Sample records for agency climate change

  1. Natural resource manager perceptions of agency performance on climate change.

    PubMed

    Lemieux, Christopher J; Thompson, Jessica L; Dawson, Jackie; Schuster, Rudy M

    2013-01-15

    An important precursor to the adoption of climate change adaptation strategies is to understand the perceived capacity to implement and operationalize such strategies. Utilizing an importance-performance analysis (IPA) evaluation framework, this article presents a comparative case study of federal and state land and natural resource manager perceptions of agency performance on factors influencing adaptive capacity in two U.S. regions (northern Colorado and southwestern South Dakota). Results revealed several important findings with substantial management implications. First, none of the managers ranked the adaptive capacity factors as a low priority. Second, managers held the perception that their agencies were performing either neutrally or poorly on most factors influencing adaptive capacity. Third, gap analysis revealed that significant improvements are required to facilitate optimal agency functioning when dealing with climate change-related management issues. Overall, results suggest that a host of institutional and policy-oriented (e.g., lack of clear mandate to adapt to climate change), financial and human resource (e.g., inadequate staff and financial resources), informational (e.g., inadequate research and monitoring programs) and contextual barriers (e.g., sufficient regional networks to mitigate potential transboundary impacts) currently challenge the efficient and effective integration of climate change into decision-making and management within agencies working in these regions. The IPA framework proved to be an effective tool to help managers identify and understand agency strengths, areas of concern, redundancies, and areas that warrant the use of limited funds and/or resource re-allocation in order to enhance adaptive capacity and maximize management effectiveness with respect to climate change. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Sharing and Shaping Usable Science through the Inter-Agency Climate Change Forum

    DTIC Science & Technology

    2011-10-31

    pressure on participants time, this increase is a clear indicator that the forum serves a valuable role, with more persons connecting as they learn about...Science through the Inter-Agency Climate Change Forum William  D.  Goran,  U.S.  Army  Corps  of  Engineers   Sam  Higuchi...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Sharing and Shaping Usable Science through the Inter-Agency Climate Change Forum 5a

  3. Public health and climate change adaptation at the federal level: one agency's response to Executive Order 13514.

    PubMed

    Hess, Jeremy J; Schramm, Paul J; Luber, George

    2014-03-01

    Climate change will likely have adverse human health effects that require federal agency involvement in adaptation activities. In 2009, President Obama issued Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance. The order required federal agencies to develop and implement climate change adaptation plans. The Centers for Disease Control and Prevention (CDC), as part of a larger Department of Health and Human Services response to climate change, is developing such plans. We provide background on Executive Orders, outline tenets of climate change adaptation, discuss public health adaptation planning at both the Department of Health and Human Services and the CDC, and outline possible future CDC efforts. We also consider how these activities may be better integrated with other adaptation activities that manage emerging health threats posed by climate change.

  4. Climate Change Research. Agencies Have Data-Sharing Policies but Could Do More to Enhance the Availability of Data from Federally Funded Research

    DTIC Science & Technology

    2007-09-01

    Much of the nearly $2 billion annual climate change research budget supports grants from the Department of Energy (DOE), National Aeronautics and...requirements, policies, and practices for external climate change researchers funded by DOE, NASA, NOAA, and NSF; and (3) the extent to which these agencies...foster data sharing. GAO examined requirements, policies, and practices and surveyed the 64 officials managing climate change grants at these agencies

  5. Workshop approach for developing climate change adaptation strategies and actions for natural resource management agencies in the United States

    Treesearch

    Jessica E. Halofsky; David L Peterson; Michael J. Furniss; Linda A. Joyce; Constance I. Millar; Ronald P. Neilson

    2011-01-01

    Concrete ways to adapt to climate change are needed to help land-management agencies take steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. Because the development of adaptation tools and strategies is at an early stage, it is important that ideas and strategies are disseminated...

  6. Only an integrated approach across academia, enterprise, governments, and global agencies can tackle the public health impact of climate change

    PubMed Central

    Stordalen, Gunhild A.; Rocklöv, Joacim; Nilsson, Maria; Byass, Peter

    2013-01-01

    Background Despite considerable global attention to the issues of climate change, relatively little priority has been given to the likely effects on human health of current and future changes in the global climate. We identify three major societal determinants that influence the impact of climate change on human health, namely the application of scholarship and knowledge; economic and commercial considerations; and actions of governments and global agencies. Discussion The three major areas are each discussed in terms of the ways in which they facilitate and frustrate attempts to protect human health from the effects of climate change. Academia still pays very little attention to the effects of climate on health in poorer countries. Enterprise is starting to recognise that healthy commerce depends on healthy people, and so climate change presents long-term threats if it compromises health. Governments and international agencies are very active, but often face immovable vested interests in other sectors. Overall, there tends to be too little interaction between the three areas, and this means that potential synergies and co-benefits are not always realised. Conclusion More attention from academia, enterprise, and international agencies needs to be given to the potential threats the climate change presents to human health. However, there needs to also be much closer collaboration between all three areas in order to capitalise on possible synergies that can be achieved between them. PMID:23653920

  7. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  8. Urban High School Students' Critical Science Agency: Conceptual Understandings and Environmental Actions around Climate Change

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Vaughn, Meredith Houle

    2012-01-01

    This study investigates how the enactment of a climate change curriculum supports students' development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum…

  9. Building Resilience against Climate Effects—A Novel Framework to Facilitate Climate Readiness in Public Health Agencies

    PubMed Central

    Marinucci, Gino D.; Luber, George; Uejio, Christopher K.; Saha, Shubhayu; Hess, Jeremy J.

    2014-01-01

    Climate change is anticipated to have several adverse health impacts. Managing these risks to public health requires an iterative approach. As with many risk management strategies related to climate change, using modeling to project impacts, engaging a wide range of stakeholders, and regularly updating models and risk management plans with new information—hallmarks of adaptive management—are considered central tenets of effective public health adaptation. The Centers for Disease Control and Prevention has developed a framework, entitled Building Resilience Against Climate Effects, or BRACE, to facilitate this process for public health agencies. Its five steps are laid out here. Following the steps laid out in BRACE will enable an agency to use the best available science to project likely climate change health impacts in a given jurisdiction and prioritize interventions. Adopting BRACE will also reinforce public health’s established commitment to evidence-based practice and institutional learning, both of which will be central to successfully engaging the significant new challenges that climate change presents. PMID:24991665

  10. Tri-Agency Coordination: Challenges and Successes in Creating a Community of Practice among Climate Change Education Principal Investigators funded by NASA, NOAA, and NSF

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; McDougall, C.; Karsten, J. L.; Campbell, D.; Pippin, M. R.; Chambers, L. H.

    2013-12-01

    The effort needed for comprehensive climate change education is far greater than any one institution, education sector, or even federal agency can handle. Recognizing a need to synergistically combine efforts, NSF, NASA, and NOAA have created a collaborative community of their climate change education principal investigators (PIs) through tri-agency coordination. The goals of this tri-agency collaboration are to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. NASA, NOAA, and NSF work together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for PIs, a catalog of the agencies collective investments in climate change education and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). Last year, after 3 years of active collaboration, similar programs underway at other U.S. Global Change Research Program agencies: the EPA, National Institutes for Environmental Health Sciences, and USDA, were engaged in the collaboration. And, in an attempt to understand the interests of the private sector in this arena, conversations have begun with private philanthropic organizations. This year, as many of the funded projects are maturing, the PI meeting will have a focus on bringing this community together to create a science-theme based tangible outcome that can move the field of climate change education forward. Additional outcomes from this PI meeting will be presented as well as the challenges that were encountered in bringing together institutions with diverse missions, and approaches developed to ensure all parties feel they

  11. VTrans climate change action plan

    DOT National Transportation Integrated Search

    2008-06-01

    VTrans is working closely with other state agencies, including the Agency of Natural Resources (ANR) to review and implement the transportation-related recommendations from the 2007 Governors Commission on Climate Change (GCCC) final report. The r...

  12. Climate change & extreme weather vulnerability assessment framework.

    DOT National Transportation Integrated Search

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  13. Sea Surface Temperature for Climate Applications: A New Dataset from the European Space Agency Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.; Hulley, G. C.

    2013-12-01

    There are many datasets describing the evolution of global sea surface temperature (SST) over recent decades -- so why make another one? Answer: to provide observations of SST that have particular qualities relevant to climate applications: independence, accuracy and stability. This has been done within the European Space Agency (ESA) Climate Change Initative (CCI) project on SST. Independence refers to the fact that the new SST CCI dataset is not derived from or tuned to in situ observations. This matters for climate because the in situ observing network used to assess marine climate change (1) was not designed to monitor small changes over decadal timescales, and (2) has evolved significantly in its technology and mix of types of observation, even during the past 40 years. The potential for significant artefacts in our picture of global ocean surface warming is clear. Only by having an independent record can we confirm (or refute) that the work done to remove biases/trend artefacts in in-situ datasets has been successful. Accuracy is the degree to which SSTs are unbiased. For climate applications, a common accuracy target is 0.1 K for all regions of the ocean. Stability is the degree to which the bias, if any, in a dataset is constant over time. Long-term instability introduces trend artefacts. To observe trends of the magnitude of 'global warming', SST datasets need to be stable to <5 mK/year. The SST CCI project has produced a satellite-based dataset that addresses these characteristics relevant to climate applications. Satellite radiances (brightness temperatures) have been harmonised exploiting periods of overlapping observations between sensors. Less well-characterised sensors have had their calibration tuned to that of better characterised sensors (at radiance level). Non-conventional retrieval methods (optimal estimation) have been employed to reduce regional biases to the 0.1 K level, a target violated in most satellite SST datasets. Models for

  14. Science Matters Podcast: Climate Change Research

    EPA Pesticide Factsheets

    Listen to a podcast with Dr. Andy Miller, the Associate Director for Climate for the Agency's Air, Climate, and Energy Research Program, as he answers questions about climate change research, or read some of the highlights from the conversation here.

  15. Climate change indicators in the United States

    DOT National Transportation Integrated Search

    2010-04-01

    The U.S. Environmental Protection Agency (EPA) has published this report, Climate Change Indicators in the United States, to help readers interpret a set of important indicators to better understand climate change. The report presents 24 indicators, ...

  16. Climate Change Education Roundtable: A Coherent National Strategy

    NASA Astrophysics Data System (ADS)

    Storksdieck, M.; Feder, M.; Climate Change Education Roundtable

    2010-12-01

    The Climate Change Education (CCE) Roundtable fosters ongoing discussion of the challenges to and strategies for improving public understanding of climate science and climate change among federal agencies, the business community, non-profit, and academic sectors. The CCE Roundtable is provides a critical mechanism for developing a coherent, national strategy to advance climate change education guided by the best available research evidence. Through its meetings and workshops, the roundtable brings together 30 federal and state policymakers, educators, communications and media experts, and members from the business and scientific community. The roundtable includes a number of ex officio members from federal agencies with dedicated interests in climate change education, including officials from the National Science Foundation’s EHR Directorate and its collaborating partner divisions, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Interior, the Department of Energy, and the Department of Education. The issues that are addressed by the roundtable include: - ways to incorporate knowledge about learning and understanding in developing informative programs and materials for decision-makers who must cope with climate change - the design of educational programs for professionals such as local planners, water managers, and the like, to enable them to better understand the implications of climate change for their decisions - development of training programs for scientists to help them become better communicators to decision-makers about implications of, and solutions to climate change - coordinated and collaborative efforts at the national level between federal agencies and other stakeholders This presenation will describe how the roundtable is fostering a coherent direction for climate change education.

  17. Gulf Coast climate change adaptation pilot study.

    DOT National Transportation Integrated Search

    2013-08-01

    Climate change-related issues place substantial operating and financial burdens on public transit agencies, particularly in coastal settings. Gulf of Mexico coastal transit agencies and their constituents are especially vulnerable to natural hazards ...

  18. Preparing for climate change: a perspective from local public health officers in California.

    PubMed

    Bedsworth, Louise

    2009-04-01

    The most recent scientific findings show that even with significant emission reductions, some amount of climate change is likely inevitable. The magnitude of the climate changes will depend on future emissions and climate sensitivity. These changes will have local impacts, and a significant share of coping with these changes will fall on local governmental agencies. Public health is no exception, because local public health agencies are crucial providers of disease prevention, health care, and emergency preparedness services. This article presents the results of a survey of California's local pubic health officers conducted between August and October 2007. The survey gauged health officers' concerns about the public health impacts of climate change, programs in place that could help to mitigate these health effects, and information and resource needs for better coping with a changing climate. The results of this survey show that most public health officers feel that climate change poses a serious threat to public health but that they do not feel well equipped in terms of either resources or information to cope with that threat. Nonetheless, public health agencies currently implement a number of programs that will help these agencies handle some of the challenges posed by a changing climate. Overall, the results suggest that local public health agencies in California are likely in a better position than they perceive to address the threats associated with climate change but that there is a larger role for them to play in climate policy.

  19. Preparing for Climate Change: A Perspective from Local Public Health Officers in California

    PubMed Central

    Bedsworth, Louise

    2009-01-01

    Background The most recent scientific findings show that even with significant emission reductions, some amount of climate change is likely inevitable. The magnitude of the climate changes will depend on future emissions and climate sensitivity. These changes will have local impacts, and a significant share of coping with these changes will fall on local governmental agencies. Public health is no exception, because local public health agencies are crucial providers of disease prevention, health care, and emergency preparedness services. Methods This article presents the results of a survey of California’s local pubic health officers conducted between August and October 2007. The survey gauged health officers’ concerns about the public health impacts of climate change, programs in place that could help to mitigate these health effects, and information and resource needs for better coping with a changing climate. Results The results of this survey show that most public health officers feel that climate change poses a serious threat to public health but that they do not feel well equipped in terms of either resources or information to cope with that threat. Nonetheless, public health agencies currently implement a number of programs that will help these agencies handle some of the challenges posed by a changing climate. Conclusions Overall, the results suggest that local public health agencies in California are likely in a better position than they perceive to address the threats associated with climate change but that there is a larger role for them to play in climate policy. PMID:19440502

  20. Climate Change, Salmon in the NOAA Budget Spotlight

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-05-01

    A U.S. Senate hearing on 29 April about the administration's proposed budget for the National Oceanic and Atmospheric Administration fiscal year 2005 turned testy when senators pressed for specific information about the agency's programs on abrupt climate change and protecting wild salmon. Sen. Olympia Snowe (R-Maine), chair of the Senate Commerce, Science, and Transportation's Subcommittee on Oceans, Fisheries, and Coast Guard, expressed concern that funding for the agency's program on abrupt climate change appears to be eliminated in the proposed budget.

  1. Climate Change Indicators in the United States, 2016 ...

    EPA Pesticide Factsheets

    EPA partners with over 40 data contributors from various government agencies, academic institutions, and other organizations to compile and communicate key indicators related to the causes and effects of climate change, the significance of these changes, and their possible consequences for people, the environment, and society. This is the fourth edition of the Climate Change Indicators in the United States report. To summarize and communicate key indicators related to the causes and effects of climate change.

  2. Changing climate, challenging choices: identifying and evaluating climate change adaptation options for protected areas management in Ontario, Canada.

    PubMed

    Lemieux, Christopher J; Scott, Daniel J

    2011-10-01

    Climate change will pose increasingly significant challenges to managers of parks and other forms of protected areas around the world. Over the past two decades, numerous scientific publications have identified potential adaptations, but their suitability from legal, policy, financial, internal capacity, and other management perspectives has not been evaluated for any protected area agency or organization. In this study, a panel of protected area experts applied a Policy Delphi methodology to identify and evaluate climate change adaptation options across the primary management areas of a protected area agency in Canada. The panel identified and evaluated one hundred and sixty five (165) adaptation options for their perceived desirability and feasibility. While the results revealed a high level of agreement with respect to the desirability of adaptation options and a moderate level of capacity pertaining to policy formulation and management direction, a perception of low capacity for implementation in most other program areas was identified. A separate panel of senior park agency decision-makers used a multiple criterion decision-facilitation matrix to further evaluate the institutional feasibility of the 56 most desirable adaptation options identified by the initial expert panel and to prioritize them for consideration in a climate change action plan. Critically, only two of the 56 adaptation options evaluated by senior decision-makers were deemed definitely implementable, due largely to fiscal and internal capacity limitations. These challenges are common to protected area agencies in developed countries and pervade those in developing countries, revealing that limited adaptive capacity represents a substantive barrier to biodiversity conservation and other protected area management objectives in an era of rapid climate change.

  3. Changing Climate, Challenging Choices: Identifying and Evaluating Climate Change Adaptation Options for Protected Areas Management in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Lemieux, Christopher J.; Scott, Daniel J.

    2011-10-01

    Climate change will pose increasingly significant challenges to managers of parks and other forms of protected areas around the world. Over the past two decades, numerous scientific publications have identified potential adaptations, but their suitability from legal, policy, financial, internal capacity, and other management perspectives has not been evaluated for any protected area agency or organization. In this study, a panel of protected area experts applied a Policy Delphi methodology to identify and evaluate climate change adaptation options across the primary management areas of a protected area agency in Canada. The panel identified and evaluated one hundred and sixty five (165) adaptation options for their perceived desirability and feasibility. While the results revealed a high level of agreement with respect to the desirability of adaptation options and a moderate level of capacity pertaining to policy formulation and management direction, a perception of low capacity for implementation in most other program areas was identified. A separate panel of senior park agency decision-makers used a multiple criterion decision-facilitation matrix to further evaluate the institutional feasibility of the 56 most desirable adaptation options identified by the initial expert panel and to prioritize them for consideration in a climate change action plan. Critically, only two of the 56 adaptation options evaluated by senior decision-makers were deemed definitely implementable, due largely to fiscal and internal capacity limitations. These challenges are common to protected area agencies in developed countries and pervade those in developing countries, revealing that limited adaptive capacity represents a substantive barrier to biodiversity conservation and other protected area management objectives in an era of rapid climate change.

  4. Adapting to climate change

    Treesearch

    Constance I. Millar; Christopher W. Swanston; David L. Peterson

    2014-01-01

    Federal agencies have led the development of adaptation principles and tools in forest ecosystems over the past decade. Successful adaptation efforts generally require organizations to: (1) develop science-management partnerships, (2) provide education on climate change science, (3) provide a toolkit of methods and processes for vulnerability assessment and adaptation...

  5. 75 FR 6289 - Commission Guidance Regarding Disclosure Related to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Regarding Disclosure Related to Climate Change; Final Rule #0;#0;Federal Register / Vol. 75 , No. 25... Disclosure Related to Climate Change AGENCY: Securities and Exchange Commission. ACTION: Interpretation... requirements as they apply to climate change matters. DATES: Effective Date: February 8, 2010. FOR FURTHER...

  6. U.S. Navy Task Force Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, T.; McBride, B.; St. John, C.

    2011-12-01

    In May 2009, the Chief of Naval Operations established Task Force Climate Change (TFCC) to develop Navy policy, plans, and recommendations regarding future investments to adapt to the world's changing climate. With a near-term focus on the changing Arctic ocean and consequent increase in access to the region, TFCC has adopted a science-based approach in collaboration with other U.S. government agencies, international partners, industry, and academia. TFCC has developed two roadmaps that provide 5-year action plans for the Navy to address the Arctic and global climate change. Critical elements of both roadmaps are assessments of: (1) current and projected climate change, (2) resulting impacts to Naval missions and infrastructure, and (3) associated risks of not taking adaptation actions that are operationally, environmentally, and ecologically sustainable. Through TFCC, the Navy acknowledges the link between climate change and national security, and engages in extensive outreach and strategic communication to remain informed on the best climate science and promote public understanding and support regarding the Navy's climate change efforts.

  7. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  8. Adapting inland fisheries management to a changing climate

    USGS Publications Warehouse

    Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  9. A National Road Map to a Climate Literate Society: Advancing Climate Literacy by Coordinating Federal Climate Change Educational Programs (Invited)

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Karsten, J. L.

    2009-12-01

    Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009

  10. Communicating the Results and Activities of the U.S. Climate Change Science Program

    NASA Astrophysics Data System (ADS)

    Chatterjee, K.; Parker, K.

    2004-12-01

    The Climate Change Science Program (CCSP) has a responsibility for credible and effective communications on issues related to climate variability and climate change science. As an essential part of its mission and responsibilities, the CCSP aims to enhance the quality of public discussion by stressing openness and transparency in its scientific research processes and results, and ensuring the widespread availability of credible, science-based information. The CCSP and individual federal agencies generate substantial amounts of authoritative scientific information on climate variability and change. Research findings are generally well reported in the scientific literature, but relevant aspects of these findings need to be reported in formats suitable for use by diverse audiences whose understanding and familiarity with climate change science issues vary. To further its commitment to the effective communication of climate change science information, the CCSP has established the Communications Interagency Working Group, which has produced an implementation plan for Climate Change communication, aimed at achieving the following goals: * Disseminate the results of CCSP activities credibly and effectively * Make CCSP science findings and products easily available to a diverse set of audiences. In addition to CCSP efforts, the individual federal agencies that comprise CCSP disseminate science-based climate information through their agency networks. The agencies of the CCSP are the Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Interior, State, and Transportation and the U.S. EPA, NASA, NSF, Smithsonian Institute, and USAID.

  11. 78 FR 50085 - Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Climate Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting.... 2, we announce that the Advisory Committee on Climate Change and Natural Resource Science will hold... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  12. Farm service agency employee intentions to use weather and climate data in professional services

    Treesearch

    Rachel E. Schattman; Gabrielle Roesch-McNally; Sarah Wiener; Meredith T. Niles; David Y. Hollinger

    2018-01-01

    Agricultural service providers often work closely with producers, and are well positioned to include weather and climate change information in the services they provide. By doing so, they can help producers reduce risks due to climate variability and change. A national survey of United States Department of Agriculture Farm Service Agency (FSA) field staff (n...

  13. Taming Typhon: Advancing Climate Literacy by Coordinating Federal Earth System Science Education Investments Through the U.S. Climate Change Science Program

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Niepold, F.; Wei, M.; Waple, A. M.

    2008-12-01

    Thirteen Federal agencies in the United States invest in research, communication, and education activities related to climate and global change. The U.S. Climate Change Science Program (CCSP) works to integrate the research activities of these different agencies, with oversight from the Office of Science and Technology Policy, the Council on Environmental Quality, the National Economic Council and the Office of Management and Budget. The CCSP is the result of a Presidential initative in 2001 to build on the Global Change Research Program, which exists as a result of the Global Change Research Act of 1990. This initiative was to shift the focus of the Program from 'discovery and characterization' to 'differentiation and strategy investigation.' With this shift, CCSP's focus is now on evaluating optimal strategies for addressing climate change risks, improving coordination among the Federal agencies, communicating research results to all stakeholders (including national policy leaders and local resource managers), and improving public debate and decision-making related to global change. Implicit to these activities is the need to educate the general public about the science of climate change and its consequences, as well as coordinate Federal investments related to climate change education. This is no small task, given the variety of missions and approaches of the participating agencies. Recognizing that its Communications Interagency Working Group (CIWG) does not have the expertise or focus to adequately address issues related to science education, the CCSP recently established an ad-hoc Education Interagency Working Group (EIWG), comprising representatives from all 13 agencies, that will work closely with the CIWG to enhance education goals. Its mission is to advance literacy in climate and related sciences and increase informed decision making for the Nation. The EIWG envisions that its primary activities in the near-term will be focused on establishing: (1) a

  14. U.S. Federal Investments in Climate Change Education: They're Warming Up! (Invited)

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Niepold, F.; Wei, M.; Usgcrp Education Interagency Working Group

    2010-12-01

    Many similarities exist between the U.S. federal government and the climate system, in terms of their complexity. Government operates through a dynamic interplay of sub-systems (different agencies), pressure gradients (political interests), energy transformations (converting dollars into activity through Congressional appropriations, grants and contracts), and non-linear positive and negative feedback mechanisms (MOU’s, competing agency missions). ‘Viscosity’ in the system makes progress difficult. The good news is that, like the climate, federal investments in climate change education are heating up, due to man-made inputs. Individual agency investments in projects to improve and monitor public understanding of climate change and its impacts are rapidly becoming more coupled and coherent. This paper will discuss several efforts now underway. In FY 2009, dedicated, multi-million dollar funding led to creation of NSF’s Climate Change Education (CCE) and NASA’s Global Climate Change Education (GCCE) grant programs, which are funding a projects to develop pedagogically-sound learning resources, professional development strategies, tool kits, and web-based clearinghouses offering scientifically accurate information about climate change to different learner audiences. NOAA has been able to firmly establish their Environmental Literacy Grant (ELG) program because of the America COMPETES Act. Related programs are being developed within the EPA and USDA’s NIFA and U.S. Forest Service. Several other agencies have revamped their strategic plans to increase focus on communicating with and educating teachers, students, policymakers, and the general public about climate change, adaptation, and mitigation issues. To foster larger networks of scientists and educators, minimize duplication, and encourage synergy and scale-up, NSF, NOAA, and NASA have initiated joint meetings of their CCE, GCCE, and ELG Principal Investigators and shared evaluations. Additional cross-agency

  15. Primer on transportation and climate change

    DOT National Transportation Integrated Search

    2008-04-01

    This primer is an introduction to the issue of climate change and its implications for transportation policy in the United States. Its purpose is to outline the current thinking of governmental agencies, researchers, and advocacy groups on the issue ...

  16. Online and classroom tools for Climate Change Education

    NASA Astrophysics Data System (ADS)

    Samenow, J. P.; Scott, K.

    2004-12-01

    EPA's Office of Atmospheric Programs has developed unique tools for educating students about the science of global warming and on actions that help address the issue. These tools have been highly successful and used in hundreds of classrooms across the country. EPA's Global Warming Kids' Site features interactive web-based animations for educating children, grades 4-8, about climate change. The animations illustrate how human activities likely influence the climate system through processes such as the greenhouse effect and carbon and water cycles. The pages also contain interactive quizzes. See: http://www.epa.gov/globalwarming/kids/animations.html For advanced high school and college students, EPA is nearing completion on the development of interactive visualizations of the emissions and climate scenarios featured in the Intergovernmental Panel on Climate Change's Third Assessment Report. These visualizations allow students to choose a scenario and see how emissions, the climate and the earth's surface change over time. The Global Warming Wheelcard Classroom Activity Kit is designed to help teachers of middle school students introduce the concept of human induced global warming in the context of how rates of energy usage can influence the increase or eventual slowing of climate change. The Climate Change, Wildlife, and Wildlands Toolkit for Teachers and Interpreters was produced in a partnership among three agencies - EPA, US Fish and Wildlife Service and the National Park Service (NPS). Both classroom teachers and outdoor interpreters find it useful in conveying information about climate change science and impacts to their students and visitors. The development of the toolkit led to a larger program between EPA and NPS that assists parks in inventorying their emissions, creating action plans, and talking to the public about what they are doing - a "lead by example" type program that the two agencies hope to replicate in other venues in the coming year.

  17. Global climate change research at the U.S. Environmental Protection Agency

    EPA Science Inventory

    The science surrounding global climate change is complex and has been interpreted in many ways. The concept of the Greenhouse Effect—viewed as the cause of global climate change—is quite simple, but the Earth’s response is not. After more than two decades of intensive research, s...

  18. Climate Change Indicators in the United States, 2016

    EPA Science Inventory

    EPA partners with over 40 data contributors from various government agencies, academic institutions, and other organizations to compile and communicate key indicators related to the causes and effects of climate change, the significance of these changes, and their possible conseq...

  19. The Climate Change Education Evidence Base: Lessons Learned from NOAA's Monitoring and Evaluation Framework Implementation

    NASA Astrophysics Data System (ADS)

    Baek, J.

    2012-12-01

    Federal science mission agencies are under increased pressure to ensure that their STEM education investments accomplish several objectives, including the identification and use of evidence-based approaches. Climate change education and climate literacy programs fall under these broader STEM initiatives. This paper is designed as a primer for climate change education evaluators and researchers to understand the policy context on the use of evidence. Recent initiatives, that include the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), point to a need for shared goals and measurements amongst the climate change education community. The Tri-agency Climate Change Education (CCE) collaboration, which includes NSF, NASA, and NOAA, developed the Tri-Agency Climate Change Education Common Evaluation Framework Initiative Stakeholder Statement (2012). An excerpt: From the perspective of the tri-agency collaboration, and its individual agency members, the goal of the common framework is not to build a required evaluation scheme or a set of new requirements for our funded climate change education initiatives. Rather, the collaboration would be strengthened by the development of a framework that includes tools, instruments, and/or documentation to: ● Help the agencies see and articulate the relationships between the individual pieces of the tri-agency CCE portfolio; ● Guide the agencies in reporting on the progress, lessons learned, and impacts of the collaboration between the three agencies in developing a coordinated portfolio of climate education initiatives; and ● Help the individual projects, as part of this broader portfolio, understand where they fit into a larger picture. The accomplishments of this initiative to date have been based on the collaborative nature of evaluators the climate change education community within the tri-agency portfolio. While this

  20. Impacts of Climate Change on Human Health in the United ...

    EPA Pesticide Factsheets

    Climate change threatens human health and well-being in the United States. To address this growing threat, the Interagency Group on Climate Change and Human Health (CCHHG), a working group of the U.S. Global Change Research Program’s (USGCRP), has developed this assessment as part of the ongoing efforts of the USGCRP’s National Climate Assessment (NCA) and as called for under the President’s Climate Action Plan. The authors of this assessment have compiled and assessed current research on human health impacts of climate change and summarized the current “state of the science” for a number of key impact areas. This assessment provides a comprehensive update to the most recent detailed technical assessment for the health impacts of climate change, 2008 Synthesis and Assessment Product 4.6 (SAP 4.6) Analyses of the Effects of Global Change on Human Health and Welfare and Human Systems (CCSP 2008). It also updates and builds upon the health chapter of the third NCA (Melillo et al. 2014). The lead and coordinating Federal agencies for the USGCRP Climate and Health Assessment are the Centers for Disease Control and Prevention (CDC), Environmental Protection Agency (EPA), National Institute of Health (NIH), and National Oceanic and Atmospheric Administration (NOAA). Available at https://health2016.globalchange.gov/ The interagency U.S. Global Change Research Program (USGCRP) has developed this assessment as part of the ongoing efforts of their National C

  1. Tools for Teaching Climate Change Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Westernmore » Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders

  2. Action strategy paper : climate change and energy

    DOT National Transportation Integrated Search

    2008-10-01

    This strategy paper considers how the Chicago Metropolitan Agency for Planning (CMAP) might incorporate goals to reduce greenhouse gas (GHG) emissions, prepare for climate change impacts on transportation systems, and reduce energy with in the GO TO ...

  3. Adapting to climate change at Olympic National Forest and Olympic National Park

    USGS Publications Warehouse

    Halofsky, Jessica E.; Peterson, David L.; O'Halloran, Kathy A.; Hoffman, Catherine H.

    2011-01-01

    Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to counteract the negative effects of climate change. We began a climate change adaptation case study at Olympic National Forest (ONF) in partnership with Olympic National Park (ONP) to determine how to adapt management of federal lands on the Olympic Peninsula, Washington, to climate change. The case study began in the summer of 2008 and continued for 1½ years. The case study process involved science-based sensitivity assessments, review of management activities and constraints, and adaptation workshops in each of four focus areas (hydrology and roads, fish, vegetation, and wildlife). The process produced adaptation options for ONF and ONP, and illustrated the utility of place-based vulnerability assessment and science-management workshops in adapting to climate change. The case study process provides an example for other national forests, national parks, and natural resource agencies of how federal land management units can collaborate in the initial stages of climate change adaptation. Many of the ideas generated through this process can potentially be applied in other locations and in other agencies

  4. Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?

    NASA Astrophysics Data System (ADS)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.

    2013-12-01

    Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.

  5. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  6. Promoting Science-based Governance through Monitoring Changes to Agencies' Public Presentation

    NASA Astrophysics Data System (ADS)

    Rinberg, A.; Bergman, A.

    2017-12-01

    As the scientific basis for the missions of agencies like the Environmental Protection Agency have come under attack this year, political appointees and career staff alike have made changes to public-facing agency web content and resources. These changes have resulted in scientific information and findings being removed from the government's web presence and have reduced access to resources that inform the public about important topics like climate change and clean water. But these removals also obscure the work that the the federal government has done and the role it is legally required to play, which is often based squarely on key scientific findings. By monitoring changes to federal agency websites and ensuring that the public continues to be informed about the government's role in using science to improve the public's well-being, we can help retain the integrity of these important agencies and bolster their public support.

  7. Helping Water Utilities Grapple with Climate Change

    NASA Astrophysics Data System (ADS)

    Yates, D.; Gracely, B.; Miller, K.

    2008-12-01

    The Water Research Foundation (WRF), serving the drinking water industry and the National Center for Atmospheric Research (NCAR) are collaborating on an effort to develop and implement locally-relevant, structured processes to help water utilities consider the impacts and adaptation options that climate variability and change might have on their water systems. Adopting a case-study approach, the structured process include 1) a problem definition phase, focused on identifying goals, information needs, utility vulnerabilities and possible adaptation options in the face of climate and hydrologic uncertainty; 2) developing and/or modifying system-specific Integrated Water Resource Management (IWRM) models and conducting sensitivity analysis to identify critical variables; 3) developing probabilistic climate change scenarios focused on exploring uncertainties identified as important in the sensitivity analysis in step 2; and 4) implementing the structured process and examining approaches decision making under uncertainty. Collaborators include seven drinking water utilities and two state agencies: 1) The Inland Empire Utility Agency, CA; 2) The El Dorado Irrigation District, Placerville CA; 2) Portland Water Bureau, Portland OR; 3) Colorado Springs Utilities, Colo Spgs, CO; 4) Cincinnati Water, Cincinnati, OH; 5) Massachusetts Water Resources Authority (MWRA), Boston, MA; 6) Durham Water, Durham, NC; and 7) Palm Beach County Water (PBCW), Palm Beach, FL. The California Department of Water Resources and the Colorado Water Conservation Board were the state agencies that we have collaborated with.

  8. Regional Climate Variations and Change for Terrestrial Ecosystems Workshop Review

    EPA Science Inventory

    North Carolina State University, the University of North Carolina at Chapel Hill, and the U.S. Environmental Protection Agency, in partnership with the U.S. Department of the Interior Southeast Climate Science Center (SECSC), hosted the Regional Climate Variations and Change for ...

  9. Sustained Large-Scale Collective Climate Action Supported by Effective Climate Change Education Practice

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.

    2017-12-01

    Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be

  10. White House Conference on Global Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management andmore » Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.« less

  11. Climate Change in the Pacific Islands

    NASA Astrophysics Data System (ADS)

    Hamnett, Michael P.

    Climate change have been a major concern among Pacific Islanders since the late 1990s. During that period, Time Magazine featured a cover story that read: Say Goodbye to the Marshall Islands, Kiribati, and Tuvalu from sea level rise. Since that time, the South Pacific Regional Environment Programme, UN and government agencies and academic researchers have been assessing the impacts of long-term climate change and seasonal to inter-annual climate variability on the Pacific Islands. The consensus is that long-term climate change will result in more extreme weather and tidal events including droughts, floods, tropical cyclones, coastal erosion, and salt water inundation. Extreme weather events already occur in the Pacific Islands and they are patterned. El Niño Southern Oscillation (ENSO) events impact rainfall, tropical cyclone and tidal patterns. In 2000, the first National Assessment of the Consequences of Climate Variability and Change concluded that long-term climate change will result in more El Niño events or a more El Niño like climate every year. The bad news is that will mean more natural disasters. The good news is that El Niño events can be predicted and people can prepare for them. The reallly bad news is that some Pacific Islands are already becoming uninhabitable because of erosion of land or the loss of fresh water from droughts and salt water intrusion. Many of the most vulnerable countries already overseas populations in New Zealand, the US, or larger Pacific Island countries. For some Pacific Islander abandoning their home countries will be their only option.

  12. Implementing climate change adaptation in forested regions of the United States

    Treesearch

    Jessica E. Halofsky; David L. Peterson; Linda A. Joyce; Constance I. Millar; Janine M. Rice; Christopher W. Swanston

    2014-01-01

    Natural resource managers need concrete ways to adapt to the effects of climate change. Science-management partnerships have proven to be an effective means of facilitating climate change adaptation for natural resource management agencies. Here we describe the process and results of several science-management partnerships in different forested regions of the United...

  13. 77 FR 19661 - Draft National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0943; FRL-9655-1] Draft National Water Program 2012 Strategy: Response to Climate Change AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability and request for comments. SUMMARY: The Environmental Protection Agency is publishing...

  14. Conveying the Science of Climate Change: Explaining Natural Variability

    NASA Astrophysics Data System (ADS)

    Chanton, J.

    2011-12-01

    One of the main problems in climate change education is reconciling the role of humans and natural variability. The climate is always changing, so how can humans have a role in causing change? How do we reconcile and differentiate the anthropogenic effect from natural variability? This talk will offer several approaches that have been successful for the author. First, the context of climate change during the Pleistocene must be addressed. Second, is the role of the industrial revolution in significantly altering Pleistocene cycles, and introduction of the concept of the Anthropocene. Finally the positive feedbacks between climatic nudging due to increased insolation and greenhouse gas forcing can be likened to a rock rolling down a hill, without a leading cause. This approach has proven successful in presentations to undergraduates to state agencies.

  15. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve

  16. Climate Change Impacts at Department of Defense Installations

    DTIC Science & Technology

    2017-06-16

    locations. The ease of use of this method and its flexibility have led to a wide variety of applications for assessing impacts of climate change 4...versions of these statistical methods to provide the basis for regional climate assessments for various states, regions, and government agencies...averaging (REA) method proposed by Giorgi and Mearns (2002). This method assigns reliability classifications for the multi-model ensemble simulation by

  17. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    NASA Astrophysics Data System (ADS)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  18. Beyond dichotomies: Gender and intersecting inequalities in climate change studies.

    PubMed

    Djoudi, Houria; Locatelli, Bruno; Vaast, Chloe; Asher, Kiran; Brockhaus, Maria; Basnett Sijapati, Bimbika

    2016-12-01

    Climate change and related adaptation strategies have gender-differentiated impacts. This paper reviews how gender is framed in 41 papers on climate change adaptation through an intersectionality lens. The main findings show that while intersectional analysis has demonstrated many advantages for a comprehensive study of gender, it has not yet entered the field of climate change and gender. In climate change studies, gender is mostly handled in a men-versus-women dichotomy and little or no attention has been paid to power and social and political relations. These gaps which are echoed in other domains of development and gender research depict a 'feminization of vulnerability' and reinforce a 'victimization' discourse within climate change studies. We argue that a critical intersectional assessment would contribute to unveil agency and emancipatory pathways in the adaptation process by providing a better understanding of how the differential impacts of climate change shape, and are shaped by, the complex power dynamics of existing social and political relations.

  19. Pacific-Australia Climate Change Science and Adaptation Planning program: supporting climate science and enhancing climate services in Pacific Island Countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa

    2013-04-01

    Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the

  20. 76 FR 17962 - Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Understanding of Climate Change Impacts on Freshwater Resources of the United States AGENCY: U.S. Geological... Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States''. The report reviews key issues related to freshwater resource data and climate change and identifies next steps to...

  1. Readying health services for climate change: a policy framework for regional development.

    PubMed

    Bell, Erica

    2011-05-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.

  2. Readying Health Services for Climate Change: A Policy Framework for Regional Development

    PubMed Central

    2011-01-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953

  3. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  4. Generating relevant climate adaptation science tools in concert with local natural resource agencies

    NASA Astrophysics Data System (ADS)

    Micheli, L.; Flint, L. E.; Veloz, S.; Heller, N. E.

    2015-12-01

    To create a framework for adapting to climate change, decision makers operating at the urban-wildland interface need to define climate vulnerabilities in the context of site-specific opportunities and constraints relative to water supply, land use suitability, wildfire risks, ecosystem services and quality of life. Pepperwood's TBC3.org is crafting customized climate vulnerability assessments with selected water and natural resource agencies of California's Sonoma, Marin, Napa and Mendocino counties under the auspices of Climate Ready North Bay, a public-private partnership funded by the California Coastal Conservancy. Working directly with managers from the very start of the process to define resource-specific information needs, we are developing high-resolution, spatially-explicit data products to help local governments and agency staff implement informed and effective climate adaptation strategies. Key preliminary findings for the region using the USGS' Basin Characterization Model (at a 270 m spatial resolution) include a unidirectional trend, independent of greater or lesser precipitation, towards increasing climatic water deficits across model scenarios. Therefore a key message is that managers will be facing an increasingly arid environment. Companion models translate the impacts of shifting climate and hydrology on vegetation composition and fire risks. The combination of drought stress on water supplies and native vegetation with an approximate doubling of fire risks may demand new approaches to watershed planning. Working with agencies we are exploring how to build capacity for protection and enhancement of key watershed functions with a focus on groundwater recharge, facilitating greater drought tolerance in forest and rangeland systems, and considering more aggressive approaches to management of fuel loads. Lessons learned about effective engagement include the need for extended in-depth dialog, translation of key climate adaptation questions into

  5. Managing the Nation's water in a changing climate

    USGS Publications Warehouse

    Lins, H.F.; Stakhiv, E.Z.

    1998-01-01

    Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydrological events.

  6. Climate Change Resilience Planning at the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Johnson, A.

    2015-12-01

    The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving

  7. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  8. Enhancing the Communication of Climate Change Science

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.; Hassol, S. J.

    2011-12-01

    Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.

  9. Using biological data to test climate change refugia

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Maher, S. P.

    2015-12-01

    The concept of refugia has been discussed from theoretical and paleontological perspectives to address how populations persisted during periods of unfavorable climate. Recently, several studies have applied the idea to contemporary landscapes to identify locations that are buffered from climate change effects so as to favor greater persistence of valued resources relative to other areas. Refugia are now being discussed among natural resource agencies as a potential adaptation option in the face of anthropogenic climate change. Using downscaled climate data, we identified hypothetical refugial meadows in the Sierra Nevada and then tested them using survey and genetic data from Belding's ground squirrel (Urocitellus beldingi) populations. We predicted that refugial meadows would show higher genetic diversity, higher rates of occupancy and lower rates of extirpation over time. At each step of the research, we worked with managers to ensure the largest impact. Although no panacea, identifying climate change refugia could be an important strategy for prioritizing habitats for management intervention in order to conserve populations. This research was supported by the California LCC, the Northeast Climate Science Center, and NSF.

  10. Interagency Collaboration in Support of Climate Change Education

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; Chambers, L. H.; Karsten, J. L.; McDougall, C.; Campbell, D.

    2011-12-01

    NASA, NOAA and NSF support climate change education (CCE) through their grant programs. As the agencies' investment in CCE has grown, coordination among the agencies has become increasingly important. Although the political landscape and budgets continue to change, the agencies are committed to continued coordination and collaboration. To date, this has taken the form of jointly hosted principal investigator (PI) meetings, the largest of which was held last February (see Eos Vol. 92, No. 24, 14 June 2011). The joint goals are: (1) increased collaboration among grantees and across programs; (2) building capacity among grantees in areas of mutual interest; (3) identification of gaps in investments to date; and (4) identification of opportunities for coordination of evaluation efforts. NOAA's primary funding opportunity for CCE projects is its Environmental Literacy Grant (ELG) Program. Although not exclusively focused on climate, there has been increased emphasis on this area since 2009. Through ELG, NOAA encourages the use of NOAA assets (data, facilities, educational resources, and people) in grantees' work. Thirty awards with a primary focus on CCE have been awarded to institutions of higher education, informal science education, and non-profit organizations involved in K-12 and informal/non-formal education. We anticipate this funding opportunity will continue to support the improvement of climate literacy among various audiences of learners in the future. NASA supported efforts in CCE in an ad hoc way for years. It became a focus area in 2008 with the launch of the NASA Global Climate Change Education (GCCE) Project. This project funded 57 awards in 2008-2010, the vast majority of them in teacher professional development, or use of data, models, or simulations. Beginning in FY11, NASA moved the project into the Minority University Research and Education Program. Fourteen awards were made to minority higher education institutions, non-profit organizations, and

  11. Climate change and wildland firefighter health and safety.

    PubMed

    Withen, Patrick

    2015-02-01

    The author examines how climate change is impacting wildland firefighters. Climate change has made wildland fires more frequent and more intense. The increase in frequency and intensity of fires has pushed the number of fatalities and injuries higher in recent decades. The most common hazards on fires follow the trend of fire in general in that these hazards become more frequent and intense. Burnovers, heat exhaustion, tree hazards, and many other common fire hazards are more likely. The fire suppression agencies are making every effort to improve health and safety on fires by improving communication, weather forecasting, mapping, fire shelters, decision making and more. Despite these efforts, wildfires are becoming ever more hazardous because of climate change and the increasing frequency and intensity of wildfires. © 2015 SAGE Publications.

  12. Environmental Progression: The Psychological Justification for Reframing Climate Change and Global Warming

    NASA Astrophysics Data System (ADS)

    Veldey, S. H.

    2016-12-01

    On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.

  13. Pyroconvection and Climate Change

    DTIC Science & Technology

    2007-01-01

    Climate Change 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Avenue SW,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited

  14. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  15. Climate change 101 : understanding and responding to global climate change

    DOT National Transportation Integrated Search

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  16. USGCRP assessments: Meeting the challenges of climate and global change

    NASA Astrophysics Data System (ADS)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  17. Assessing the Assessment Methods: Climate Change and Hydrologic Impacts

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2014-12-01

    The Bureau of Reclamation, the U.S. Army Corps of Engineers, and other water management agencies have an interest in developing reliable, science-based methods for incorporating climate change information into longer-term water resources planning. Such assessments must quantify projections of future climate and hydrology, typically relying on some form of spatial downscaling and bias correction to produce watershed-scale weather information that subsequently drives hydrology and other water resource management analyses (e.g., water demands, water quality, and environmental habitat). Water agencies continue to face challenging method decisions in these endeavors: (1) which downscaling method should be applied and at what resolution; (2) what observational dataset should be used to drive downscaling and hydrologic analysis; (3) what hydrologic model(s) should be used and how should these models be configured and calibrated? There is a critical need to understand the ramification of these method decisions, as they affect the signal and uncertainties produced by climate change assessments and, thus, adaptation planning. This presentation summarizes results from a three-year effort to identify strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic conditions. Methods were evaluated from two perspectives: historical fidelity, and tendency to modulate a global climate model's climate change signal. On downscaling, four methods were applied at multiple resolutions: statistically using Bias Correction Spatial Disaggregation, Bias Correction Constructed Analogs, and Asynchronous Regression; dynamically using the Weather Research and Forecasting model. Downscaling results were then used to drive hydrologic analyses over the contiguous U.S. using multiple models (VIC, CLM, PRMS), with added focus placed on case study basins within the Colorado Headwaters. The presentation will identify which types of climate changes are

  18. Climate change velocity underestimates climate change exposure in mountainous regions

    Treesearch

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  19. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    NASA Astrophysics Data System (ADS)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  20. Building adaptive capacity to climate change in tropical coastal communities

    NASA Astrophysics Data System (ADS)

    Cinner, Joshua E.; Adger, W. Neil; Allison, Edward H.; Barnes, Michele L.; Brown, Katrina; Cohen, Philippa J.; Gelcich, Stefan; Hicks, Christina C.; Hughes, Terry P.; Lau, Jacqueline; Marshall, Nadine A.; Morrison, Tiffany H.

    2018-01-01

    To minimize the impacts of climate change on human wellbeing, governments, development agencies, and civil society organizations have made substantial investments in improving people's capacity to adapt to change. Yet to date, these investments have tended to focus on a very narrow understanding of adaptive capacity. Here, we propose an approach to build adaptive capacity across five domains: the assets that people can draw upon in times of need; the flexibility to change strategies; the ability to organize and act collectively; learning to recognize and respond to change; and the agency to determine whether to change or not.

  1. Climate change collaboration among natural resource management agencies: lessons learned from two US regions

    USGS Publications Warehouse

    Lemieux, Christopher J.; Thompson, Jessica; Slocombe, D. Scott; Schuster, Rudy

    2015-01-01

    It has been argued that regional collaboration can facilitate adaptation to climate change impacts through integrated planning and management. In an attempt to understand the underlying institutional factors that either support or contest this assumption, this paper explores the institutional factors influencing adaptation to climate change at the regional scale, where multiple public land and natural resource management jurisdictions are involved. Insights from two mid-western US case studies reveal that several challenges to collaboration persist and prevent fully integrative multi-jurisdictional adaptation planning at a regional scale. We propose that some of these challenges, such as lack of adequate time, funding and communication channels, be reframed as opportunities to build interdependence, identify issue-linkages and collaboratively explore the nature and extent of organisational trade-offs with respect to regional climate change adaptation efforts. Such a reframing can better facilitate multi-jurisdictional adaptation planning and management of shared biophysical resources generally while simultaneously enhancing organisational capacity to mitigate negative effects and take advantage of potentially favourable future conditions in an era characterised by rapid climate change.

  2. Envisioning the future of wildlife in a changing climate: Collaborative learning for adaptation planning

    USGS Publications Warehouse

    LeDee, Olivia E.; Karasov, W.H.; Martin, Karl J.; Meyer, Michael W.; Ribic, Christine; Van Deelen, Timothy R.

    2011-01-01

    Natural resource managers are tasked with assessing the impacts of climate change on conservation targets and developing adaptation strategies to meet agency goals. The complex, transboundary nature of climate change demands the collaboration of scientists, managers, and stakeholders in this effort. To share, integrate, and apply knowledge from these diverse perspectives, we must engage in social learning. In 2009, we initiated a process to engage university researchers and agency scientists and managers in collaborative learning to assess the impacts of climate change on terrestrial fauna in the state of Wisconsin, USA. We constructed conceptual Bayesian networks to depict the influence of climate change, key biotic and abiotic factors, and existing stressors on the distribution and abundance of 3 species: greater prairie-chicken (Tympanuchus cupido), wood frog (Lithobates sylvaticus), and Karner blue butterfly (Plebejus melissa samuelis). For each species, we completed a 2-stage expert review that elicited dialogue on information gaps, management opportunities, and research priorities. From our experience, collaborative network modeling proved to be a powerful tool to develop a common vision of the potential impacts of climate change on conservation targets.

  3. 77 FR 70182 - Reopening of Nomination Period for Members of the Advisory Committee on Climate Change and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Nomination Period for Members of the Advisory Committee on Climate Change and Natural Resource Science AGENCY... published a notice announcing the establishment of the Advisory Committee on Climate Change and Natural.... ADDRESSES: Send nominations to: Robin O'Malley, Policy and Partnership Coordinator, National Climate Change...

  4. Who Should be Empowered to Know about Earth's Changing Climate? The Case of Earth's Changing Cryosphere

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2006-12-01

    to deal with, but when humans—some humans more than others—are the prime causes of new hazards, and some humans more than others are the victims of those anthropogenic changes to the Earth, it becomes politically charged. One approach is to bury one's head in the sand and ignore the issues; this has been substantially NASA's approach with regard to natural hazards that bear on matters of political import—such as climate change. The risks of doing the honorable thing and to deal squarely with information at hand are huge, both for agencies and individual scientists. No matter what funding agencies say, scientists must answer a higher calling to do the right thing. Rarely does the right thing ever involve the news media on such frightful matters. I will review two special cases of how NOT to do things in my area of glaciation and glacial hazards—in one case, USGS attempted to delete a reference to the intergovernmental panel on climate change that was included in a draft of a press release; in another case, unsubstantiated warnings by JPL of imminent danger from a generally dangerous glacial lake in Peru did not go through peer review or the national scientific or civil authorities in Peru, and it resulted in needless public panic. Climate change faces every human alive and will have increasing impacts on the next several generations. Major funding agencies must provide the resources for robust, unclassified, objective research in climate change and its impacts, including hazards, and the observing tools to enable it, especially in areas where humans are the underlying cause and where mitigative action is possible. Scientists must exercise special responsibility and sensitivity in dealing with such politically charged issues.

  5. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  6. Integrated Climate Change Impacts Assessment in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  7. Climate change

    USGS Publications Warehouse

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  8. Climate Change In Indonesia (Case Study : Medan, Palembang, Semarang)

    NASA Astrophysics Data System (ADS)

    Suryadi, Yadi; Sugianto, Denny Nugroho; Hadiyanto

    2018-02-01

    Indonesia's maritime continent is one of the most vulnerable regions regarding to climate change impacts. One of the vulnerable areas affected are the urban areas, because they are home to almost half of Indonesia's population where they live and earn a living, so that environmental management efforts need to be done. To support such efforts, climate change analysis is required. The analysis was carried out in several big cities in Indonesia. The method used in the research was trend analysis of temperature, rainfall, shifts in rainfall patterns, and extreme climatic trend. The data of rainfall and temperature were obtained from Meteorology and Geophysics Agency (BMKG). The result shows that the air temperature and rainfall have a positive trend, except in Semarang City which having a negative rainfall trend. The result also shows heavy rainfall trends. These indicate that climate is changing in these three cities.

  9. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    -induced climate change (Lombardi, Sinatra, & Nussbaum, 2013). This study and many others show the critical role instructional practice plays in the development of a climate literate nation. Climate change communication faces many challenges, but federal agencies, civil society, and individuals have invested in numerous initiatives to develop a climate-literate citizenry. In the NRC Report America's Climate Choices the authors find that 'climate change is difficult to understand by its very nature,' however, 'education and communication are among the most powerful tools the nation has to bring hidden hazards to public attention, understanding, and action.' This session will explore how the federal science mission agencies and their partners are working to harness these tools and use the best available research to develop programs and partnership that build on the promise of the NGSS. When citizens have knowledge of the causes, likelihood, and severity of climate impacts, as well as of the range, cost, and efficacy of options to adapt to impacts, they are more prepared to effectively address the risks and opportunities

  10. Beyond the single species climate envelope: A multifaceted approach to mapping climate change vulnerability

    Treesearch

    Christopher S. Balzotti; Stanley G. Kitchen; Clinton McCarthy

    2016-01-01

    Federal land management agencies and conservation organizations have begun incorporating climate change vulnerability assessments (CCVAs) as an important component in the management and conservation of landscapes. It is often a challenge to translate that knowledge into management plans and actions, even when research infers species risk. Predictive maps can...

  11. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  12. It's lonely at the top: Biodiversity at risk to loss from climate change

    Treesearch

    John L. Koprowski; Sandra L. Doumas; Melissa J. Merrick; Brittany Oleson; Erin E. Posthumus; Timothy G. Jessen; R. Nathan Gwinn

    2013-01-01

    Climate change is a serious immediate and long-term threat to wildlife species. State and federal agencies are working with universities and non-government organizations to predict, plan for, and mitigate such uncertainties in the future. Endemic species may be particularly at-risk as climate-induced changes impact their limited geographic ranges. The Madrean...

  13. Public Health and Climate Change Adaptation at the Federal Level: One Agency’s Response to Executive Order 13514

    PubMed Central

    Schramm, Paul J.; Luber, George

    2014-01-01

    Climate change will likely have adverse human health effects that require federal agency involvement in adaptation activities. In 2009, President Obama issued Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance. The order required federal agencies to develop and implement climate change adaptation plans. The Centers for Disease Control and Prevention (CDC), as part of a larger Department of Health and Human Services response to climate change, is developing such plans. We provide background on Executive Orders, outline tenets of climate change adaptation, discuss public health adaptation planning at both the Department of Health and Human Services and the CDC, and outline possible future CDC efforts. We also consider how these activities may be better integrated with other adaptation activities that manage emerging health threats posed by climate change. PMID:24432931

  14. 77 FR 76034 - National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0943; FRL9716-6] National Water Program 2012... availability. SUMMARY: The Environmental Protection Agency (EPA) is publishing the final ``National Water...-term visions and goals for the management of water resources in light of climate change and charts key...

  15. Multiscale Assessment of Listed and At-Risk Species’ Climate Change Vulnerabilities

    DTIC Science & Technology

    2017-07-15

    Anthropogenically altered landscapes (e.g., urban or agricultural areas) that may hinder the dispersal of a species. B3. Land Use Changes from Climate Change...vulnerable (HV) and ex- tremely vulnerable (EV). Federal land management agencies include: Agricultural Research Service (ARS), Bu- reau of Land...agencies include: Agricultural Research Service (ARS), Bu- reau of Land Management (BLM), Bureau of Reclamation (BOR), Department of Defense (DoD

  16. Climate Change Adaptation Support for Transportation Practitioners: 2013 Volpe Center Innovation Challenge Project.

    DOT National Transportation Integrated Search

    2015-09-30

    The nature of the U.S. transportation system requires that actions to adapt to climate change impacts occur primarily at the State and local levels. Federal agencies support State, regional, and local agencies and they work hard to provide frameworks...

  17. Engaging Key Stakeholders in Climate Change: A Community-Based Project for Youth-Led Participatory Climate Action

    NASA Astrophysics Data System (ADS)

    Trott, Carlie D.

    Few studies have examined how youth think about, and take action on climate change and far fewer have sought to facilitate their engagement using participatory methods. This dissertation evaluated the impacts of Science, Camera, Action! (SCA), a novel after-school program that combined climate change education with participatory action through photovoice. The specific aims of this study were to: (1) Evaluate the impacts of SCA on youth participants' climate change knowledge, attitudes, and behaviors; (2) Examine how SCA participation served to empower youth agency; and (3) Explore SCA's influence on youths' science engagement. Participants were 55 youths (ages 10 to 12) across three Boys and Girls Club sites in Northern Colorado. SCA's Science component used interactive activities to demonstrate the interrelationships between Earth's changing climate, ecosystems, and sustainable actions within communities. Photovoice, SCA's Camera component, was used to explore youths' climate change perspectives and to identify opportunities for their active engagement. Finally, SCA's Action component aimed to cultivate youth potential as agents of change in their families and communities through the development and implementation of youth-led action projects. Action projects included local policy advocacy, a tree-planting campaign, a photo gallery opening, development of a website, and the establishment of a Boys and Girls Club community garden. To evaluate SCA impacts, a combination of survey and focus group methods were used. Following the program, youth demonstrated increased knowledge of the scientific and social dimensions of the causes and consequences of climate change, as well as its solutions through human action. Though participants expressed a mix of positive (e.g., hope) and negative (e.g., sadness) emotions about climate change, they left the program with an increased sense of respect for nature, an enhanced sense of environmental responsibility, and a greater sense

  18. Responding to climate change impacts in the Sky Island Region: From planning to action

    Treesearch

    Louise W. Misztal; Gregg Garfin; Lara Hansen

    2013-01-01

    Addressing the increasing effects of climate change on natural resources requires multiple organizations, agencies, and institutions working cooperatively to incorporate climate change into resource management. In the Sky Island region of the southwestern United States and northern Mexico, Sky Island Alliance, a non-governmental organization, has convened a series of...

  19. Climate Change Policy

    NASA Astrophysics Data System (ADS)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  20. Managing United States public lands in response to climate change: a view from the ground up.

    PubMed

    Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B

    2012-05-01

    Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.

  1. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  2. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  3. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  4. Stakeholders' participatory diagnosis of climate change impacts on subsistence agriculture in Sikkim, India, for identifying adaptation strategies

    NASA Astrophysics Data System (ADS)

    Azhoni, A.; Goyal, M. K.

    2017-12-01

    Narrowing the gap between research, policy making and implementing adaptation remains a challenge in many parts of the world where climate change is likely to severely impact subsistence agriculture. This research aims to narrow this gap by matching the adaptation strategies being framed by policy makers and perspectives of consultants and researchers which are expected to be implemented by development agencies farmers in the state of Sikkim in India. Our case study examined the framing and implementation of State Action Plan on Climate Change through semi-structured interviews carried out with decision makers in the State Government, Scientific Organisations, consultants, local academia, implementing and development agencies, and farmers for whom the adaptation strategies are targeted. Using Social Network and Stakeholder Analysis approach, this research unravels the complexities of perceiving climate change impacts, identifying adaptation strategies, and implementing climate change adaptation strategies. While farmers are less aware about the global phenomenon of climate change impacts for their subsistence livelihood, their knowledge of the local conditions and their close interaction with the State Government Agriculture Department provides them an access to new and high value crops. Although important steps are initiated through the Sikkim State Action Plan on Climate Change it is yet to deliver effective means of adaptation implementation and identifying the networks of close coordination between the various implementing agencies will likely to pay rich dividends. While Sikkim being a small and hilly state with specific contextual challenges of climate change impacts, the results from this study highlights how the internal and external networks between various types of stakeholders informs decision makers in identifying local impacts of climate change and plan adaptation strategies.

  5. The Intersection of National Security and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hund, Gretchen; Fankhauser, Jana G.; Kurzrok, Andrew J.

    On June 4, 2014, the Henry M. Jackson Foundation and the Pacific Northwest National Laboratory hosted a groundbreaking symposium in Seattle, Washington, that brought together 36 leaders from federal agencies, state and local governments, NGOs, business, and academia. The participants examined approaches and tools to help decision makers make informed choices about the climate and security risks they face. The following executive summary is based on the day’s discussions and examines the problem of climate change and its impact on national security, the responses to date, and future considerations.

  6. Rainfall pattern variability as climate change impact in The Wallacea Region

    NASA Astrophysics Data System (ADS)

    Pujiastuti, I.; Nurjani, E.

    2018-04-01

    The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.

  7. Climate Change Adaptation - Challenges and Opportunities

    DTIC Science & Technology

    2011-11-01

    Humans have been adapting to the vagaries of weather for millennia, sometimes successfully sometimes not. Today, the myriad of important federal laws that regulate the impacts of human activity in our natural environment not only complicates plans for climate change adaptation, but also act as a strong justification for proactive planning, engagement and action. The challenge of adaptation will result in increased opportunities for more effective interaction with other federal agencies, communities and scientific organizations to better

  8. The North Cascadia Adaptation Partnership: a science-management collaboration for responding to climate change

    Treesearch

    Crystal L. Raymond; David L. Peterson; Regina M. Rochefort

    2013-01-01

    The U.S. Forest Service (USFS) and National Park Service (NPS) have highlighted climate change as an agency priority and issued direction to administrative units for responding to climate change. In response, the USFS and NPS initiated the North Cascadia Adaptation Partnership (NCAP) in 2010. The goals of the NCAP were to build an inclusive partnership, increase...

  9. The Soft Underbelly of System Change: The Role of Leadership and Organizational Climate in Turnover during Statewide Behavioral Health Reform

    PubMed Central

    Aarons, Gregory A.; Sommerfeld, David H.; Willging, Cathleen E.

    2011-01-01

    This study examined leadership, organizational climate, staff turnover intentions, and voluntary turnover during a large-scale statewide behavioral health system reform. The initial data collection occurred nine months after initiation of the reform with a follow-up round of data collected 18 months later. A self-administered structured assessment was completed by 190 participants (administrators, support staff, providers) employed by 14 agencies. Key variables included leadership, organizational climate, turnover intentions, turnover, and reform-related financial stress (“low” versus “high”) experienced by the agencies. Analyses revealed that positive leadership was related to a stronger empowering climate in both high and low stress agencies. However, the association between more positive leadership and lower demoralizing climate was evident only in high stress agencies. For both types of agencies empowering climate was negatively associated with turnover intentions, and demoralizing climate was associated with stronger turnover intentions. Turnover intentions were positively associated with voluntary turnover. Results suggest that strong leadership is particularly important in times of system and organizational change and may reduce poor climate associated with turnover intentions and turnover. Leadership and organizational context should be addressed to retain staff during these periods of systemic change. PMID:22229021

  10. The Soft Underbelly of System Change: The Role of Leadership and Organizational Climate in Turnover during Statewide Behavioral Health Reform.

    PubMed

    Aarons, Gregory A; Sommerfeld, David H; Willging, Cathleen E

    2011-01-01

    This study examined leadership, organizational climate, staff turnover intentions, and voluntary turnover during a large-scale statewide behavioral health system reform. The initial data collection occurred nine months after initiation of the reform with a follow-up round of data collected 18 months later. A self-administered structured assessment was completed by 190 participants (administrators, support staff, providers) employed by 14 agencies. Key variables included leadership, organizational climate, turnover intentions, turnover, and reform-related financial stress ("low" versus "high") experienced by the agencies. Analyses revealed that positive leadership was related to a stronger empowering climate in both high and low stress agencies. However, the association between more positive leadership and lower demoralizing climate was evident only in high stress agencies. For both types of agencies empowering climate was negatively associated with turnover intentions, and demoralizing climate was associated with stronger turnover intentions. Turnover intentions were positively associated with voluntary turnover. Results suggest that strong leadership is particularly important in times of system and organizational change and may reduce poor climate associated with turnover intentions and turnover. Leadership and organizational context should be addressed to retain staff during these periods of systemic change.

  11. Considerations in Starting Climate Change Research

    NASA Astrophysics Data System (ADS)

    Long, J. C. S.; Morgan, G.; Hamburg, S.; Winickoff, D. E.

    2014-12-01

    Many have called for climate engineering research because the growing risks of climate change and the geopolitical and national security risks of climate remediation technologies are real. As the topic of climate engineering remains highly controversial, national funding agencies should evaluate even modest outdoor climate engineering research proposals with respect to societal, legal, and risk considerations in making a decision to fund or not to fund. These concerns will be extremely difficult to coordinate internationally if they are not first considered successfully on a national basis. Assessment of a suite of proposed research projects with respect to these considerations indicates we would learn valuable lessons about how to govern research by initiating a few exemplar projects. The first time an issue arrives it can be very helpful if it there are specific cases, not a broad class of projects. A good first case should be defensible and understandable, fit within the general mandate of existing research programs, have negligible physical risk, small physical scale and short duration. By focusing on a specific case, the discussion can be held with limits and help to establish some track record in dealing with a controversial subject and developing a process for assigning appropriate scrutiny and outreach. Even at an early stage, with low risk, small-scale experiments, obtaining broad-based advice will aid in dealing with the controversies. An independent advisory body can provide guidance about a wide spectrum of physical and social risks of funding the experiment compared to societal benefit of gaining understanding. Clearly identifying the research as climate engineering research avoids sending research down a path that might violate public trust and provide an important opportunity to grow governance and public engagement at an early stage. Climate engineering research should be seen in the context of all approaches to dealing with the climate problem

  12. Climate change and infectious diseases in North America: the road ahead.

    PubMed

    Greer, Amy; Ng, Victoria; Fisman, David

    2008-03-11

    Global climate change is inevitable--the combustion of fossil fuels has resulted in a buildup of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g., tornadoes and hurricanes). Although these events may have direct consequences for health (e.g., injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g., endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g., the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies.

  13. Climate change and infectious diseases in North America: the road ahead

    PubMed Central

    Greer, Amy; Ng, Victoria; Fisman, David

    2008-01-01

    Global climate change is inevitable — the combustion of fossil fuels has resulted in a buildup of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g., tornadoes and hurricanes). Although these events may have direct consequences for health (e.g., injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g., endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g., the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies. PMID:18332386

  14. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  15. Climate Change Adaptation Challenges and EO Business Opportunities

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos

    Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique

  16. 76 FR 17626 - National Climate Assessment Development and Advisory Committee; Announcement of Time Change and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory Committee; Announcement of Time Change and Meeting Location AGENCY: National Oceanic and Atmospheric Administration, Department of Commerce. ACTION: National Climate Assessment...

  17. Planning for Adaptation to Climate Change in the City of Chicago

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Hayhoe, K.; Coffee, J.; McGraw, J.; Parzen, J.

    2008-12-01

    Under Mayor Richard M. Daley's leadership, the City of Chicago initiated the Chicago Climate Action Plan (CCAP) to better understand local implications of global climate change in both higher and lower emissions scenarios, reduce greenhouse gas emissions, and implement programs to build future climate change resilience. The City approached this work not only as a way to make Chicago more adaptable in the future, but also to improve Chicago's quality of life today. The Chicago Climate Action Plan adopted stresses the importance of both reducing greenhouse gas emissions in Chicago and preparing for climate changes that may be unavoidable. Building off of the City's significant environmental programs and projects, and based on our analyses of the climate effects and impacts that improved the scientific understanding of future climate change impacts on Chicago, the City then developed a set of climate change adaptation strategies, resulting in the City of Chicago Climate Change Adaptation Summary. This document includes prioritization of climate change adaptations based on relative risk as well as framework strategies for those tactics categorized as "must do/early action." In early 2008, The Mayor's Office asked five Commissioners from its Green Steering Committee to chair adaptation work groups including: extreme heat; extreme precipitation; buildings, infrastructure and equipment; ecosystems; and leadership, planning and communications. Working with staff from relevant departments, sister agencies and other stakeholders, these work groups developed 39 basic adaptation work plans, including plans for enhancing the City's existing projects and programs that relate to climate change adaptation. Climate change adaptation work will be on-going in City Departments under the Mayor's Office leadership. The City intends to continually monitor and improve its response to climate change, resulting in an improved quality of life for Chicago residents.

  18. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retentionmore » issues, and more.« less

  19. Climate change and indigenous peoples: A synthesis of current impacts and experiences

    USGS Publications Warehouse

    Norton-Smith, Kathryn; Lynn, Kathy; Chief, Karletta; Cozetto, Karen; Donatuto, Jamie; Hiza, Margaret; Kruger, Linda; Maldonado, Julie; Viles, Carson; Whyte, Kyle P.

    2016-01-01

    A growing body of literature examines the vulnerability, risk, resilience, and adaptation of indigenous peoples to climate change. This synthesis of literature brings together research pertaining to the impacts of climate change on sovereignty, culture, health, and economies that are currently being experienced by Alaska Native and American Indian tribes and other indigenous communities in the United States. The knowledge and science of how climate change impacts are affecting indigenous peoples contributes to the development of policies, plans, and programs for adapting to climate change and reducing greenhouse gas emissions. This report defines and describes the key frameworks that inform indigenous understandings of climate change impacts and pathways for adaptation and mitigation, namely, tribal sovereignty and self-determination, culture and cultural identity, and indigenous community health indicators. It also provides a comprehensive synthesis of climate knowledge, science, and strategies that indigenous communities are exploring, as well as an understanding of the gaps in research on these issues. This literature synthesis is intended to make a contribution to future efforts such as the 4th National Climate Assessment, while serving as a resource for future research, tribal and agency climate initiatives, and policy development.

  20. Applications of geographic information systems (GIS) for transportation and climate change

    DOT National Transportation Integrated Search

    2011-08-31

    This report describes the current practice and application of GIS technologies for integrating climate change into the transportation decision-making process. It examines how select state, regional, and local agencies are using GIS to analyze, mitiga...

  1. Developing and applying uncertain global climate change projections for regional water management planning

    NASA Astrophysics Data System (ADS)

    Groves, David G.; Yates, David; Tebaldi, Claudia

    2008-12-01

    Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.

  2. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  3. Vulnerabilities to climate change of Massachusetts animal species of greatest conservation need

    USGS Publications Warehouse

    Galbraith, Hector; Morelli, Toni L.

    2017-01-01

    Over the last decade, the Commonwealth of Massachusetts has addressed the potential and actual impacts of climate change on state flora and fauna. The state’s involvement began in 2007 when, led by the Division of Fisheries and Wildlife (DFW) and assisted by Manomet Center for Con-servation Research, it carried out one of the first habitat vulnerability assessments in North America (Manomet, 2010). The new methods and processes that resulted were later applied to vulnerability assessments in North America and elsewhere. In 2011, the state assisted the North-eastern Association of Fish and Wildlife Agencies (NEAFWA) in organizing and leading a pio-neering three-year, thirteen-state research effort to evaluate the vulnerabilities of fish and wild-life habitats to climate change in the northeast, from Maine south to West Virginia (NEAFWA, 2012). This focus on climate change vulnerabilities led to three important early realizations: (1) simply categorizing and scoring vulnerabilities might not lead to better conservation outcomes. It was vital to also understand why some resources were more or less vulnerable to climate change in order to identify potential intervention points on which conservation actions and strategies could be based. (2) simply producing research results was not enough; these results had to be cast as specific conservation actions. Moreover (3), these actions needed to be communicated in a useful form to conservation “actors”, such as state agencies, land trusts, land managers, etc. These real-izations led to the next step on the Commonwealth’s journey to effective conservation in an age of climate change - the Massachusetts Wildlife Climate Action Tool (CAT).

  4. A Meta-Analysis of Local Climate Change Adaptation Actions ...

    EPA Pesticide Factsheets

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their community, the types of actions they have in place to address climate change, and the resources at their disposal for implementation. Several studies have been conducted by academics, non-governmental organizations, and public agencies to assess the status of local climate change adaptation. This project collates the findings from dozens of such studies to conduct a meta-analysis of local climate change adaptation actions. The studies will be characterized along several dimensions, including (a) methods used, (b) timing and geographic scope, (c) topics covered, (d) types of adaptation actions identified, (e) implementation status, and (f) public engagement and environmental justice dimensions considered. The poster presents the project's rationale and approach and some illustrative findings from early analyses. [Note: The document being reviewed is an abstract in which a poster is being proposed. The poster will enter clearance if the abstract is accepted] The purpose of this poster is to present the research framework and approaches I am developing for my ORISE postdoctoral project, and to get feedback on early analyses.

  5. Interagency collaboration in the Rocky Mountains and Great Plains: Federal-university climate service networks for producing actionable information for climate change adaptation

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; McNie, E.; Averyt, K.; Morisette, J. T.; Derner, J. D.; Ojima, D. S.; Dilling, L.; Barsugli, J. J.

    2014-12-01

    Several federal agencies in north-central United States are each working to develop and disseminate useful climate information to enhance resilience to climate change. This talk will discuss how the U.S. Geological Survey (USGS) the North Central Climate Science Center, the National Oceanic and Atmospheric Administration Western Water Assessment RISA, and the U.S. Department of Agriculture Climate Hub, are building and managing a collaborative research and climate-service network in the Rocky Mountains and Great Plains. This presentation will describe the evolution of the interagency collaboration and the partnership with universities to build a climate service network. Such collaboration takes time and intention and must include the right people and organizations to effectively bridge the gap between use-inspired research and application. In particular, we will discuss a focus on the Upper Missouri Basin, developing research to meet needs in a basin that has had relatively less attention on risks of climate change and adaptation to those risks. Each organization has its own mission, stakeholders, and priorities, but there are many commonalities and potential synergies. Together, these organizations, and their agency scientists and university partners, are fostering cross-agency collaboration at the regional scale to optimize efficient allocation of resources while simultaneously enabling information to be generated at a scale that is relevant to decision makers. By each organization knowing the others needs and priorities, there are opportunities to craft research agendas and strategies for providing services that take advantage of the strengths and skills of the different organizations. University partners are key components of each organization, and of the collaboration, who bring in expertise beyond that in the agencies, in particular connections to social scientists, extension services.

  6. The climate change-infectious disease nexus: is it time for climate change syndemics?

    PubMed

    Heffernan, Claire

    2013-12-01

    Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

  7. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and

  8. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  9. Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy

    NASA Astrophysics Data System (ADS)

    Neely, R.; Owens, M. A.

    2011-12-01

    The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.

  10. US exposure to multiple landscape stressors and climate change

    Treesearch

    Becky K. Kerns; John B. Kim; Jeffrey D. Kline; Michelle A. Day

    2016-01-01

    We examined landscape exposure to wildfire potential, insects and disease risk, and urban and exurban development for the conterminous US (CONUS). Our analysis relied on spatial data used by federal agencies to evaluate these stressors nationally. We combined stressor data with a climate change exposure metric to identify when temperature is likely to depart from...

  11. Addressing Climate Change Adaptation in Regional Transportation Plans in California: A Guide and Online Visualization Tool for Planners to Incorporate Risks of Climate Change Impacts in Policy and Decision-Making

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tucker, K.; DeFlorio, J.

    2012-12-01

    The reality of a changing climate means that transportation and planning agencies need to understand the potential effects of changes in storm activity, sea levels, temperature, and precipitation patterns; and develop strategies to ensure the continuing robustness and resilience of transportation infrastructure and services. This is a relatively new challenge for California's regional planning agencies - adding yet one more consideration to an already complex and multifaceted planning process. In that light, the California Department of Transportation (Caltrans) is developing a strategy framework using a module-based process that planning agencies can undertake to incorporating the risks of climate change impacts into their decision-making and long-range transportation plans. The module-based approach was developed using a best practices survey of existing work nationally, along with a set of structured interviews with metropolitan planning organizations (MPOs) and regional transportation planning agencies (RTPAs) within California. Findings led to the development of a process, as well as a package of foundational geospatial layers (i.e. the Statewide Transportation Asset Geodatabase - STAG), primarily comprising state and Federal transportation assets. These assets are intersected with a set of geospatial layers for the climate stressors of relevance in the state which are placed in the same reference layers as the STAG; thus providing a full set of GIS layers that can be a starting point for MPOs/RTPAs that want to follow the step-by-step module-based approach in its entirety. The fast-paced changes in science and climate change knowledge requires a flexible platform to display continuously evolving information. To this end, the development of the modules are accompanied by a set of geospatial analysis disseminated using an online web portal. In this way, the information can be relayed to MPO/RTPAs in a easy-to-use fashion that can help them follow the modules

  12. Examining the effects of transportation governance on infrastructure adaptation to climate change.

    DOT National Transportation Integrated Search

    2015-05-01

    Transportation agencies across the United States are faced with the challenge of effectively : adapting infrastructure to withstand the predicted effects of climate change. This challenge is : magnified by a nationwide funding shortage, uncertainty a...

  13. Agency and market area factors affecting home health agency supply changes.

    PubMed

    Porell, Frank W; Liu, Korbin; Brungo, David P

    2006-10-01

    To use the natural experiment created by the Medicare interim payment system (IPS) to study supply change behavior of home health agencies (HHAs) in local market areas. One hundred percent Medicare home health claims for 1996 and 1999, linked with Medicare Provider of Service and Denominator files, and the Area Resource File. Medicare home health care (HHC) claims data were used to distinguish HHAs that changed the local market supply of Medicare HHC by their market exit or by significant expansion or contraction of their geographic service area between 1996 and 1999 from other HHAs. Multinomial logit models were estimated to analyze how characteristics of agencies and the market areas in which they served were associated with these different agency-level supply changes. Changes in local HHA supply stemming from geographic service area expansions and contractions rivaled those owing to agency closures and market entries. Agencies at greater risk of closure and service area contraction tended to be smaller, newer, freestanding agencies, operating with more visit-intensive practice styles in markets with more competitor agencies. Except for having much less visit-intensive practice styles, similar attributes characterized agencies that increased local supply through service area expansion. Supply changes by HHAs largely reflected rational market responses by agencies to significant changes in financial incentives associated with the Medicare IPS. Recently certified agencies were among the most dynamic providers. Supply changes were more likely among agencies operating in more competitive market environments.

  14. Open access to Water Indicators for Climate Change Adaptation: proof-of-concept for the Copernicus Climate Change Service (C3S)

    NASA Astrophysics Data System (ADS)

    Lottle, Lorna; Arheimer, Berit; Gyllensvärd, Frida; Dejong, Fokke; Ludwig, Fulco; Hutjes, Ronald; Martinez, Bernat

    2017-04-01

    Copernicus Climate Change Service (C3S) is still in the development phase and will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate and climate dependent sectors in Europe and worldwide. C3S will provide key indicators on climate change drivers and selected sectorial impacts. The aim of these indicators will be to support adaptation and mitigation. This presentation will show one service already operational as a proof-of-concept of this future climate service. The project "Service for Water Indicators in Climate Change Adaptation" (SWICCA) has developed a sectorial information service for water management. It offers readily available climate-impact data, for open access from the web-site http://swicca.climate.copernicus.eu/. The development is user-driven with the overall goal to speed up the workflow in climate-change adaptation of water management across Europe. The service is co-designed by consultant engineers and agencies in 15 case-studies spread out over the continent. SWICCA has an interactive user-interface, which shows maps and graphs, and facilitates data download in user-friendly formats. In total, more than 900 open dataset are given for various hydrometeorological (and a few socioeconomical) variables, model ensembles, resolutions, time-periods and RCPs. The service offers more than 40 precomputed climate impact indicators (CIIs) and transient time-series of 4 essential climate variables ECVs) with high spatial and temporal resolution. To facilitate both near future and far future assessments, SWICCA provides the indicators for different time ranges; normally, absolute values are given for a reference period (e.g. 1971-2000) and the expected future changes for different 30-year periods, such as early century (2011-2040), mid-century (2041-2070) and end-century (2071-2100). An ensemble of model results is always given to

  15. Engaging Visitors in Climate Change Communication: A Case Study of Southern Florida's National Parks and Wildlife Refuges

    ERIC Educational Resources Information Center

    Beard, Caroline A.; Thompson, Jessica Leigh

    2012-01-01

    Through the lens of place-based climate change communication, this manuscript compares results from internal and external assessments of capacity to communicate about climate change at national parks and refuges in southern Florida. The internal survey sample included agency staff, stakeholders, community partners, and concessionaires; the…

  16. Modeling Climate Change and Sturgeon Populations in the Missouri River

    USGS Publications Warehouse

    Wildhaber, Mark L.

    2010-01-01

    The U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC), in collaboration with researchers from the University of Missouri and Iowa State University, is conducting research to address effects of climate change on sturgeon populations (Scaphirhynchus spp.) in the Missouri River. The CERC is conducting laboratory, field, and modeling research to identify causative factors for the responses of fish populations to natural and human-induced environmental changes and using this information to understand sensitivity of sturgeon populations to potential climate change in the Missouri River drainage basin. Sturgeon response information is being used to parameterize models predicting future population trends. These models will provide a set of tools for natural resource managers to assess management strategies in the context of global climate change. This research complements and builds on the ongoing Comprehensive Sturgeon Research Program (CSRP) at the CERC. The CSRP is designed to provide information critical to restoration of the Missouri River ecosystem and the endangered pallid sturgeon (S. albus). Current research is being funded by USGS through the National Climate Change Wildlife Science Center (NCCWSC) and the Science Support Partnership (SSP) Program that is held by the USGS and the U.S. Fish and Wildlife Service. The national mission of the NCCWSC is to improve the capacity of fish and wildlife agencies to respond to climate change and to address high-priority climate change effects on fish and wildlife. Within the national context, the NCCWSC research on the Missouri River focuses on temporal and spatial downscaling and associated uncertainty in modeling climate change effects on sturgeon species in the Missouri River. The SSP research focuses on improving survival and population estimates for pallid sturgeon population models.

  17. Adaptation to climate change in the Ontario public health sector

    PubMed Central

    2012-01-01

    Background Climate change is among the major challenges for health this century, and adaptation to manage adverse health outcomes will be unavoidable. The risks in Ontario – Canada’s most populous province – include increasing temperatures, more frequent and intense extreme weather events, and alterations to precipitation regimes. Socio-economic-demographic patterns could magnify the implications climate change has for Ontario, including the presence of rapidly growing vulnerable populations, exacerbation of warming trends by heat-islands in large urban areas, and connectedness to global transportation networks. This study examines climate change adaptation in the public health sector in Ontario using information from interviews with government officials. Methods Fifty-three semi-structured interviews were conducted, four with provincial and federal health officials and 49 with actors in public health and health relevant sectors at the municipal level. We identify adaptation efforts, barriers and opportunities for current and future intervention. Results Results indicate recognition that climate change will affect the health of Ontarians. Health officials are concerned about how a changing climate could exacerbate existing health issues or create new health burdens, specifically extreme heat (71%), severe weather (68%) and poor air-quality (57%). Adaptation is currently taking the form of mainstreaming climate change into existing public health programs. While adaptive progress has relied on local leadership, federal support, political will, and inter-agency efforts, a lack of resources constrains the sustainability of long-term adaptation programs and the acquisition of data necessary to support effective policies. Conclusions This study provides a snapshot of climate change adaptation and needs in the public health sector in Ontario. Public health departments will need to capitalize on opportunities to integrate climate change into policies and programs

  18. Review of Climate Change and Health in Ethiopia: Status and Gap Analysis

    PubMed Central

    Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan

    2017-01-01

    Background This review assessed Ethiopia’s existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. Methods The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Results Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Conclusion Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts

  19. Review of Climate Change and Health in Ethiopia: Status and Gap Analysis.

    PubMed

    Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan

    2016-01-01

    This review assessed Ethiopia's existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health

  20. Agency and Market Area Factors Affecting Home Health Agency Supply Changes

    PubMed Central

    Porell, Frank W; Liu, Korbin; Brungo, David P

    2006-01-01

    Objective To use the natural experiment created by the Medicare interim payment system (IPS) to study supply change behavior of home health agencies (HHAs) in local market areas. Data Sources One hundred percent Medicare home health claims for 1996 and 1999, linked with Medicare Provider of Service and Denominator files, and the Area Resource File. Study Design Medicare home health care (HHC) claims data were used to distinguish HHAs that changed the local market supply of Medicare HHC by their market exit or by significant expansion or contraction of their geographic service area between 1996 and 1999 from other HHAs. Multinomial logit models were estimated to analyze how characteristics of agencies and the market areas in which they served were associated with these different agency-level supply changes. Principal Findings Changes in local HHA supply stemming from geographic service area expansions and contractions rivaled those owing to agency closures and market entries. Agencies at greater risk of closure and service area contraction tended to be smaller, newer, freestanding agencies, operating with more visit-intensive practice styles in markets with more competitor agencies. Except for having much less visit-intensive practice styles, similar attributes characterized agencies that increased local supply through service area expansion. Conclusions Supply changes by HHAs largely reflected rational market responses by agencies to significant changes in financial incentives associated with the Medicare IPS. Recently certified agencies were among the most dynamic providers. Supply changes were more likely among agencies operating in more competitive market environments. PMID:16987305

  1. Climate change. Accelerating extinction risk from climate change.

    PubMed

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions. Copyright © 2015, American Association for the Advancement of Science.

  2. Climate change assessments

    Treesearch

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  3. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  4. 75 FR 43944 - Defense Science Board; Task Force on Trends and Implications of Climate Change for National and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  5. 75 FR 34438 - Defense Science Board Task Force on Trends and Implications of Climate Change for National and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...

  6. Addressing Climate Change in Long-Term Water Planning Using Robust Decisionmaking

    NASA Astrophysics Data System (ADS)

    Groves, D. G.; Lempert, R.

    2008-12-01

    Addressing climate change in long-term natural resource planning is difficult because future management conditions are deeply uncertain and the range of possible adaptation options are so extensive. These conditions pose challenges to standard optimization decision-support techniques. This talk will describe a methodology called Robust Decisionmaking (RDM) that can complement more traditional analytic approaches by utilizing screening-level water management models to evaluate large numbers of strategies against a wide range of plausible future scenarios. The presentation will describe a recent application of the methodology to evaluate climate adaptation strategies for the Inland Empire Utilities Agency in Southern California. This project found that RDM can provide a useful way for addressing climate change uncertainty and identify robust adaptation strategies.

  7. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  8. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  9. Climate change and skin disease.

    PubMed

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  10. Climate Change Boot Camps: Targeting Policy Makers and Outreach Trainers in Arizona to Improve Climate Literacy

    NASA Astrophysics Data System (ADS)

    Ferguson, D. B.; Guido, Z. S.; Buizer, J.; Roy, M.

    2010-12-01

    Bringing climate change issues into focus for decision makers is a growing challenge. Decision makers are often confronted with unique informational needs, a lack of useable information, and needs for customized climate change training, among other issues. Despite significant progress in improving climate literacy among certain stakeholders such as water managers, recent reports have highlighted the growing demand for climate-change information in regions and sectors across the US. In recent years many ventures have sprung up to address these gaps and have predominantly focused on K-12 education and resource management agencies such as the National Park Service and National Weather Service. However, two groups that are critical for integrating climate information into actions have received less attention: (1) policy makers and (2) outreach experts, such as Cooperative Extension agents. Climate Change Boot Camps (CCBC) is a joint effort between the Climate Assessment for the Southwest (CLIMAS)—a NOAA Regionally Integrated Sciences and Assessments (RISA) program—and researchers at Arizona State University to diagnose climate literacy and training gaps in Arizona and develop a process that converts these deficiencies into actionable knowledge among the two aforementioned groups. This presentation will highlight the initial phases of the CCBC process, which has as its outcomes the identification of effective strategies for reaching legislators, climate literacy and training needs for both policy makers and trainers, and effective metrics to evaluate the success of these efforts. Specific attention is given to evaluating the process from initial needs assessment to the effectiveness of the workshops. Web curriculum and training models made available on the internet will also be developed, drawing on extensive existing Web resources for other training efforts and converted to meet the needs of these two groups. CCBC will also leverage CLIMAS’ long history of

  11. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  12. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  13. Climate change and forest diseases

    Treesearch

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  14. Managing climate change refugia for climate adaptation

    Treesearch

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  15. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  16. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  17. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation.

    PubMed

    Mawdsley, Jonathan R; O'Malley, Robin; Ojima, Dennis S

    2009-10-01

    The scientific literature contains numerous descriptions of observed and potential effects of global climate change on species and ecosystems. In response to anticipated effects of climate change, conservation organizations and government agencies are developing "adaptation strategies" to facilitate the adjustment of human society and ecological systems to altered climate regimes. We reviewed the literature and climate-change adaptation plans that have been developed in United States, Canada, England, México, and South Africa and found 16 general adaptation strategies that relate directly to the conservation of biological diversity. These strategies can be grouped into four broad categories: land and water protection and management; direct species management; monitoring and planning; and law and policy. Tools for implementing these strategies are similar or identical to those already in use by conservationists worldwide (land and water conservation, ecological restoration, agrienvironment schemes, species translocation, captive propagation, monitoring, natural resource planning, and legislation/regulation). Although our review indicates natural resource managers already have many tools that can be used to address climate-change effects, managers will likely need to apply these tools in novel and innovative ways to meet the unprecedented challenges posed by climate change.

  18. Climate change and children.

    PubMed

    Ebi, Kristie L; Paulson, Jerome A

    2007-04-01

    Climate change is increasing the burden of climate-sensitive health determinants and outcomes worldwide. Acting through increasing temperature, changes in the hydrologic cycle, and sea level rise, climate change is projected to increase the frequency and intensity of heat events and extreme events (floods and droughts), change the geographic range and incidence of climate-sensitive vector-, food-, and waterborne diseases, and increase diseases associated with air pollution and aeroallergens. Children are particularly vulnerable to these health outcomes because of their potentially greater exposures, greater sensitivity to certain exposures, and their dependence on caregivers.

  19. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  20. Climate change in safety assessment of a surface disposal facility

    NASA Astrophysics Data System (ADS)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The

  1. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  2. Provider-agency fit in substance abuse treatment organizations: implications for learning climate, morale, and evidence-based practice implementation.

    PubMed

    Ramsey, Alex T; van den Berk-Clark, Carissa

    2015-05-12

    Substance abuse agencies have been slow to adopt and implement evidence-based practices (EBPs), due in part to poor provider morale and organizational climates that are not conducive to successful learning and integration of these practices. Person-organization fit theory suggests that alignment, or fit, between provider- and agency-level characteristics regarding the implementation of EBPs may influence provider morale and organizational learning climate and, thus, implementation success. The current study hypothesized that discrepancies, or lack of fit, between provider- and agency-level contextual factors would negatively predict provider morale and organizational learning climate, outcomes shown to be associated with successful EBP implementation. Direct service providers (n = 120) from four substance abuse treatment agencies responded to a survey involving provider morale, organizational learning climate, agency expectations for EBP use, agency resources for EBP use, and provider attitudes towards EBP use. Difference scores between combinations of provider- and agency-level factors were computed to model provider-agency fit. Quadratic regression analyses were conducted to more adequately and comprehensively model the level of the dependent variables across the entire "fit continuum". Discrepancies, or misfit, between agency expectations and provider attitudes and between agency resources and provider attitudes were associated with poorer provider morale and weaker organizational learning climate. For all hypotheses, the curvilinear model of provider-agency discrepancies significantly predicted provider morale and organizational learning climate, indicating that both directions of misfit (provider factors more favorable than agency factors, and vice-versa) were detrimental to morale and climate. However, outcomes were most negative when providers viewed EBPs favorably, but perceived that agency expectations and resources were less supportive of EBP use. The

  3. Livelihood resilience in the face of climate change

    NASA Astrophysics Data System (ADS)

    Tanner, Thomas; Lewis, David; Wrathall, David; Bronen, Robin; Cradock-Henry, Nick; Huq, Saleemul; Lawless, Chris; Nawrotzki, Raphael; Prasad, Vivek; Rahman, Md. Ashiqur; Alaniz, Ryan; King, Katherine; McNamara, Karen; Nadiruzzaman, Md.; Henly-Shepard, Sarah; Thomalla, Frank

    2015-01-01

    The resilience concept requires greater attention to human livelihoods if it is to address the limits to adaptation strategies and the development needs of the planet's poorest and most vulnerable people. Although the concept of resilience is increasingly informing research and policy, its transfer from ecological theory to social systems leads to weak engagement with normative, social and political dimensions of climate change adaptation. A livelihood perspective helps to strengthen resilience thinking by placing greater emphasis on human needs and their agency, empowerment and human rights, and considering adaptive livelihood systems in the context of wider transformational changes.

  4. NASA Nice Climate Change Education

    NASA Astrophysics Data System (ADS)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    change education can be beneficial to future learners and general public. The main scope is to increase the amount of STEM knowledge throughout the nations scientific literacy as we are using the platform of climate change. Federal entities which may include but not limited to National Security Agency and the Department of Homeland Security and Management will serve as resources partners for this common goal of having a more knowledgeable technological savvy and scientific literate society. The presentation will show that incorporating these best practices into elementary and early childhood education undergraduate programs will assist with increasing a enhance scientific literate society. As a measurable outcome have a positive impact on instructional effectiveness of future teachers. Their successfully preparing students in meeting the standards of the Common Core Initiative will attempt to measure across the curriculum uniformly.

  5. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, Frederic H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, Frederic H.

    2003-01-01

    Three procedures were used to develop a set of plausible scenarios of anthropogenic climate change by the year 2100 that could be posed to the sectors selected for assessment (Fig. 2.2). First, a workshop of climatologists with expertise in western North American climates was convened from September 10-12, 1998 at the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA to discuss and propose a set of scenarios for the Rocky Mountain/Great Basin (RMGB) region.Secondly, the 20th-century climate record was analyzed to determine what trends might have occurred during the period. Since CO2 and other greenhouse gases increased during the century, it was reasonable to examine whether the changes projected for the 21st century had begun to appear during the 20th, at least qualitatively though not quantitatively.Third, on the assumption of a two-fold increase in atmospheric CO2 by 2100, climate-change scenarios for the 21st century were projected with two, state-of-the-art computer models that simulate the complex interactions between earth, atmosphere, and ocean to produce the earth’s climate system. Each of the last two procedures has its strengths and weaknesses, and each can function to some degree as a check on the other. The historical analysis has the advantage of using empirical measurements of actual climate change taken over an extensive network of measuring stations. These make it possible to subdivide a large region like the RMGB into subreqions to assess the uniformity of climate and climate change over the region. And the historical measurements can to some degree serve as a check on the GCM simulations when the two are compared over the same time period.

  6. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  7. Potentials for sustainable transportation in cities to alleviate climate change impacts.

    PubMed

    Mashayekh, Yeganeh; Jaramillo, Paulina; Samaras, Constantine; Hendrickson, Chris T; Blackhurst, Michael; MacLean, Heather L; Matthews, H Scott

    2012-03-06

    Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.

  8. A Training Partnership Focused on Climate Change Impact on Water Resources and Coastal Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Abshire, W. E.; Brekke, L. D.; Arnold, J. R.

    2015-12-01

    Beginning in 2010 the COMET® Program (www.comet.ucar.edu), a part of the UCAR Community Programs (UCP) at UCAR, entered into partnership with several Climate Change and Water Working Group (CCAWWG, http://www.ccawwg.us/) agencies to pilot a new training program. With funding coming from the Bureau of Reclamation and the US Army Corps of Engineers, a series of self-paced online lessons and live courses targeted at technical climate change and water science professionals have already been delivered. Since it's release in 2012, the first self-paced lesson developed under this partnership entitled, "Preparing Hydro-climate Inputs for Climate Change in Water Resource Planning", has been taken over 2600 times. Users have come from federal, state, and local agencies as well as academia, government and private sectors around the US as well as from other countries. Additionally, the most popular multi-day course, Hydrologic Impacts Under Climate Change (HIUCC), has been offered to a diverse audience in both residence and virtual formats. This presentation provides an overview of the training materials developed through this partnership as well as plans for future offerings. A recommended set of lessons for all users who wish explore the open materials will be highlighted, including excerpts from the newest materials covering climate change influences on water temperature for inland streams and watershed and channel sedimentation. These self-paced, online materials are currently freely available on the of the MetEd Web site (http://www.meted.ucar.edu) via the "Education & Training", "Climate" topic area. Users interested in directly accessing the materials can take these and many other lessons at http://meted.ucar.edu/climate. Additionally, the presentation highlights opportunities for learners to register for ongoing multi-day courses taught both live in person and at a distance. Now, in the beginning of the 6th year of partnership, new initiatives to train non

  9. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    NASA Astrophysics Data System (ADS)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  10. The neurobiology of climate change

    NASA Astrophysics Data System (ADS)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  11. The neurobiology of climate change.

    PubMed

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  12. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  13. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  14. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  15. Communicating climate change adaptation information using web-based platforms

    NASA Astrophysics Data System (ADS)

    Karali, Eleni; Mattern, Kati

    2017-07-01

    To facilitate progress in climate change adaptation policy and practice, it is important not only to ensure the production of accurate, comprehensive and relevant information, but also the easy, timely and affordable access to it. This can contribute to better-informed decisions and improve the design and implementation of adaptation policies and other relevant initiatives. Web-based platforms can play an important role in communicating and distributing data, information and knowledge that become constantly available, reaching out to a large group of potential users. Indeed in the last decade there has been an extensive increase in the number of platforms developed for this purpose in many fields including climate change adaptation. This short paper concentrates on the web-based adaptation platforms developed in Europe. It provides an overview of the recently emerged landscape, examines the basic characteristics of a set of platforms that operate at national, transnational and European level, and discusses some of the key challenges related to their development, maintenance and overall management. Findings presented in this short paper are discussed in greater detailed in the Technical Report of the European Environment Agency Overview of climate change adaptation platforms in Europe.

  16. Beyond Knowledge: Service Learning and Local Climate Change Research Engagement Activities that Foster Action and Behavior Change

    NASA Astrophysics Data System (ADS)

    Low, R.; Mandryk, C.; Gosselin, D. C.; Haney, C.

    2013-12-01

    Climate change engagement requires individuals to understand an abstract and complex topic and realize the profound implications of climate change for their families and local community. In recent years federal agencies have spent millions of dollars on climate change education to prepare a nation for a warming future. The majority of these education efforts are based on a knowledge deficit model. In this view 'educate' means 'provide information'. However cognitive and behavioral research and current action demonstrate that information alone is not enough; knowledge does not necessarily lead to action. Educators are speaking to deaf ears if we rely on passive and abstract information transfer and neglect more persuasive and affective approaches to communication. When climate change is presented abstractly as something that happens in the future to people, environments, animals somewhere else it is easy to discount. People employ two separate systems for information processing: analytical-rational and intuitive-experiential Authentic local research experiences that engage both analytical and experiential information processing systems not only help individuals understand the abstraction of climate change in a concrete and personally experienced manner, but are more likely to influence behavior. Two on-line, graduate-level courses offered within University of Nebraska's Masters of Applied Science program provide opportunities for participants to engage in authentic inquiry based studies climate change's local impacts, and work with K-12 learners in promoting the scientific awareness and behavioral changes that mitigate against the negative impacts of a changing climate. The courses are specifically designed to improve middle and high school (grades 6-12) teachers' content knowledge of climate processes and climate change science in the context of their own community. Both courses provide data-rich, investigative science experiences in a distributed digital

  17. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  18. Climate change. Climate in Medieval time.

    PubMed

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  19. An Official American Thoracic Society Workshop Report: Climate Change and Human Health

    PubMed Central

    Pinkerton, Kent E.; Rom, William N.; Akpinar-Elci, Muge; Balmes, John R.; Bayram, Hasan; Brandli, Otto; Hollingsworth, John W.; Kinney, Patrick L.; Margolis, Helene G.; Martin, William J.; Sasser, Erika N.; Smith, Kirk R.; Takaro, Tim K.

    2012-01-01

    This document presents the proceedings from the American Thoracic Society Climate Change and Respiratory Health Workshop that was held on May 15, 2010, in New Orleans, Louisiana. The purpose of the one-day meeting was to address the threat to global respiratory health posed by climate change. Domestic and international experts as well as representatives of international respiratory societies and key U.S. federal agencies convened to identify necessary research questions concerning climate change and respiratory health and appropriate mechanisms and infrastructure needs for answering these questions. After much discussion, a breakout group compiled 27 recommendations for physicians, researchers, and policy makers. These recommendations are listed under main issues that the workshop participants deemed of key importance to respiratory health. Issues include the following: (1) the health impacts of climate change, with specific focus on the effect of heat waves, air pollution, and natural cycles; (2) mitigation and adaptation measures to be taken, with special emphasis on recommendations for the clinical and research community; (3) recognition of challenges specific to low-resource countries when coping with respiratory health and climate change; and (4) priority research infrastructure needs, with special discussion of international needs for cooperating with present and future environmental monitoring and alert systems. PMID:22421581

  20. Supporting Climate Literacy in the K12 Classroom by Identifying Educators' Perceived Barriers to and Gaps in Resources for Teaching Climate Change

    NASA Astrophysics Data System (ADS)

    Tayne, K.

    2015-12-01

    As K12 teachers seek ways to provide meaningful learning opportunities for students to understand climate change, they often face barriers to teaching about climate and/or lack relevant resources on the topic. In an effort to better understand how to support K12 teachers in this role, a survey about "teaching climate change" was created and distributed. The results of the 2015 survey are presented, based on more than 200 teacher responses. Respondents included National Science Teachers Association (NSTA) members, 2015 STEM Teacher and Researcher (STAR) Fellows and science teachers from several U.S. school districts. The survey identifies teachers' perceived barriers to teaching climate change, for example difficulty integrating climate change concepts into specific core courses (i.e., biology), as well as desired classroom resources, such as climate change project-based learning (PBL) units that connect to the Next Generation Science Standards (NGSS). Survey results also indicate possible pathways for federal agencies, non-profits, universities and other organizations to have a more significant impact on climate literacy in the classroom. In response to the survey results, a comprehensive guide is being created to teach climate change in K12 classrooms, addressing barriers and providing resources for teachers. For example, in the survey, some teachers indicated that they lacked confidence in their content knowledge and understanding of climate change, so this guide provides web-based resources to help further an educator's understanding of climate change, as well as opportunities for relevant online and in-person professional development. In this quest for desired resources to teach climate change, gaps in accessible and available online resources are being identified. Information about these "gaps" may help organizations that strive to support climate literacy in the classroom better serve teachers.

  1. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  2. The National Climate Change and Wildlife Science Center annual report for 2012

    USGS Publications Warehouse

    Varela-Acevedo, Elda; O'Malley, Robin

    2013-01-01

    Welcome to the inaugural edition of the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) annual report. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $70 million in cutting-edge climate change research and, in response to Secretarial Order No. 3289,established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). The mission of the NCCWSC is to provide natural resource managers with the tools and information they need to develop and execute management strategies that address the impacts of climate and other ongoing global changes on fish and wildlife and their habitats. The DOI CSCs are joint Federal-university partnerships that focus their scientific work on regional priorities identified by DOI Landscape Conservation Cooperatives (LCCs) as well as Federal, State, Tribal, and other resource managers. The CSCs provide access to a wide range of scientific capabilities through their network of university partners along with the USGS and other Federal agency scientists. The focus of the NCCWSC on multiregion and national priorities complements the regionally focused agendas of the CSCs.

  3. An academic approach to climate change emergency preparedness.

    PubMed

    Trask, Jeffrey A

    To achieve effective emergency management and business continuity, all hazards should be considered during the planning and preparedness process. In recent years, several new hazards have attracted the attention of Emergency Management and Business Continuity practitioners. Climate change presents a unique challenge. Practitioners must rely on historical data combined with scientific projections to guide their planning and preparedness efforts. This article examines how an academic institution's emergency management programme can plan successfully for this hazard by focusing on best practices in the area of building cross-departmental and cross-jurisdictional relationships. Examples of scientific data related to the hazard of climate change will be presented along with the latest guidance from the Federal Emergency Management Agency encouraging the planning for future hazards. The article presents a functional exercise in which this hazard was prominently featured, and presents testimony from subject matter experts. Recommendations for emergency management and business continuity programmes are so provided.

  4. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  5. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  7. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  8. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species. Copyright © 2015, American Association for the Advancement of Science.

  9. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover.

  10. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  11. State Wildlife Action Plans as Tools for Adapting to a Continuously Changing Climate

    NASA Astrophysics Data System (ADS)

    Metivier, D. W.; Yocum, H.; Ray, A. J.

    2015-12-01

    Public land management plans are potentially powerful policies for building sustainability and adaptive capacity. Land managers are recognizing the need to respond to numerous climate change impacts on natural and human systems. For the first time, in 2015, the federal government required each state to incorporate climate change into their State Wildlife Action Plans (SWAP) as a condition for funding. As important land management tools, SWAPs have the potential to guide state agencies in shaping and implementing practices for climate change adaptation. Intended to be revised every ten years, SWAPs can change as conditions and understanding of climate change evolves. This study asks what practices are states using to integrate climate change, and how does this vary between states? To answer this question, we conducted a broad analysis among seven states (CO, MT, NE, ND, SD, UT, WY) and a more in-depth analysis of four states (CO, ND, SD, WY). We use seven key factors that represent best practices for incorporating climate change identified in the literature. These best practices are species prioritization, key habitats, threats, monitoring, partnerships and participation, identification of management options, and implementation of management options. The in-depth analysis focuses on how states are using climate change information for specific habitats addressed in the plans. We find that states are integrating climate change in many different ways, showing varying degrees of sophistication and preparedness. We summarize different practices and highlight opportunities to improve the effectiveness of plans through: communication tools across state lines and stakeholders, explicit targeting of key habitats, enforcement and monitoring progress and success, and conducting vulnerability analyses that incorporate topics beyond climate and include other drivers, trajectories, and implications of historic and future land-use change.

  12. Climate Change Indicators

    EPA Pesticide Factsheets

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  13. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  14. Diagnosing climate change impacts and identifying adaptation strategies by involving key stakeholder organisations and farmers in Sikkim, India: Challenges and opportunities.

    PubMed

    Azhoni, Adani; Goyal, Manish Kumar

    2018-06-01

    Narrowing the gap between research, policy making and implementing adaptation remains a challenge in many parts of the world where climate change is likely to severely impact water security. This research aims to narrow this gap by matching the adaptation strategies being framed by policy makers to that of the perspectives of development agencies, researchers and farmers in the Himalayan state of Sikkim in India. Our case study examined the perspectives of various stakeholders for climate change impacts, current adaptation strategies, knowledge gaps and adaptation barriers, particularly in the context of implementing the Sikkim State Action Plan on Climate Change through semi-structured interviews carried out with decision makers in the Sikkim State Government, researchers, consultants, local academia, development agencies and farmers. Using Stakeholders Network Analysis tools, this research unravels the complexities of perceiving climate change impacts, identifying strategies, and implementing adaptation. While farmers are less aware about the global phenomenon of climate change impacts for water security, their knowledge of the local conditions and their close interaction with the State Government Agriculture Department provides them opportunities. Although important steps are being initiated through the Sikkim State Action Plan on Climate Change it is yet to deliver effective means of adaptation implementation and hence, strengthening the networks of close coordination between the various implementing agencies will pay dividends. Knowledge gaps and the need for capacity building identified in this research, based on the understandings of key stakeholders are highly relevant to both the research community and for informing policy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Translating Research into Practice: Establishing a Network of Climate Change Practitioners in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Milner, G. A.

    2017-12-01

    Climate research and information continues to emerge at a rapid pace from the academic and scientific community. Decisions being made today by planners, engineers and staff across the Province of Ontario rely on science and information to plan and build our systems for the long term. Of course, as scientific information evolves continuously to produce lessons learned and new evidence, on the ground decisions often become entrenched in outdated information and need updating. Given this, bridging the gap between research to policy, and research to practice is of critical importance as the Province of Ontario upgrades its infrastructure, plans for long term growth in population within the Great Lakes Basin, and manages its natural systems and resources responsibly. The Ontario Climate Consortium (OCC) is an interdisciplinary network of academics and practitioners established in 2011 in the province that works to mobilize climate research findings towards building capacity, inspiring climate action, and training end-users with the latest science. The OCC has collaborated with more than 39 organizations throughout Ontario and across Canada, including government agencies at all levels (local, provincial and federal), non-profit organizations and private sector companies. This presentation will describe the foundations of climate action in Ontario, Canada including the landscape of climate adaptation practitioners from both public and private organizations. Furthermore, this presentation will feature lessons learned from the OCC network, including: 1) What comprises effective partnerships to undertake climate change adaptation planning for cities; 2) How to build the foundation for capacity at agencies with limited resources or expertise in the climate change field; and 3) How to successfully mobilize complex climate data for end-users to produce usable tools (through a case study research project). The latter will present findings from a two-year research project

  16. Climate change: Cropping system changes and adaptations

    USDA-ARS?s Scientific Manuscript database

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  17. Our Changing Climate: A Brand New Way to Study Climate Science

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  18. Climate change and One Health.

    PubMed

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  19. Climate change and One Health

    PubMed Central

    Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-01-01

    Abstract The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change. PMID:29790983

  20. Setting the Record Straight: Interest Group Influence on Climate Policy at the Environmental Protection Agency

    NASA Astrophysics Data System (ADS)

    Cook, Jeffrey J.

    It is clear that interest groups are involved in the rulemaking process at the Environmental Protection Agency (EPA), but it has been difficult to determine whether certain groups are more influential on outcomes. This debate persists because the literature illustrates that groups can be influential at discrete stages in the process, but the field rarely analyzes the entire rulemaking process. This uncertainty has spurred controversy regarding the EPA's recent climate change regulations. Therefore, this dissertation conducted three case studies of recent climate change regulations and addresses three questions. First, what, if any, strategies did interest groups use to influence the content of these climate change rules? Second, did these strategies translate into influence? Third, what can these climate change case studies tell us about the role of interest groups in other controversial rules at the EPA, and across the bureaucracy more broadly? Ultimately, I argue that interest group influence was generally balanced across each of the three case studies. These findings then serve as the basis to develop my Regulatory Spheres of Influence Framework. The framework illustrates that given the nature of EPA rulemakings, it is very difficult for one side either business or environmental to dominate the process in highly controversial rules. It is possible that these conclusions track to other controversial rules across the bureaucracy and I note that my framework could be applied in other contexts to test this assertion.

  1. U.S. Funding is insufficient to address the human health impacts of and public health responses to climate variability and change.

    PubMed

    Ebi, Kristie L; Balbus, John; Kinney, Patrick L; Lipp, Erin; Mills, David; O'Neill, Marie S; Wilson, Mark L

    2009-06-01

    The need to identify and try to prevent adverse health impacts of climate change has risen to the forefront of climate change policy debates and become a top priority of the public health community. Given the observed and projected changes in climate and weather patterns, their current and anticipated health impacts, and the significant degree of regulatory discussion underway in the U.S. government, it is reasonable to determine the extent of federal investment in research to understand, avoid, prepare for, and respond to the human health impacts of climate change in the United States. In this commentary we summarize the health risks of climate change in the United States and examine the extent of federal funding devoted to understanding, avoiding, preparing for, and responding to the human health risks of climate change. Future climate change is projected to exacerbate various current health problems, including heat-related mortality, diarrheal diseases, and diseases associated with exposure to ozone and aeroallergens. Demographic trends and geophysical and socioeconomic factors could increase overall vulnerability. Despite these risks, extramural federal funding of climate change and health research is estimated to be < $3 million per year. Given the real risks that climate change poses for U.S. populations, the National Institutes of Health, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, and other agencies need to have robust intramural and extramural programs, with funding of > $200 million annually. Oversight of the size and priorities of these programs could be provided by a standing committee within the National Academy of Sciences.

  2. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    NASA Astrophysics Data System (ADS)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  3. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  4. Predictors of trust in the general science and climate science research of US federal agencies.

    PubMed

    Myers, Teresa A; Kotcher, John; Stenhouse, Neil; Anderson, Ashley A; Maibach, Edward; Beall, Lindsey; Leiserowitz, Anthony

    2017-10-01

    In this article, we focus on a key strategic objective of scientific organizations: maintaining the trust of the public. Using data from a nationally representative survey of American adults ( n = 1510), we assess the extent to which demographic factors and political ideology are associated with citizens' trust in general science and climate science research conducted by US federal agencies. Finally, we test whether priming individuals to first consider agencies' general science research influences trust in their climate science research, and vice versa. We found that federal agencies' general science research is more trusted than their climate science research-although a large minority of respondents did not have an opinion-and that political ideology has a strong influence on public trust in federal scientific research. We also found that priming participants to consider general scientific research does not increase trust in climate scientific research. Implications for theory and practice are discussed.

  5. Challenges and Opportunities for Mainstreaming Climate Change Adaptation into WaSH Development Planning in Ghana.

    PubMed

    Alhassan, Salley; Hadwen, Wade L

    2017-07-10

    Climate change threatens water, sanitation and hygiene (WaSH) facilities and services, as these are intimately linked to the water cycle and are vulnerable to changes in the quantity and quality of available water resources. Floods and droughts, which pollute and reduce water delivery respectively, have now become a perennial issue to deal with in the northern regions of Ghana. This study aimed to assess the degree to which climate change adaptation measures are mainstreamed into the water, sanitation and hygiene (WaSH) development planning process in Ghana. Stakeholders from government and non-government agencies were interviewed to gain perspectives on the threat of climate change, the inclusion of climate change in WaSH planning and the barriers preventing mainstreaming. Despite awareness of climate change, adaptation measures have not been considered, and the immediate WaSH needs remain the priority. Overall, stakeholders felt the adaptive capacity of the Municipality was low and that mainstreaming has not yet occurred. Despite the lack of progress, there are great opportunities for mainstreaming climate change adaptation into planning through increasing awareness and capacity, legislative and institutional changes and the development of participatory systems to provide early warning systems and disaster risk analyses that will inform future planning.

  6. Challenges and Opportunities for Mainstreaming Climate Change Adaptation into WaSH Development Planning in Ghana

    PubMed Central

    2017-01-01

    Climate change threatens water, sanitation and hygiene (WaSH) facilities and services, as these are intimately linked to the water cycle and are vulnerable to changes in the quantity and quality of available water resources. Floods and droughts, which pollute and reduce water delivery respectively, have now become a perennial issue to deal with in the northern regions of Ghana. This study aimed to assess the degree to which climate change adaptation measures are mainstreamed into the water, sanitation and hygiene (WaSH) development planning process in Ghana. Stakeholders from government and non-government agencies were interviewed to gain perspectives on the threat of climate change, the inclusion of climate change in WaSH planning and the barriers preventing mainstreaming. Despite awareness of climate change, adaptation measures have not been considered, and the immediate WaSH needs remain the priority. Overall, stakeholders felt the adaptive capacity of the Municipality was low and that mainstreaming has not yet occurred. Despite the lack of progress, there are great opportunities for mainstreaming climate change adaptation into planning through increasing awareness and capacity, legislative and institutional changes and the development of participatory systems to provide early warning systems and disaster risk analyses that will inform future planning. PMID:28698518

  7. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  8. Climate change; Confronting the global experiment

    Treesearch

    Constance I. Millar

    2006-01-01

    Earth’s natural climate system is characterized by continually changing climates, with climate regimes that oscillate quasi-cyclically at multiple and nested scales from annual to multi-millennial, and commonly change abruptly. Under naturally changing climates, plant species track changes at all scales in individualistic manner, with plant communities...

  9. Integrating climate change into the state wildlife action plans: Biological responses to climate impacts with a focus on Regional Species of Greatest Conservation Need (RSGCN)

    USGS Publications Warehouse

    Morelli, Toni Lyn; DeLuca, William; Ellison, Colton; Jane, Stephen F.; Matthews, Stephen

    2015-01-01

    This chapter reviews the responses to climate change on the 367 Regional Species of Greatest Conservation Need (RSGCN) identified by the Northeast Fish and Wildlife Diversity Technical Committee (NEFWDTC), technical experts from states’ natural resource agencies (Appendix 3.1). These species were chosen based on their conservation status, listing in SWAPs, and the percentage of their range that occurs in the Northeast. The objectives of this chapter are to: summarize how regional biodiversity has already responded and is expected to respond to climate change; summarize information on specific RSGCN species responses to climate change to date and anticipated under future scenarios; characterize the greatest uncertainties about how biodiversity and RSGCN species will respond to climate change in the future; and highlight where other factors are expected to exacerbate the effects of climate change. This information was obtained through a systematic review of the peer-reviewed literature, primarily using the ISI Web of Knowledge to search for papers on each species related to “climate”, “temperature”, or “precipitation”. Although we undoubtedly missed some sources, the following allows us to review some of the ways climate change will affect regional species of conservation concern

  10. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  11. Assessment of climate change effects on Canada's National Park system.

    PubMed

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  12. Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6

    USGS Publications Warehouse

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.

    2018-01-01

    The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.

  13. Climate Change and Health

    MedlinePlus

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  14. USDA Southwest climate hub for climate change

    USDA-ARS?s Scientific Manuscript database

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  15. Native Peoples-Native Homelands Climate Change Workshop: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    The Native Peoples-Native Homelands Climate Change Workshop was held on October 28 through November 01,1998, as part of a series of workshops being held around the U.S. to improve the understanding of the potential consequences of climate variability and change for the Nation. This workshop was specifically designed by Native Peoples to examine the impacts of climate change and extreme weather variability on Native Peoples and Native Homelands from an indigenous cultural and spiritual perspective and to develop recommendations as well as identify potential response actions. The workshop brought together interested Native Peoples, representatives of Tribal governments, traditional elders, Tribal leaders, natural resource managers, Tribal College faculty and students, and climate scientists fiom government agencies and universities. It is clear that Tribal colleges and universities play a unique and critical role in the success of these emerging partnerships for decision-making in addition to the important education function for both Native and non-Native communities such as serving as a culturally-appropriate vehicle for access, analysis, control, and protection of indigenous cultural and intellectual property. During the discussions between scientists and policy-makers from both Native and non-Native communities, a number of important lessons emerged which are key to building more effective partnerships between Native and non-Native communities for collaboration and decision-making for a more sustainable future. This talk summarizes the key issues, recommendations, and lessons learned during this workshop.

  16. Climate change and the biosphere

    Treesearch

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  17. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  18. Building an Open Data Portal for the European Space Agency Climate Change Initiative based on an Iterative Development Methodology and Linked Data Technologies

    NASA Astrophysics Data System (ADS)

    Kershaw, P.; Bennett, V. L.; Stephens, A.; Wilson, A.; Waterfall, A. M.; Petrie, R.; Iwi, A.; Donegan, S.; Juckes, M. N.; Parton, G.

    2016-12-01

    The Climate Change Initiative (CCI) programme was initiated by the European Space Agency (ESA) in 2009 to address the GCOS Essential Climate Variable (ECV) requirements to provide stable, long-term, satellite-based data products to characterise the climate system and its changes. CEDA, working as part of a project consortium, were awarded the contract to build the Open Data Portal, consisting collectively of a central archive and single point of access for dissemination of the data to the international user community. Reflecting climate and earth observation community requirements, the system needed to support a range of access services in use by this domain and specifically, to integrate into existing infrastructure in the form of the Earth System Grid Federation (ESGF). This range of requirements together with the heterogeneity of the ECV datasets presented significant challenges. However, the use of Linked Data technologies and an iterative approach to data model development and data publishing have been instrumental in meeting the objectives and building a cohesive system. The portal supports data discovery based on the OGC CSW specification and on ESGF's powerful faceted search. These services provide complementary content at different levels of granularity and it therefore became clear that a common data model was needed. Key terms are defined in vocabularies serialised in SKOS and OWL and are accessible from a central vocabulary server to provide a single authoritative source for applications consuming metadata content. Exploiting the vocabulary service therefore, it has been possible to develop an innovative solution tagging ISO 19115 records for the CSW with the equivalent vocabulary terms used for the ESGF faceted search system. In this way it has been possible to create a rich user interface for the portal combining search results from both search services and the ability to dynamically populate facet selection and context-based help information from the

  19. Moving the Conversation on Climate Change and Inequality to the Local

    PubMed Central

    TELLER, AMY S.

    2017-01-01

    Climate change is expected to shift seasonality in Tanzania, while smallholder farmers’ livelihoods and the economy rely upon the success of rainfed agriculture. However, we should not a priori assume doomsday climate vulnerability scenarios of drought and devastation in the rural global South nor, on the other hand, that farmers will optimally employ local knowledge for effective adaptation. Drawing from qualitative fieldwork in two Tanzanian communities, I question these grand narratives of devastation and local adaptive capacity and introduce an approach that brings inequality to the center. Poorer nations are most vulnerable to climate change, but they are not homogenous and neither are the smallholder farmers living within them. I present evidence on the crucial context-specific dimensions of socio-ecological vulnerability for these smallholder farmers—1) water resources and access to them; 2) agricultural knowledge, including farmers’ own knowledge and their interactions with sources like government-run agricultural extension and NGOs; and 3) existing drought-coping strategies—and the heterogeneity among farmers across these dimensions. Ultimately, this case demonstrates how climate change can reproduce existing inequalities within nations by drawing upon how farmers currently respond to drought as evidence. I present the difficult and somewhat bleak contexts within which the farmers are coping, but also illustrate the agency that farmers exhibit in response to these conditions and the adaptive capacity they possess. Finally, I call for more sub-national research on climate and inequality by sociologists and draw connections among within-nation inequality, climate change, and agricultural development initiatives. PMID:28989959

  20. Changes in future fire regimes under climate change

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut

    2013-04-01

    Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.

  1. Climate Change Through a Poverty Lens

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  2. Climate change through a poverty lens

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stephane; Rozenberg, Julie

    2017-04-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  3. Genetics of climate change adaptation.

    PubMed

    Franks, Steven J; Hoffmann, Ary A

    2012-01-01

    The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.

  4. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures

  5. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    NASA Astrophysics Data System (ADS)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  6. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  7. Climate change and children's health.

    PubMed

    Bernstein, Aaron S; Myers, Samuel S

    2011-04-01

    To present the latest data that demonstrate how climate change affects children's health and to identify the principal ways in which climate change puts children's health at risk. Data continue to emerge that further implicate climate change as contributing to health burdens in children. Climate models have become even more sophisticated and consistently forecast that greenhouse gas emissions will lead to higher mean temperatures that promote more intense storms and droughts, both of which have profound implications for child health. Recent climate models shed light upon the spread of vector-borne disease, including Lyme disease in North America and malaria in Africa. Modeling studies have found that conditions conducive to forest fires, which generate harmful air pollutants and damage agriculture, are likely to become more prevalent in this century due to the effects of greenhouse gases added to earth's atmosphere. Through many pathways, and in particular via placing additional stress upon the availability of food, clean air, and clean water and by potentially expanding the burden of disease from certain vector-borne diseases, climate change represents a major threat to child health. Pediatricians have already seen and will increasingly see the adverse health effects of climate change in their practices. Because of this, and many other reasons, pediatricians have a unique capacity to help resolve the climate change problem.

  8. Urbanism, climate change and health: systems approaches to governance.

    PubMed

    Capon, Anthony G; Synnott, Emma S; Holliday, Sue

    2009-01-01

    Effective action on climate change health impacts and vulnerability will require systems approaches and integrated policy and planning responses from a range of government agencies. Similar responses are needed to address other complex problems, such as the obesity epidemic. Local government, with its focus on the governance of place, will have a key role in responding to these convergent agendas. Industry can also be part of the solution - indeed it must be, because it has a lead role in relevant sectors. Understanding the co-benefits for health of climate mitigation actions will strengthen the case for early action. There is a need for improved decision support tools to inform urban governance. These tools should be based on a systems approach and should incorporate a spatial perspective.

  9. The Tri-Agency Climate Education (TrACE) Catalog: Promoting collaboration, effective practice, and a robust portfolio by sharing educational resources developed across NASA, NOAA & NSF climate education initiatives

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Martin, A.; Givens, S. M.; Yue, S.; Wilson, C. E.; Karsten, J. L.

    2012-12-01

    The Tri-Agency Climate Education (TrACE) Catalog is an online, interactive, searchable and browsable web product driven by a database backend. TrACE was developed for and by the community of educators, scientists, and Federal agency representatives involved in a tri-agency collaboration for climate education. NASA, NOAA, and NSF are working together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for principal investigators and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). TrACE is a tool for the climate education community that promotes the goals of the tri-agency collaboration to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. TrACE was born as "The Matrix," a product of the 2011 Second Annual NASA, NOAA and NSF Climate Change Education Principal Investigators Meeting (see McDougall, Wilson, Martin & Knippenberg, 2011, Abstract ED21B-0583 presented at 2011 Fall Meeting, AGU, San Francisco, CA.) Meeting attendees were asked to populate a pen-and-paper matrix with all of the activities or deliverables they had created or anticipated creating as part of their NOAA/NASA/NSF-funded project. During the 2012 Third Annual Tri-Agency PI Meeting, projects were given the opportunity to add and update their products and deliverables. In the intervening year, the dataset comprising the Matrix was converted to a MySQL database, with a standardized taxonomy and minimum criteria for inclusion, and further developed into the interactive TrACE Catalog. In the fall of 2012, the TrACE Catalog web product will be made publicly

  10. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change.

    PubMed

    Dodo, Mahamat K

    2014-01-01

    Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;

  11. Climate Change: Good for Us?

    ERIC Educational Resources Information Center

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  12. Politics of climate change belief

    NASA Astrophysics Data System (ADS)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  13. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  14. Eye tracking and climate change: How is climate literacy information processed?

    NASA Astrophysics Data System (ADS)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  15. Prevention of adverse climate change impacts on water resources

    NASA Astrophysics Data System (ADS)

    Fosumpaur, P.

    2003-04-01

    The water resources design is generally based on the assumption of the stationary hydrological process and the reservoir storage is obviously evaluated in simulated flow series derived by the synthetic hydrology methods. Recently, results of numerous studies and major flood events have clearly proved that the variation of meteorological and hydrological parameters are beyond the bounds of the stationary process. These changes are related to the global climate change, which has been emphasised by the IPCC (International Panel of Climate Change) since the beginning of the 80s. Regional scenarios of the climate change are downscaled from the GCM and they are characterised by considerable variance. This uncertainty enters hydrological models of a catchment runoff which quantify impacts of the global climate change on the river flow regime. A number of studies have dealt with impacts of hydrological regime changes on water resources planning. They have shown that the variability of the reservoir storage-yield curve is seriously high. This study is aimed at the design of preventive actions based on the adaptation principle which is known from cybernetics. These prevention measures should be designed with respect to the proper identification of risks. Thus, the risk analysis should be considered. The main goals of the study are as follows: 1) Proposition of the strategic preventive actions which will be aimed to reassess particular reservoir functions with respect to actual and predicted conditions of the environment. This topic includes a potential reassessment of the capacity of particular reservoir storages. 2) Design of the system of real-time adaptive actions in the real reservoir operation to optimize the measure of the risk related to the extreme hydrological events as floods and hydrological droughts. This research has been supported by the grants No. 103/02/D049, No. 103/01/0201 and No. 103/02/0606 of the Grant Agency of the Czech Republic.

  16. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    PubMed

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  17. Maritime Archaeology and Climate Change: An Invitation

    NASA Astrophysics Data System (ADS)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  18. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  19. Climate change and air pollution jointly creating nightmare for tourism industry.

    PubMed

    Sajjad, Faiza; Noreen, Umara; Zaman, Khalid

    2014-11-01

    The objective of the study is to examine the long-run and causal relationship between climate change (i.e., greenhouse gas emissions, hydrofluorocarbons, per fluorocarbons, and sulfur hexafluoride), air pollution (i.e., methane emissions, nitrous oxide emissions, and carbon dioxide emissions), and tourism development indicators (i.e., international tourism receipts, international tourism expenditures, natural resource depletion, and net forest depletion) in the World's largest regions. The aggregate data is used for robust analysis in the South Asia, the Middle East and North Africa, sub-Saharan Africa, and East Asia and the Pacific regions, over a period of 1975-2012. The results show that climatic factors and air pollution have a negative impact on tourism indicators in the form of deforestation and natural resource depletion. The impact is evident, as we have seen the systematic eroding of tourism industry, due to severe changes in climate and increasing strain of air pollution. There are several channels of cause-effect relationship between the climatic factors, air pollution, and tourism indicators in the World's region. The study confirms the unidirectional, bidirectional, and causality independent relationship between climatic factors, air pollution, and tourism indicators in the World. It is conclusive that tourism industry is facing all time bigger challenges of reduce investment, less resources, and minor importance from the government agencies because of the two broad challenges, i.e., climate change and air pollution, putting them in a dismal state.

  20. Dynamic reserve design in the face of climate change and urbanization

    USGS Publications Warehouse

    Romañach, Stephanie; Johnson, Fred A.; Stith, Bradley M.; Bonneau, Mathieu

    2015-01-01

    Reserve design is a process that must address many ecological, social, and political factors to successfully identify parcels of land in need of protection to sustain wildlife populations and other natural resources. Making land acquisition choices for a large, terrestrial protected area is difficult because it occurs over a long timeframe and may involve consideration future conditions such as climate and urbanization changes. Decision makers need to consider factors including: order of parcel purchasing given budget constraints, future uncertainty, potential future landscape‐scale changes from urbanization and climate. In central Florida, two new refuges and the expansion of a third refuge are in various stages of USFWS planning. The Everglades Headwaters National Wildlife Refuge (EHNWR) has recently been established, is at the top of the Presidential Administration’s priority conservation areas, and is cited by the Secretary of DOI routinely in the context of conservation. The new refuges were strategically located for both for species adaptation from climate change impacts as well as currently being host to a number of important threatened and endangered species and habitats. We plan to combine a structured decision making framework, optimal solution theory, and output from ecological and sociological models (these modeling efforts were previously funded by DOI partners) that incorporate climate change to provide guidance for EHNWR reserve design. Utilizing a SDM approach and optimal solution theory, decision support tools will be developed that will incorporate stakeholder and agency objectives into targeting conservation lands both through fee simple purchase and other incentives such as easements based on ecological and socioeconomic modeling outputs driven by climate change.

  1. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  2. Natural areas as a basis for assessing ecosystem vulnerability to climate change

    Treesearch

    Margaret H. Massie; Todd M. Wilson; Anita T. Morzillo; Emilie B. Henderson

    2016-01-01

    There are more than 580 natural areas in Oregon and Washington managed by 20 federal, state, local, and private agencies and organizations. This natural areas network is unparalleled in its representation of the diverse ecosystems found in the Pacific Northwest, and could prove useful for monitoring long-term ecological responses to climate change. Our objectives were...

  3. Climate Change and Collective Violence.

    PubMed

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and (c) by addressing underlying risk factors for collective violence, such as poverty and socioeconomic disparities.

  4. Vegetation zones in changing climate

    NASA Astrophysics Data System (ADS)

    Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava

    2017-04-01

    Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area

  5. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  6. EPA Region 10 Climate Change and TMDL Pilot Project - South Fork Nooksack River, Washington

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Region 10 and EPA’s Office of Research and Development (ORD) and Office of Water (OW) have launched a pilot research project to consider how projected climate change impacts could be incorporated into a TMDL and influence restoration...

  7. Informing climate change adaptation in the Northeast and Midwest United States: The role of Climate Science Centers

    NASA Astrophysics Data System (ADS)

    Bryan, A. M.; Morelli, T. L.

    2015-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information and tools that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change. The NE CSC partners with other federal agencies, universities, and NGOs to facilitate stakeholder interaction and delivery of scientific products. For example, NE CSC researchers have partnered with the National Park Service to help managers at Acadia National Park adapt their infrastructure, operations, and ecosystems to rising seas and more extreme events. In collaboration with the tribal College of Menominee Nation and Michigan State University, the NE CSC is working with indigenous communities in Michigan and Wisconsin to co-develop knowledge of how to preserve their natural and cultural values in the face of climate change. Recently, in its largest collaborative initiative to date, the NE CSC led a cross-institutional effort to produce a comprehensive synthesis of climate change, its impacts on wildlife and their habitats, and available adaptation strategies across the entire Northeast and Midwest region; the resulting document was used by wildlife managers in 22 states to revise their Wildlife Action Plans (WAPs). Additionally, the NE CSC is working with the Wildlife Conservation Society to help inform moose conservation management. Other research efforts include hydrological modeling to inform culvert sizing under greater rainfall intensity, forest and landscape modeling to inform tree planting that mitigates the spread of invasive species, species and habitat modeling to help identify suitable locations for wildlife refugia. In addition, experimental research is being conducted to improve our understanding of how species such as brook trout are responding to climate change. Interacting with stakeholders during all phases of

  8. The Challenges of Creating Climate Change Education Cross-Sector Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2017-12-01

    Communities will have to address the impacts of climate change on their environment whether it is for adaptation - to build resilience and establish preparedness, or for mitigation - to migrate to cleaner energy sources and reduce energy use. To effectively address these impacts community leaders and professionals will need to develop an understanding of and solutions to the problems that result from climate change. The effort will need to be conducted with a cross-sector approach as all members of a community (individuals and organizations/businesses/ groups) will be impacted. Students should be involved in this effort to help them develop the critical thinking and data analysis skills they will need in the future to make responsible decisions for themselves, their community, and professionally. However, engaging businesses, organizations, and government in a coherent aligned partnership that addresses short and long term local impacts of climate change as well as the longer-term goal of preparing the future climate ready workforce has multiple challenges. Each business, organization and government agency has it own mission and goals, and metrics of achieving them. In creating an effective cross-sector partnership it is essential to determine for each partner where their mission, services, products, and activities can benefit the partnership and where the partnership can help them improve their multiple bottom lines (financial, social, envionmental) and show the value of their participation to their boards and leadership. Cross-sector partnerships have begun to form in many communities, however, financing them is difficult and most do not include education, a critical leverage element, for either the future workforce or to support current decision makers. In this presentation we will examine community partnerships that are working to address local climate issues and explore the obstacles to integrating education in these cross-sector climate change partnerships

  9. Sound transit climate risk reduction project.

    DOT National Transportation Integrated Search

    2013-09-01

    The Climate Risk Reduction Project assessed how climate change may affect Sound Transit commuter rail, light rail, and express bus : services. The project identified potential climate change impacts on agency operations, assets, and long-term plannin...

  10. Climate change streamflow scenarios designed for critical period water resources planning studies

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the

  11. U.S. Navy Climate Change Roadmap

    DTIC Science & Technology

    2010-04-01

    Climate change is a national security challenge with strategic implications for the Navy. Climate change will lead to increased tensions in nations...with weak economies and political institutions. While climate change alone is not likely to lead to future conflict, it may be a contributing factor... Climate change is affecting, and will continue to affect, U.S. military installations and access to natural resources worldwide. It will affect the

  12. iSeeChange: Crowdsourced Climate Change Reporting

    NASA Astrophysics Data System (ADS)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  13. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy.

    PubMed

    Moulton, Anthony Drummond; Schramm, Paul John

    Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity.

  14. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy

    PubMed Central

    Moulton, Anthony Drummond; Schramm, Paul John

    2017-01-01

    Context Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Objective Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Methods Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Findings Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. Conclusions A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic

  15. Climate Change: From Science to Practice.

    PubMed

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  16. Climate Change 2014: Technical Summary

    USGS Publications Warehouse

    Field, Chrisopher B.; Barros, Vicente; Mach, Katherine; Mastrandrea, Michael; van Aalst, Maarten; Adger, Niel; Arent, Douglas J; Barnett, Jonathan; Betts, Richard; Bilir, Eren; Birkmann, Joern; Carmin, Joann; Chadee, Dave; Challinor, Andrew; Chaterjee, Monalisa; Cramer, Wolfgang; Davidson, Debra; Estrada, Yuka; Gatusso, Jean-Pierre; Hijioka, Yasuakai; Yohe, Gary; Hiza, Margaret; Hoegh-Guldberg, Ove; Huang, He-Qing; Insarov, Gregory; Jones, Roger; Kovats, Sari; Lankao, Patricia Romero; Larsen, Joan Nymand; Losada, Iñigo; Marengo, José; McLean, Roger; Mearns, Linda; Mechler, Reinhard; Morton, John; Niang, Isabelle; Oki, Taikan; Olwoch, Jane Mukarugwiza; Opondo, Maggie; Poloczanska, Elvira; Pörtner, Hans -O.; Reisinger, Andy; Revi, Aromar; Schmidt, Daniela; Shaw, Rebecca; Solecki, William; Stone, Dáithí; Stone, John; Strzepek, Ken; Suarez, Avelino G.; Tschakert, Petra; Valentini, Riccardo; Vicuna, Sebastian; Villamizar, Alicia; Vincent, Katharine; Warren, Rachel; White, Leslie; Wilbanks, Thomas; Wong, Poh Poh

    2014-01-01

    Human interference with the climate system is occurring (WGI AR5 SPM Section D.3; WGI AR5 Sections 2.2, 6.3, 10.3 to 10.6, 10.9). Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of adaptation and mitigation. For the past 2 decades, IPCC’s Working Group II has developed assessments of climate change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC’s Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5. The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. [1.1 to 1.3] The number of scientific publications available for assessing climate change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation, allowing for a more robust assessment that supports policymaking (high confidence). The diversity of the topics and regions covered has similarly expanded, as has

  17. Feframing Climate Change for Environmental Health.

    PubMed

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  18. Hybrid Zones: Windows on Climate Change

    PubMed Central

    Larson, Erica L.; Harrison, Richard G.

    2016-01-01

    Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor species' responses to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semi-permeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change. PMID:25982153

  19. The Copernicus Climate Change Service (C3S): A European Answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Thepaut, Jean-Noel

    2016-04-01

    Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.

  20. Climate change and vector-borne diseases: what are the implications for public health research and policy?

    PubMed Central

    Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes

    2015-01-01

    Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. PMID:25688013

  1. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  2. Lakes as sentinels of climate change

    PubMed Central

    Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika

    2010-01-01

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409

  3. Forest disturbances under climate change

    NASA Astrophysics Data System (ADS)

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-06-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

  4. Forest disturbances under climate change

    PubMed Central

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-01-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests. PMID:28861124

  5. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual

  6. 75 FR 4411 - Agency Information Collection Activities: Department of the Interior Regional Climate Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... capacity, and those of other science partners. Information from this collection will be used to evaluate... DEPARTMENT OF THE INTERIOR United States Geological Survey Agency Information Collection Activities: Department of the Interior Regional Climate Science Centers AGENCY: United States Geological...

  7. A Science-Driven Photojournalistic Documentation of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Braasch, G.; Rothlein, J. E.

    2013-12-01

    World View of Global Warming is an independent photojournalistic documentation of global warming and rapid climate change begun in 1999. The intended outcomes of the work - the photographs, reportage and publications - are based on the principles of scientific accuracy, a journalistic approach, strong photographic skills, long-term observations, science literacy, education, documentation for policy makers and inspiration to others. During the course of this project the team of photojournalist and public health toxicologist visited, interviewed and/or had correspondence with more than 150 scientists in the field on every continent. Hundreds more have influenced and informed the work. World View of Global Warming has tested the idea that climate change can be more easily understood by the public and government officials through photographs which accurately and engagingly depict the locations and the scientists involved in research, communities responding to impacts of climate change and innovations for mitigation. Use of the photographs by scientists to further their own work and outreach was an immediate and continuing result, including use in journals, reports, textbooks and conferences. This presentation will demonstrate the many uses of photography in climate change communications and discuss how scientists and educators can more effectively interact with the public and media and artists. The website for this project was established in 2002 and now has more than 100 pages of photographs and information. It is strictly non-commercial and documented. Wide and repeated publication indicates the value of the project's climate communication: Exhibition at the Boston Museum of Science (2013), the National Academy of Sciences and the American Assn. for the Advancement of Science and other venues; extended use by the United Nations, UNFCCC, World Meteorological Organization, Environmental Protection Agency and the Office of Science and Technology Policy in the Executive

  8. Using Satellites to Understand Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric

    2007-01-01

    This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.

  9. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    PubMed

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  10. Integrating Climate Change Into Nursing Curricula.

    PubMed

    McDermott-Levy, Ruth; Jackman-Murphy, Kathryn P; Leffers, Jeanne M; Jordan, Lisa

    2018-03-28

    Climate change is a significant threat to human health across the life cycle. Nurses play an important role in mitigation, adaptation, and resilience to climate change. The use of health care resources, air quality and extreme heat, mental health, and natural disasters are major content areas across undergraduate nursing curricula that influence or are influenced by climate change. Teaching strategies and resources are offered to prepare nursing students to address climate change and human health.

  11. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  12. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  13. A Model for Pre-Service Teachers' Climate Change Awareness and Willingness to Act for Pro-Climate Change Friendly Behavior: Adaptation of Awareness to Climate Change Questionnaire

    ERIC Educational Resources Information Center

    Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu

    2015-01-01

    Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…

  14. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  15. Linking models of human behaviour and climate alters projected climate change

    NASA Astrophysics Data System (ADS)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  16. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    PubMed

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  17. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    EPA Pesticide Factsheets

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  18. Land degradation and climate change: building climate resilience in agriculture

    USDA-ARS?s Scientific Manuscript database

    Land degradation and climate change pose enormous risks to global food security. Land degradation increases the vulnerability of agroecological systems to climate change and reduces the effectiveness of adaptation options. Yet these interactions have largely been omitted from climate impact assessme...

  19. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    NASA Astrophysics Data System (ADS)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  20. Nonstationary Intensity-Duration-Frequency Curves for Drainge Infrastructure Coping with Climate Change

    NASA Astrophysics Data System (ADS)

    Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk

    2015-04-01

    As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA

  1. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  2. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  3. Managing Climate Change Refugia for Climate Adaptation

    EPA Science Inventory

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  4. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  5. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  6. Climate change: believing and seeing implies adapting.

    PubMed

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  7. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for

  8. Climate change and climate variability: personal motivation for adaptation and mitigation.

    PubMed

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  9. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  10. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  11. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    USGS Publications Warehouse

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  12. Climate change portal established

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The World Bank has developed a Climate Change Knowledge Portal as a kind of “onestop shop” for climate-related information, data, and tools. The portal provides access to global, regional, and national data and reports with an aim to providing a resource for learning about climate information and increasing knowledge on climate change—related actions. For more information, see http://sdwebx.worldbank.org/climateportal/.

  13. Western water and climate change.

    PubMed

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  14. The economics of abrupt climate change.

    PubMed

    Perrings, Charles

    2003-09-15

    The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.

  15. Ocean climate indicators: A monitoring inventory and plan for tracking climate change in the north-central California coast and ocean region

    USGS Publications Warehouse

    Duncan, Benet; Higgason, Kelley; Suchanek, Tom; Largier, John; Stachowicz, Jay; Allen, Sarah; Bograd, Steven; Breen, R.; Gellerman, Holly; Hill, Tessa; Jahncke, Jaime; Johnson, Rebecca L.; Lonhart, Steve I.; Morgan, Steven; Wilkerson, Frances; Roletto, Jan

    2013-01-01

    The impacts of climate change, defined as increasing atmospheric and oceanic carbon dioxide and associated increases in average global temperature and oceanic acidity, have been observed both globally and on regional scales, such as in the North-central California coast and ocean, a region that extends from Point Arena to Point Año Nuevo and includes the Pacific coastline of the San Francisco Bay Area. Because of the high economic and ecological value of the region’s marine environment, the Gulf of the Farallones National Marine Sanctuary (GFNMS) and other agencies and organizations have recognized the need to evaluate and plan for climate change impacts. Climate change indicators can be developed on global, regional, and site-specific spatial scales, and they provide information about the presence and potential impacts of climate change. While indicators exist for the nation and for the state of California as a whole, no system of ocean climate indicators exist that specifically consider the unique characteristics of the California coast and ocean region. To that end, GFNMS collaborated with over 50 regional, federal, and state natural resource managers, research scientists, and other partners to develop a set of 2 ocean climate indicators specific to this region. A smaller working group of 13 regional partners developed monitoring goals, objectives, strategies, and activities for the indicators and recommended selected species for biological indicators, resulting in the Ocean Climate Indicators Monitoring Inventory and Plan. The working group considered current knowledge of ongoing monitoring, feasibility of monitoring, costs, and logistics in selecting monitoring activities and selected species.

  16. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  17. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  18. Preliminary review of adaptation options for climate-sensitive ecosystems and resources. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research

    USGS Publications Warehouse

    Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.

    2008-01-01

    Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.

  19. Adapting natural resource management to climate change: The South Central Oregon and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2015-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  20. Synopsis of climate change

    Treesearch

    Angela Jardine; Jonathan Long

    2014-01-01

    Changes in climate can interact with other stressors to transform ecosystems and alter the services those ecosystems provide. This synopsis presents themes that run through the synthesis report regarding the impacts of a changing climate on the forests and waters of the synthesis area as well as long-term, broad-scale, science-based strategies to promote system...

  1. Environmental health indicators of climate change for the United States: findings from the State Environmental Health Indicator Collaborative.

    PubMed

    English, Paul B; Sinclair, Amber H; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin

    2009-11-01

    To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity.

  2. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  3. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  4. Linking models of human behaviour and climate alters projected climate change

    DOE PAGES

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; ...

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  5. Linking models of human behaviour and climate alters projected climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  6. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    PubMed

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  7. Geological Society of London Issues Statement on Climate Change

    NASA Astrophysics Data System (ADS)

    Summerhayes, Colin

    2011-02-01

    On 1 November the Geological Society of London (GSL) published a statement (http://www.geolsoc.org.uk/gsl/site//GSL//lang/en/climatechange) about the geological evidence relating to past climates, atmospheric carbon levels, and their interrelationships. The online version also carries a list of recommendations for further reading. The GSL's Geoscientist magazine (http://www.geolsoc.org.uk/gsl/site/GSL/lang/en/page8578.html) reported Bryan Lovell, GSL president, as saying, “Climate change is a defining issue of our time, whose full understanding needs geology's long perspective. Earth scientists can read…the geological record of changes in climate that occurred long before we were around to light so much as a camp fire, let alone burn coal, gas and oil. A dramatic global warming event 55 million years ago gives us a particularly clear indication of what happens when there is a sudden release of 1500 billion tonnes of carbon into Earth's atmosphere. It gets hot, the seas become more acid, and there is widespread extinction of life. We are a third of the way to repeating that ancient natural input of carbon through our own agency. The message from the rocks is that it would be a good idea to stop pulling that carbon trigger.”

  8. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    NASA Astrophysics Data System (ADS)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000

  9. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  10. Climate Change and the Federal Budget

    DTIC Science & Technology

    1998-08-01

    in the area of global climate change and to review current federal spending programs and tax policies that relate to climate change . The memorandum...policymakers as they consider options to respond to international proposals for reducing the threat of climate change . In accordance with CBO’s mandate

  11. Hydrologic refugia, plants, and climate change.

    PubMed

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  12. Creating Effective Dialogue Around Climate Change

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  13. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  14. Modeling Climate Change in the Absence of Climate Change Data. Editorial Comment

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.

    1995-01-01

    Practitioners of climate change prediction base many of their future climate scenarios on General Circulation Models (GCM's), each model with differing assumptions and parameter requirements. For representing the atmosphere, GCM's typically contain equations for calculating motion of particles, thermodynamics and radiation, and continuity of water vapor. Hydrology and heat balance are usually included for continents, and sea ice and heat balance are included for oceans. The current issue of this journal contains a paper by Van Blarcum et al. (1995) that predicts runoff from nine high-latitude rivers under a doubled CO2 atmosphere. The paper is important since river flow is an indicator variable for climate change. The authors show that precipitation will increase under the imposed perturbations and that owing to higher temperatures earlier in the year that cause the snow pack to melt sooner, runoff will also increase. They base their simulations on output from a GCM coupled with an interesting water routing scheme they have devised. Climate change models have been linked to other models to predict deforestation.

  15. Private land manager capacity to conserve threatened communities under climate change.

    PubMed

    Raymond, C M; Lechner, A M; Lockwood, M; Carter, O; Harris, R M B; Gilfedder, L

    2015-08-15

    Major global changes in vegetation community distributions and ecosystem processes are expected as a result of climate change. In agricultural regions with a predominance of private land, biodiversity outcomes will depend on the adaptive capacity of individual land managers, as well as their willingness to engage with conservation programs and actions. Understanding adaptive capacity of landholders is critical for assessing future prospects for biodiversity conservation in privately owned agricultural landscapes globally, given projected climate change. This paper is the first to develop and apply a set of statistical methods (correlation and bionomial regression analyses) for combining social data on land manager adaptive capacity and factors associated with conservation program participation with biophysical data describing the current and projected-future distribution of climate suitable for vegetation communities. We apply these methods to the Tasmanian Midlands region of Tasmania, Australia and discuss the implications of the modelled results on conservation program strategy design in other contexts. We find that the integrated results can be used by environmental management organisations to design community engagement programs, and to tailor their messages to land managers with different capacity types and information behaviours. We encourage environmental agencies to target high capacity land managers by diffusing climate change and grassland management information through well respected conservation NGOs and farm system groups, and engage low capacity land managers via formalized mentoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Can pictures speak a thousand words in understanding climate change?

    NASA Astrophysics Data System (ADS)

    Walton, P.

    2017-12-01

    Pictures are able to engage, inspire and educate people in a way that the spoken or written word cannot, and with 21st Century technology we now have even more ways to present images. Researchers and campaigners working in climate change have used the power of images to great effect, bringing the issue of a warming planet into stark relief through iconic scenes such as the forlorn polar bear adrift on an iceberg. Whilst undeniably successful, this image has now become passé and invisible necessitating the scientific community to identify new ways to engage and educate the general public. This paper reports on a new high resolution visualisation app that has been developed by the European Space Agency to illustrate the change over time of a number of climate variables. Data, collected via satellite Earth observations, have been rendered into visually stunning animations that can be interrogated in a number of ways to allow the user to understand the spatial and temporal changes of that variable. But is it enough? Can it ever be that all that glisters really is gold?

  17. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  18. Climate change and food security.

    PubMed

    Gregory, P J; Ingram, J S I; Brklacich, M

    2005-11-29

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  19. Climate change and food security

    PubMed Central

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  20. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  1. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia.

    PubMed

    Strand, Linn B; Tong, Shilu; Aird, Rosemary; McRae, David

    2010-07-28

    There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health vulnerability, including literature

  2. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia

    PubMed Central

    2010-01-01

    Background There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Methods Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. Results The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health

  3. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  4. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  5. How does climate change cause extinction?

    PubMed Central

    Cahill, Abigail E.; Aiello-Lammens, Matthew E.; Fisher-Reid, M. Caitlin; Hua, Xia; Karanewsky, Caitlin J.; Yeong Ryu, Hae; Sbeglia, Gena C.; Spagnolo, Fabrizio; Waldron, John B.; Warsi, Omar; Wiens, John J.

    2013-01-01

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies. PMID:23075836

  6. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  7. How does climate change cause extinction?

    PubMed

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  8. Climate Change Ignorance: An Unacceptable Legacy

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  9. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  10. Climate change and vector-borne diseases: what are the implications for public health research and policy?

    PubMed

    Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes

    2015-04-05

    Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. A University-Level Curriculum in Climate Change for SE Asia and the Asian Pacific

    NASA Astrophysics Data System (ADS)

    Furniss, M. J.; Saah, D. S.; Hines, S. J.; Radel, C. A.; McGroddy, M. E.; Ganz, D. J.

    2014-12-01

    A university-level curriculum has been developed for the SE Asia and Asia Pacific region and is currently being implemented by 12+ universities; in Vietnam, Cambodia, Laos, Thailand, Malaysia, and Papua New Guinea. The curriculum is supported by USAID (U.S. Agency for International Development) through the LEAF program (Lowering Emissions in Asian Forests), under the technical leadership of the U.S. Forest Service. Four modules have been developed: Basic Climate Change, Low-Emissions Land Use Planning, Social and Environmental Soundness, and Carbon Measurement and Monitoring. This presentation will focus on the Basic Climate Change module. This is a survey course that covers a wide range of climate change topics, including causes, effects, and responses. The level of detail in each of the covered topics is calibrated to current issues in the region. The module is elaborated in English and will be translated into the national language of the participating countries. The module is designed to be flexible and can be tailored to both degree and non-degree programs; as well as for trainings for natural resources professionals and policy-makers. Important training topics can be selected as short course trainings for practitioners and leaders working on climate change.

  12. Climate risks workshop

    NASA Image and Video Library

    2012-10-16

    Participants in an Oct. 16-18 workshop at John C. Stennis Space Center focused on identifying current and future climate risks and developing strategies to address them. NASA Headquarters sponsored the Resilience and Adaptation to Climate Risks Workshop to understand climate change risks and adaptation strategies. The workshop was part of an effort that joins the science and operations arms of the agency in a coordinated response to climate change. NASA Headquarters is holding workshops on the subject at all NASA centers.

  13. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  14. Floods in a changing climate

    Treesearch

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  15. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  16. Conservation and adaptation to climate change.

    PubMed

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  17. Climate change threatens European conservation areas

    PubMed Central

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  18. Mental health effects of climate change.

    PubMed

    Padhy, Susanta Kumar; Sarkar, Sidharth; Panigrahi, Mahima; Paul, Surender

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more number of farmer suicides. Droughts otherwise can lead to impaired mental health and stress. Increased frequency of disasters with climate change can lead to posttraumatic stress disorder, adjustment disorder, and depression. Changes in climate and global warming may require population to migrate, which can lead to acculturation stress. It can also lead to increased rates of physical illnesses, which secondarily would be associated with psychological distress. The possible effects of mitigation measures on mental health are also discussed. The paper concludes with a discussion of what can and should be done to tackle the expected mental health issues consequent to climate change.

  19. Public Health-Related Impacts of Climate Change inCalifornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drechsler, D.M.; Motallebi, N.; Kleeman, M.

    2005-12-01

    In June 2005 Governor Arnold Schwarzenegger issued Executive Order S-3-05 that set greenhouse gas emission reduction targets for California, and directed the Secretary of the California Environmental Protection Agency to report to the governor and the State legislature by January 2006 and biannually thereafter on the impacts to California of global warming, including impacts to water supply, public health, agriculture, the coastline, and forestry, and to prepare and report on mitigation and adaptation plans to combat these impacts. This report is a part of the report to the governor and legislature, and focuses on public health impacts that have beenmore » associated with climate change. Considerable evidence suggests that average ambient temperature is increasing worldwide, that temperatures will continue to increase into the future, and that global warming will result in changes to many aspects of climate, including temperature, humidity, and precipitation (McMichael and Githeko, 2001). It is expected that California will experience changes in both temperature and precipitation under current trends. Many of the changes in climate projected for California could have ramifications for public health (McMichael and Githeko, 2001), and this document summarizes the impacts judged most likely to occur in California, based on a review of available peer-reviewed scientific literature and new modeling and statistical analyses. The impacts identified as most significant to public health in California include mortality and morbidity related to temperature, air pollution, vector and water-borne diseases, and wildfires. There is considerable complexity underlying the health of a population with many contributing factors including biological, ecological, social, political, and geographical. In addition, the relationship between climate change and changes in public health is difficult to predict for the most part, although more detailed information is available on temperature

  20. Assessment of Climate Change in the Southwest United States: Key Findings

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.

    2012-12-01

    approximately 14-16 inches higher than in 2000, the combined effects of increased sea level, large waves and high tides will result in economic losses greater than currently experienced. Climate changes are projected to affect agriculture and livestock; growers may not be able to cultivate some tree fruit crops in their current locations, due to decreased chill hours. Energy supplies will become less reliable due to potential climate-related increases in demand, and lost power generation efficiency due to increased heat and decreased water supplies. Regional climate change will exacerbate heat-related human morbidity and mortality, and lead to increased concentrations of particulate and pollutants from wildfires and dust storms. Populations in economically disadvantaged urban neighborhoods or in regions with less robust infrastructure, such as the U.S.-Mexico border, will probably suffer the most from multiple effects of climate change on health and water and energy supplies. Regional entities have already made strides in implementing greenhouse gas mitigation policies and assessing options for changes in water and energy policy. Coastal communities and several urban centers have begun adaptation planning, as have federal resource management agencies. Lowering or removing financial, institutional, informational, and attitudinal barriers will increase society's ability to prepare for change.

  1. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    PubMed

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  2. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  3. The Benefits of Incorporating Shipping Containers into the Climate Change Adaption Plans at NASA Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Hamilton, Carl Kenneth Gonzaga

    2017-01-01

    The National Aeronautics and Space Administration has several centers and facilities located near the coast that are undoubtedly susceptible to climate change. One of those facilities is Wallops Flight Facility on the Eastern Shore of Virginia which is separated into three areas: Main Base, Mainland, and the Island. Wallops Island has numerous buildings and assets that are vulnerable to flood inundation, intense storms, and storm surge. The shoreline of Wallops Island is prone to beach erosion and is slated for another beach replenishment project in 2019. In addition, current climate projections for NASAs centers and facilities, conducted by the Climate Adaptation Science Investigators, warn of inevitable increases in annual temperature, precipitation, sea level rise, and extreme events such as heat waves. The aforementioned vulnerabilities Wallops Island faces in addition to the projections of future climate change reveal an urgency for NASA to adjust how new buildings at its centers and facilities near the coast are built to adapt to the inevitable effects of climate change. Although the agency has made strides to mitigate the effects of climate change by incorporating L.E.E.D. into new buildings that produce less greenhouse gas, the strides for the agency to institute clear climate adaptation policies for the buildings at its centers and facilities near the coast seem to lag behind. As NASA continues to formulate formidable climate change adaptation plans for its centers and facilities, an architectural trend that should be examined for its potential to replace several old buildings at Wallops Island is shipping containers buildings. Shipping containers or Intermodal Steel Building Units offer an array of benefits such as strength, durability, versatility, modular, and since they can be upcycled, they are also eco-friendly. Some disadvantages of shipping containers are they contain harmful chemicals, insulation must be added, fossil fuels must be used to

  4. Exploring the climate change concerns of striped catfish producers in the Mekong Delta, Vietnam.

    PubMed

    Nguyen, Anh Lam; Truong, Minh Hoang; Verreth, Johan Aj; Leemans, Rik; Bosma, Roel H; De Silva, Sena S

    2015-01-01

    This study investigated the perceptions on and adaptations to climate change impacts of 235 pangasius farmers in the Mekong Delta, Vietnam. Data were collected using semi-structured household surveys in six provinces, from three regions along the Mekong river branches. A Chi-Square test was used to determine the association between variables, and a logit regression model was employed to identify factors correlated with farmer's perception and adaptation. Less than half of respondents were concerned about climate change and sought suitable adaptation measures to alleviate its impacts. Improving information on climate change and introducing early warning systems could improve the adaptive capacity of pangasius farmers, in particularly for those farmers, who were not concerned yet. Farmers relied strongly on technical support from government agencies, but farmers in the coastal provinces did not express the need for training by these institutions. This contrasting result requires further assessment of the effectiveness of adaptation measures such as breeding salinity tolerant pangasius.

  5. Climate project screening tool: an aid for climate change adaptation

    Treesearch

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  6. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    PubMed

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  7. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    ERIC Educational Resources Information Center

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  8. Climate Change, Health, and Communication: A Primer.

    PubMed

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  9. The essential interactions between understanding climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  10. Public Perception of Uncertainties Within Climate Change Science.

    PubMed

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  11. Climate Change Education for General Education Faculty

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Fox-Lykens, R.; Fuoco, M. J.; Phalen, L.; Harcourt, P.; Veron, D. E.; Rogers, M.; Merrill, J.

    2016-12-01

    As MADE-CLEAR scientists, our ultimate goal is to inform the public about climate change through education. Education will provide citizens with important tools for adapting and coping against climate change through the understanding of the cause and effects of climate change, and the role they play in counteracting these effects. MADE-CLEAR is connecting educators with resources such as lesson plans and hands-on activities so they can easily incorporate climate change into their curriculum. This past year Delaware State University held workshops for Chemistry and Math faculty to provide information and resources to help integrate climate change education into their classes. We presented them with information on climate change and demonstrated several laboratory activities that would be applicable to their classes. Such activities included a sea level rise graphing exercise, ocean acidification pH demonstration, ocean acidification's effect on organism's demonstration, carbon dioxide variability and heat trapping gas simulation. The goals of the workshops are to implement a multidisciplinary approach in climate change education. Workshops are prepared hands-on heavy followed by the lectures and video resources. Pre- and post-workshop assessment questions on the workshop contents are provided to monitor faculty understanding of the climate change content. In doing so, we aim to improve climate literacy in our higher education students.

  12. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  13. Managing Climate Change Refugia for Biodiversity ...

    EPA Pesticide Factsheets

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, approaches will need to address critical uncertainties in both the physical basis for projected landscape changes, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on air temperatures and associated microclimatic changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local responses and thermal dynamics. Yet important questions remain. Drawing on case studies, we illustrate some key uncertainties in the responses of species and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.In this workshop, we will showcase the latest science on climate refugia and participants will interact through small group discussions, relevant examples, and facilitated dialogue to i

  14. Conceptual Model of Climate Change Impacts at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewart, Jean Marie

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less

  15. Global Climate Change: Using Field Studies to Prepare the Next Generation of Scientists

    NASA Astrophysics Data System (ADS)

    Arnold, T. C.; Hare, J.

    2004-05-01

    Global Climate Change is a new and invigorating concept in the pre-college classroom. To some it portends the altering of the Earth's climate by introducing anthropogenic influences and for others the natural progression of the Earth's systems. Regardless, climate change involves a plethora of environmental interactions and comprehension is a challenge for both teachers and students. This paper addresses a field studies program that prepares students to complete research projects associated with climate models affecting montane environments. It emphasizes a partnership between researchers from universities, government agencies, and public schools and their support of pre-college students in inquiry learning and research activities. Beginning in 1994 students from a Pennsylvania high school and schools in Scotland have engaged in biannual holistic studies of montane and glacial environments with the objective of completing investigations concerning the energy budgets of these environments. This paper will focus on 2000 and 2002, and the support and partnership of Dr. Jeff Hare and CIRES in designing, supporting, and providing professional interpretations,while assisting teachers and students toward the completion of recognized papers regarding climate studies. Introducing students to the employment and operation of complex field equipment will be discussed.

  16. Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach

    NASA Astrophysics Data System (ADS)

    Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar

    2017-04-01

    Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.

  17. Climate change vulnerability assessment for the Chugach National Forest and the Kenai Peninsula

    Treesearch

    Gregory H. Hayward; Steve Colt; Monica L. McTeague; Teresa N. Hollingsworth

    2017-01-01

    This assessment evaluates the effects of future climate change on a select set of ecological systems and ecosystem services in Alaska’s Kenai Peninsula and Chugach National Forest regions. The focus of the assessment was established during a multi-agency/organization workshop that established the goal to conduct a rigorous evaluation of a limited range of topics rather...

  18. Knowing climate change, embodying climate praxis: experiential knowledge in southern Appalachia

    Treesearch

    Jennifer L. Rice; Brian J. Burke; Nik Heynen

    2015-01-01

    Whether used to support or impede action, scientific knowledge is now, more than ever, the primary framework for political discourse on climate change. As a consequence, science has become a hegemonic way of knowing climate change by mainstream climate politics, which not only limits the actors and actions deemed legitimate in climate politics but also silences...

  19. Global Climate Change: Threat Multiplier for AFRICOM?

    DTIC Science & Technology

    2007-11-06

    climate change , stability for Africa hinges upon mitigating the effects of global climate change to prevent future conflicts such as Darfur, and the...instability that fosters terrorism. The National Security Act of 2010 will formally address climate change and the planning requirement for the threat...of Responsibility (AOR). He will need to integrate multinational and multiagency cooperation to address climate change forecasts. The author

  20. Effects of Climate Change on Federal Hydropower. Report to Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  1. Climate change-related migration and infectious disease.

    PubMed

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration - will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts - including infectious diseases - for migrant populations and host communities.

  2. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  3. Impacts of weighting climate models for hydro-meteorological climate change studies

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  4. Double Exposure: Photographing Climate Change

    NASA Astrophysics Data System (ADS)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  5. India's National Action Plan on Climate Change.

    PubMed

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  6. Changing Minds about the Changing Climate: a Longitudinal Study of the Impacts of a Climate Change Curriculum on Undergraduate Student Knowledge and Attitudes.

    NASA Astrophysics Data System (ADS)

    Burkholder, K. C.; Mooney, S.

    2016-12-01

    In the fall of 2013, 24 sophomore students enrolled in a three-course Learning Community entitled "The Ethics and Science of Climate Change." This learning community was comprised of two disciplinary courses in environmental ethics and environmental science as well as a seminar course in which the students designed and delivered climate change education events in the community beyond campus. Students were surveyed prior to and upon completion of the semester using a variant of the Yale Climate Literacy Survey in order to assess their knowledge of and attitudes towards climate change. An analysis of those survey results demonstrated that the non-traditional curriculum resulted in significant improvements that extended beyond disciplinary knowledge of climate change: the student attitudes about climate change and our cultural response to the issues associated with climate change shifted as well. Finally, a third administration of the survey (n=17) plus follow up interviews with 10 of those original students conducted during the students' senior year in 2016 suggest that the changes that the students underwent as sophomores were largely retained.

  7. Overview of Climate Confluence Security Issues

    NASA Astrophysics Data System (ADS)

    Reisman, J. P.

    2011-12-01

    Presentation will focus on an overview of the security perspectives based on the confluence considerations including energy, economics and climate change. This will include perspectives from reports generated by the Quadrennial Defense Review, Joint Forces Command, the Center for Strategic International Studies, MIT, the Inter-agency Climate Change Adaptation Task Force, the Central Intelligence Agency, the Center for Naval Analysis, and other relevant reports. The presentation will highlight the connections between resource issues and climate change which can be interpreted into security concerns. General discussion of global issues, contextual review of AR4 WGII may be included and any other report updates as applicable. The purpose of this presentation is to give a rounded view of the general qualitative and quantitative perspectives regarding climate related security considerations.

  8. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolin, B.

    2007-11-15

    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less

  9. Effects of climate change and population growth on the transboundary Santa Cruz aquifer

    USGS Publications Warehouse

    Scott, Christopher A.; Megdal, Sharon; Oroz, Lucas Antonio; Callegary, James; Vandervoet, Prescott

    2012-01-01

    The USA and Mexico have initiated comprehensive assessment of 4 of the 18 aquifers underlying their 3000 km border. Binational management of groundwater is not currently proposed. University and agency researchers plus USA and Mexican federal, state, and local agency staff have collaboratively identified key challenges facing the Santa Cruz River Valley Aquifer located between the states of Arizona and Sonora. The aquifer is subject to recharge variability, which is compounded by climate change, and is experiencing growing urban demand for groundwater. In this paper, we briefly review past, current, and projected pressures on Santa Cruz groundwater. We undertake first-order approximation of the relative magnitude of climate change and human demand drivers on the Santa Cruz water balance. Global circulation model output for emissions scenarios A1B, B1, and A2 present mixed trends, with annual precipitation projected to vary by ±20% over the 21st century. Results of our analysis indicate that urban water use will experience greater percentage change than climate-induced recharge (which remains the largest single component of the water balance). In the Mexican portion of the Santa Cruz, up to half of future total water demand will need to be met from non-aquifer sources. In the absence of water importation and with agricultural water use and rights increasingly appropriated for urban demand, wastewater is increasingly seen as a resource to meet urban demand. We consider decision making on both sides of the border and conclude by identifying short- and longer-term opportunities for further binational collaboration on transboundary aquifer assessment.

  10. Environmental Health Indicators of Climate Change for the United States: Findings from the State Environmental Health Indicator Collaborative

    PubMed Central

    English, Paul B.; Sinclair, Amber H.; Ross, Zev; Anderson, Henry; Boothe, Vicki; Davis, Christine; Ebi, Kristie; Kagey, Betsy; Malecki, Kristen; Shultz, Rebecca; Simms, Erin

    2009-01-01

    Objective To develop public health adaptation strategies and to project the impacts of climate change on human health, indicators of vulnerability and preparedness along with accurate surveillance data on climate-sensitive health outcomes are needed. We researched and developed environmental health indicators for inputs into human health vulnerability assessments for climate change and to propose public health preventative actions. Data sources We conducted a review of the scientific literature to identify outcomes and actions that were related to climate change. Data sources included governmental and nongovernmental agencies and the published literature. Data extraction Sources were identified and assessed for completeness, usability, and accuracy. Priority was then given to identifying longitudinal data sets that were applicable at the state and community level. Data synthesis We present a list of surveillance indicators for practitioners and policy makers that include climate-sensitive health outcomes and environmental and vulnerability indicators, as well as mitigation, adaptation, and policy indicators of climate change. Conclusions A review of environmental health indicators for climate change shows that data exist for many of these measures, but more evaluation of their sensitivity and usefulness is needed. Further attention is necessary to increase data quality and availability and to develop new surveillance databases, especially for climate-sensitive morbidity. PMID:20049116

  11. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  12. Modelling climate change and malaria transmission.

    PubMed

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  13. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  14. Aging, Climate Change, and Legacy Thinking

    PubMed Central

    Fried, Linda; Moody, Rick

    2012-01-01

    Climate change is a complex, long-term public health challenge. Older people are especially susceptible to certain climate change impacts, such as heat waves. We suggest that older people may be a resource for addressing climate change because of their concern for legacy—for leaving behind values, attitudes, and an intact world to their children and grandchildren. We review the theoretical basis for “legacy thinking” among older people. We offer suggestions for research on this phenomenon, and for action to strengthen the sense of legacy. At a time when older populations are growing, understanding and promoting legacy thinking may offer an important strategy for addressing climate change. PMID:22698047

  15. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  16. Abrupt Impacts of Climate Change: Anticipating Surprises

    NASA Astrophysics Data System (ADS)

    White, James W. C.; Alley, Richard B.; Archer, David E.; Barnosky, Anthony D.; Dunlea, Edward; Foley, Jonathan; Fu, Rong; Holland, Marika M.; Lozier, M. Susan; Schmitt, Johanna; Smith, Laurence C.; Sugihara, George; Thompson, David W. J.; Weaver, Andrew J.; Wofsy, Steven C.

    2014-05-01

    Levels of carbon dioxide and other greenhouse gases in Earth's atmosphere are exceeding levels recorded in the past millions of years, and thus climate is being forced beyond the range of the recent geological era. Lacking concerted action by the world's nations, it is clear that the future climate will be warmer, sea levels will rise, global rainfall patterns will change, and ecosystems will be altered. However, there is still uncertainty about how we will arrive at that future climate state. Although many projections of future climatic conditions have predicted steadily changing conditions giving the impression that communities have time to gradually adapt, the scientific community has been paying increasing attention to the possibility that at least some changes will be abrupt, perhaps crossing a threshold or "tipping point" to change so quickly that there will be little time to react. This presentation will synopsize the new US National Research Council Report, Abrupt Impacts of Climate Change: Anticipating Surprises, highlighting areas of increased and decreased concern, as well as areas of new concern. Emphasis is placed on not only abrupt change in physical climate, but on abrupt changes in human and natural systems that can occur as a result of a slowly changing climate. The report calls for action now on an abrupt change early warning system (ACEWS) if societies are to be resilient to climate change.

  17. Connectivity planning to address climate change.

    PubMed

    Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J

    2013-04-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático. © 2013 Society for Conservation Biology.

  18. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  19. Public Inaccuracy in Meta-perceptions of Climate Change

    NASA Astrophysics Data System (ADS)

    Swim, J.; Fraser, J.

    2012-12-01

    Public perceptions of climate change and meta-perceptions of the public and climate scientist's perceptions of climate change were assessed to benchmark the National Network for Climate Change Interpretation's impacts. Meta-perceptions are important to examine because they can have implications for willingness to take action to address climate change. For instance, recent research suggests a tendency to misperceive that there is disagreement among climate scientists is predictive of lack of support for climate change policies. Underestimating public concern about climate change could also be problematic: it could lead individuals to withdraw from personal efforts to reduce impact and engage others in discussions about climate change. Presented results will demonstrate that respondents in a national survey underestimated the percent of the public who were very concerned, concerned or cautious about climate change and overestimated the extent others were disengaged, doubted, or non-believers. They underestimated the percent of the public who likely believed that humans caused climate change and overestimate the percent that believed climate change was not happening nor human induced. Finally, they underestimated the percent of the public that believed climate change threatened ocean health. The results also explore sources of misperceptions. First, correlates with TV viewing habits suggest that inaccuracy is a result of too little attention to network news, with one exception: Greater attention to FOX among doubters reduced accuracy. Second, adding to other evidence that basic cognitive heuristics (such as availability heuristic) influence perceptions of climate change, we show that that false consensus effects account for meta-perceptions of the public and climate scientists beliefs. The false consensus effect, in combination with underestimating concern among the public, results in those most concerned about climate change and those who believe it to be human

  20. Climate Change--Scientific and Political

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2000-08-01

    On Monday, June 12, the federal government released a "Public Review Draft" of Climate Change Impacts on the United States (1). The report contains peer-reviewed information that should be of interest to the general public and certainly will make excellent summer reading for those of us who teach chemistry or other sciences. The U.S. Global Change Research Project (USGCRP), was initiated in 1990 by the U.S. Congress to provide lawmakers with information about negative and positive impacts of global warming. In 1997, USGCRP began the National Assessment of the Potential Consequences of Climate Variability and Change. Five teams, each consisting of experts from government, industry, and academic and public organizations, used sophisticated computer models to analyze regional impacts of climate change and prepare a national synthesis of existing information. They forecast significant changes during the 21st century, including an increase in temperature in the U.S. of 3-6 °C. (This is similar to the difference in temperature between the present and the last ice age.) Many regions of the country are likely to become more like the regions immediately to their south. For example, the climate in New York City is predicted to become more like the 20th-century climate of Atlanta, and Atlanta more like Houston.

  1. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  2. Climate change-related migration and infectious disease

    PubMed Central

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration – will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts – including infectious diseases - for migrant populations and host communities. PMID:26151221

  3. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  4. Challenges and Possibilities in Climate Change Education

    ERIC Educational Resources Information Center

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  5. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  6. What Is Climate Change?

    ERIC Educational Resources Information Center

    Beswick, Adele

    2007-01-01

    Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

  7. Mangrove ecosystems under climate change

    USGS Publications Warehouse

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  8. Understanding global climate change scenarios through bioclimate stratification

    NASA Astrophysics Data System (ADS)

    Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.

    2017-08-01

    Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.

  9. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas

  10. The Costs of Climate Change

    NASA Astrophysics Data System (ADS)

    Guo, Jason

    2018-03-01

    This research paper talks about the economic costs of climate change, as well as the costs involved in responding to climate change with alternative fuels. This paper seeks to show that climate change, although seemingly costly in the short run, will both save future generations trillions of dollars and serve as a good economic opportunity. Scientists have long argued that the fate of humanity depends on a shift towards renewable energy. However, this paper will make clear that there is also an economic struggle. By embracing alternative fuels, we will not only lessen the danger and the frequency of these natural disasters but also strengthen the world’s financial state. Although a common argument against responding to climate change is that it is too expensive to make the switch, this research shows that in the future, it will save millions of lives and trillions of dollars. The only question left for policymakers is whether they will grasp this energy source shift.

  11. Western water and climate change

    USGS Publications Warehouse

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels.

  12. Climate change is a bioethics problem.

    PubMed

    Macpherson, Cheryl Cox

    2013-07-01

    Climate change harms health and damages and diminishes environmental resources. Gradually it will cause health systems to reduce services, standards of care, and opportunities to express patient autonomy. Prominent public health organizations are responding with preparedness, mitigation, and educational programs. The design and effectiveness of these programs, and of similar programs in other sectors, would be enhanced by greater understanding of the values and tradeoffs associated with activities and public policies that drive climate change. Bioethics could generate such understanding by exposing the harms and benefits in different cultural, socioeconomic, and geographic contexts, and through interdisciplinary risk assessments. Climate change is a bioethics problem because it harms everyone and involves health, values, and responsibilities. This article initiates dialog about the responsibility of bioethics to promote transparency and understanding of the social values and conflicts associated with climate change, and the actions and public policies that allow climate change to worsen. © 2013 John Wiley & Sons Ltd.

  13. Climate change and species interactions: ways forward.

    PubMed

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.

  14. Ice Storms in a Changing Climate

    DTIC Science & Technology

    2016-06-01

    CHANGING CLIMATE by Jennifer M. McNitt June 2016 Thesis Advisor: Wendell Nuss Co-Advisor: David W. Titley THIS PAGE INTENTIONALLY LEFT...SUBTITLE ICE STORMS IN A CHANGING CLIMATE 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. McNitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...increase in global temperatures, due to climate change , could affect the frequency, intensity, and geographic location of ice storms. Three known ice

  15. Environmental impacts of climate change adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org; Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es; Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed tomore » (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation

  16. The Copernicus programme and its Climate Change Service (C3S): a European answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Pinty, Bernard; Thepaut, Jean-Noel; Dee, Dick

    2016-07-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we measure and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its climate data store will provide global and regional climate data reanalyses; multi-model seasonal forecasts; customisable visual data to enable examination of wide range of scenarios and model the impact of changes; access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. The presentation will provide an overview of this newly created Service, its various components and activities, and a roadmap towards achieving a fully operational European Climate Service at the horizon 2019-2020. It will focus on the requirements for quality-assured Observation

  17. Science Teachers' Perspectives about Climate Change

    ERIC Educational Resources Information Center

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  18. EDITORIAL: Northern Hemisphere high latitude climate and environmental change

    NASA Astrophysics Data System (ADS)

    Groisman, Pavel; Soja, Amber

    2007-10-01

    High Northern Hemisphere latitudes are undergoing rapid and significant change associated with climate warming. Climatic change in this region interacts with and affects the rate of the global change through atmospheric circulation, biogeophysical, and biogeochemical feedbacks. Changes in the surface energy balance, hydrologic cycle, and carbon budget feedback to regional and global weather and climate systems. Two-thirds of the Northern Hemisphere high latitude land mass resides in Northern Eurasia (~20% of the global land mass), and this region has undergone sweeping socio-economic change throughout the 20th century. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater global system is to a large extent unknown. To mitigate the deficiencies in understanding these feedbacks, which may in turn hamper our understanding of the global change rates and patterns, an initiative was formed. Three years ago the Northern Eurasia Earth Science Partnership Initiative (NEESPI) was established to address large-scale and long-term manifestations of climate and environmental change in this region. The NEESPI Science Plan and its Executive Summary have been published at the NEESPI web site (neespi.org). Since 2004, NEESPI participants have been able to seed several waves of research proposals to international and national funding agencies and institutions and also contribute to the International Polar Year. Currently, NEESPI is widely recognized and endorsed by several Earth System Science Partnership (ESSP) programmes and projects: the International Geosphere and Biosphere Programme, the World Climate Research Programme through the Global Energy and Water Cycle Experiment and Climate and Cryosphere Projects, the Global Water System Project, Global Carbon Project, Global Land Project, and the Integrated Land Ecosystem—Atmosphere Processes Study. Through NEESPI, more than 100 individually

  19. A roadmap to effective urban climate change adaptation

    NASA Astrophysics Data System (ADS)

    Setiadi, R.

    2018-03-01

    This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.

  20. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    USGS Publications Warehouse

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  1. Climate change and sustainable development: realizing the opportunity.

    PubMed

    Robinson, John; Bradley, Mike; Busby, Peter; Connor, Denis; Murray, Anne; Sampson, Bruce; Soper, Wayne

    2006-02-01

    Manifold linkages exist between climate change and sustainable development. Although these are starting to receive attention in the climate exchange literature, the focus has typically been on examining sustainable development through a climate change lens, rather than vice versa. And there has been little systematic examination of how these linkages may be fostered in practice. This paper examines climate change through a sustainable development lens. To illustrate how this might change the approach to climate change issues, it reports on the findings of a panel of business, local government, and academic representatives in British Columbia, Canada, who were appointed to advise the provincial government on climate change policy. The panel found that sustainable development may offer a significantly more fruitful way to pursue climate policy goals than climate policy itself. The paper discusses subsequent climate change developments in the province and makes suggestions as how best to pursue such a sustainability approach in British Columbia and other jurisdictions.

  2. Climate change over Leh (Ladakh), India

    NASA Astrophysics Data System (ADS)

    Chevuturi, A.; Dimri, A. P.; Thayyen, R. J.

    2018-01-01

    Mountains over the world are considered as the indicators of climate change. The Himalayas are comprised of five ranges, viz., Pir Panjal, Great Himalayas, Zanskar, Ladhak, and Karakorum. The Ladakh region lies in the northernmost state of India, Jammu and Kashmir, in the Ladhak range. It has a unique cold-arid climate and lies immediately south of the Karakorum range. With scarce water resources, such regions show high sensitivity and vulnerability to the change in climate and need urgent attention. The objective of this study is to understand the climate of the Ladakh region and to characterize its changing climate. Using different temperature and precipitation datasets over Leh and surrounding regions, we statistically analyze the current trends of climatic patterns over the region. The study shows that the climate over Leh shows a warming trend with reduced precipitation in the current decade. The reduced average seasonal precipitation might also be associated with some indications of reducing number of days with higher precipitation amounts over the region.

  3. Climate Change and Public Health Policy.

    PubMed

    Smith, Jason A; Vargo, Jason; Hoverter, Sara Pollock

    2017-03-01

    Climate change poses real and immediate impacts to the public health of populations around the globe. Adverse impacts are expected to continue throughout the century. Emphasizing co-benefits of climate action for health, combining adaptation and mitigation efforts, and increasing interagency coordination can effectively address both public health and climate change challenges.

  4. Climate change and forest disturbances

    Treesearch

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson; Matthew P. Ayres; Michael D. Flannigan; Paul J. Hanson; Lloyd C. Irland; Ariel E. Lugo; Chris J. Peterson; Daniel Simberloff; Frederick J. Swanson; Brian J. Stocks; Michael Wotton

    2001-01-01

    This article examines how eight disturbances influence forest structure, composition, and function, and how climate change may influence the severity, frequency, and magnitude of disturbances to forests. We focus on examples from the United States, although these influences occur worldwide. We also consider options for coping with disturbance under changing climate....

  5. Using simple chaotic models to interpret climate under climate change: Implications for probabilistic climate prediction

    NASA Astrophysics Data System (ADS)

    Daron, Joseph

    2010-05-01

    Exploring the reliability of model based projections is an important pre-cursor to evaluating their societal relevance. In order to better inform decisions concerning adaptation (and mitigation) to climate change, we must investigate whether or not our models are capable of replicating the dynamic nature of the climate system. Whilst uncertainty is inherent within climate prediction, establishing and communicating what is plausible as opposed to what is likely is the first step to ensuring that climate sensitive systems are robust to climate change. Climate prediction centers are moving towards probabilistic projections of climate change at regional and local scales (Murphy et al., 2009). It is therefore important to understand what a probabilistic forecast means for a chaotic nonlinear dynamic system that is subject to changing forcings. It is in this context that we present the results of experiments using simple models that can be considered analogous to the more complex climate system, namely the Lorenz 1963 and Lorenz 1984 models (Lorenz, 1963; Lorenz, 1984). Whilst the search for a low-dimensional climate attractor remains illusive (Fraedrich, 1986; Sahay and Sreenivasan, 1996) the characterization of the climate system in such terms can be useful for conceptual and computational simplicity. Recognising that a change in climate is manifest in a change in the distribution of a particular climate variable (Stainforth et al., 2007), we first establish the equilibrium distributions of the Lorenz systems for certain parameter settings. Allowing the parameters to vary in time, we investigate the dependency of such distributions to initial conditions and discuss the implications for climate prediction. We argue that the role of chaos and nonlinear dynamic behaviour ought to have more prominence in the discussion of the forecasting capabilities in climate prediction. References: Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci

  6. Climate change and ecological public health.

    PubMed

    Goodman, Benny

    2015-02-17

    Climate change has been identified as a serious threat to human health, associated with the sustainability of current practices and lifestyles. Nurses should expand their health promotion role to address current and emerging threats to health from climate change and to address ecological public health. This article briefly outlines climate change and the concept of ecological public health, and discusses a 2012 review of the role of the nurse in health promotion.

  7. Challenges of climate change

    PubMed Central

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  8. Common Ground on Climate Change: Pairing Opposing Viewpoints for Conversations about Climate Change

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Duggan-Haas, D.; Hayhoe, K.

    2017-12-01

    In American public discourse, people tend to strongly identify with the viewpoints held by their cultural and political tribes. However, entrenched positions do little to advance understanding, or work toward solving problems constructively. Worse yet, it has become commonplace to dismiss or demonize those coming from a different point of view - leading to the vitriolic stalemate that often characterizes social media and comment threads when it comes to climate change. One way to break this pattern is to invite people with opposing opinions to actually talk to one another. This presentation describes the lessons learned during the Common Ground on Climate Change project, in which people with contrasting views about climate change engage in a moderated interview with each other. Prior to the interview, participants complete a set of values-based questions. The goal is to reveal areas of common ground between apparent opposites, such as a sense of stewardship for Earth's resources, or an opinion that solutions to climate change will be more beneficial than harmful. The structure of the interviews is based on the hypothesis that if a conversation begins with an appreciation of common values, it becomes easier to broach areas of disagreement. Participants are matched up in one-on-one moderated interviews where they are encouraged to share their concerns, ideas, and priorities about the validity of climate science, the need for urgent action, and the types of solutions they find most tenable. Emerging themes from this series of interviews include the value of a diversity of outlooks, and the ability for moderated conversations to find surprising areas of agreement. Articles about the interviews also appear on the Yale Climate Connections website, https://www.yaleclimateconnections.org/author/karin/.

  9. Incorporating climate change and morphological uncertainty into coastal change hazard assessments

    USGS Publications Warehouse

    Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick

    2015-01-01

    Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.

  10. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

    PubMed

    Bonan, Gordon B

    2008-06-13

    The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

  11. Climate Change and Fish Availability

    NASA Astrophysics Data System (ADS)

    Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely

    Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”

  12. Climate Change and Food Safety: Beyond Production

    NASA Astrophysics Data System (ADS)

    Ziska, L. H.; Crimmins, A. R.

    2016-12-01

    There is merited interest in determining the extent of climate disruption on agricultural production and food security. However, additional aspects of food security, including food safety, nutrition and distribution have, overall, received less attention. Beginning in 2013, the U.S. Global Change Research Program as part of the ongoing National Climate Assessment, began a directed effort to evaluate the vulnerability of climate change to these under-represented aspects of food security for developed countries. Based on this extensive review of current science, several key findings were developed: (a) Climate change, including rising temperatures and changes in weather extremes, is expected to increase the exposure of food to certain pathogens and toxins; (b) Climate change will increase human exposure to chemical contaminants in food through several pathways; (c) The nutritional value of agriculturally important food crops, including cereals, will decrease in response to the ongoing increase in atmospheric carbon dioxide; (d) Increases in the frequency or intensity of extreme weather events associated with climate change may disrupt food distribution. These findings will be presented as a means to describe the state of the science and expand on food security research in the broader context of public health and climate change.

  13. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  14. Proactive pavement asset management with climate change aspects

    NASA Astrophysics Data System (ADS)

    Zofka, Adam

    2018-05-01

    Pavement Asset Management System is a systematic and objective tool to manage pavement network based on the rational, engineering and economic principles. Once implemented and mature Pavement Asset Management System serves the entire range of users starting with the maintenance engineers and ending with the decision-makers. Such a system is necessary to coordinate agency management strategy including proactive maintenance. Basic inputs in the majority of existing Pavement Asset Management System approaches comprise the actual pavement inventory with associated construction history and condition, traffic information as well as various economical parameters. Some Pavement Management System approaches include also weather aspects which is of particular importance considering ongoing climate changes. This paper presents challenges in implementing the Pavement Asset Management System for those National Road Administrations that manage their pavement assets using more traditional strategies, e.g. worse-first approach. Special considerations are given to weather-related inputs and associated analysis to demonstrate the effects of climate change in a short- and long-term range. Based on the presented examples this paper concludes that National Road Administrations should account for the weather-related factors in their Pavement Management Systems as this has a significant impact on the system outcomes from the safety and economical perspective.

  15. Climate change, marine environments, and the US Endangered species act.

    PubMed

    Seney, Erin E; Rowland, Melanie J; Lowery, Ruth Ann; Griffis, Roger B; McClure, Michelle M

    2013-12-01

    Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate-related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and "distinct population segments" may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case-by-case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species' continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA-listed species' survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long-term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El

  16. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  17. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  18. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  19. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  20. Climate change is projected to outpace rates of niche change in grasses.

    PubMed

    Cang, F Alice; Wilson, Ashley A; Wiens, John J

    2016-09-01

    Climate change may soon threaten much of global biodiversity, especially if species cannot adapt to changing climatic conditions quickly enough. A critical question is how quickly climatic niches change, and if this speed is sufficient to prevent extinction as climates warm. Here, we address this question in the grass family (Poaceae). Grasses are fundamental to one of Earth's most widespread biomes (grasslands), and provide roughly half of all calories consumed by humans (including wheat, rice, corn and sorghum). We estimate rates of climatic niche change in 236 species and compare these with rates of projected climate change by 2070. Our results show that projected climate change is consistently faster than rates of niche change in grasses, typically by more than 5000-fold for temperature-related variables. Although these results do not show directly what will happen under global warming, they have troubling implications for a major biome and for human food resources. © 2016 The Author(s).

  1. Climate change and the Delta

    USGS Publications Warehouse

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  2. Health in climate change research from 1990 to 2014: positive trend, but still underperforming.

    PubMed

    Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer

    2016-01-01

    Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest in this research area in young

  3. Health in climate change research from 1990 to 2014: positive trend, but still underperforming

    PubMed Central

    Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer

    2016-01-01

    Background Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. Design We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. Results The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. Conclusions There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest

  4. IPCC Report Calls Climate Changes Unprecedented

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-10-01

    Warming of the Earth's climate "is unequivocal and since the 1950s many of the observed changes are unprecedented over decades to millennia," according to a new assessment report by the Intergovernmental Panel on Climate Change (IPCC). The 27 September summary for policy makers of IPCC's report "Climate Change 2013: The Physical Science Basis" also states that "it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

  5. Avoiding dangerous climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41more » papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.« less

  6. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  7. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    PubMed Central

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  8. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    PubMed

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  9. Turning Misinformation into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Borah, N.; Cook, J.

    2017-12-01

    Misinformation reduces science literacy and interferes with new learning. This undermines the application of science to understanding and addressing important societal issues. Intentional misinformation and fake news is of growing concern to the scientists, educators and policymakers. Specifically, misinformation about human-caused climate change has become prominent in recent times creating confusion among the public. Hence, interventions that inoculate people against climate change misinformation are very much necessary. One of the most promising applications of inoculation is in the classroom, using a teaching approach known as misconception-based learning. This involves explaining scientific concepts while directly refuting related misconceptions. Misconception-based learning is a powerful way to neutralize the influence of climate change misinformation by increasing both science literacy and critical thinking skills. Students do not possess as many erroneous preconceptions about climate change relative to adults and hence correcting such misconceptions among students is more effective using this teaching approach. The misconception-based teaching approach has a number of benefits. It results in greater and longer-lasting learning gains relative to standard lessons. It equips students with the tools and knowledge to distinguish between facts and myths and increases confidence to engage in constructive discussion with family and friends about climate change. Further, research has shown that students have an effect on parents' environmental attitudes and behavior. Consequently, misconception-based learning presents the opportunity to reach the adult community through the students. We have developed a high school climate change curriculum based on the misconception-based learning framework. Our intent is to run a pilot project that tests the impact of this curriculum on students' climate perceptions, and any second-order influence on their parents. This research

  10. Generating Arguments about Climate Change

    ERIC Educational Resources Information Center

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  11. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  12. Solar Changes and Climate Changes. (Invited)

    NASA Astrophysics Data System (ADS)

    Feynman, J.

    2009-12-01

    During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

  13. Mars Recent Climate Change Workshop

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  14. Public Engagement on Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically

  15. Paleoclimates: Understanding climate change past and present

    USGS Publications Warehouse

    Cronin, Thomas M.

    2010-01-01

    The field of paleoclimatology relies on physical, chemical, and biological proxies of past climate changes that have been preserved in natural archives such as glacial ice, tree rings, sediments, corals, and speleothems. Paleoclimate archives obtained through field investigations, ocean sediment coring expeditions, ice sheet coring programs, and other projects allow scientists to reconstruct climate change over much of earth's history. When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes. This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate. Thomas M. Cronin discusses recent discoveries about past periods of global warmth, changes in atmospheric greenhouse gas concentrations, abrupt climate and sea-level change, natural temperature variability, and other topics directly relevant to controversies over the causes and impacts of climate change. This text is geared toward advanced undergraduate and graduate students and researchers in geology, geography, biology, glaciology, oceanography, atmospheric sciences, and climate modeling, fields that contribute to paleoclimatology. This volume can also serve as a reference for those requiring a general background on natural climate variability.

  16. Using Climate Change Information in Large Scale Coastal Planning: Louisiana's 2017 Coastal Master Plan

    NASA Astrophysics Data System (ADS)

    Reed, D.

    2017-12-01

    The Louisiana coast has suffered severe land loss in recent decades as human activities have exacerbated the effects of natural stressors leading to catastrophic land loss and increased flood threats to coastal communities. Planning for the future requires a recognition of climate change but also leads to the challenge of understanding how different plausible future conditions influence the outcomes of restoration and protection actions. In coastal Louisiana, the $50 billion Coastal master Plan is legislatively required to be revisited every 5 years in order to ensure that plans for the future continue to be based on the best available, but constantly evolving, scientific information. For the 2017 iteration of the Coastal Master Plan, identification of the environmental scenarios to be explored began in 2014 and included both professional judgment regarding the most important drivers of future change, as well as climate change information derived during the National Climate Assessment. The number of scenarios to be explored was limited by both available resources and the need to make the findings accessible to stakeholders and policy makers. Plausible ranges were identified for key drivers of coastal landscape change, including climatic factors such as eustatic sea-level, precipitation and evapotranspiration. Sensitivity analysis was conducted to explore how the coastal landscape changed in response to combinations of values, allowed agency personnel to select three scenarios against which to test the effectiveness of different restoration and protection actions. The 2017 Coastal Master Plan was then developed by exploring the response of different actions to the scenarios, and how project costs also varied depending on future conditions. Such consideration of climate change in coastal planning at the state scale is facilitated by the availability of scientifically valid information on climate change, that has already been reviewed and sourced.

  17. Built Expansion and Global Climate Change Drive Projected Urban Heat: Relative Magnitudes, Interactions, and Mitigation

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2016-12-01

    Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.

  18. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  19. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  20. Climate Change and Underserved Communities.

    PubMed

    Ziegler, Carol; Morelli, Vincent; Fawibe, Omotayo

    2017-03-01

    Climate change is the greatest global health threat of the twenty-first century, yet it is not widely understood as a health hazard by primary care providers in the United States. Aside from increasing displacement of populations and acute trauma resulting from increasing frequency of natural disasters, the impact of climate change on temperature stress, vector-borne illnesses, cardiovascular and respiratory illnesses, and mental health is significant, with disproportionate impact on underserved and marginalized populations. Primary care providers must be aware of the impact of climate change on the health of their patients and advocate for adaptation and mitigation policies for the populations they serve. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Increasing Communities Capacity to Effectively Address Climate Change Through Education, Civic Engagement and Workforce Development

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Ledley, T. S.; Stanton, C.; Fraser, J.; Scowcroft, G. A.

    2017-12-01

    Understanding the causes, effects, risks, and developing the social will and skills for responses to global change is a major challenge of the 21st century that requires coordinated contributions from the sciences, social sciences, humanities, arts, and beyond. There have been many effective efforts to implement climate change education, civic engagement and related workforce development programs focused on a multitude of audiences, topics and in multiple regions. This talk will focus on how comprehensive educational efforts across our communities are needed to support cities and their primary industries as they prepare for, and embrace, a low-carbon economy and develop the related workforce.While challenges still exist in identifying and coordinating all stakeholders, managing and leveraging resources, and resourcing and scaling effective programs to increase impact and reach, climate and energy literacy leaders have developed initiatives with broad input to identify the understandings and structures for climate literacy collective impact and to develop regional/metropolitan strategy that focuses its collective impact efforts on local climate issues, impacts and opportunities. This Climate Literacy initiative envisions education as a central strategy for community's civic actions in the coming decades by key leaders who have the potential to foster the effective and innovative strategies that will enable their communities to seize opportunity and prosperity in a post-carbon and resilient future. This talk discusses the advances and collaborations in the Climate Change Education community over the last decade by U.S. federal and non-profit organization that have been made possible through the partnerships of the Climate Literacy & Energy Awareness Network (CLEAN), U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, and the Tri-Agency Climate Change Education Collaborative.

  2. Vulnerability of European freshwater catchments to climate change.

    PubMed

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for

  3. Climate-society feedbacks and the avoidance of dangerous climate change

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J.; Leedal, D. T.; Hewitt, C. N.

    2012-09-01

    The growth in anthropogenic CO2 emissions experienced since the onset of the Industrial Revolution is the most important disturbance operating on the Earth's climate system. To avoid dangerous climate change, future greenhouse-gas emissions will have to deviate from business-as-usual trajectories. This implies that feedback links need to exist between climate change and societal actions. Here, we show that, consciously or otherwise, these feedbacks can be represented by linking global mean temperature change to the growth dynamics of CO2 emissions. We show that the global growth of new renewable sources of energy post-1990 represents a climate-society feedback of ~0.25%yr-1 per degree increase in global mean temperature. We also show that to fulfil the outcomes negotiated in Durban in 2011, society will have to become ~ 50 times more responsive to global mean temperature change than it has been since 1990. If global energy use continues to grow as it has done historically then this would result in amplification of the long-term endogenous rate of decarbonization from -0.6%yr-1 to ~-13%yr-1. It is apparent that modest levels of feedback sensitivity pay large dividends in avoiding climate change but that the marginal return on this effort diminishes rapidly as the required feedback strength increases.

  4. Is the World in a State of Climate Change Planetary Emergency?

    NASA Astrophysics Data System (ADS)

    Carter, Peter

    2013-04-01

    Leading climate change experts have made public statements that the world is beyond dangerous interference with the climate system, committed to a warming of 3-5°C, facing a risk of global climate catastrophe, and in a state of planetary emergency, but these conclusions are not informing climate change policy. The evidence for these statements is examined and presented in this paper. The main parameters considered are world food security and carbon feedback "runaway" or rapid global warming. 2012 was a record year for Arctic albedo loss, which amplifies Arctic warming and drives Arctic methane feedback emissions. Since 2007, atmospheric methane is experiencing a renewed, sustained increase due to feedback emissions. All potentially large positive Arctic feedbacks are operant. These include albedo loss from disappearing snow and summer sea ice; methane released from peatlands, thawing permafrost and sea floor methane hydrates; and nitrous oxide from cryoperturbed permafrost. Increasing extreme weather events have caused regional crop productivity losses on many continents since 2000. The loss of Arctic albedo might be driving extreme heat and drought in the northern hemisphere. Today the formal national pledges for emissions reductions filed with the UN, combined, commit humanity to a warming of 4.4°C (Climate Interactive) by 2100, which is more than 8°C eventually after 2100, and there are no initiatives to change this. The International Energy Agency warns that the current global economy is on track for a warming of 6°C by 2100. A simple yet novel summation approach of all unavoidable sources of warming estimates the committed unavoidable warming to be 3°C by 2100. What are the implications of these future commitments for world food security and the risk of runaway climate change? The paper considers how these commitments and the policy-relevant research findings can inform policy making with respect to an appropriate science-based mitigation response.

  5. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  6. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  7. Navigating Negative Conversations in Climate Change

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.; Abraham, J. P.; Dash, J. W.; Ashley, M. C.

    2012-12-01

    Politically charged public discussions of climate change often lead to polarization as a direct result of many societal, economic, religious and other factors which form opinions. For instance, the general public views climate change as a political discussion rather than a scientific matter. Additionally, many media sources such as websites and mainstream venues and persons have served to promote the "controversy". Scientists who engage in a public discourse of climate change often encounter politically charged environments and audiences. Traditional presentations of the science without attention paid to political, social, or economic matters are likely to worsen the existing divide. An international organization, the Climate Science Rapid Response Team (CSRRT) suggests a strategy that can be used to navigate potentially troublesome situations with divided audiences. This approach can be used during live lecture presentations, and radio, print, or television interviews. The strategy involves identifying alternative motivations for taking action on climate change. The alternative motivations are tailored to the audience and can range from national defense, economic prosperity, religious motivation, patriotism, energy independence, or hunting/fishing reasons. Similar messaging modification can be used to faithfully and accurately convey the importance of taking action on climate change but present the motivations in a way that will be received by the audience.

  8. Climate Change Research - What Do We Need Really?

    NASA Astrophysics Data System (ADS)

    Rama Chandra Prasad, P.

    2015-01-01

    This research note focuses on the current climate change research scenario and discusses primarily what is required in the present global climate change conditions. Most of the climate change research and models predict adverse future conditions that have to be faced by humanity, with less emphasis on mitigation measures. Moreover, research ends as reports on the shelves of scientists and researchers and as publications in journals. At this juncture the major focus should be on research that helps in reducing the impact rather than on analysing future scenarios of climate change using different models. The article raises several questions and suggestions regards climate change research and lays emphasis on what we really need from climate change researchers.

  9. The Adaptation for Conservation Targets (ACT) framework: a tool for incorporating climate change into natural resource management.

    PubMed

    Cross, Molly S; Zavaleta, Erika S; Bachelet, Dominique; Brooks, Marjorie L; Enquist, Carolyn A F; Fleishman, Erica; Graumlich, Lisa J; Groves, Craig R; Hannah, Lee; Hansen, Lara; Hayward, Greg; Koopman, Marni; Lawler, Joshua J; Malcolm, Jay; Nordgren, John; Petersen, Brian; Rowland, Erika L; Scott, Daniel; Shafer, Sarah L; Shaw, M Rebecca; Tabor, Gary M

    2012-09-01

    As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)--water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.

  10. The Adaptation for Conservation Targets (ACT) Framework: A tool for incorporating climate change into natural resource management

    USGS Publications Warehouse

    Cross, Molly S.; Zavaleta, Erika S.; Bachelet, Dominique; Brooks, Marjorie L.; Enquist, Carolyn A.F.; Fleishman, Erica; Graumlich, Lisa J.; Groves, Craig R.; Hannah, Lee; Hansen, Lara J.; Hayward, Gregory D.; Koopman, Marni; Lawler, Joshua J.; Malcolm, Jay; Nordgren, John R.; Petersen, Brian; Rowland, Erika; Scott, Daniel; Shafer, Sarah L.; Shaw, M. Rebecca; Tabor, Gary

    2012-01-01

    As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)—water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.

  11. Changing feedbacks in the climate-biosphere system

    Treesearch

    F. Stuart Chapin; James T. Randerson; A. David McGuire; Jonathan A. Foley; Christopher B. Field

    2008-01-01

    Ecosystems influence climate through multiple pathways, primarily by changing the energy, water, and greenhouse-gas balance of the atmosphere. Consequently, efforts to mitigate climate change through modification of one pathway, as with carbon in the Kyoto Protocol, only partially address the issue of ecosystem-climate interactions. For example, the cooling of climate...

  12. Climate change response framework overview: Chapter 1

    Treesearch

    Chris Swanston; Maria Janowiak; Patricia Butler

    2012-01-01

    Managers currently face the immense challenge of anticipating the effects of climate change on forest ecosystems and then developing and applying management responses for adapting forests to future conditions. The Climate Change Response Framework (CCRF) is a highly collaborative approach to helping land managers understand the potential effects of climate change on...

  13. Engaging Students in Climate Change Science and Communication through a Multi-disciplinary Study Abroad Program

    NASA Astrophysics Data System (ADS)

    North, L. A.; Polk, J.; Strenecky, B.

    2014-12-01

    The implications of the climate change phenomenon are far-reaching, and will impact every person on Earth. These problems will be complex, and will require leaders well-versed in interdisciplinary learning and international understanding. To employ a multi-disciplinary approach to studying the impact climate change is having in the world in which we live, a team of 57 Western Kentucky University (WKU) faculty, staff, and students participated in a study abroad program to seven ports in the North Sea and North Atlantic, including three ports in Iceland, onboard the Semester at Sea ship, MV Explorer. This program combined interdisciplinary learning, service learning, and international understanding toward the goal of preparing the leaders of tomorrow with the skills to address climate change challenges. Together, the group learned how climate change affects the world from varied academic perspectives, and how more often than not these perspectives are closely interrelated. Courses taught during the experience related to climate change science and communication, economics, future trends, and K-12 education. Each student also participated in a The $100 Solution™ service-learning course. While in port, each class engaged in a discipline-specific activities related to the climate change topic, while at sea students participated in class lectures, engaged in shipboard lectures by international experts in their respective fields, and participated in conversations with lifelong learners onboard the ship. A culminating point of the study abroad experience was a presentation by the WKU students to over 100 persons from the University of Akureyri in Akureyri, Iceland, representatives of neighboring Icelandic communities, environmental agencies, and tourism bureaus about what they had learned about climate change during their travels. By forging this relationship, students were able to share their knowledge, which in turn gave them a deeper understanding of the issues they

  14. Probabilistic Integrated Assessment of ``Dangerous'' Climate Change

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Michael D.; Schneider, Stephen H.

    2004-04-01

    Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.

  15. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Trenbath, K. L.

    2011-12-01

    Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their

  16. Tribal engagement strategy of the South Central Climate Science Center, 2014

    USGS Publications Warehouse

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  17. Managing the Risks of Extreme Events and Disasters in a Changing Climate: Lessons for Adaptation to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.

    2013-12-01

    The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes

  18. Climate change: potential implications for Ireland's biodiversity

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison

    2018-03-01

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  19. Climate change: potential implications for Ireland's biodiversity.

    PubMed

    Donnelly, Alison

    2018-03-12

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  20. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  1. Detection and Attribution of Anthropogenic Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  2. The potential impacts of climate change induced changes to tropical leaf albedo and its feedback on global climate

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.

    2017-12-01

    Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.

  3. Our Globally Changing Climate. Chapter 1

    NASA Technical Reports Server (NTRS)

    Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; hide

    2017-01-01

    Since the Third U.S. National Climate Assessment (NCA3) was published in May 2014, new observations along multiple lines of evidence have strengthened the conclusion that Earth's climate is changing at a pace and in a pattern not explainable by natural influences. While this report focuses especially on observed and projected future changes for the United States, it is important to understand those changes in the global context (this chapter). The world has warmed over the last 150 years, especially over the last six decades, and that warming has triggered many other changes to Earth's climate. Evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Thousands of studies conducted by tens of thousands of scientists around the world have documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; rising sea level; and an increase in atmospheric water vapor. Rainfall patterns and storms are changing, and the occurrence of droughts is shifting.

  4. Climate change and the Great Basin

    Treesearch

    Jeanne C. Chambers

    2008-01-01

    Climate change is expected to have significant impacts on the Great Basin by the mid-21st century. The following provides an overview of past and projected climate change for the globe and for the region.

  5. Environmental literacy framework with a focus on climate change (ELF): a framework and resources for teaching climate change

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.

    2010-12-01

    The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.

  6. Man-made climatic changes in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Adel, Miah M.

    2002-06-01

    -excavation of canals for water discharge to depleted surface water bodies to re-establish the lost wetland ecosystems. The findings are useful for climate modellers to predict the climatic changes due to changes in surface features, for policy makers of governments of riparian countries constructing dams/barrages on international rivers for unilateral diversion of water, and for donor agencies who finance such projects.

  7. Local indicators of climate change: The potential contribution of local knowledge to climate research

    PubMed Central

    Reyes-García, Victoria; Fernández-Llamazares, Álvaro; Guèze, Maximilien; Garcés, Ariadna; Mallo, Miguel; Vila-Gómez, Margarita; Vilaseca, Marina

    2016-01-01

    Local knowledge has been proposed as a place-based tool to ground-truth climate models and to narrow their geographic sensitivity. To assess the potential role of local knowledge in our quest to understand better climate change and its impacts, we first need to critically review the strengths and weaknesses of local knowledge of climate change and the potential complementarity with scientific knowledge. With this aim, we conducted a systematic, quantitative meta-analysis of published peer-reviewed documents reporting local indicators of climate change (including both local observations of climate change and observed impacts on the biophysical and the social systems). Overall, primary data on the topic are not abundant, the methodological development is incipient, and the geographical extent is unbalanced. On the 98 case studies documented, we recorded the mention of 746 local indicators of climate change, mostly corresponding to local observations of climate change (40%), but also to observed impacts on the physical (23%), the biological (19%), and the socioeconomic (18%) systems. Our results suggest that, even if local observations of climate change are the most frequently reported type of change, the rich and fine-grained knowledge in relation to impacts on biophysical systems could provide more original contributions to our understanding of climate change at local scale. PMID:27642368

  8. Exploring the Climate Change, Migration and Conflict Nexus

    PubMed Central

    Burrows, Kate; Kinney, Patrick L.

    2016-01-01

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806

  9. Exploring the Climate Change, Migration and Conflict Nexus.

    PubMed

    Burrows, Kate; Kinney, Patrick L

    2016-04-22

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.

  10. An approach to developing local climate change environmental public health indicators, vulnerability assessments, and projections of future impacts.

    PubMed

    Houghton, Adele; English, Paul

    2014-01-01

    Environmental public health indicators (EPHIs) are used by local, state, and federal health agencies to track the status of environmental hazards; exposure to those hazards; health effects of exposure; and public health interventions designed to reduce or prevent the hazard, exposure, or resulting health effect. Climate and health EPHIs have been developed at the state, federal, and international levels. However, they are also needed at the local level to track variations in community vulnerability and to evaluate the effectiveness of interventions designed to enhance community resilience. This review draws on a guidance document developed by the U.S. Council of State and Territorial Epidemiologists' State Environmental Health Indicators Collaborative climate change working group to present a three-tiered approach to develop local climate change EPHIs. Local climate change EPHIs can assist local health departments (LHDs) in implementing key steps of the 10 essential public health services and the U.S. Centers for Disease Control and Prevention's Building Resilience Against Climate Effects framework. They also allow LHDs to incorporate climate-related trends into the larger health department planning process and can be used to perform vulnerability assessments which can be leveraged to ensure that interventions designed to address climate change do not exacerbate existing health disparities.

  11. An Approach to Developing Local Climate Change Environmental Public Health Indicators, Vulnerability Assessments, and Projections of Future Impacts

    PubMed Central

    2014-01-01

    Environmental public health indicators (EPHIs) are used by local, state, and federal health agencies to track the status of environmental hazards; exposure to those hazards; health effects of exposure; and public health interventions designed to reduce or prevent the hazard, exposure, or resulting health effect. Climate and health EPHIs have been developed at the state, federal, and international levels. However, they are also needed at the local level to track variations in community vulnerability and to evaluate the effectiveness of interventions designed to enhance community resilience. This review draws on a guidance document developed by the U.S. Council of State and Territorial Epidemiologists' State Environmental Health Indicators Collaborative climate change working group to present a three-tiered approach to develop local climate change EPHIs. Local climate change EPHIs can assist local health departments (LHDs) in implementing key steps of the 10 essential public health services and the U.S. Centers for Disease Control and Prevention's Building Resilience Against Climate Effects framework. They also allow LHDs to incorporate climate-related trends into the larger health department planning process and can be used to perform vulnerability assessments which can be leveraged to ensure that interventions designed to address climate change do not exacerbate existing health disparities. PMID:25349621

  12. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  13. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  14. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  15. Health, Energy Efficiency and Climate Change

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  16. Public health impacts of climate change in Nepal.

    PubMed

    Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L

    2011-04-01

    Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal.

  17. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  18. Transatlantic flight times and climate change

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2016-04-01

    Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence (Williams and Joshi 2013) and increased take-off weight restrictions. A forthcoming study (Williams 2016) investigates the influence of climate change on flight routes and journey times. This is achieved by feeding synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. The focus is on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. It is found that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons, causing round-trip journey times to increase. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5h 20m and over 7h 00m, respectively. The early stages of this effect perhaps contributed to a well-publicised British Airways flight from New York to London on 8 January 2015, which took a record time of only 5h 16m because of a strong tailwind from an unusually fast jet stream. Even assuming no future growth in aviation, extrapolation of our results to all transatlantic traffic suggests that aircraft may collectively be airborne for an extra 2,000 hours each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide. These findings provide further evidence of the two-way interaction between aviation and climate change. References Williams PD (2016) Transatlantic flight times and climate change. Environmental Research Letters, in

  19. Climate Change in Voyageurs National Park

    NASA Astrophysics Data System (ADS)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  20. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  1. Protecting Your Forest from Climate Change

    Treesearch

    Steven McNulty

    2009-01-01

    Climate change is already impacting our forests and the situation is ongoing. As a landowner, there are management tools that you can use to help reduce the likelihood that climate change will cause serious harm to your forest.

  2. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge. Copyright © 2015 by the American Academy of Pediatrics.

  3. The interplay between climate change, forests, and disturbances.

    PubMed

    Dale, V H; Joyce, L A; McNulty, S; Neilson, R P

    2000-11-15

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.

  4. Water access, water scarcity, and climate change.

    PubMed

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  5. Simulating Climate Change in Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  6. How Five Master Teachers Teach about Climate Chang

    NASA Astrophysics Data System (ADS)

    Bloch, L.

    2015-12-01

    The AGU Position Statement, "Human-Induced Climate Change Requires Urgent Action," calls on scientists to "[work] with stakeholders to identify relevant information, and [to convey] understanding clearly and accurately, both to decision makers and to the general public". Everyday, K-12 teachers communicate with an important segment of the general public, and they represent important stakeholders with unique needs. The terms 'global warming', 'greenhouse effect', and 'climate change' appear nowhere in the 1996 National Science Education Standards, but under the Next Generation Science Standards, millions of teachers- most of whom have little to no experience teaching about climate change- will be required to cover the topic. This presentation discusses research conducted with five veteran public school teachers, each of whom has been teaching about climate change for many years. The group comprises three high school teachers, a middle school teacher, and an elementary school teacher. The study examined: 1) What these teachers teach about climate change; 2) How they teach about climate change; 3) What resources they use in teaching and learning about climate change; and 4) How they think the scientific community can support teachers in their efforts to teach about climate change. The teachers varied in their teaching practices and in their conceptions of 'climate change', but they all said that the academic community can support climate change education by developing locally relevant educational resources. Scientists working with K-12 teachers can build on the work of these master teachers, and attendees can access detailed descriptions of all of the lessons and the associated learning materials.

  7. Regional-Scale Climate Change: Observations and Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less

  8. Evaluation of climatic changes in South-Asia

    NASA Astrophysics Data System (ADS)

    Kjellstrom, Erik; Rana, Arun; Grigory, Nikulin; Renate, Wilcke; Hansson, Ulf; Kolax, Michael

    2016-04-01

    Literature has sufficient evidences of climate change impact all over the world and its impact on various sectors. In light of new advancements made in climate modeling, availability of several climate downscaling approaches, the more robust bias correction methods with varying complexities and strengths, in the present study we performed a systematic evaluation of climate change impact over South-Asia region. We have used different Regional Climate Models (RCMs) (from CORDEX domain), (Global Climate Models GCMs) and gridded observations for the study area to evaluate the models in historical/control period (1980-2010) and changes in future period (2010-2099). Firstly, GCMs and RCMs are evaluated against the Gridded observational datasets in the area using precipitation and temperature as indicative variables. Observational dataset are also evaluated against the reliable set of observational dataset, as pointed in literature. Bias, Correlation, and changes (among other statistical measures) are calculated for the entire region and both the variables. Eventually, the region was sub-divided into various smaller domains based on homogenous precipitation zones to evaluate the average changes over time period. Spatial and temporal changes for the region are then finally calculated to evaluate the future changes in the region. Future changes are calculated for 2 Representative Concentration Pathways (RCPs), the middle emission (RCP4.5) and high emission (RCP8.5) and for both climatic variables, precipitation and temperature. Lastly, Evaluation of Extremes is performed based on precipitation and temperature based indices for whole region in future dataset. Results have indicated that the whole study region is under extreme stress in future climate scenarios for both climatic variables i.e. precipitation and temperature. Precipitation variability is dependent on the location in the area leading to droughts and floods in various regions in future. Temperature is hinting

  9. Undergraduate Students As Effective Climate Change Communicators

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2014-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.

  10. Impacts of Climate Change on Ecosystem Services

    USDA-ARS?s Scientific Manuscript database

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  11. Climate Change Made Simple

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.

    2007-01-01

    The newly revised specifications for GCSE science involve greater consideration of climate change. This topic appears in either the chemistry or biology section, depending on the examination board, and is a good example of "How Science Works." It is therefore timely that students are given an opportunity to conduct some simple climate modelling.…

  12. The 7 Aarhus Statements on Climate Change

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen; Svenning, Jens-Christian; Olesen, Jørgen E.; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene

    2009-03-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.

  13. The climate crisis: An introductory guide to climate change

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.

    2011-06-01

    Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.

  14. Undocumented migration in response to climate change

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840

  15. Undocumented migration in response to climate change.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index ( WSDI ) and the precipitation during extremely wet days ( R99PTOT ). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  16. Assessment of the Effects of Climate Change on Federal Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Michael J.; Shih-Chieh, Kao; Ashfaq, Moetasim

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  17. 78 FR 69288 - Import Administration; Change of Agency Name

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...] RIN 0625-AA98 Import Administration; Change of Agency Name AGENCY: Foreign-Trade Zones Board, International Trade Administration, Commerce. ACTION: Final rule; nomenclature change. SUMMARY: Effective... orders, changed the name of ``Import Administration'' to ``Enforcement and Compliance.'' Consistent with...

  18. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  19. America's Climate Choices: Adapting to the Impacts of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Wilbanks, T.; Yohe, G.; Mengelt, C.; Casola, J.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study assessed, this study assessed how the nation can begin to adapt to the impacts of climate change. Much of the nation’s experience to date in managing and protecting its people, resources, and infrastructure is based on the historic record of climate variability during a period of relatively stable climate. Adaptation to climate change calls for a new paradigm - one that considers a range of possible future climate conditions and associated impacts. The Adapting to the Impacts of Climate Change report calls for action at all levels of government, NGOs, and the private sector to assess vulnerabilities to the impacts of climate change and identify options for adaptation. Current adaptation efforts are hampered by a lack of solid information about the benefits, costs, and effectiveness of various adaptation options, by uncertainty about future climate change impacts at a scale necessary for decision-making, and by a lack of coordination. The report outlines a risk management framework that can be applied to assess vulnerabilities, compare and evaluate potential adaptation options, recognizing that decision makers across the country are likely to pursue a diverse set of adaptation measures. A major research effort is needed to improve knowledge about current and future vulnerabilities, explore new adaptation options, and better inform adaptation decisions. Therefore, the report also emphasizes the need to continually re-assess adaptation decisions as the experience and knowledge regarding effective adaptation evolves. A national adaptation strategy is needed in which the federal government would support and enhance adaptation activities undertaken by state, local, tribal, and private entities; identify and modify

  20. Climate Change: A Multidisciplinary Approach, Second Edition

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, Daniel

    2008-07-01

    William Burroughs, who died in November 2007, was a wonderfully clear and evocative writer. Chapter 3 of his last work, Climate Change: A Multidisciplinary Approach, begins with the loveliest four-paragraph description of the general circulation of the Earth's atmosphere I have ever encountered. His writing also shines in his descriptions of the climate record of the past few thousand years, and in his introduction to the measurement of climate change. Unfortunately, the book is marred by inconsistencies in its treatment of climate dynamics, as well as by a number of idiosyncratic choices of emphasis that detract from the book's quality as a general introduction to the science of climate change.