle trainer in the avionics systems laboratory.

  1. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Cosmic radiation doses to the crews of the Apollo 14, 15, and 16 missions of 142 + or - 80, 340 + or - 80, and 210 + or - 130 mR respectively were calculated from the specific activities of Na-22 and Na-24 in the postflight urine specimens of the astronauts. The specific activity of Fe-59 was higher in the urine than in the feces of the Apollo 14 and 15 astronauts, and a possible explanation is given. The concentrations of K-40, K-42, Cr-51, Co-60, and Cs-137 in the urine are also reported for these astronauts. The radiation doses received by pilots and navigators flying high altitude missions during the solar flare of March 27 to 30, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated from the known shape and intensity of the proton spectrum and demonstrate the magnitude of atmospheric shielding. The concentrations of Na, K, Rb, Cs, Fe, Co, Ag, Zn, Hg, As, Sb, Se, and Br were measured in the urine specimens from the Apollo 14 and 15 astronauts by neutron activation analysis. The mercury and arsenic levels were much higher than expected.

  2. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a pre-launch Native American ceremony, Radmilla Cody, the 2001 Miss Navaho Nation, sings the 'Star Spangled Banner' in her native language. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  3. Television transmission of Astronaut Harrison Schmitt falling during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt loses his balance and heads for a fall during the second Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot.

  4. Astronaut Harrison Schmitt participates in simulation aboard KC-135

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt, lunar module pilot of the Apollo 17 lunar landing mission, simulates preparing to deploy the Surface Electrical Properties Experiment during lunar surface extravehicular activity (EVA) simulation training under one-sixth gravity conditions aboard a U.S. Air Force KC-135 aircraft.

  5. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... Space Flight, prior to notifying the individuals or the public....

  6. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT NASA... be approved, as required, by JSC/ NASA management and the Associate Administrator for Space...

  7. 14 CFR § 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Space Flight, prior to notifying the individuals or the public. ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Selection of astronaut candidates. § 1214.1106 Section § 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION...

  8. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... Space Flight, prior to notifying the individuals or the public....

  9. 14 CFR 1214.1106 - Selection of astronaut candidates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Selection of astronaut candidates. 1214.1106 Section 1214.1106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... Space Flight, prior to notifying the individuals or the public....

  10. Astronaut Norman Thagard changes tray in RAHF for rodents

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Norman Thagard changes a tray in the research animal holding facility (RAHF) for rodents at the Ames double rack facility aboard the Spacelab 3 science module in the cargo bay of the shuttle Challenger. Lending a hand is payload specialist Lodewijk van den Berg. Both men are wearing protective clothing and surgical masks for this procedure.

  11. Astronaut Eugene Cernan eating a meal aboard Apollo 17 spacecraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A fellow crewman took this photograph of Astronaut Eugene A. Cernan, Apollo 17 mission commander, eating a meal under the weightless conditions of space during the final lunar landing mission in the Apollo program. Cernan appears to be eating chocolate pudding.

  12. Astronaut Frank Borman hoisted from water by recovery helicopter

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Frank Borman, command pilot of the Gemini 7 space flight, is hoisted from the water by a recovery helicopter from the Aircraft Carrier U.S.S. Wasp. Below him, Navy divers sit in the life raft next to the Gemini spacecraft.

  13. Advanced degrees in astronautical engineering for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2014-10-01

    Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.

  14. Astronauts McDivitt and White at planetarium

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronauts James A. McDivitt (right) and Edward H. White II are shown at the Morehead Planetarium in North Carolina, checking out celestial navigation equipment as part of their training for the Gemini-Titan 4 mission. The NASA Headquarters alternative photo number is 65-H-277.

  15. Astronaut Grissom dons spacesuit for Mercury-Redstone 4 mission

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Donning a spacesuit for the Mercury-Redstone 4 mission, Astronaut Virgil I. (Gus) Grissom chats with spaceflight equipment specialist Joe W. Schmidt in the personal equipment room of Hanger S at Cape Canaveral, Florida. Shortly after this photograph was taken, the launch was postponed two days due to unfavorable weather conditions in the area.

  16. Astronaut Thagard and fellow Mir 18 crewmembers chat at JSC

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Norman E. Thagard, right, chats with two Russian cosmonauts with whom he will be launched into space early next year for a three month mission. Designated Mir 18, the mission aboard the Russian space station will include Mir 18 crew members Genn

  17. Astronaut Grissom dons spacesuit for Mercury-Redstone 4 mission

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Donning a spacesuit for the Mercury-Redstone 4 mission, Astronaut Virgil I. (Gus) Grissom chats with spaceflight equipment specialist Joe W. Schmidt in the personal equipment room of Hanger S at Cape Canaveral, Florida. Shortly after this photograph was taken, the launch was postponed two days due to unfavorable weather conditions in the area.

  18. A survey of Rocketry and astronautics in Spain

    NASA Technical Reports Server (NTRS)

    Maluquer, J. J.

    1977-01-01

    The entire field of rocketry and astronautics in Spain was studied. Congreve war rockets in military actions were emphasized in the African war, the Cuban campaign and the Spanish Civil War. Rockets in space travel were also summarized along with space science fiction.

  19. Astronaut Russell Schweickart inside simulator for EVA training

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Russell L. Schweickart, lunar module pilot of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space mission, is seen inside Chamber 'A', Space Environment Simulation Laboratory, bldg 32, participating in dry run activity in preparpation for extravehicular activity.

  20. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott practicing for Gemini 8 extravehicular acitivity (EVA) in bldg 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the the Hand-Held Maneuvering Unit which he will use during the EVA.

  1. Astronaut Richard H. Truly gets practice eating in weghtlessness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Richard H. Truly, STS-2 pilot, gets some practice eating in a weightless environment during moments of zero gravity on the KC-135 aircraft. He holds a spoon in his right hand and a package of dehydrated food in his left hand and is in the process of swallowing.

  2. STS-79 astronauts have prelaunch meal in O&C

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Already on an altered schedule in preparation for their spaceflight, the STS-79 astronauts are having lunch around midnight in the Operations and Checkout Building. From left are Mission Specialist Jay Apt; Pilot Terrence W. Wilcutt; Commander William F. Readdy; and Mission Specialists Thomas D. Akers, Carl E. Walz and John E. Blaha. After receiving a weather briefing, the astronauts will don their launch/entry suits and depart for Launch Pad 39A. Awaiting them is the Space Shuttle Atlantis, slated to lift off at approximately 4:54 a.m. EDT, Sept. 16, during a seven-minute window. The 79th Shuttle flight will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir and the first in a series of U.S. crew exchanges. Blaha will transfer to Mir and fellow U.S. astronaut Shannon Lucid will return to Earth with the other STS-79 astronauts after a record-setting stay on the station.

  3. Teacher-Astronaut out to Lift Academic Sights of Students

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2007-01-01

    The space shuttle Endeavour, slated to begin an 11-day mission August 7, will carry an educational payload that includes two "growth chambers" loaded with basil and lettuce seeds, and a list of activities to be led by teacher-turned-astronaut Barbara R. Morgan. The activities targeted to K-12 students are add-ons to the shuttle crew's primary…

  4. Astronautics and aeronautics, 1972. [a chronology of events

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  5. Astronauts James Lovell uses scoop from ALHT during simulation

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Astronauts James A. Lovell Jr., commander of the upcoming Apollo 13 lunar landing mission, uses a scoop from the Apollo Lunar Hand Tools (ALHT) during a simulated lunar surface traverse at the kapoho, Hawaii, training site. Notice the camera hanging from around Lovell's neck.

  6. Astronaut James Irwin uses scoop during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, uses a scoop in making a trench in the lunar soil during Apollo 15 extravehicular activity (EVA). Mount Hadley rises approximately 14,765 feet (about 4,500 meters) above the plain in the background.

  7. Astronauts Sullivan and Ride show sleep restraint equipment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Kathryn D. Sullivan, left, and Sally K. Ride display a 'bag of worms'. The 'bag' is a sleep restraint and the majority of the 'worms' are springs and clips used with the sleep restraint in its normal application. Clamps, a bungee cord and velcro strips are other recognizable items in the 'bag'.

  8. Heavy cosmic-ray exposure of Apollo astronauts.

    PubMed

    Benton, E V; Henke, R P; Bailey, J V

    1975-01-24

    A comprehensive study of the heavy-particle cosmic-ray exposure received by the individual astronauts during the nine lunar Apollo missions reveals a significant variation in the exposure as a function of shielding and the phase of the solar cycle. The data are useful in planning for future long-range missions and in estimating the expected biological damage.

  9. Astronaut William Thornton observes monkey in the RAHF

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut William E. Thornton, 51-B/Spacelab 3 mission specialist, observes one of two squirel monkeys (cage #1) in the research animal holding facility (RAHF) at the Ames double rack facility aboard the Spacelab 3 science module in the cargo bay of the shuttle Challenger.

  10. Apollo 12 Astronauts Wave Upon Entering the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  11. Astronaut Richard F. Gordon Aboard Command Module Yankee Clipper

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is a view of astronaut Richard F. Gordon attaching a high resolution telephoto lens to a camera aboard the Apollo 12 Command Module (CM) Yankee Clipper. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms. Their lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Apollo 12 safely returned to Earth on November 24, 1969.

  12. Astronauts Young and Collins during water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts John W. Young (in water, nose of spacecraft), command pilot, and Michael Collins (sitting on spacecraft), pilot, use Static Article 6 spacecraft during water egress training in the Gulf of Mexico. A team of Manned Spacecraft Center (MSC) swimmers assisted in the training exercise.

  13. Astronaut John Young hoisted aboard helicopter during water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts John W. Young, Gemini 10 command pilot, is hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. A team of Manned Spaceflight Center (MSC) swimmers assists in the exercise. The Static Article 5 spacecraft can be seen in the water.

  14. Astronauts Scott and Armstrong undergoe water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  15. Official portrait of astronaut Bryan D. O'Connor

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Official portrait of Bryan D. O'Connor, United States Marine Corps (USMC) Colonel, member of Astronaut Class 9 (1980), and space shuttle commander. O'Connor wears a launch and entry suit (LES) with his helmet displayed on table in front of him.

  16. "Almost Astronauts" and the Pursuit of Reliability in Children's Nonfiction

    ERIC Educational Resources Information Center

    Sanders, Joe Sutliff

    2015-01-01

    A recent surge of conversation about children's nonfiction reveals a conflict between two positions that do not at first appear to be opposed: modeling inquiry and presenting authoritative facts. Tanya Lee Stone, the author of the Sibert Award-winning "Almost Astronauts" (2009), has recently alluded to that tension and expressed a…

  17. Astronauts Musgrave and Hoffman during final STS-61 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Orbiting Earth at an altitude of 356 nautical miles perched atop a foot restraint on Endeavour's Remote Manipulator System (RMS) arm, Astronauts F. Story Musgrave (top) and Jeffrey A. Hoffman wrap up the final of five STS-61 space walks. The Hubble Space Telescope (HST) sits just above the payload bay. The west coast of Australia forms the backdrop.

  18. Astronauts Musgrave and Hoffman during servicing of HST

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut F. Story Musgrave, anchored on the end of the Remote Manipulator System (RMS) arm, prepares to be elevated to the top of the lowering Hubble Space Telescope (HST) to install protective covers on the magnetometers. Astrronaut Jeffrey A. Hoffman (bottom of frame) assisted Musgrave with final servicing tasks on the telescope, wrapping up five days of space walks.

  19. Astronaut C. Gordon Fullerton in suit donning/doffing exercise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, takes part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Mission Specialist William F. Fisher, far left, holds a mirror to assist Fullerton with hose and cable linkups to his suit. Fullerton is wearing an extravehicular mobility unit (EMU) minus gloves and helmet.

  20. Astronaut William McArthur prepares for a training exercise

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Wearing training versions of the partial pressure launch and entry garment, Astronaut William S. McArthur prepares to rehearse emergency egress procedures for the STS-58 mission. He is standing outside of the side hatch to the full fuselage trainer.

  1. Astronaut Linda Godwin uses Shuttle Amateur Radio Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Onboard the Space Shuttle Endeavour, Astronaut Linda M. Godwin uses the Shuttle Amateur Radio Experiment (SAREX). The payload commander, as well as several other STS-59 crew members, spent some off-duty time using the amateur radio experiment to communicate with 'Hams' and students on Earth.

  2. Astronaut Linda Godwin poses with spacesuit she wore for launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Linda M. Godwin, STS-59 payload commander, poses with the spacesuit she wore for launch. She will eventually wear the partial pressure suit for the entry phase of the Space Shuttle Endeavour's week and a half mission in Earth orbit.

  3. Astronaut Linda Godwin during contingency EVA training in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Linda M. Godwin, payload commander, prepares to donn her helmet before being submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). STS-59 crewmembers are using the WETF to train for contingency space walks for the shuttle Endeavour mission. Godwin is wearing the extravehicular mobility unit (EMU), communication carrier assembly (CCA) but no helmet.

  4. Astronaut Linda Godwin during contingency EVA training in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Linda M. Godwin, payload commander, prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). STS-59 crewmembers are using the WETF to train for contingency space walks for the shuttle Endeavour mission. Godwin is standing on the platform in the full extravehicular mobility unit (EMU).

  5. Astronauts McNair and Stewart prepare for reentry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  6. Astronaut William Gregory works with pharmaceutical experiments on middeck

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut William G. Gregory, STS-67 pilot, works with a pharmaceutical experiment on the middeck of the Earth-orbiting Space Shuttle Endeavour. Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiments (CMIX-03) includes not only pharmaceutical but also biotechnology, cell biology, fluids and crystal growth investigations.

  7. Astronaut Jack Lousma doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  8. Astronaut Jack Lousma with part of Inflight Medical Support System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, reaches into a medical kit, part of the Inflight Medical Support System (IMSS), during training for the second manned Skylab Earth-orbital mission. This activity took place in the Orbital Workshop (OWS) trainer in the Mission Simulation and Training Facility at JSC.

  9. Astronaut Jack Lousma works at Multispectral camera experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, works at the S190A multispectral camera experiment in the Multiple Docking Adapter (MDA), seen from a color television transmission made by a TV camera aboard the Skylab space station cluster in Earth orbit. Lousma later used a small brush to clean the six lenses of the multispectral camera.

  10. Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck.

  11. Quarantined Apollo 11 Astronauts Watch Cake Cutting Ceremony

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days following the mission. In this photograph, the Hornet crew and honor guard snap to attention to begin the official cake cutting ceremony for the Apollo 11 astronauts. Astronauts Armstrong and Aldrin are visible in the window of the MQF.

  12. Blue Hills Regional Grad Fulfills Dream, Becomes Astronaut

    ERIC Educational Resources Information Center

    Bass, Judy

    2012-01-01

    This article features Scott D. Tingle, a former career and technical education (CTE) student who always aimed high. November 4, 2011 marked the official culmination of a cherished, virtually lifelong dream of his--becoming an astronaut. It was a goal he had in mind even when he was a high school student in the 1980s at Blue Hills Regional…

  13. Astronaut Franklin Chang-Diaz organizes shuttle mail message

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On Discovery's aft flight deck, Astronaut Franklin R. Chang-Diaz begins to organize what was believed to be among the longest mail messages in Shuttle history. Though early Shuttle flights could brag of longer teleprinted messages, the Thermal Imaging Printing Systems's day four correspondence, most of which is out of frame here, is a record length for recent flights.

  14. Cosmonaut Leonov and Astronaut Stafford display ASTP commemorative plaque

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cosmonaut Aleksey A. Leonov (on left) and Astronaut Thomas P. Stafford display the Apollo Soyuz Test Project (ASTP) commemorative plaque. The two commanders of their respective crews are in the Apollo Command Module trainer in bldg 35 at JSC. The two plaques divided into four quarters each will be flown on the ASTP mission. The plaque is written in both English and Russian.

  15. Cosmonaut Aleksey Leonov displays drawing of Astronaut Thomas Stafford

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP crew, displays a drawing of Astronaut Thomas P. Stafford during the joint U.S.-U.S.S.R. Apollo-Soyuz Test Project docking in Earth orbit mission. He is in the Soyuz Orbital module. This picture was taken by an American ASTP crewmen with a 35mm camera.

  16. Astronauts Grunsfeld and Lawrence on middeck with ergometer

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronauts John M. Grunsfeld and Wendy B. Lawrence exercise on the middeck of the Earth-orbiting Space Shuttle Endeavour during the STS-67 mission. While Grunsfeld's pedaling is done on a real bicycle ergometer, Lawrence's movements are a convincing simulation without hardware.

  17. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Chickasaw Dance Troupe performs an Honor Dance for John Herrington's parents during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  18. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Chickasaw Dance troupe member Tim Harjo (second from left) leads Joyce and James Herrington in a dance honoring their son, STS-113 Mission Specialist John Herrington. The dance was part of a Native American ceremony at the Rocket Garden in the KSC Visitor Complex commemorating Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission.

  19. Activities commemorating John B. Herrington as first Native American astronaut

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Chickasaw Dance Troupe performs an Honor Dance during the Native American Ceremony at the Rocket Garden in the KSC Visitor Complex. The ceremony was part of several days' activities commemorating John B. Herrington as the first tribally enrolled Native American astronaut to fly on a Shuttle mission. Herrington is a Mission Specialist on STS-113.

  20. How Will Astronauts Stay Fit during Long Spaceflights?

    ERIC Educational Resources Information Center

    Pine, Devera

    1989-01-01

    Astronauts on lengthy spaceflights must exercise regularly to forestall muscle atrophy and bone loss, but exercise presents unique problems in a weightless environment. All exercise equipment must have a harness or seat belt. Soviet and NASA space exercise plans and experimental ideas are discussed. (Author/SM)

  1. Young Astronauts Blast Off in Math and Science.

    ERIC Educational Resources Information Center

    Anderson, Jack

    1988-01-01

    The Young Astronaut Program (YAP) has reached 500,000 children in 20,000 classrooms. Schools and community groups sponsor YAP, which provides space-related curricular material to encourage students to study science and math. A contact address is given. (JL)

  2. Astronauts Blaha and Lucid celebrate Lucid's 752 hour in space

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On the forward flight deck of the Earth-orbiting Space Shuttle Columbia, Astronauts John E. Blaha and Shannon W. Lucid show their glee at a milestone achieved a while earlier. The mission commander had earlier announced that Lucid's just achieved 752nd hour in space marked a Space Shuttle record for time spent on a mission.

  3. Astronaut Alan Shepard receives MASA Distinguished Service award

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Astronaut Alan B. Shepard recieves the NASA Distinguished Service Award from President John F. Kennedy in May 1961, days after his history making MR-3 flight (31387); Alan Shepard and his wife wave to the crowd after Shepard received the NASA Distinguished Service Award from President John F. Kennedy (31388).

  4. Astronaut Daniel Brandenstein shows of Father's Day card

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Daniel Brandenstein, STS 51-G mission commander, shows of Father's Day card from his daughter. The card reads 'To the world's best Dad,' and contains artwork. He is in the aft flight deck near the remote manipulator system (RMS) controls.

  5. Astronaut John Glenn checks the Friendship 7 spacecraft after landing

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr. checks the Friendship 7 spacecraft after completing three orbits around the earth. The destroyer Noa picked up Glenn and the spacecraft 21 minutes after landing. A technician inside the spacecraft checks the interior for any damage.

  6. APOLLO SOYUZ TEST PROJECT [ASTP] ASTRONAUTS/COSMONAUTS INSPECT FACILITIES

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Soviet Cosmonaut tour of KSC. United States, Soviet Union, prime crews for Apollo Soyuz Test Project inspect spacecraft checkout facilities in Manned Spacecraft Operations Building ACE Station. From left are Astronauts Donald K. Slayton, Vance D. Brand and Thomas P. Stafford; Cosmonauts Valeri Kubasov and Aleksey Leonov.

  7. Astronaut Curtis Brown on flight deck mockup during training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Curtis L. Brown, STS-66 pilot, mans the pilot's station during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  8. Combining Epidemiologic Information Across Space Agencies

    NASA Technical Reports Server (NTRS)

    Minard, Charles G.; Clark, April L.; Wear, Mary L.; Mason, Sara; Van Baalen, Mary

    2010-01-01

    Space flight is a very unique occupational exposure with potential hazards that are not fully understood. A limited number of individuals have experienced the exposures incurred during space flight, and epidemiologic research would benefit from shared information across space agencies. However, data sharing can be problematic due to agency protection policies for personally identifiable information as well as medical records. Compliance with these protocols in the astronaut population is particularly difficult given the small, high-profile population under study. Creativity in combining data is necessary in order to overcome these difficulties and improve statistical power in research. This study presents methods in meta-analysis that may be used to combine non-attributable data across space agencies so that meaningful conclusions may be drawn about study interests. Methods for combining epidemiologic data across space agencies are presented, and the processes are demonstrated using life-time mortality data in U.S. astronauts and Russian cosmonauts. This proof of concept was found to be an acceptable way of sharing data across agencies, and will be used in the future as more relevant research interests are identified.

  9. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    NASA Astrophysics Data System (ADS)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  10. Protecting the Health of Astronauts: Enhancing Occupational Health Monitoring and Surveillance for Former NASA Astronauts to Understand Long-Term Outcomes of Spaceflight-Related Exposures

    NASA Technical Reports Server (NTRS)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2017-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. A better understanding of the individual, population, and mission impacts of astronaut occupational exposures is critical to providing clinical care, targeting occupational surveillance efforts, and planning for future space exploration. The ability to characterize the risk of latent health conditions is a significant component of this understanding. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA-Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential long-term health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging populations are necessary to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography); and expanded monitoring will increase NASA's ability to better characterize conditions resulting from astronaut occupational exposures. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of e an Astronaut Occupational Health program to include expanded medical monitoring of former NASA astronauts. Increasing the breadth of monitoring services will ultimately enrich the existing evidence base of occupational health risks

  11. Astronaut Sally K. Ride participates in a mission sequence test for STS-7

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Astronaut Sally K. Ride, left, participates in a mission sequence test for STS-7, in the Kennedy Space Center's vertical processing facility (VPF). She is joined by Anna L. Fisher, a physician and astronaut.

  12. Space Handbook: Astronautics and Its Applications, Staff Report of the Select Committee on Astronautics and Space Exploration

    DTIC Science & Technology

    1960-01-26

    voi. C’P-4, No. 8, September 1957. pp. 86 96. 52 ASTRONAUTICS AND ITS APPLICATIONS Radiator (aluminum) R uThermocouple$ (.401 Polonium 210 (32 gins) In...perchlorate: Thiokol or asphalt ---------------------------- 170 to 210 . Ammonium perchlorate: Thiokol ----.- ........---------------------- 170 to 210 ...Rubber ---------------------------------------- 170 to 210 . Polyurethane ---------------------------------- 210 to 250. Nitropolymer

  13. Astronaut Alan Bean steps from ladder of Lunar Module for EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, steps from the ladder of the Lunar Module to join Astronaut Charles Conrad Jr., commander, in extravehicular activity on November 19, 1969. Astronaut Ricard F. Gordon Jr., command module pilot, remained with the Command/Service Modules in lunar orbit.

  14. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... asked whether, under the FAA's statute and regulations, a NASA astronaut flying as a space flight... operator. Discussion A. Space Flight Participants Who are NASA Astronauts Based on the above scenarios, we... consistent with the FAA's discussion of its human space flight requirements,\\1\\ a NASA astronaut may...

  15. Astronaut Sally Ride records some pre-launch activites at KSC

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Sally K. Ride, mission specialist for STS-7, records some of the prelaunch activity for STS-6 at the Kennedy Space Center (KSC). Astronaut William B. Lenoir, STS-5 mission specialist, is at left. Others pictured include Richard W. Nygren (center), Chief of the Vehicle Integration Section of the Operations Division at JSC; and Astronaut William F. Fisher, second right.

  16. Astronauts Young and Duke collect rock samples along simulated lunar traverse

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronauts John W. Young, left, prime crew commander for Apollo 16, and Charles M. Duke Jr., lunar module pilot, collect rock samples along a simulated lunar traverse route in the Coso Hills, near Ridgecrest, California. Astronaut Eugene A. Cernan, right background, prime crew commander for Apollo 17, looks on. The astronauts trained at the U.S. Naval Ordnance Test Station.

  17. Energy Transition Initiative: Island Energy Snapshot - San Andres and Providencia (Fact Sheet); NREL(National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This profile provides a snapshot of the energy landscape of the Archipelago of San Andres, Providencia, and Santa Catalina (unpopulated), also known as San Andres and Providencia, which is equidistant between Costa Rica and Jamaica and 775 kilometers northwest of Colombia. The archipelago is part of Colombia, though Nicaragua has also laid claim to it.

  18. 77 FR 16022 - Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ..., 735 17th Street NW., Washington, DC 20503; and to Andre de Fontaine, EE-2F/Forrestal Building, 1000 Independence Avenue SW., 20585 or by fax at (202) 586- 5234 or by email at andre.defontaine@EE.doe.gov . FOR... instrument and instructions should be directed to Andre de Fontaine, EE-2F/Forrestal Building,...

  19. 77 FR 2712 - Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... sent to Andre de Fontaine, EE-2F/ Forrestal Building, 1000 Independence Avenue SW., 20585 or by fax at (202) 586-5234 or by email at andre.defontaine@EE.doe.gov . FOR FURTHER INFORMATION CONTACT: Requests... be directed to Andre de Fontaine, EE-2F/Forrestal Building, 1000 Independence Avenue SW., 20585 or...

  20. Apollo 8 Astronaut James Lovell On Phone With President Johnson

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Apollo 8 Astronaut James Lovell, Command Module (CM) pilot of the first manned Saturn V space flight into Lunar orbit, accepted a phone call from the U.S. President Lyndon B. Johnson prior to launch. Lovell, along with astronauts William Anders, Lunar Module (LM) pilot, and Frank Borman, commander, launched aboard the Apollo 8 mission on December 21, 1968 and returned safely to Earth on December 27, 1968. The mission achieved operational experience and tested the Apollo command module systems, including communications, tracking, and life-support, in cis-lunar space and lunar orbit, and allowed evaluation of crew performance on a lunar orbiting mission. The crew photographed the lunar surface, both far side and near side, obtaining information on topography and landmarks as well as other scientific information necessary for future Apollo landings. All systems operated within allowable parameters and all objectives of the mission were achieved.