Science.gov

Sample records for agency drinking water

  1. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  2. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  3. Safe drinking water: critical components of effective inter-agency relationships.

    PubMed

    Jalba, Daniel I; Cromar, Nancy J; Pollard, Simon J T; Charrois, Jeffrey W; Bradshaw, Roland; Hrudey, Steve E

    2010-01-01

    The paper supports the development of evidence-based emergency management frameworks of cooperation between agencies in the area of drinking water and public health, as part of developing the overall risk management culture within water utilities. We employed a qualitative research design to understand critical gaps in inter-agency relations that aggravated past drinking water and health incidents and from these identified determinants of effective relationships. We identified six critical institutional relationship components that were deficient in past incidents, namely proactivity, communication, training, sharing expertise, trust and regulation. We then analysed how these components are addressed by reputable water utilities and public health departments to develop positive examples of inter-agency cooperation. Control of different risks (e.g. public health, business, and reputation) resulting from drinking water incidents should employ a preventive framework similar to the multiple barrier approach for management of drinking water quality.

  4. 78 FR 48845 - Hydrofluorosilicic Acid in Drinking Water; TSCA Section 21 Petition; Reasons for Agency Response

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    .... Association of silicofluoride treated water with elevated blood lead. Neurotoxicology. Vol. 21, pp. 1091-1099... Copper; Final Rule. Federal Register (56 FR 26460, June 7, 1991). 12. American Water Works Association... AGENCY 40 CFR Chapter I Hydrofluorosilicic Acid in Drinking Water; TSCA Section 21 Petition; Reasons...

  5. Drinking Water

    MedlinePlus

    ... the safest water supplies in the world, but drinking water quality can vary from place to place. It ... water supplier must give you annual reports on drinking water. The reports include where your water came from ...

  6. U. S. Environmental Protection Agency health-effects research on drinking-water contaminants

    SciTech Connect

    Hauchman, F.S.

    1992-01-01

    The Environmental Protection Agency's (EPA) Health Effects Research Laboratory (HERL) provides chemical-specific data and scientific methods that are used by the EPA Office of Water in the development of regulations required by the Safe Drinking Water Act. To determine the chemical and microbial contaminants in drinking water that are of greatest public health concern, HERL conducts hazard identification and dose-response research in humans, animals, and in vitro. HERL conducts studies on pharmacokinetics and mechanisms of action to facilitate the extrapolation of toxicity data from animals to humans. Characterization of the risks associated with human exposure to contaminants in drinking water involves a multi-laboratory/office effort to incorporate information on hazard, dose-response, and exposure into chemical and microbial risk models. The many uncertainties in the underlying health effects data base and in the models used for assessing chemical and microbial risks highlight the need for a strong drinking water health research program in the years to come.

  7. Drinking Water

    EPA Science Inventory

    This encyclopedic entry deals with various aspects of microbiology as it relates to drinking water treatment. The use of microbial indicators for assessing fecal contamination is discussed as well as current national drinking water regulations (U.S. EPA) and guidelines proposed ...

  8. WATER, DRINKING

    EPA Science Inventory

    The primary object of the microbiology of drinking water is to prevent waterborne disease. A drinking-water system can minimize waterborne disease by employing proper treatment and cntrol practices, and by monitoring the effectiveness of these practices. Here, these issues are ad...

  9. The Environmental Protection Agency: What They do to Keep Your Drinking Water Safe

    EPA Science Inventory

    The EPA has been around for 35 years, but it was only in 1974 that they passed the Safe Drinking Water Act. The Act was amended several times in order to improve the minimum drinking water standards. These standards, which are in effect today, are constantly being evaluated and...

  10. Drinking Water FAQ

    MedlinePlus

    ... Water & Nutrition Camping, Hiking, Travel Drinking Water Treatment & Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Drinking Water Healthy Swimming / Recreational Water Global Water, Sanitation, & Hygiene Other Uses of Water Water-related Emergencies & ...

  11. Effectiveness of the Preservation Protocol within the Environmental Protection Agency (EPA) Method 200.8 for Soluble and Particulate Lead Recovery in Drinking Water

    EPA Science Inventory

    Lead (Pb) is a toxic trace metal that is regulated in drinking water. The U.S. Environmental Protection Agency (USEPA) issued the Lead and Copper Rule (LCR), which defines the action level for lead at the tap as 0.015 mg/L. Researchers and drinking water utilities typically emplo...

  12. United States environmental protection agency perchlorate method 332.0. Statistically sound recovery studies in simulated drinking water.

    PubMed

    Vanatta, L E; Slingsby, R W

    2011-09-01

    This research is a continuation of an earlier work, which evaluated the United States Environmental Protection Agency's Perchlorate Method 332.0, in which standards were prepared in deionized water over an extended concentration range (i.e., to a maximum of 200 μg/L). This current paper investigates the performance of the same method in which standards were made in simulated drinking water. A microbore format with a 15-μL injection volume was employed to conduct a recovery study and generate recovery curves (which hold the key to a statistically sound assessment of method performance in more complex matrices). The maximum analyte concentration range was 1 to 200 μg/L. For various subset concentration ranges, recovery evaluations were made using both raw peak-area data and analyte responses scaled by the internal standard (ISTD). The results indicate that in complicated matrices such as drinking water, ISTDs may not provide simultaneously high precision and recovery.

  13. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area. PMID:27075311

  14. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area.

  15. AN OVERVIEW OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S DRINKING WATER TREATMENT AND DISTRIBUTION SYSTEM RESEARCH PROGRAM

    EPA Science Inventory

    This presentation will provide an overview of drinking water research being conducted by the National Risk Management Research Laboratory (NRMRL) of the U.S. EPA. The Water Supply and Water Resources Division (WSWRD) is an internationally known water research organization establi...

  16. Perchlorate in water via US Environmental Protection Agency Method 331 Determination of method uncertainties, lowest concentration minimum reporting levels, and Hubaux-Vos detection limits in reagent water and simulated drinking water.

    PubMed

    Wendelken, S C; Vanatta, L E; Coleman, D E; Munch, D J

    2006-06-16

    US Environmental Protection Agency (EPA) Method 331 determines perchlorate in drinking water using non-suppressed ion chromatography with tandem mass spectrometry. This study reports the results of calibration and recovery studies in reagent water, as well as of a recovery study in simulated drinking water (i.e., total dissolved solids are 500 mg/mL each of chloride, sulfate, and bicarbonate). The perchlorate concentrations in the study ranged from 0.05 to 64 ng/mL. At 95% confidence, the Hubaux-Vos detection limit (H-V DL) was 0.04 ng/mL for the calibration study and the simulated-drinking-water recovery study, and 0.03 ng/mL for the reagent-water recovery study. The lowest concentration minimum reporting level was 0.03 ng/mL for reagent water and 0.0 7 ng/mL for simulated drinking water, again at 95% confidence.

  17. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  18. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI-AGENCY COMMUNITY-BASED, RESEARCH PROJECT

    EPA Science Inventory

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (ųg/L) occur in numerous aquifers around the United States. One such aquifer is the Central ...

  19. ARSENIC IN DRINKING WATER SUPPLY WELLS: A MULTI-AGENCY, COMMUNITY-BASED, RESEARCH PROJECT

    EPA Science Inventory

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (µg/L) occur in numerous aquifers around the United States. One such aquifer is the Central ...

  20. Ensuring safer drinking water

    SciTech Connect

    Christensen, J. . Fluid Delivery and Electrical Markets); Higgins, P. )

    1994-09-01

    Today's regulatory environment has led to the proliferation of voluntary consensus standards and certification programs that are important to ensuring safety and health in a number of areas. One such area -- the treatment and delivery of potable water -- is addressed by the Drinking Water Additives Program.'' At the request of the Environmental Protection Agency (EPA), this program was developed in the mid-1980s by an independent, voluntary consensus standards organization called NSF International (formerly known as the National Sanitation Foundation). This paper explains the need for and the structure of the Drinking Water Additives Program; the rationale for transferring responsibility for its execution from the EPA to the private sector; and the impact of its standards on users, manufacturers, and state and local regulatory bodies. Understanding the additives program is critically important to industry suppliers because, as it continues to gain greater awareness and acceptance, there are a growing number of manufacturers sourcing materials and products primarily from suppliers whose products meet the program's certification requirements.

  1. Safe drinking water act

    SciTech Connect

    Calabrese, E.J.; Gilbert, C.E. )

    1989-01-01

    This book covers drinking water regulations such as disinfectant by-products, synthetic organics, inorganic chemicals, microbiological contaminants, volatile organic chemicals, radionuclides, fluoride, toxicological approaches to setting new national drinking water regulations, and trihalomethanes. Gives organic and inorganic compounds scheduled to be regulated in 1989 and candidates for the 1990s regulations.

  2. Drinking-water standards

    SciTech Connect

    Munro, N.B.; Travis, C.C.

    1986-08-01

    This paper discussed the revising of the primary and secondary drinking-water regulations by EPA in accordance with the Safe Drinking Water Act. Since consideration of risk is playing an increasing role in setting environmental standards, questions were raised regarding the adequacy of human health protection afforded by some of the existing and proposed standards. 1 table.

  3. Drinking Water and Health.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to a provision of the Safe Drinking Water Act of 1974 which called for a study that would serve as a scientific basis for revising the primary drinking water regulations that were promulgated under the Act, a study of the scientific literature was undertaken in order to assess the implications for human health of the constituents of…

  4. Drinking water microbial myths.

    PubMed

    Allen, Martin J; Edberg, Stephen C; Clancy, Jennifer L; Hrudey, Steve E

    2015-01-01

    Accounts of drinking water-borne disease outbreaks have always captured the interest of the public, elected and health officials, and the media. During the twentieth century, the drinking water community and public health organizations have endeavored to craft regulations and guidelines on treatment and management practices that reduce risks from drinking water, specifically human pathogens. During this period there also evolved misunderstandings as to potential health risk associated with microorganisms that may be present in drinking waters. These misunderstanding or "myths" have led to confusion among the many stakeholders. The purpose of this article is to provide a scientific- and clinically-based discussion of these "myths" and recommendations for better ensuring the microbial safety of drinking water and valid public health decisions.

  5. PRESERVING DRINKING WATER INTEGRITY IN OUR COMMUNITIES: HOMELAND SECURITY PRIORITIES OF THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    A book chapter published in a 3-volume textbook series by the U. S. Military Academy at West Point, Combating Terrorism Center. Book title: Homeland Security: Protecting America's Targets. The chapter is a review of background of water systems, impact of September 11, 2001, a...

  6. 75 FR 61751 - National Drinking Water Advisory Council: Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... National Drinking Water Advisory Council (Council). This 15-member Council was established by the Safe Drinking Water Act (SDWA) to provide practical and independent advice, consultation and recommendations...

  7. [Drinking water in infants].

    PubMed

    Vitoria Miñana, I

    2004-02-01

    We review types of public drinking water and bottled water and provide recommendations on the composition of water for infants. Water used with any of the commercial infant formulas in Spain should contain less than 25 mg/l of sodium. Drinking water must be boiled for a maximum of one minute (at sea level) to avoid excessive salt concentration. Bottled water need not be boiled. Fluoride content in drinking water should be less than 0.3 mg/l in first year of life to prevent dental fluorosis. Nitrate content in water should be less than 25 mg/l to prevent methemoglobinemia. Water with a calcium concentration of between 50 and 100 mg/l is a dietary source of calcium since it provides 24-56 % of the required daily intake in infancy.

  8. Developing a state wellhead protection program: a user's guide to assist state agencies under the Safe Drinking Water Act

    SciTech Connect

    Roy, S.

    1988-07-01

    The 1986 Amendments to the Safe Drinking Water Act established a new Wellhead Protection (WHP) Program to protect ground water that supplies drinking water wells from sources of contamination. Under Section 1428 of the Act, each State must prepare a WHP program and submit it to EPA by June 19, 1989. Although the law requires that every State WHP program must contain specific elements, EPA recognizes that States should be allowed flexibility to tailor program details to best suit their individual needs. The document provides an overview of the major program requirements, presents major messages that a State should consider while developing a WHP program, and presents case-study examples to illustrate how a State might address each element of its WHP program.

  9. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... AGENCY Tribal Drinking Water Operator Certification Program AGENCY: Environmental Protection Agency (EPA... Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be recognized as certified operators by...

  10. National drinking water program redirection strategy

    SciTech Connect

    1996-06-07

    During 1995, the U.S. Environmental Protection Agency (US EPA) conducted an extensive reassessment of its drinking water protection program in response to a number of issues which were being raised within the Agency, by a wide range of interested parties, and by Congress. The purpose of the reassessment was to assist the Agency in; formulation comprehensive redirection objectives that can serve to guide Agency activities related to drinking water; identifying and implementing high-priority activities that will maximize risk reduction; realigning resources within the Office of Water`s Drinking Water Program at EPA headquarters to support as many of the activities as possible; and utilizing improved coordination with other Agency offices and the Regions to support the redirection effort. This document is intended for public comment.

  11. 75 FR 55324 - Agency Information Collection Activities: Proposed Collection; Comment Request; 2011 Drinking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... at http://www.epa.gov/dockets . FOR FURTHER INFORMATION CONTACT: Robert Barles, Drinking Water Protection Division (Mail Code 4606M), Office of Ground Water and Drinking Water, U.S. EPA, 1200 Pennsylvania... agencies, and state departments of health. Title: 2011 Drinking Water Infrastructure Needs Survey...

  12. [Drinking water and parasites].

    PubMed

    Karanis, P; Schoenen, D; Maier, W A; Seitz, H M

    1993-10-01

    Entamoeba histolytica, Giardia lamblia, Cryptosporidium parvum, Isospora belli, Balantidium coli, and Microsporidia spp. are cosmopolitan parasites. They often cause diarrheal diseases. The waterborn transmission of all these parasites is possible (41). Surface water supplies used for drinking water are potential sources of contamination. Giardia lamblia and Cryptosporidium spp. have received great attention in industrialized countries during the last years because they are the etiological agents of waterborne diseases. The life cycles of Giardia lamblia and Cryptosporidium are described with a special reference to drinking water technologies aimed at removing these parasites. PMID:8253478

  13. REGULATED CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...

  14. [Herbicides in drinking water].

    PubMed

    Funari, E; Sampaolo, A

    1989-01-01

    Toxicological implications due to the use of herbicide-contaminated drinking water, as well as other organic chemicals, are related to their nature and levels. These implications can be defined for each substance on the basis of an adequate evaluation of epidemiological information and experimental data on animals. In this paper, World Health Organization's procedures for establishing guidelines for 11 herbicides widely used in Italy are described. Furthermore, data and information about the use of these herbicides and their levels in Italian drinking-water supplies are also reported and discussed. Finally, factors and conditions responsible for the groundwater contamination by some herbicides in determined areas are presented and discussed.

  15. DRINKING WATER ISSUES

    EPA Science Inventory

    According to recent reports by the California Department of Health Services, the State of Maine, and the United State Geological Survey (USGS); the fuel oxygenate methyl teri-butyl ether (MTBE) is present in 5 to 20 percent of the drinking water sources in California and the nort...

  16. Water Fit to Drink.

    ERIC Educational Resources Information Center

    Donovan, Edward P.

    The major objective of this module is to help students understand how water from a source such as a lake is treated to make it fit to drink. The module, consisting of five major activities and a test, is patterned after Individualized Science Instructional System (ISIS) modules. The first activity (Planning) consists of a brief introduction and a…

  17. Naphthalene: Drinking water health advisory

    SciTech Connect

    Not Available

    1990-03-01

    The Drinking Water Health Advisory, Office of Water, U.S. Environmental Protection Agency, has issued its report on the chemical, naphthalene. Naphthalene is used in the manufacture of phthalic and anthranilic acids and other derivatives, and in making dyes; in the manufacture of resins, celluloid, lampblack and smokeless gunpowder; and as moth repellant, insecticide, anthelmintic, vermicide, and intestinal antiseptic. The report covers the following areas: the occurrence of the chemical in the environment; its environmental fate; the chemical's absorption, distribution, metabolism, and excretion in the human body; and its health effects on humans and animals, including its mutagenicity and carcinogenicity characteristics. Also included is the quantification of its toxicological effects.

  18. 75 FR 54872 - Drinking Water Strategy Contaminants as Group(s)-Notice of Public Stakeholder Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... AGENCY Drinking Water Strategy Contaminants as Group(s)--Notice of Public Stakeholder Meeting AGENCY... Agency (EPA) Administrator Lisa P. Jackson announced the Drinking Water Strategy, a new vision to expand public health protection for drinking water by going beyond the traditional framework. The Drinking...

  19. USEPA Drinking Water Laboratory Certification Program

    SciTech Connect

    Feige, M.A.; Madding, C.; Glick, E.M. )

    1993-09-01

    The Drinking Water Laboratory Certification Program has been in existence since 1943 and was adopted by the Drinking Water Program in 1978 under the authority given the US Environmental Protection Agency (USEPA) by the Safe Drinking Water Act (SDWA). Both USEPA and the states are looking for ways to make the program efficient in the face of dwindling resources. Recent discussions concerning the certification program have included major new approaches. With impending reauthorization of the SDWA and the changing needs of the certification community, the program could be significantly modified.

  20. 76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY... meeting of the National Drinking Water Advisory Council (NDWAC or Council), established under the Safe Drinking Water Act. The Council will consider various issues associated with drinking water protection...

  1. Drinking water and women's health.

    PubMed

    Afzal, Brenda M

    2006-01-01

    Primary health providers in the community must be able to field questions and guide vulnerable populations to informed decisions about drinking water quality and health. This article offers an overview of selected contaminants in drinking water and their possible effects on the health of women over the life span. Historical concerns for drinking water safety, which led to the development of current drinking water regulations, are briefly explored. Several chemical, microbial, and radionuclide contaminants of particular concern to women and children are discussed. Short- and long-term tap water alternatives are suggested for when tap water is deemed unsuitable for use.

  2. STUDIES ON WATER DRINKING

    PubMed Central

    Fowler, C. C.; Hawk, P. B.

    1910-01-01

    The daily drinking of three liters of water with meals, for a period of five days, by a man twenty-two years of age who was in a condition of nitrogen equilibrium through the ingestion of a uniform diet, was productive of the following findings : 1. An increase in body weight, aggregating two pounds in five days. 2. An increased excretion of urinary nitrogen, the excess nitrogen being mainly in the form of urea, ammonia, and creatine. 3. A decreased excretion of creatinine and the coincident appearance of creatine in the urine. The decreased creatinine output is believed to indicate that the copious water drinking has stimulated protein catabolism. The appearance of creatine is considered evidence that the water has caused a partial muscular disintegration resulting in the release of creatine, but not profound enough to yield the total nitrogen content of the muscle. The output of creatine is, therefore, out of all proportion to the increase in the excretion of total nitrogen. 4. An increased output of ammonia which is interpreted as indicating an increased output of gastric juice. 5. A decreased excretion of feces and of fecal nitrogen, the decrease in the excretion of fecal nitrogen being of sufficient magnitude to secure a lowered excretion of both the bacterial and the non-bacterial nitrogen. 6. A decrease in the quantity of bacteria excreted daily. 7. An increase in the percentage of total nitrogen appearing as bacterial nitrogen. 8. A lower creatinine coefficient. 9. A more economical utilization of the protein constituents of the diet. 10. The general conclusion to be reached as the result of this experiment is to the effect that the drinking of a large amount of water with meals was attended by many desirable and by no undesirable features. PMID:19867334

  3. 78 FR 65981 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). The meeting is scheduled for December 11 and 12, 2013. This meeting of...

  4. 77 FR 52023 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (NDWAC or Council), established under the Safe Drinking Water Act (SDWA). This meeting was originally scheduled (and announced in a...

  5. 78 FR 48158 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). This meeting is scheduled for October 9 and 10, 2013, in Arlington, VA....

  6. 78 FR 36183 - State Allotment Percentages for the Drinking Water State Revolving Fund Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... AGENCY State Allotment Percentages for the Drinking Water State Revolving Fund Program AGENCY... Protection Agency (EPA) is announcing the revised Drinking Water State Revolving Fund (DWSRF) allotments that... enacted. These allotments reflect the results from EPA's most recent Drinking Water Infrastructure...

  7. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guide to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.

  8. Lead in School Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  9. Drinking Water Treatability Database (Database)

    EPA Science Inventory

    The drinking Water Treatability Database (TDB) will provide data taken from the literature on the control of contaminants in drinking water, and will be housed on an interactive, publicly-available USEPA web site. It can be used for identifying effective treatment processes, rec...

  10. Drinking Water Database

    NASA Technical Reports Server (NTRS)

    Murray, ShaTerea R.

    2004-01-01

    This summer I had the opportunity to work in the Environmental Management Office (EMO) under the Chemical Sampling and Analysis Team or CS&AT. This team s mission is to support Glenn Research Center (GRC) and EM0 by providing chemical sampling and analysis services and expert consulting. Services include sampling and chemical analysis of water, soil, fbels, oils, paint, insulation materials, etc. One of this team s major projects is the Drinking Water Project. This is a project that is done on Glenn s water coolers and ten percent of its sink every two years. For the past two summers an intern had been putting together a database for this team to record the test they had perform. She had successfully created a database but hadn't worked out all the quirks. So this summer William Wilder (an intern from Cleveland State University) and I worked together to perfect her database. We began be finding out exactly what every member of the team thought about the database and what they would change if any. After collecting this data we both had to take some courses in Microsoft Access in order to fix the problems. Next we began looking at what exactly how the database worked from the outside inward. Then we began trying to change the database but we quickly found out that this would be virtually impossible.

  11. APPLICATION OF USEPA'S DRINKING WATER REGULATIONS TOWARDS RAINWATER CATCHMENT SYSTEMS

    EPA Science Inventory

    Rainwater harvesting is receiving increased attention worldwide as an alternative source of drinking water. Although federal agencies such as the USEPA acknowledge the existence of rainwater collection systems, the monitoring of this water source is still typically carried out b...

  12. Development of EPA Method 525.3 for the Analysis of Semivolatiles in Drinking Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water (OGWDW) collects nationwide occurrence data on contaminants in drinking water using the Unregulated Contaminant Monitoring Regulations (UCMRs). The unregulated contaminants, which ar...

  13. The risks of drinking water

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1984-04-01

    Three researchers from the Energy and Environmental Policy Center at Harvard University have come up with a new method of calculating the risk from contaminants in drinking water, one that they believe takes into account some of the uncertainties in pronouncing water safe or dangerous to drink. The new method concentrates on the risk of cancer, which authors Edmund Crouch, Richard Wilson, and Lauren Zeise believe has not been properly considered in establishing drinking water standards.Writing in the December 1983 issue of Water Resources Research, the authors state that “current [drinking water] standards for a given chemical or class of chemicals do not account for the presence of other pollutants” that could combine to create dangerous substances. According to Wilson, “Over a hundred industrial pollutants and chlorination byproducts have been found in various samples of drinking water, some of which are known carcinogens, others suspected carcinogens.” The same chlorine that solves one major health problem—the threat of bacterial disease—can thus contribute to another, according to the authors, by increasing the long-term risk of cancer. The largest risks are due to halomethanes such as chloroform and bromoform, produced as chlorine reacts with organic matter in drinking water.

  14. ARSENIC IN WATER USED FOR DRINKING - AN ENVIRONMENTAL TECHNOLOGY VERIFICATION

    EPA Science Inventory

    In October 2001, the U.S. Environmental Protection Agency (EPA) announced a new federal standard for concentrations of arsenic found in drinking water. The new standard was to be 10 parts-per-million (ppm). This new standard will be required by the Safe Drinking Water Act in...

  15. Removal of dibromochloropropane from drinking water: laboratory and field experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dibromochloropropane (1,2-dibromo-3-chloropropane or DBCP) is regulated by the U.S. Environmental Protection Agency under the National Primary Drinking Water Regulations to a maximum of 0.2 µg/L (0.2 ppb) in drinking water. DBCP was primarily used as an unclassified nematicide for vegetables and per...

  16. 77 FR 64113 - National Drinking Water Advisory Council: Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA) to provide...

  17. 77 FR 34382 - Meetings of the National Drinking Water Advisory Council-Notice of Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... AGENCY Meetings of the National Drinking Water Advisory Council--Notice of Public Meetings AGENCY.../conference call and one in-person meeting of the National Drinking Water Advisory Council (NDWAC or Council), established under the Safe Drinking Water Act (SDWA). The Council will consider various issues associated...

  18. 78 FR 68838 - National Drinking Water Advisory Council; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AGENCY National Drinking Water Advisory Council; Request for Nominations AGENCY: Environmental Protection... candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA) to provide...

  19. 76 FR 61355 - National Drinking Water Advisory Council; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... AGENCY National Drinking Water Advisory Council; Request for Nominations AGENCY: Environmental Protection... of qualified candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA)...

  20. Development of the revised drinking water standard for chromium.

    PubMed

    Goldhaber, S; Vogt, C

    1989-10-01

    Comprehensive regulations are being developed to limit human exposure to contamination in drinking water by the United States Environmental Protection Agency (EPA) under the authority of the Safe Drinking Water Act (SDWA). These regulations are being developed in several phases and include synthetic organic chemicals, inorganic chemicals, microbiological contaminants and radionuclides. This paper addresses the fundamental concepts and approaches used by EPA in setting drinking water regulations and how EPA is using these concepts to revise the drinking water standard for chromium. PMID:2602936

  1. [Microbiology of ground water and drinking water].

    PubMed

    Dott, W; Frank, C; Kämpfer, P; Tuschewitzki, G J; Wernicke, F

    1986-10-01

    Groundwater has been considered a safe source for drinking water protected against surface contamination. However, a number of reports about chemical and microbiological contamination have disproved this assumption. Besides hygienical monitoring, little is known about the microbiology of ground- and drinking water. The purpose of this paper is to give a review about the main fields of investigation concerning microbial activity in ground- and drinking-water-action. The hygienical relevant topics are: survival and transport of microorganisms, microbiological degradation of organic pollutants, turn-over of nitrogen compounds, oxidation and reduction of iron and manganese and development of methods for microbiological water examination.

  2. Drinking water for the future.

    PubMed

    Okun, D A

    1976-07-01

    The Safe Drinking Water Act of 1974 represents an important step in improving the quality of public water supply in the United States. However, it fails to address two important problems: (1) The 1970 Public Health Service Community Water Supply Survey revealed that small public water supply systems often deliver poor quality water. The Act does not assure that these supplies will now receive appropriate attention; furthermore, the Act does not address the needs of the 50 million people not now served by public water systems; (2) About one-third of our population draws its drinking waters from polluted sources. The decisions to use these low cost sources were made generations ago when consumers could be protected from water-borne infectious disease. A new problem has now arisen--the presence of numerous synthetic organic chemicals of uncertain health consequence, not removed by conventional water treatment. The Act does not address this problem. Regionalization and the integration of water resource and water pollution control authorities are proposed as a reasonable solution to these problems. The development of dual water supply systems in order to conserve scarce pure water sources for human consumption appears to be a feasible way to avoid using polluted waters for drinking. The development of dual supplies would be enhanced by regionalization and integration of water authorities. PMID:937609

  3. How dogs drink water

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, Jake; Vlachos, Pavlos; Jung, Sunghwan

    2014-11-01

    Animals with incomplete cheeks (i.e. dogs and cats) need to move fluid against gravity into the body by means other than suction. They do this by lapping fluid with their tongue. When a dog drinks, it curls its tongue posteriorly while plunging it into the fluid and then quickly withdraws its tongue back into the mouth. During this fast retraction fluid sticks to the ventral part of the curled tongue and is drawn into the mouth due to inertia. We show several variations of this drinking behavior among many dog breeds, specifically, the relationship between tongue dynamics and geometry, lapping frequency, and dog weight. We also compare the results with the physical experiment of a rounded rod impact onto a fluid surface. Supported by NSF PoLS #1205642.

  4. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Protection Agency (EPA or Agency) is announcing the fifth and final in-person meeting of the Climate Ready... presentations on related inter-agency climate efforts. To obtain a copy of the draft report or other...

  5. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Nutrition Camping, Hiking, Travel Drinking Water Treatment and Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related Hygiene Related Sites Get Email Updates ...

  6. Giardia and Drinking Water from Private Wells

    MedlinePlus

    ... Nutrition Camping, Hiking, Travel Drinking Water Treatment and Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related Hygiene Related Sites Get Email Updates ...

  7. Drinking water health advisory for boron

    SciTech Connect

    Cantilli, R.

    1991-04-01

    The Health Advisory Program, sponsored by the Environmental Protection Agency's Office of Water, has issued its report on the element boron: included are the compounds boric acid and borax(sodium tetraborate). It provides information on the health effects, analytical methodology, and treatment technology that would be useful in dealing with the contamination of drinking water. Health Advisories (HAs) describe nonregulatory concentrations of drinking water contaminants at which adverse health effects would not be anticipated to occur over specific exposure durations. HAs serve as informal technical guidance to assist Federal, State, and local officials responsible for protecting public health when emergency spills or contamination situations occur. They are not legally enforceable Federal Standards and are subject to change as new information becomes available.

  8. 75 FR 35458 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Protection Agency (EPA or Agency) is announcing the fourth in-person meeting of the Climate Ready Water... meeting is for the Working Group to discuss climate-related tools and resources needed to address...

  9. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Agency (EPA or Agency) is announcing the second in-person meeting of the Climate Ready Water Utilities... meeting is for the Working Group to discuss the attributes and enabling environment of climate ready...

  10. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Protection Agency (EPA or Agency) is announcing the third in-person meeting of the Climate Ready Water... to be climate ready, enabling environment recommendations, and climate-related tools to...

  11. Sustaining Waters: From Hydrology to Drinking Water

    NASA Astrophysics Data System (ADS)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  12. ENSURING SAFE DRINKING WATER

    EPA Science Inventory

    This brochure is part of a series of information packages prepared by the United States Environmental Protection Agency (EPA). Aimed at the international community, the packages focus on key environmental and public health issues being investigated by EPA. The products highlighte...

  13. Uranium in Kosovo's drinking water.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-11-01

    The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations.

  14. Drinking water from private wells and risks to children.

    PubMed

    Rogan, Walter J; Brady, Michael T

    2009-06-01

    Drinking water for approximately one sixth of US households is obtained from private wells. These wells can become contaminated by pollutant chemicals or pathogenic organisms and cause illness. Although the US Environmental Protection Agency and all states offer guidance for construction, maintenance, and testing of private wells, there is little regulation. With few exceptions, well owners are responsible for their own wells. Children may also drink well water at child care or when traveling. Illness resulting from children's ingestion of contaminated water can be severe. This policy statement provides recommendations for inspection, testing, and remediation for wells providing drinking water for children.

  15. [The drinking water ordinance--successful or requiring revision?].

    PubMed

    Bartel, Hartmut; Krüger, W; Mendel, B; Suhr, R

    2007-03-01

    The current regulatory approach in Germany combines regulations defined in the Drinking Water Ordinance with a comprehensive catalogue of technical rules as well as with guidelines and recommendations by the Federal Environment Agency and the Drinking Water Commission. This approach has proven successful in practice. Some parts would benefit from revision. The regulator is currently contemplating some revision in order to take experience of federal, state and local authorities as well as of water suppliers with implementation of the current Ordinance into account. The intention is improvement particularly towards reducing bureaucracy without compromising the current high level of public health protection through drinking water hygiene in Germany.

  16. Drinking water aluminum and bioavailability

    SciTech Connect

    Reiber, S.H.; Kukull, W.; Standish-Lee, P.

    1995-05-01

    This article discusses chemical considerations relative to aluminum uptake in the body and reviews aluminum concentrations, species, and distribution in natural and treated waters. The issues of bioavailability and the likelihood that aluminum in drinking water is more readily assimilated than other forms of aluminum is reviewed and rejected based on issues of solubility and likely chemical transformations that take place in the human gut.

  17. Drink Water, Stay Slimmer?

    MedlinePlus

    ... an overall healthy diet, she noted. Explaining why water intake may be linked with a healthier weight was beyond the scope of the study, Chang said. Chang suggests a simple measure to gauge hydration: "I just say look ...

  18. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  19. What's next after 40 years of drinking water regulations?

    PubMed

    Roberson, J Alan

    2011-01-01

    The quality of drinking water in the United States has continued to improve over the past 40 years. The formation of the U.S. Environmental Protection Agency (USEPA) in 1971, the passage of the initial Safe Drinking Water Act (SDWA, PL 93-523) in 1974, and the passage of the 1996 SDWA Amendments (PL 104-208) represent significant progress in drinking water quality. While the widespread adoption of filtration and disinfection in the early 1900s virtually eliminated waterborne typhoid fever, some residual risks still remained 40 years ago. These national regulatory developments compelled USEPA and the drinking water community to address these remaining risks in drinking water and optimize risk reduction for the public.

  20. What's next after 40 years of drinking water regulations?

    PubMed

    Roberson, J Alan

    2011-01-01

    The quality of drinking water in the United States has continued to improve over the past 40 years. The formation of the U.S. Environmental Protection Agency (USEPA) in 1971, the passage of the initial Safe Drinking Water Act (SDWA, PL 93-523) in 1974, and the passage of the 1996 SDWA Amendments (PL 104-208) represent significant progress in drinking water quality. While the widespread adoption of filtration and disinfection in the early 1900s virtually eliminated waterborne typhoid fever, some residual risks still remained 40 years ago. These national regulatory developments compelled USEPA and the drinking water community to address these remaining risks in drinking water and optimize risk reduction for the public. PMID:21141882

  1. AIDS Action campaigns for drinking water safety.

    PubMed

    1995-01-01

    AIDS Action Council is sponsoring the Municipal Water Education Project, a program which functions to inform people about water safety and contaminants such as cryptosporidium. People with compromised immune systems are vulnerable to infection from the parasite cryptosporidium in the water supply. Currently, there is no effective treatment for the condition. On June 15, 1995, the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) published guidelines to inform people how to avoid infection with cryptosporidium. The Council publicly supports these guidelines about home filtration, boiling water, and bottled water. In addition, the Council is pushing for a stronger Safe Drinking Water Act, which will be up for reauthorization this year.

  2. AIDS Action campaigns for drinking water safety.

    PubMed

    1995-01-01

    AIDS Action Council is sponsoring the Municipal Water Education Project, a program which functions to inform people about water safety and contaminants such as cryptosporidium. People with compromised immune systems are vulnerable to infection from the parasite cryptosporidium in the water supply. Currently, there is no effective treatment for the condition. On June 15, 1995, the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) published guidelines to inform people how to avoid infection with cryptosporidium. The Council publicly supports these guidelines about home filtration, boiling water, and bottled water. In addition, the Council is pushing for a stronger Safe Drinking Water Act, which will be up for reauthorization this year. PMID:11367402

  3. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  4. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  5. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  6. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  7. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  8. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  9. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  10. DRINKING WATER TREATMENT

    EPA Science Inventory

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  11. 76 FR 8674 - Notice of a Public Meeting: Environmental Justice Considerations for Drinking Water Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... AGENCY 40 CFR Part 1 Notice of a Public Meeting: Environmental Justice Considerations for Drinking Water... the drinking water Contaminant Candidate List 3. EPA recently announced its intentions to develop drinking water regulatory actions for perchlorate and carcinogenic volatile organic compounds (VOCs)....

  12. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of drinking water. 194.53 Section 194.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... underground sources of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment...

  13. 40 CFR 144.82 - What must I do to protect underground sources of drinking water?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sources of drinking water? 144.82 Section 144.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... protect underground sources of drinking water? If you own or operate any type of Class V well, the... USDWs, if the presence of that contaminant may cause a violation of the primary drinking water...

  14. 40 CFR 144.82 - What must I do to protect underground sources of drinking water?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sources of drinking water? 144.82 Section 144.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... protect underground sources of drinking water? If you own or operate any type of Class V well, the... USDWs, if the presence of that contaminant may cause a violation of the primary drinking water...

  15. 77 FR 27057 - Request for Nominations of Drinking Water Contaminants for the Fourth Contaminant Candidate List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... AGENCY Request for Nominations of Drinking Water Contaminants for the Fourth Contaminant Candidate List... contaminants for possible inclusion in the fourth drinking water Contaminant Candidate List (CCL 4). EPA is... information contact the EPA Safe Drinking Water Hotline at (800) 426-4791 or email: hotline-sdwa@epa.gov ....

  16. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of drinking water. 194.53 Section 194.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... underground sources of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment...

  17. 40 CFR 144.82 - What must I do to protect underground sources of drinking water?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sources of drinking water? 144.82 Section 144.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... protect underground sources of drinking water? If you own or operate any type of Class V well, the... USDWs, if the presence of that contaminant may cause a violation of the primary drinking water...

  18. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drinking water. 194.53 Section 194.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment that are expected to...

  19. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of drinking water. 194.53 Section 194.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... underground sources of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment...

  20. 40 CFR 144.82 - What must I do to protect underground sources of drinking water?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sources of drinking water? 144.82 Section 144.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... protect underground sources of drinking water? If you own or operate any type of Class V well, the... USDWs, if the presence of that contaminant may cause a violation of the primary drinking water...

  1. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of drinking water. 194.53 Section 194.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... underground sources of drinking water. In compliance assessments that analyze compliance with part 191, subpart C of this chapter, all underground sources of drinking water in the accessible environment...

  2. Cleaning Up Our Drinking Water

    SciTech Connect

    Manke, Kristin L.

    2007-08-01

    Imagine drinking water that you wring out of the sponge you’ve just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. “We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,” said Pacific Northwest National Laboratory’s Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues.

  3. 75 FR 35801 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY: Environmental Protection Agency. ACTION: Notice. SUMMARY: Under Section 10(a)(2) of Public Law 92-423, ``The Federal Advisory Committee Act,'' notice is hereby given of a meeting of the National Drinking...

  4. 76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... AGENCY Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting AGENCY: Environmental Protection Agency. ACTION: Notice. SUMMARY: Under Section 10(a)(2) of Public Law 92-423, ``The Federal Advisory Committee Act,'' notice is hereby given of a meeting of the National Drinking...

  5. 75 FR 70918 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY: Environmental Protection Agency. ACTION: Notice. SUMMARY: Under Section 10(a)(2) of Public Law 92-423, ``The Federal Advisory Committee Act,'' notice is ] hereby given of a meeting of the National Drinking...

  6. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources: PROGRESS REPORT can be... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking...

  7. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  8. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  9. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  10. Pollutants in drinking water and waste water.

    PubMed

    Schröder, H F

    1993-07-23

    Extracts of drinking water and effluents from municipal and industrial sewage treatment plants were analysed by gas chromatography-mass spectrometry and by high-performance liquid chromatography combined with ultraviolet and/or mass spectrometric detection. After column chromatography or flow-injection analysis bypassing the analytical column, ionization was performed by a thermospray interface. Identification of the pollutants was carried out by tandem mass spectrometry, generating daughter-ion spectra by collision-induced dissociation. Most pollutants in drinking water and in the effluents of waste water treatment plants are surface-active compounds of anthropogenic origin or their biochemical degradation products. Difficulties encountered during separation, detection and identification are presented and discussed and techniques for solving these problems are proposed.

  11. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY GAC, AIR STRIPPING, AND MEMBRANE PROCESSES

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  12. EPA Method 544: A Case Study in USEPA Drinking Water Method Develpment

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act required the U.S. Environmental Protection Agency (USEPA) to establish a Drinking Water Contaminant Candidate List (CCL) of chemicals and microbes that the Agency will consider for future regulation. One of the key pieces of info...

  13. An update of the federal drinking water regs

    SciTech Connect

    Pontius, F.W. )

    1995-02-01

    Previous reviews have summarized the regulations promulgated for volatile organic chemicals (VOCs), fluoride, surface water treatment, total coliform bacteria, lead and copper, and Phase 2 and Phase 5 synthetic organic contaminants (SOCs) and inorganic contaminants (IOCs). Current developments related to these rules and anticipated new rules are reviewed in this article. Current numerical drinking water standards and best available technology (BAT) are summarized. The status of all current, proposed, and anticipated regulations is also summarized. Dates for anticipated agency actions are based on the US Environmental Protection Agency's (USEPA's) published regulatory agenda and on information released by the agency through December 1994; these dates can change as the agency reconsiders its regulatory policies.

  14. Drinking water standards and regulations. Manual for 1977-1986

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1987-01-15

    The following eight important documents are compiled for Drinking Water Standards and Regulations: (1) EPA Interim Primary Drinking Water Standards; (2) EPA Guidelines establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act; (3) Massachusetts Dept. of Environmental Quality Engineering, Interpretation of Results of Water Supply Analysis; (4) Thompson, J.C., Updating the Safe Drinking Water Act and the Drinking Water Regulations; (5) Lists of Acceptable Drinking Water Additives; (6) Title XIV of the Public Health Service Act (The Safe Drinking Water Act); (7) Standards for Quality of Public Drinking Water--Connecticut; (8) New York State Sanitary Code of Drinking Water Supplies (Including Drinking Water Standards).

  15. Chemical Contamination of California Drinking Water

    PubMed Central

    Russell, Hanafi H.; Jackson, Richard J.; Spath, David P.; Book, Steven A.

    1987-01-01

    Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs. PMID:3321714

  16. DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER

    EPA Science Inventory

    This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...

  17. Ensuring the Public's Drinking-Water Welfare.

    ERIC Educational Resources Information Center

    McDermott, James H.

    1978-01-01

    Some questions are answered concerning the justification, intent, and purpose of the Safe Drinking Water Act's regulations. Some points, previously misinterpreted, are placed in clear perspective. (BB)

  18. Drinking water regulations and health advisories

    SciTech Connect

    Not Available

    1994-05-01

    The report provides maximum contaminant level of goals, maximum contaminant levels, reference doses, and drinking water equivalent levels for over 250 organic and inorganic chemicals, radionuclides, and microbes.

  19. EPA’s Drinking Water Treatability Database: A Tool for All Drinking Water Professionals

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) is being developed by the USEPA Office of Research and Development to allow drinking water professionals and others to access referenced information gathered from thousands of literature sources and assembled on one site. Currently, ...

  20. New approaches to safe drinking water.

    PubMed

    Barron, Gerald; Buchanan, Sharunda; Hase, Denise; Mainzer, Hugh; Ransom, Montrece McNeill; Sarisky, John

    2002-01-01

    Up to half the population of some states in the United States drink water from small systems not regulated by the Safe Drinking Water Act. The quality of the drinking water from these systems is generally unknown and may be suspect. In many jurisdictions, private wells are the primary source of water. In some instances, construction of wells may have met regulatory requirements but may not have adequately prevented disease transmission. Anecdotal information, periodic water-borne outbreaks, and recent well surveys suggest that there are public health concerns associated with these and similar systems. This article provides an assessment of the need for governmental oversight (regulatory and non-regulatory) of drinking water supplies, describes how a "systems-based" approach might be used to evaluate water supply systems and to identify and prevent possible contamination, and presents case studies describing the systems-based approach as well as a comprehensive approach to environmental health that includes drinking water regulation. PMID:12508511

  1. Drinking Water (Environmental Health Student Portal)

    MedlinePlus

    ... water. A Guide to Drinking Water Treatment and Sanitation for Backcountry & Travel Use (Centers for Disease Control ... runoff is and its hazardous effects on the environment. Commercially Bottled Water (Centers for Disease Control and ...

  2. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  3. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  4. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  5. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  6. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  7. 7TH JAPAN - U.S. CONFERENCE ON DRINKING WATER QUALITY MANAGEMENT AND WASTEWATER CONTROL

    EPA Science Inventory

    Update on U.S. Drinking Water and Water Quality Research

    The U.S. Environmental Protection Agency's (U.S. EPA) Office of Research and development continues to conduct drinking water and water quality related research to address high priority environmental problems. Curr...

  8. Safe drinking water: a public health challenge.

    PubMed

    Wigle, D T

    1998-01-01

    Disinfection of drinking water through processes including filtration and chlorination was one of the major achievements of public health, beginning in the late 1800s and the early 1900s. Chloroform and other chlorination disinfection by-products (CBPs) in drinking water were first reported in 1974. Chloroform and several other CBPs are known to cause cancer in experimental animals, and there is growing epidemiologic evidence of a causal role for CBPs in human cancer, particularly for bladder cancer. It has been estimated that 14 16% of bladder cancers in Ontario may be attributable to drinking water containing relatively high levels of CBPs; the US Environmental Protection Agency has estimated the attributable risk to be 2 17%. These estimates are based on the assumption that the associations observed between bladder cancer and CBP exposure reflect a cause-effect relation. An expert working group (see Workshop Report in this issue) concluded that it was possible (60% of the group) to probable (40% of the group) that CBPs pose a significant cancer risk, particularly of bladder cancer. The group concluded that the risk of bladder and possibly other types of cancer is a moderately important public health problem. There is an urgent need to resolve this and to consider actions based on the body of evidence which, at a minimum, suggests that lowering of CBP levels would prevent a significant fraction of bladder cancers. In fact, given the widespread and prolonged exposure to CBPs and the epidemiologic evidence of associations with several cancer sites, future research may establish CBPs as the most important environmental carcinogens in terms of the number of attributable cancers per year.

  9. The U.S. Geological Survey Drinking Water Initiative

    USGS Publications Warehouse

    ,

    1997-01-01

    Safe drinking-water supplies are critical to maintaining and preserving public health. Although the Nation's drinking water is generally safe, natural and introduced contaminants in water supplies throughout the country have adversely affected human health. This new U.S. Geological Survey (USGS) initiative will provide information on the vulnerability of water supplies to be used by water-supply and regulatory agencies who must balance water-supply protection with the wise use of public funds. Using the results of the initiative, they will be better able to focus on the supplies most at risk and the variability of contaminants of most concern, and so address the mandates of the Safe Drinking Water Act. With its store of geologic, hydrologic, and land use and land cover data and its network of information in every State, the USGS can help to identify potential sources of contamination, delineate source areas, determine the vulnerability of waters to potential contamination, and evaluate strategies being used to protect source waters in light of the scientific information available. Many recent and ongoing studies by the USGS concern drinking-water issues. This fact sheet highlights four particular studies begun under the Drinking Water Initiative.

  10. The relative safety of Hawaii's drinking water

    SciTech Connect

    Au, L.K. Office, Honolulu, HI )

    1991-03-01

    There are two types of drinking water sources: groundwater and surface water (the latter includes catchment of rain). Surface water runs over the surface of the earth in rivers and watercourses, or is stored in lakes and reservoirs. groundwater is water that is stored below ground level; it feeds artesian wells and springs. It is important to remember that untreated groundwater may not be the same thing as treated drinking water. A contaminant in groundwater represents a threat to a drinking water source but not necessarily a threat to health, if the contaminant's concentration is decreased before it becomes available as potable.

  11. The relative safety of Hawaii's drinking water.

    PubMed

    Au, L K

    1991-03-01

    There are two types of drinking water sources: groundwater and surface water (the latter includes catchment of rain). Surface water runs over the surface of the earth in rivers and watercourses, or is stored in lakes and reservoirs. groundwater is water that is stored below ground level; it feeds artesian wells and springs. It is important to remember that untreated groundwater may not be the same thing as treated drinking water. A contaminant in groundwater represents a threat to a drinking water source but not necessarily a threat to health, if the contaminant's concentration is decreased before it becomes available as potable.

  12. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  13. DBP CONTROL IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is currently attempting to balance the complex trade-offs in chemical and microbial risks associated with controlling disinfection and disinfection byproducts (D/DBP) in drinking water. In attempting to achieve this balance, the...

  14. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality.

  15. Drinking Water: A Community Action Guide.

    ERIC Educational Resources Information Center

    Boyd, Susan, Ed.; And Others

    While much of the drinking water in the United States is safe for consumption, protecting its quality and assuring its availability are becoming increasingly difficult. This booklet is written for individuals and groups who are concerned about the drinking water in their communities. It provides a general introduction to the complex issues of…

  16. Monitoring of Microbes in Drinking Water

    EPA Science Inventory

    Internationally there is a move towards managing the provision of safe drinking water by direct assessment of the performance of key pathogen barriers (critical control points), rather than end point testing (i.e. in drinking water). For fecal pathogens that breakthrough the vari...

  17. DRINKING WATER ARSENIC AND PERINATAL OUTCOMES

    EPA Science Inventory

    Drinking Water Arsenic and Perinatal Outcomes
    DT Lobdell, Z Ning, RK Kwok, JL Mumford, ZY Liu, P Mendola

    Many studies have documented an association between drinking water arsenic (DWA) and cancer, vascular diseases, and dermatological outcomes, but few have investigate...

  18. Radon in private drinking water wells.

    PubMed

    Otahal, P; Merta, J; Burian, I

    2014-07-01

    At least 10% of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq·l(-1). This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. PMID:24714110

  19. Safe drinking water: the toxicologist's approach.

    PubMed

    van Leeuwen, F X

    2000-01-01

    The production of adequate and safe drinking water is a high priority issue for safeguarding the health and well-being of humans all over the world. Traditionally, microbiological quality of drinking water has been the main concern, but over the last decades the attention of the general public and health officials on the importance of chemical quality and the threat of chemical pollutants have increased with the increase of our knowledge on the hazards of chemical substances. There are many sources of contamination of drinking water. Broadly they can be divided into two categories: contaminants originating from surface and groundwater, and contaminants used or formed during the treatment and distribution of drinking water. Contaminants in surface and groundwater can range from natural substances such as arsenic and manganese leaching from soil, to contaminants introduced by human activities, such as run-off from agricultural activities, controlled discharge from sewage treatment works and industrial plants, and uncontrolled discharges or leakage from landfill sites and from chemical accidents. Disinfectants and disinfectant by-products are well known contaminants resulting from the processes used by the drinking water industry for the treatment and distribution of water. The basic question in the production of drinking water is how to rid drinking water of potentially dangerous microorganisms and chemicals without introducing new hazards that might pose new and different threats to human health. It is the responsibility of toxicologists to provide risk assessments for chemical pollutants and to derive guidelines or standards for drinking water quality below which no significant health risk is encountered, to assure consumers that drinking water is safe and can be consumed without any risk. This paper will focus on the toxicological procedures used by the World Health Organization to derive guideline values for chemical compounds in drinking water, and will touch

  20. 75 FR 40925 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Environmental Technology Verification FR Federal Register GW Ground Water GWR Ground Water Rule GWS Ground Water... Primary Drinking Water Regulations: Revisions to the Total Coliform Rule AGENCY: Environmental Protection... submitting comments. Mail: Water Docket, Environmental Protection Agency, Mailcode: 4101T, 1200......

  1. Drinking water from private wells and risks to children.

    PubMed

    Rogan, Walter J; Brady, Michael T

    2009-06-01

    Drinking water for approximately one sixth of US households is obtained from private wells. These wells can become contaminated by pollutant chemicals or pathogenic organisms, leading to significant illness. Although the US Environmental Protection Agency and all states offer guidance for construction, maintenance, and testing of private wells, there is little regulation, and with few exceptions, well owners are responsible for their own wells. Children may also drink well water at child care or when traveling. Illness resulting from children's ingestion of contaminated water can be severe. This report reviews relevant aspects of groundwater and wells; describes the common chemical and microbiologic contaminants; gives an algorithm with recommendations for inspection, testing, and remediation for wells providing drinking water for children; reviews the definitions and uses of various bottled waters; provides current estimates of costs for well testing; and provides federal, national, state, and, where appropriate, tribal contacts for more information.

  2. Drinking water safely during cancer treatment

    MedlinePlus

    ... it down the drain or use it to water your plants or your garden. ... Disease Control and Prevention. A guide to drinking water treatment technologies for household use. Updated March 14, 2014. ...

  3. OVERVIEW OF RADIONUCLIDES IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Invited presentation at the 2007 National Rural Water Association National Conference, Philadelphia, PA, September 23-26, 2007. The presentation reviews the chemistry of radium and uranium in drinking water sources, treatment options, and guidelines for disposal. Presentation giv...

  4. STATISTICAL PROCEDURES FOR DETERMINATION AND VERIFICATION OF MINIMUM REPORTING LEVELS FOR DRINKING WATER METHODS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) Office of Ground Water and Drinking Water (OGWDW) has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which fu...

  5. 77 FR 44562 - Public Meeting: Potential Regulatory Implications of the Reduction of Lead in Drinking Water Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... AGENCY 40 CFR Parts 141 and 142 Public Meeting: Potential Regulatory Implications of the Reduction of Lead in Drinking Water Act of 2011 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... discuss and solicit input from States, manufacturers, drinking water systems, other interested groups...

  6. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  7. 40 CFR 144.82 - What must I do to protect underground sources of drinking water?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contaminant may cause a violation of the primary drinking water standards under 40 CFR part 141, other health... sources of drinking water? 144.82 Section 144.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for Owners...

  8. Drinking Water Program 1992 annual report

    SciTech Connect

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG&G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG&G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a {open_quotes}community water system{close_quotes} (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG&G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG&G Idaho production wells.

  9. 76 FR 33756 - Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... AGENCY Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for... following offices: (1) Missouri Department of Natural Resources, Public Drinking Water Branch, 1101... Pesticides Division, Drinking Water Management Branch, 901 North 5th Street, Kansas City, Kansas 66101....

  10. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  11. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  12. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  13. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  14. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  15. Investigation of Drinking Water Quality in Kosovo

    PubMed Central

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  16. Investigation of drinking water quality in Kosovo.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  17. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  18. Risk management for assuring safe drinking water.

    PubMed

    Hrudey, Steve E; Hrudey, Elizabeth J; Pollard, Simon J T

    2006-12-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that disease outbreaks remain a risk that could be better managed and prevented even in affluent nations. A detailed retrospective analysis of more than 70 case studies of disease outbreaks in 15 affluent nations over the past 30 years provides the basis for much of our discussion [Hrudey, S.E. and Hrudey, E.J. Safe Drinking Water--Lessons from Recent Outbreaks in Affluent Nations. London, UK: IWA Publishing; 2004.]. The insights provided can assist in developing a better understanding within the water industry of the causes of drinking water disease outbreaks, so that more effective preventive measures can be adopted by water systems that are vulnerable. This preventive feature lies at the core of risk management for the provision of safe drinking water.

  19. 78 FR 22540 - Notice of Public Meeting/Webinar: EPA Method Development Update on Drinking Water Testing Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... AGENCY Notice of Public Meeting/Webinar: EPA Method Development Update on Drinking Water Testing Methods...: Notice of public meeting. SUMMARY: The U.S. Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water, Standards and Risk Management Division's Technical Support Center (TSC)...

  20. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  1. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  2. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  3. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  4. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  5. Drinking Water: Health Hazards Still Not Resolved

    ERIC Educational Resources Information Center

    Wade, Nicholas

    1977-01-01

    Despite the suggested link between cancer deaths and drinking obtained from the Mississippi River, New Orleans still treats its water supply in the same manner as before the Environmental Defense Fund's epidemiological study. (BT)

  6. THE FATE OF FLUOROSILICATE DRINKING WATER ADDITIVES

    EPA Science Inventory

    Periodically, the EPA reexamines its information on regulated drinking water contaminants to deterime if further study is required. Fluoride is one such contaminant undergoing review. The chemical literature indicates that some deficiencies exist in our understanding of the spe...

  7. Vaccination against Fowlpox virus via drinking water.

    PubMed

    Ariyoshi, Rikako; Takase, Kozo; Matsuura, Yuichi; Deguchi, Kazuhiro; Ginnaga, Akihiro; Fujikawa, Hideo

    2003-10-01

    The oral vaccination against Fowlpox was investigated via drinking water containing the F132-c strain of Fowlpox virus to be effective even though the vaccine virus-titer was 10(4) TCID (50)/dose each time. When the virus-titer of the F132-c strain was 10(4-5 )TCID(50)/dose per single drinking water vaccination, 90% or more of chickens were not protected, however, they were protected when vaccinated twice via drinking water. A weak immune response occurred by a slight infection after the first vaccination, and due to memory cells, a booster could work well after the second vaccination. These results suggest the possibility of reducing both the amount of virus required for a vaccine via drinking water and the labor cost in the field.

  8. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  9. ETV COLLABORATIVE EVALUATIONS OF MARKET-READY TECHNOLOGIES FOR ARSENIC REMOVAL IN DRINKING WATER

    EPA Science Inventory

    How well do some commercially marketed package treatment systems perform to reduce arsenic from drinking water supplies? The Environmental Technology Verification (ETV) Drinking Water Systems (DWS) Center is a partnership between the U.S. Environmental Protection Agency (U.S. EPA...

  10. Removal of Strontium from Drinking Water by Conventional Treatment and Lime Softening

    EPA Science Inventory

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immedia...

  11. 76 FR 10899 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... of Dental Caries; Extension of Comment Period AGENCY: Office of the Secretary, Department of Health... fluoride in drinking water to 0.7 mg/L to provide the best of balance of protection from dental caries... recommendations for fluoride concentration in drinking water for the prevention of dental caries has been...

  12. 75 FR 41725 - Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate AGENCY: Food and Drug... regulations for food additives permitted in feed and drinking water of animals to provide for the safe use of ammonium formate as an acidifying agent in swine feed. This action is in response to a food...

  13. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... inviting the public to submit data and scientific literature to inform EPA's research on the potential impacts of hydraulic fracturing on drinking water resources. DATES: EPA will accept data and literature...

  14. Drinking-Water Criteria Document for Cadmium (final draft), December 1986. Final draft report

    SciTech Connect

    Not Available

    1986-12-01

    The Office of Drinking Water, Environmental Protection Agency has prepared a Drinking Water Criteria Document on Cadmium. The Criteria Document is an extensive review of the following topics: Physical and chemical properties of Cadmium; Toxicokinetics and human exposure to cadmium; health effects of cadmium in humans and animals; mechanisms of toxicological effects of cadmium; and quantification of toxicological effects of cadmium.

  15. 76 FR 19128 - Notice of Lodging of Stipulation of Judgment Pursuant to Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... of Lodging of Stipulation of Judgment Pursuant to Safe Drinking Water Act Notice is hereby given that... United States (on behalf of the Environmental Protection Agency), for violations of the Safe Drinking Water Act and the implementing regulations, 42 U.S.C. 300h, et seq., and the implementing...

  16. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Drinking Water Act. Unless the Administrator otherwise explicitly provides in a particular...

  17. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Drinking Water Act. Unless the Administrator otherwise explicitly provides in a particular...

  18. Drinking-Water Criteria Document for Asbestos (final draft), March 1985

    SciTech Connect

    Sonich-Mullin, C.; Patel, Y.; Bayard, S.; Mossman, B.T.

    1985-03-01

    The Office of Drinking Water (ODW), Environmental Protection Agency has prepared a Drinking Water Criteria Document on Asbestos. This Criteria Document is an extensive review of the following topics: Physical and chemical properties of Asbestos; Toxicokinetics and human exposure to Asbestos; Health Effects of Asbestos in humans and animals; Mechanisms of toxicity of Asbestos; Quantification of toxicological effects of Asbestos.

  19. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL JUDICIAL REVIEW UNDER EPA-ADMINISTERED STATUTES § 23.7 Timing of Administrator's action under Safe Drinking Water Act. Unless...

  20. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL JUDICIAL REVIEW UNDER EPA-ADMINISTERED STATUTES § 23.7 Timing of Administrator's action under Safe Drinking Water Act. Unless...

  1. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL JUDICIAL REVIEW UNDER EPA-ADMINISTERED STATUTES § 23.7 Timing of Administrator's action under Safe Drinking Water Act. Unless...

  2. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost. PMID:12696647

  3. Pollution of drinking water with nitrate

    SciTech Connect

    Cabel, B.; Kozicki, R.; Lahl, U.; Podbielshi, A.; Stachel, B.; Struss, S.

    1982-01-01

    The main sources of nitrate in man are food and drinking water. The legislature in West Germany intends to lower the permitted level of nitrate in drinking water from the present 90 mg/l to 50 mg/l in 1982. The European Community has issued a directive that recommends a level of only 25 mg/l, and for babies 10 mg/l nitrate should not be exceeded. At present, nitrate cannot be removed from raw water at an acceptable cost. The problem of high nitrate content is mainly one of drinking water generation from ground water. Several analyses indicate rising concentrations of nitrate in ground water in different regions of West Germany, especially in the last few years. The following sources of nitrate-contamination of ground water aquifers in West are discussed: natural sources; over-manuring of agricultural areas with natural organic fertilizers; over-manuring of agricultural areas with synthetic fertilizers.

  4. Report to the United States Congress on radionuclides in drinking water: Multimedia risk and cost assessment of radon in drinking water. Draft report

    SciTech Connect

    Not Available

    1993-07-15

    EPA prepared the report in response to the Congressional mandate in Public Law 102-389 (the Chafee-Lautenberg Amendment to EPA's Appropriation Bill, enacted October 6, 1992) which directs the Administrator of the US Environmental Protection Agency (EPA) to report to Congress on EPA's findings regarding the risks of human exposure to radon, the costs for controlling or mitigating that exposure, and the risks posed by treating water to remove radon. The Chafee-Lautenberg Amendment called for an explicit multimedia comparison of the risks from radon in indoor air and drinking water. Congress placed the requirement on the Agency because of the concern voiced in the United States over the costs to be incurred by public water systems in the control of radon in drinking water while a larger threat from indoor air was not being addressed except through voluntary measures. Amendments to the Safe Drinking Water Act in 1986 called for the regulation of radon in drinking water.

  5. [Radioactivity in Harz area drinking water after Chernobyl].

    PubMed

    Hennighausen, R H

    1999-11-01

    After the reactor accident in Chernobyl on April 26th, 1986 drinking water pollution was in Lower Saxony a problem in the Harz mountains. With the rainout of the radioactive clouds radioactivity came into the water-barrages, brooks und pools for drinking water supply. Good drinking water management supervised by the district community physician limited radioactive nuclides in drinking water. Drinking water path was approximately only 5% of the exposure to radioactive nuclides in the Harz region due to Chernobyl in 1986.

  6. Drinking water disinfection byproducts: review and approach to toxicity evaluation.

    PubMed Central

    Boorman, G A

    1999-01-01

    There is widespread potential for human exposure to disinfection byproducts (DBPs) in drinking water because everyone drinks, bathes, cooks, and cleans with water. The need for clean and safe water led the U.S. Congress to pass the Safe Drinking Water Act more than 20 years ago in 1974. In 1976, chloroform, a trihalomethane (THM) and a principal DBP, was shown to be carcinogenic in rodents. This prompted the U.S. Environmental Protection Agency (U.S. EPA) in 1979 to develop a drinking water rule that would provide guidance on the levels of THMs allowed in drinking water. Further concern was raised by epidemiology studies suggesting a weak association between the consumption of chlorinated drinking water and the occurrence of bladder, colon, and rectal cancer. In 1992 the U.S. EPA initiated a negotiated rulemaking to evaluate the need for additional controls for microbial pathogens and DBPs. The goal was to develop an approach that would reduce the level of exposure from disinfectants and DBPs without undermining the control of microbial pathogens. The product of these deliberations was a proposed stage 1 DBP rule. It was agreed that additional information was necessary on how to optimize the use of disinfectants while maintaining control of pathogens before further controls to reduce exposure beyond stage 1 were warranted. In response to this need, the U.S. EPA developed a 5-year research plan to support the development of the longer term rules to control microbial pathogens and DBPs. A considerable body of toxicologic data has been developed on DBPs that occur in the drinking water, but the main emphasis has been on THMs. Given the complexity of the problem and the need for additional data to support the drinking water DBP rules, the U.S. EPA, the National Institute of Environmental Health Sciences, and the U.S. Army are working together to develop a comprehensive biologic and mechanistic DBP database. Selected DBPs will be tested using 2-year toxicity and

  7. Drinking water disinfection byproducts: review and approach to toxicity evaluation.

    PubMed

    Boorman, G A

    1999-02-01

    There is widespread potential for human exposure to disinfection byproducts (DBPs) in drinking water because everyone drinks, bathes, cooks, and cleans with water. The need for clean and safe water led the U.S. Congress to pass the Safe Drinking Water Act more than 20 years ago in 1974. In 1976, chloroform, a trihalomethane (THM) and a principal DBP, was shown to be carcinogenic in rodents. This prompted the U.S. Environmental Protection Agency (U.S. EPA) in 1979 to develop a drinking water rule that would provide guidance on the levels of THMs allowed in drinking water. Further concern was raised by epidemiology studies suggesting a weak association between the consumption of chlorinated drinking water and the occurrence of bladder, colon, and rectal cancer. In 1992 the U.S. EPA initiated a negotiated rulemaking to evaluate the need for additional controls for microbial pathogens and DBPs. The goal was to develop an approach that would reduce the level of exposure from disinfectants and DBPs without undermining the control of microbial pathogens. The product of these deliberations was a proposed stage 1 DBP rule. It was agreed that additional information was necessary on how to optimize the use of disinfectants while maintaining control of pathogens before further controls to reduce exposure beyond stage 1 were warranted. In response to this need, the U.S. EPA developed a 5-year research plan to support the development of the longer term rules to control microbial pathogens and DBPs. A considerable body of toxicologic data has been developed on DBPs that occur in the drinking water, but the main emphasis has been on THMs. Given the complexity of the problem and the need for additional data to support the drinking water DBP rules, the U.S. EPA, the National Institute of Environmental Health Sciences, and the U.S. Army are working together to develop a comprehensive biologic and mechanistic DBP database. Selected DBPs will be tested using 2-year toxicity and

  8. REMOVAL OF RADIUM FROM DRINKING WATER

    EPA Science Inventory

    This report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water...

  9. ARSENIC IN DRINKING WATER: USING SOUND SCIENCE FOR RISK MANAGEMENT AND ASSISTING COMMUNITY DECISION-MAKERS - A MULTI-AGENCY, COMMUNITY-BASED RESEARCH PROJECT

    EPA Science Inventory

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (U.S. EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (ug/L) occur in numerous aquifers around the United States. One such aquifer is the Cen...

  10. Renal effects of uranium in drinking water.

    PubMed

    Kurttio, Päivi; Auvinen, Anssi; Salonen, Laina; Saha, Heikki; Pekkanen, Juha; Mäkeläinen, Ilona; Väisänen, Sari B; Penttilä, Ilkka M; Komulainen, Hannu

    2002-04-01

    Animal studies and small studies in humans have shown that uranium is nephrotoxic. However, more information about its renal effects in humans following chronic exposure through drinking water is required. We measured uranium concentrations in drinking water and urine in 325 persons who had used drilled wells for drinking water. We measured urine and serum concentrations of calcium, phosphate, glucose, albumin, creatinine, and beta-2-microglobulin to evaluate possible renal effects. The median uranium concentration in drinking water was 28 microg/L (interquartile range 6-135, max. 1,920 microg/L) and in urine 13 ng/mmol creatinine (2-75), resulting in the median daily uranium intake of 39 microg (7-224). Uranium concentration in urine was statistically significantly associated with increased fractional excretion of calcium and phosphate. Increase of uranium in urine by 1 microg/mmol creatinine increased fractional excretion of calcium by 1.5% [95% confidence interval (CI), 0.6-2.3], phosphate by 13% (1.4-25), and glucose excretion by 0.7 micromol/min (-0.4-1.8). Uranium concentrations in drinking water and daily intake of uranium were statistically significantly associated with calcium fractional excretion, but not with phosphate or glucose excretion. Uranium exposure was not associated with creatinine clearance or urinary albumin, which reflect glomerular function. In conclusion, uranium exposure is weakly associated with altered proximal tubulus function without a clear threshold, which suggests that even low uranium concentrations in drinking water can cause nephrotoxic effects. Despite chronic intake of water with high uranium concentration, we observed no effect on glomerular function. The clinical and public health relevance of the findings are not easily established, but our results suggest that the safe concentration of uranium in drinking water may be within the range of the proposed guideline values of 2-30 microg/L.

  11. Renal effects of uranium in drinking water.

    PubMed Central

    Kurttio, Päivi; Auvinen, Anssi; Salonen, Laina; Saha, Heikki; Pekkanen, Juha; Mäkeläinen, Ilona; Väisänen, Sari B; Penttilä, Ilkka M; Komulainen, Hannu

    2002-01-01

    Animal studies and small studies in humans have shown that uranium is nephrotoxic. However, more information about its renal effects in humans following chronic exposure through drinking water is required. We measured uranium concentrations in drinking water and urine in 325 persons who had used drilled wells for drinking water. We measured urine and serum concentrations of calcium, phosphate, glucose, albumin, creatinine, and beta-2-microglobulin to evaluate possible renal effects. The median uranium concentration in drinking water was 28 microg/L (interquartile range 6-135, max. 1,920 microg/L) and in urine 13 ng/mmol creatinine (2-75), resulting in the median daily uranium intake of 39 microg (7-224). Uranium concentration in urine was statistically significantly associated with increased fractional excretion of calcium and phosphate. Increase of uranium in urine by 1 microg/mmol creatinine increased fractional excretion of calcium by 1.5% [95% confidence interval (CI), 0.6-2.3], phosphate by 13% (1.4-25), and glucose excretion by 0.7 micromol/min (-0.4-1.8). Uranium concentrations in drinking water and daily intake of uranium were statistically significantly associated with calcium fractional excretion, but not with phosphate or glucose excretion. Uranium exposure was not associated with creatinine clearance or urinary albumin, which reflect glomerular function. In conclusion, uranium exposure is weakly associated with altered proximal tubulus function without a clear threshold, which suggests that even low uranium concentrations in drinking water can cause nephrotoxic effects. Despite chronic intake of water with high uranium concentration, we observed no effect on glomerular function. The clinical and public health relevance of the findings are not easily established, but our results suggest that the safe concentration of uranium in drinking water may be within the range of the proposed guideline values of 2-30 microg/L. PMID:11940450

  12. Proposed modifications of Environmental Protection Agency Method 1601 for detection of coliphages in drinking water, with same-day fluorescence-based detection and evaluation by the performance-based measurement system and alternative test protocol validation approaches.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Conklin, Ernestine; Rosen, Jeff; Clancy, Jennifer

    2010-12-01

    Coliphages are microbial indicators specified in the Ground Water Rule that can be used to monitor for potential fecal contamination of drinking water. The Total Coliform Rule specifies coliform and Escherichia coli indicators for municipal water quality testing; thus, coliphage indicator use is less common and advances in detection methodology are less frequent. Coliphages are viral structures and, compared to bacterial indicators, are more resistant to disinfection and diffuse further distances from pollution sources. Therefore, coliphage presence may serve as a better predictor of groundwater quality. This study describes Fast Phage, a 16- to 24-h presence/absence modification of U.S. Environmental Protection Agency (EPA) Method 1601 for detection of coliphages in 100 ml water. The objective of the study is to demonstrate that the somatic and male-specific coliphage modifications provide results equivalent to those of Method 1601. Five laboratories compared the modifications, featuring same-day fluorescence-based prediction, to Method 1601 by using the performance-based measurement system (PBMS) criterion. This requires a minimum 50% positive response in 10 replicates of 100-ml water samples at coliphage contamination levels of 1.3 to 1.5 PFU/100 ml. The laboratories showed that Fast Phage meets PBMS criteria with 83.5 to 92.1% correlation of the same-day rapid fluorescence-based prediction with the next-day result. Somatic coliphage PBMS data are compared to manufacturer development data that followed the EPA alternative test protocol (ATP) validation approach. Statistical analysis of the data sets indicates that PBMS utilizes fewer samples than does the ATP approach but with similar conclusions. Results support testing the coliphage modifications by using an EPA-approved national PBMS approach with collaboratively shared samples.

  13. Emergency response planning to reduce the impact of contaminated drinking water during natural disasters

    NASA Astrophysics Data System (ADS)

    Patterson, Craig L.; Adams, Jeffrey Q.

    2011-12-01

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water systems. Prior to an event, utilities and municipalities can use "What if"? scenarios to develop emergency operation, response, and recovery plans designed to reduce the severity of damage and destruction. Government agencies including the EPA are planning ahead to provide temporary supplies of potable water and small drinking water treatment technologies to communities as an integral part of emergency response activities that will ensure clean and safe drinking water.

  14. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  15. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY ENHANCED COAGULATION, POWDERED ACTIVATED CARBON, CHEMICAL SOFTENING, AND OXIDATION

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  16. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    SciTech Connect

    Not Available

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule.

  17. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbes...

  18. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbest...

  19. Small Drinking Water Systems Research and Development

    EPA Science Inventory

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...

  20. [Drinking water decontamination with isolative sorbent disinfectants].

    PubMed

    Krasnov, M S

    2004-01-01

    Drinking water can be decontaminated with the use of isolative sorbent disinfectants. Consideration of the effectiveness of water disinfectants and the sorptive power of porous materials against bacteria and viruses attested to the favour of iodine and silver-containing disinfectants and their compositions on porous aggressive carriers to be employed in extreme conditions such as on board crewed space vehicles.

  1. US Environmental Protection Agency Method 314.1, an automated sample preconcentration/matrix elimination suppressed conductivity method for the analysis of trace levels (0.50 microg/L) of perchlorate in drinking water.

    PubMed

    Wagner, Herbert P; Pepich, B V; Pohl, C; Later, D; Joyce, R; Srinivasan, K; Thomas, D; Woodruff, A; Deborba, B; Munch, D J

    2006-06-16

    Since 1997 there has been increasing interest in the development of analytical methods for the analysis of perchlorate. The US Environmental Protection Agency (EPA) Method 314.0, which was used during the first Unregulated Contaminant Monitoring Regulation (UCMR) cycle, supports a method reporting limit (MRL) of 4.0 microg/L. The non-selective nature of conductivity detection, combined with very high ionic strength matrices, can create conditions that make the determination of perchlorate difficult. The objective of this work was to develop an automated, suppressed conductivity method with improved sensitivity for use in the second UCMR cycle. The new method, EPA Method 314.1, uses a 35 mm x 4 mm cryptand concentrator column in the sample loop position to concentrate perchlorate from a 2 mL sample volume, which is subsequently rinsed with 10 mM NaOH to remove interfering anions. The cryptand concentrator column is combined with a primary AS16 analytical column and a confirmation AS20 analytical column. Unique characteristics of the cryptand column allow perchlorate to be desorbed from the cryptand trap and refocused on the head of the guard column for subsequent separation and analysis. EPA Method 314.1 has a perchlorate lowest concentration minimum reporting level (LCMRL) of 0.13 microg/L in both drinking water and laboratory synthetic sample matrices (LSSM) containing up to 1,000 microg/L each of chloride, bicarbonate and sulfate.

  2. Drinking water consumption patterns in Sweden.

    PubMed

    Westrell, Therese; Andersson, Yvonne; Stenström, Thor Axel

    2006-12-01

    Estimates on drinking water consumption are necessary in risk assessments on microbial hazards in drinking water. Large differences in consumption habits between countries have been reported. In order to establish estimates for the Swedish population, water consumption data from a waterborne outbreak investigation (157 people), a small water consumption study (75 people) and a large study on health and environmental factors (10,957 people) were analysed. A lognormal distribution for the daily direct/cold water intake in litres with mu = - 0.299 and sigma = 0.570 was fitted to the quantitative data, representing the general population. The average daily consumption of tap water as plain drinking water and as heated tap water, e.g. in coffee and tea, was 0.86 +/- 0.48 l and 0.94 +/- 0.69 l, respectively. Women consumed more cold tap water than did men, while men appeared to have a higher consumption of heated tap water. Cold tap water intake was highest in the oldest age group, (> or =70 years). The consumption of bottled water was very low (mean 0.06 l/d) when compared to other countries.

  3. Burden of Cancer from Chemicals in North Carolina Drinking Water

    NASA Astrophysics Data System (ADS)

    DeFelice, N.

    2013-12-01

    Monitoring programs required by the U.S. Safe Drinking Water Act (SDWA) currently do not consider potential differences in chemical exposure patterns and human health risks. Rather, U.S. agencies establish monitoring requirements based on the type of water system and the number of people the system serves; within categories of systems, all potentially carcinogenic chemicals must be monitored with equal frequency, regardless of the potential level of risk these chemicals pose. To inform future policies concerning contaminant monitoring under the SDWA, we examined the potential health threats in North Carolina from the 34 carcinogenic chemicals covered under the SDWA. We analyzed reported contaminant concentration data for all community water systems (CWSs) for the years 1998-2011. We employed an attributable fraction approach that uses probabilistic inputs to evaluate the percent of cancer cases that may be attributable to chemical exposure in drinking water. We found that cancer risks are dominated by 3 of the 34 chemicals and chemical classes (total trihalomethanes (TTHMs), arsenic and gross alpha particles); all other chemicals contribute to less than one cancer case per year in the state. We showed that around 840 cases of cancer annually (2% of annual cancer cases) are attributable to contaminated drinking water. The majority cases are due to TTHMs, arsenic and gross alpha particles, which contributed 810 (95% CI 560-1,280), 14 (95% CI 3 -32), and 13 (95% CI 2-48) cases, respectively. Sixty-seven counties had annual cancer rates higher than 1 in 10,000 attributable to community water systems. Annual cancer rate attributable to chemicals found in drinking water that are regulated under the safe drinking water act.

  4. Stability of florfenicol in drinking water.

    PubMed

    Hayes, John M; Eichman, Jonathan; Katz, Terry; Gilewicz, Rosalia

    2003-01-01

    Florfenicol, a broad-spectrum antibiotic, is being developed for veterinary application as an oral concentrate intended for dilution with drinking water. When a drug product is dosed via drinking water in a farm setting, a number of variables, including pH, chlorine content, hardness of the water used for dilution, and container material, may affect its stability, leading to a decrease in drug potency. The stability of florfenicol after dilution of Florfenicol Drinking Water Concentrate Oral Solution, 23 mg/mL, with drinking water was studied. A stability-indicating, validated liquid chromatographic method was used to evaluate florfenicol stability at 25 degrees C at 5, 10, and 24 h after dilution. The results indicate that florfenicol is stable under a range of simulated field conditions, including various pipe materials and conditions of hard or soft and chlorinated or nonchlorinated water at low or high pH. Significant degradation (> 10%) was observed only for isolated combinations in galvanized pipes. Analysis indicated that the florfenicol concentration in 8 of the 12 water samples stored in galvanized pipes remained above 90% of the initial concentration (100 mg/L) for 24 h after dilution.

  5. Microbial ecology of drinking water distribution systems.

    PubMed

    Berry, David; Xi, Chuanwu; Raskin, Lutgarde

    2006-06-01

    The supply of clean drinking water is a major, and relatively recent, public health milestone. Control of microbial growth in drinking water distribution systems, often achieved through the addition of disinfectants, is essential to limiting waterborne illness, particularly in immunocompromised subpopulations. Recent inquiries into the microbial ecology of distribution systems have found that pathogen resistance to chlorination is affected by microbial community diversity and interspecies relationships. Research indicates that multispecies biofilms are generally more resistant to disinfection than single-species biofilms. Other recent findings are the increased survival of the bacterial pathogen Legionella pneumophila when present inside its protozoan host Hartmannella vermiformis and the depletion of chloramine disinfectant residuals by nitrifying bacteria, leading to increased overall microbial growth. Interactions such as these are unaccounted for in current disinfection models. An understanding of the microbial ecology of distribution systems is necessary to design innovative and effective control strategies that will ensure safe and high-quality drinking water. PMID:16701992

  6. USEPA'S SMALL DRINKING WATER TREATMENT TECHNOLOGY DEMONSTRATIONS IN ECUADOR AND MEXICO

    EPA Science Inventory

    In order to support and help in the struggle to improve the quality of drinking water in the United States and abroad, the United States Environmental Protection Agency (USEPA) conducts research studies for the demonstration and evaluation of alternative and innovative drinking w...

  7. 76 FR 67187 - National Drinking Water Advisory Council; Notice of a Public Teleconference Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... AGENCY National Drinking Water Advisory Council; Notice of a Public Teleconference Meeting AGENCY... Water Advisory Council (NDWAC or Council) on November 18, 2011. The Council will consult with EPA regarding potential modifications to the lead service line replacement requirements of the National...

  8. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  9. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  10. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  11. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  12. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  13. Role of detection limits in drinking water regulation.

    PubMed

    Calder, Ryan S D; Schmitt, Ketra A

    2010-11-01

    Some commentators on environmental science and policy have claimed that advances in analytical chemistry, reflected by an ability to detect contaminants at ever-decreasing concentrations, lead to regulations stricter than justified by available toxicological data. We evaluate this claim in the context of drinking water regulation, with respect to contaminants regulated under the Safe Drinking Water Act (SDWA). We examine the relationships between historical and present maximum contaminant levels and goals in the greater context of detection capability and evaluate the extent to which different aspects of the regulatory apparatus (i.e., analytical capability, cost-benefit analysis, analysis of competing risks, and available toxicological data) influence the regulatory process. Our findings do not support the claim that decreases in detection limit lead to more stringent regulation in the context of drinking water regulation in the United States. Further, based on our analysis of the National Primary Drinking Water Regulation and existing United States Environmental Protection Agency approaches to establishing the practical quantifiable level, we conclude that in the absence of changes to the underlying toxicological model, regulatory revision is unlikely.

  14. Role of detection limits in drinking water regulation.

    PubMed

    Calder, Ryan S D; Schmitt, Ketra A

    2010-11-01

    Some commentators on environmental science and policy have claimed that advances in analytical chemistry, reflected by an ability to detect contaminants at ever-decreasing concentrations, lead to regulations stricter than justified by available toxicological data. We evaluate this claim in the context of drinking water regulation, with respect to contaminants regulated under the Safe Drinking Water Act (SDWA). We examine the relationships between historical and present maximum contaminant levels and goals in the greater context of detection capability and evaluate the extent to which different aspects of the regulatory apparatus (i.e., analytical capability, cost-benefit analysis, analysis of competing risks, and available toxicological data) influence the regulatory process. Our findings do not support the claim that decreases in detection limit lead to more stringent regulation in the context of drinking water regulation in the United States. Further, based on our analysis of the National Primary Drinking Water Regulation and existing United States Environmental Protection Agency approaches to establishing the practical quantifiable level, we conclude that in the absence of changes to the underlying toxicological model, regulatory revision is unlikely. PMID:20925425

  15. Anencephalus, drinking water, geomagnetism and cosmic radiation.

    PubMed

    Archer, V E

    1979-01-01

    The mortality rates from anencephalus from 1950-1969 in Canadian cities are shown to be strongly correlated with city growth rate and with horizontal geomagnetic flux, which is directly related to the intensity of cosmic radiation. They are also shown to have some association with the magnesium content of drinking water. Prior work with these data which showed associations with magnesium in drinking water, mean income, latitude and longitude was found to be inadequate because it dismissed the observed geographic associations as having little biological meaning, and because the important variables of geomagnetism and city growth rate were overlooked. PMID:433919

  16. VOC concentration in Taiwan's household drinking water.

    PubMed

    Kuo, H W; Chiang, T F; Lo, I I; Lai, J S; Chan, C C; Wang, J D

    1997-12-01

    The objective of this study is to analyze volatile organic compound (VOC) concentrations in Taiwan's drinking water supply. Focusing on Taiwan's three major metropolitan areas--Taipei, Taichung and Kaohsiung (in the north, middle and south, respectively)--171 samples were taken from tap water and 68 from boiled water. Tests showed VOC concentrations were highest in Kaohsiung. This is due to different water sources and methods of treatment. Except for bromoform, trihalomethane (THM) concentrations were highest. Detection rates of toluene and 1,2-dichloroethane were slightly higher than other VOC compounds. VOC concentrations decreased significantly after water was boiled. THMs had a removal rate from 61% to 82%. The authors conclude that the three metropolitan areas contain significantly different levels of VOCs and that boiling can significantly reduce the presence of VOCs. Other sources of pollution that contaminate drinking water such as industrial plants and gas stations must be further investigated.

  17. [Pollution of drinking water by tetrachloroethylene].

    PubMed

    Möse, J R; Wilfinger, G; Zeichen, R

    1985-06-01

    At the end of the year 1983 and at the beginning of 1984, groundwater contamination with tetrachloroethylene was discovered south of Graz. Many wells showed an elevated concentration of tetrachloroethylene. 1210 persons living in this area were examined. As tetrachloroethylene may cause liver damage, screening tests were carried out in order to detect pathological liver function tests (LFT), such as gamma-GT elevation. In most cases, initially elevated LFT could be attributed to alcohol abuse. After thorough medical examinations, two cases remained unclear; later on, however, the initially elevated LFT could no longer be detected. This is a certain indication that there was some type of stress on the liver shortly before the blood sample was taken. In all other cases of liver disease, the causes could be determined. The pollution of drinking water was not the cause of pathological LFT. Nevertheless, the inhabitants of this region will receive drinking water from the public water supply for safety reasons. However, one thing that needs to be stated very clearly is that these findings which fortunately show no detrimental effect due to the pollution of drinking water, do not allow any conclusions concerning the possibility of injury to health, i.e. they do not preclude possible impairment of health as a consequence of prolonged consumption of the polluted drinking water.

  18. Chemical quality of maternal drinking water and congenital heart disease.

    PubMed

    Zierler, S; Theodore, M; Cohen, A; Rothman, K J

    1988-09-01

    We undertook a case-control study to investigate the association between chemicals in maternal drinking water consumed during pregnancy and congenital heart disease in the offspring. Two hundred and seventy affected children and 665 healthy children were enrolled in the study. Information on contaminant levels in maternal drinking water was available from records of routine water analysis of samples taken from public taps in the communities where the mothers resided during pregnancy. Mothers provided information during a telephone interview on their health, pregnancy management, and demographic characteristics. Nine inorganic metals were analysed for detection of an association with congenital heart disease. The chemical exposures of particular interest were arsenic, lead, mercury and selenium. None of the chemicals was associated materially with an increase in the frequency of congenital heart disease overall. Arsenic exposure at any detectable level was associated with a threefold increase in occurrence of coarctation of the aorta (prevalence odds ratio = 3.4, 95% confidence interval = 1.3-8.9). Detectable traces of selenium in drinking water were associated with a lower frequency of any congenital heart disease than was observed among children exposed to drinking water not containing detectable levels of selenium (prevalence odds ratio = 0.62, 95% confidence limits = 0.40-0.97). A dose-response effect was observed over four levels of selenium exposure. Non-differential errors in the measurement and classification of exposure to contaminants routinely monitored in drinking water could account for lack of positive findings. In addition, most of the contaminant levels were below the maximum levels set by the Environmental Protection Agency, so that lack of evidence of effect may have been due to the low exposure levels in this population.

  19. Private drinking water quality in rural Wisconsin.

    PubMed

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  20. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    PubMed

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water.

  1. Who is drinking nitrate in their well water?

    SciTech Connect

    Mitchell, T.J.; Harding, A.K.

    1996-10-01

    This study evaluated the health risks for a rural northeastern Oregon population which is exposed to high nitrate levels in well water. The study also identified possible sources of nitrate contamination, and investigated measures the resident had taken to reduce their nitrate exposure from well water. Three data sets were used in the study, including a telephone survey of the residents, existing information collected by the Oregon Department of Environmental Quality about well water nitrate concentrations, and demographic information from census records. Results revealed that 23% of the surveyed population was drinking well water that contained nitrate in excess of the 10 ppm nitrate-nitrogen maximum contaminant level adopted by the US Environmental Protection Agency for drinking water. Seventy-two percent of the households with nitrate levels exceeding the 10 ppm level did not use devices that effectively remove nitrates. The population included few women of childbearing age, and was generally older than other nearby urban or rural populations. Resident infants were not exposed to well water nitrate in excess of the 10 ppm level, and were therefore not at apparent risk for methemoglobinemia (blue-baby syndrome). Although the risk of infant methemoglobinemia was low in this area, it is recommended that alternative water sources be explored, and that follow-up monitoring be performed by state and/or local agencies.

  2. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  3. Decision support system for drinking water management

    NASA Astrophysics Data System (ADS)

    Janža, M.

    2012-04-01

    The problems in drinking water management are complex and often solutions must be reached under strict time constrains. This is especially distinct in case of environmental accidents in the catchment areas of the wells that are used for drinking water supply. The beneficial tools that can help decision makers and make program of activities more efficient are decision support systems (DSS). In general they are defined as computer-based support systems that help decision makers utilize data and models to solve unstructured problems. The presented DSS was developed in the frame of INCOME project which is focused on the long-term stable and safe drinking water supply in Ljubljana. The two main water resources Ljubljana polje and Barje alluvial aquifers are characterized by a strong interconnection of surface and groundwater, high vulnerability, high velocities of groundwater flow and pollutant transport. In case of sudden pollution, reactions should be very fast to avoid serious impact to the water supply. In the area high pressures arising from urbanization, industry, traffic, agriculture and old environmental burdens. The aim of the developed DSS is to optimize the activities in cases of emergency water management and to optimize the administrative work regarding the activities that can improve groundwater quality status. The DSS is an interactive computer system that utilizes data base, hydrological modelling, and experts' and stakeholders' knowledge. It consists of three components, tackling the different abovementioned issues in water management. The first one utilizes the work on identification, cleaning up and restoration of illegal dumpsites that are a serious threat to the qualitative status of groundwater. The other two components utilize the predictive capability of the hydrological model and scenario analysis. The user interacts with the system by a graphical interface that guides the user step-by-step to the recommended remedial measures. Consequently, the

  4. [Quality standards and hygienic problems of bottled drinking-water].

    PubMed

    Zhao, Qing; Shu, Weiqun; Gao, Jingsheng

    2004-05-01

    The consumption of bottled drinking-water increases worldwide and relevant regulation for inspection and supervision work of bottled drinking-water were established in many countries. However, regulation mentioned above is lower than that for tap water. The hygienic problems of bottled drinking-water is emphasized, especially on microbial contamination. In this paper, some issues in regards were reviewed and discussed.

  5. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    PubMed Central

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  6. Microfiltration and Ultrafiltration Membranes for Drinking Water

    EPA Science Inventory

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  7. MUTAGENICITY OF DRINKING WATER FOLLOWING DISINFECTION

    EPA Science Inventory

    Many drinking water utilities in the USA are considering alternatives to chlorine for disinfection in order to comply with federal regulations regarding disinfection by-products. An evaluation is thus needed of the potential risks associated with the use of alternative disinfecta...

  8. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  9. Compliance Monitoring of Drinking Water Supplies

    ERIC Educational Resources Information Center

    Haukebo, Thomas; Bernius, Jean

    1977-01-01

    The most frequent testing required under the Safe Drinking Water Act of 1974 is for turbidity and coliform. Free chlorine residual testing can be substituted for part of the coliform requirement. Described are chemical procedures for performing this test. References are given. (Author/MA)

  10. Treatment Strategies for Lead in Drinking Water

    EPA Science Inventory

    Lead pipes are capable of lasting hundreds of years. Conservatively, there are over 12 million, still serving drinking water in the US. Probably, this is a substantial underestimate. Leaded solder joining copper pipe abounds. Leaded brasses have dominated the materials used for...

  11. Drinking Water. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of drinking water. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words. The book…

  12. Lead in the School's Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    The purpose of this manual is to assist school officials by providing information on the effects of lead in school drinking water on children, how to detect the presence of lead, how to reduce the lead, and how to provide training for sampling and remedial programs. A protocol is provided for procedures to determine the location and source of lead…

  13. CONTROL OF ZOONOTIC DISEASES IN DRINKING WATER

    EPA Science Inventory

    For over a century, the process of providing hygienically safe drinking water has focused on utilizing treatment processes to provide barriers to the passage of infectious disease-causing organisms to humans. This concept is often considered the cornerstone of sanitary engineerin...

  14. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  15. Drinking water quality concerns and water vending machines

    SciTech Connect

    McSwane, D.Z. . School of Public and Environmental Affairs); Oleckno, W.A.; Eils, L.M.

    1994-06-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons.

  16. Something in the water: contaminated drinking water and infant health

    PubMed Central

    Currie, Janet; Zivin, Joshua Graff; Meckel, Katherine; Neidell, Matthew; Schlenker, Wolfram

    2016-01-01

    This paper provides estimates of the effects of in utero exposure to contaminated drinking water on fetal health. To do this, we examine the universe of birth records and drinking water testing results for the state of New Jersey from 1997 to 2007. Our data enable us to compare outcomes across siblings who were potentially exposed to differing levels of harmful contaminants from drinking water while in utero. We find small effects of drinking water contamination on all children, but large and statistically significant effects on birth weight and gestation of infants born to less educated mothers. We also show that those mothers who were most affected by contamination were the least likely to move between births in response to contamination. PMID:27134285

  17. Regulatory Considerations to Ensure Clean and Safe Drinking Water

    EPA Science Inventory

    Federal drinking water regulations are based on risk assessment of human health effects and research conducted on source water, treatment technologies, residuals, and distribution systems. The book chapter summarizes the role that EPA research plays in ensuring pure drinking wat...

  18. 6 Million Americans Drink Water Tainted with Toxic Chemicals

    MedlinePlus

    ... news/fullstory_160327.html 6 Million Americans Drink Water Tainted With Toxic Chemicals: Report Many systems contain ... unsafe levels of dangerous chemicals in their drinking water that may trigger a host of health problems, ...

  19. An Environmental Assessment of United States Drinking Water Watersheds

    EPA Science Inventory

    There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of drinking water watersheds using data on land cover, hydrography a...

  20. RESPONDING TO THREATS AND INCIDENTS OF INTENTIONAL DRINKING WATER CONTAMINATION

    EPA Science Inventory

    All drinking water systems have some degree of vulnerability to contamination, and analysis shows that it is possible to contaminate drinking water at levels causing varying degrees of harm. Furthermore, experience indicates that the threat of contamination, overt or circumstant...

  1. A Drop to Drink. . .A Report on the Quality of Our Drinking Water.

    ERIC Educational Resources Information Center

    Tait, Jack

    Basic information about the quality of our nation's drinking water is contained in this brochure. Written for the general public to familiarize them with the situation, it will also help them evaluate the state of the nation's drinking water as well as that of their own communities. The need to assure reliable sources of healthful drinking water…

  2. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    NASA Astrophysics Data System (ADS)

    Brima, Eid I.

    2014-11-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  3. Emergency Disinfection of Drinking Water

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  4. Improving Drinking Water Quality by Remineralisation.

    PubMed

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite. PMID:26680713

  5. Improving Drinking Water Quality by Remineralisation.

    PubMed

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite.

  6. Learning guide for state/local drinking water agreements

    SciTech Connect

    Not Available

    1992-01-01

    The 1986 Amendments to the Safe Drinking Water Act mandated sweeping changes in the scope and costs of state drinking water programs. Some states are maximizing available resources by relying on local governments to carry out some of their drinking water responsibilities. The guidebook was developed to provide states and local governments using this approach with practical advice and suggestions about formal agreements related to Safe Drinking Water Act responsibilities.

  7. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    PubMed

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern.

  8. Norovirus Outbreaks from Drinking Water

    PubMed Central

    Miettinen, Ilkka T.; von Bonsdorff, Carl-Henrik

    2005-01-01

    As part of an intensified monitoring program for foodborne disease outbreaks in Finland, waterborne outbreaks were investigated for viruses. The diagnostic procedure included analysis of patients' stool samples by electron microscopy and reverse transcription–polymerase chain reaction (RT-PCR) for noroviruses and astroviruses. When these test results were positive for a virus, the water sample was analyzed. Virus concentration was based on positively charged filters from 1-L samples. Of the total 41 waterborne outbreaks reported during the observation period (1998–2003), samples from 28 outbreaks were available for analysis. As judged by RT-PCR results from patient samples, noroviruses caused 18 outbreaks. In 10 outbreaks, the water sample also yielded a norovirus. In all but 1 instance, the amplicon sequence was identical to that recovered from the patients. The ubiquity of waterborne norovirus outbreaks calls for measures to monitor water for viruses. PMID:16318723

  9. Climate vulnerability of drinking water supplies

    NASA Astrophysics Data System (ADS)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  10. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  11. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  12. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  13. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  14. BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"

    EPA Science Inventory

    Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...

  15. Solar purifier of drinking water

    SciTech Connect

    Fawzy, I.O.

    1987-01-01

    Around 1920, ultraviolet radiation was used in Switzerland and France for water purification. Now, it is in use in more than 2000 European water works. In the United States, between 1916 and 1928, four municipal water installations of ultraviolet apparatus were in operation. By 1939, they were all abandoned in favor of chlorination primarily because of economy and the inadequacy of technology available at that time. In recent years, ultraviolet purification has had a comeback, partly because of the realization of what chlorination is doing to the environment and partly due to the vast advances in UV technology. Although solar ultraviolet radiation has a marginal biocidal effect, a property designed solar purifier could be a viable option in certain application. Among possible uses are: (1) rural single-family dwellings; (2) underdeveloped countries; and (3) small usage rates where electric power is not available. A solar purifier model is presented in this study. The data it provided illustrates that it can be effective in treating partially contaminated water.

  16. GLYPHOSATE REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  17. SMALL DRINKING WATER SYSTEMS RESEARCH

    EPA Science Inventory

    There are 159,796 Community Water Systems (CWSs) in the United States. Ninety-three percent of CWSs are considered very small to medium-sized systems that serve roughly 19% of the CWS population. In contrast, large to very large systems comprise just 7% of CWSs, but serve 81% of ...

  18. Microbial contamination of drinking water in Pakistan--a review.

    PubMed

    Nabeela, Farhat; Azizullah, Azizullah; Bibi, Roqaia; Uzma, Syeda; Murad, Waheed; Shakir, Shakirullah Khan; Ullah, Waheed; Qasim, Muhammad; Häder, Donat-Peter

    2014-12-01

    Water pollution with pathogenic microorganisms is one of the serious threats to human health, particularly in developing countries. The main objective of this article is to highlight microbial contamination of drinking water, the major factors responsible for microbial contamination, and the resulting health problems in Pakistan. Furthermore, this study will be helpful for researchers and administrative agencies to initiate relevant studies and develop new policies to protect further deterioration of water supply with pathogenic microbes and ensure clean and safe drinking water to the public in Pakistan. In Pakistan, water at the source, in the distribution network, and at the consumer tap is heavily polluted with coliforms and fecal coliforms all over the country. An overview of more than 7,000 water samples reviewed here reveals that an average of over 71 and 58 % samples in the country was contaminated with total coliforms and fecal coliforms, respectively. Drinking water contamination accounts for 20 to 40 % of all diseases in the country, which causes national income losses of Rs 25-58 billion annually (US$0.25-0.58 billion, approximately 0.6-1.44 % of the country's GDP). Improper disposal of industrial and municipal wastes is the most important factor responsible for water pollution in the country followed by cross-contamination due to old and leaking pipes and lack of water filtration and disinfection facilities. There is an urgent need for emergency steps to stop further deterioration of water quality and improve the existing water quality so as to protect the public from widespread waterborne diseases.

  19. 75 FR 39935 - Drinking Water Strategy Contaminants as Group(s)-Notice of Web Dialogue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... AGENCY RIN 2040-AD94 Drinking Water Strategy Contaminants as Group(s)--Notice of Web Dialogue AGENCY... Web dialogue. The discussion topics for this Web dialogue are focused on the first of the four... group(s). DATES: The Web dialogue is a two-day event. It will open at 9 a.m., Eastern Daylight Time (6...

  20. 75 FR 53267 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule; Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... published in the Federal Register (75 FR 40926, July 14, 2010). The RTCR applies to all public water systems... for improved water system operation. See the proposal as published in the Federal Register (75 FR... AGENCY 40 CFR Parts 141 and 142 RIN 2040-AD94 National Primary Drinking Water Regulations: Revisions...

  1. Arsenic in drinking water and pregnancy outcomes.

    PubMed Central

    Ahmad, S A; Sayed, M H; Barua, S; Khan, M H; Faruquee, M H; Jalil, A; Hadi, S A; Talukder, H K

    2001-01-01

    We studied a group of women of reproductive age (15-49 years) who were chronically exposed to arsenic through drinking water to identify the pregnancy outcomes in terms of live birth, stillbirth, spontaneous abortion, and preterm birth. We compared pregnancy outcomes of exposed respondents with pregnancy outcomes of women of reproductive age (15-49 years) who were not exposed to arsenic-contaminated water. In a cross-sectional study, we matched the women in both exposed and nonexposed groups for age, socioeconomic status, education, and age at marriage. The total sample size was 192, with 96 women in each group (i.e., exposed and nonexposed). Of the respondents in the exposed group, 98% had been drinking water containing [Greater and equal to] 0.10 mg/L arsenic and 43.8% had been drinking arsenic-contaminated water for 5-10 years. Skin manifestation due to chronic arsenic exposure was present in 22.9% of the respondents. Adverse pregnancy outcomes in terms of spontaneous abortion, stillbirth, and preterm birth rates were significantly higher in the exposed group than those in the nonexposed group (p = 0.008, p = 0.046, and p = 0.018, respectively). PMID:11445518

  2. Accuracy of bottled drinking water label content.

    PubMed

    Khan, Nazeer B; Chohan, Arham N

    2010-07-01

    The purpose of the study was to compare the accuracy of the concentration of fluoride (F), calcium (Ca), pH, and total dissolved solids (TDS) levels mentioned on the labels of the various brands of bottled drinking water available in Riyadh, Saudi Arabia. Twenty-one different brands of locally produced non-carbonated (still water) bottled drinking water were collected from the supermarkets of Riyadh. The concentration of F, Ca, TDS, and pH values were noted from the labels of the bottles. The samples were analyzed for concentrations in the laboratory using the atomic absorption spectrophotometer. The mean level of F, Ca, and pH were found as 0.86 ppm, 38.47 ppm, and 7.5, respectively, which were significantly higher than the mean concentration of these elements reported in the labels. Whereas, the mean TDS concentration was found 118.87 ppm, which was significantly lower than the mean reported on the labels. In tropical countries like Saudi Arabia, the appropriate level of F concentration in drinking water as recommended by World Health Organization (WHO) should be 0.6-0.7 ppm. Since the level of F was found to be significantly higher than the WHO recommended level, the children exposed to this level could develop objectionable fluorosis. The other findings, like pH value, concentrations of Ca, and TDS, were in the range recommended by the WHO and Saudi standard limits and therefore should have no obvious significant health implications.

  3. Acid rain and drinking water degradation.

    PubMed

    Middleton, P; Rhodes, S L

    1984-03-01

    Acid deposition-induced drinking water degradation is discussed with respect to the geographical extent of and the potential for dealing with possibly adverse human health impacts. Qualitative evidence from the northeastern United States and Sweden strongly suggests the existence of a linkage between these two environmental concerns. It is argued that water treatment and reduction of acid rain as solutions to the problem of water toxicity need closer evaluation. More research into the causal link is warranted since the addition of human health impacts to acid rain's environmental insults could have a significant bearing on discussions relating to acid rain controls.

  4. [Human exposure to trihalomethanes in drinking water].

    PubMed

    Tominaga, M Y; Midio, A F

    1999-08-01

    Halogenated hydrocarbon compounds, some of them recognized as carcinogenic to different animal species can be found in drinking water. Chloroform, bromodichloromethane, dibromochloromethane and bromoform are the most important trihalomethanes found in potable water. They are produced in natural waters during chlorinated desinfection by the halogenation of precursors, specially humic and fulvic compounds. The review, in the MEDLINE covers the period from 1974 to 1998, presents the general aspects of the formation of trihalomethanes, sources of human exposure and their toxicological meaning for exposed organisms: toxicokinetic disposition and spectrum of toxic effects (carcinogenic, mutagenic and teratogenic).

  5. Phosphorus limitation on bacterial regrowth in drinking water.

    PubMed

    Sang, Jun-qiang; Zhang, Xi-hui; Yu, Guo-zhong; Wang, Zhan-sheng

    2003-11-01

    Assimilable organic carbon (AOC) test and bacterial regrowth potential (BRP) analysis were used to investigate the effect of phosphorus on bacterial regrowth in the drinking water that was made from some raw water taken from a reservoir located in northern China. It was shown that AOC of the drinking water samples increased by 43.9%-59.6% and BRP increased by 100%-235% when 50 microg/L PO4(3-)-P(as NaH2 PO4) was added alone to the drinking water samples. This result was clear evidence of phosphorus limitation on bacteria regrowth in the drinking water. This investigation indicated the importance of phosphorus in ensuring biological stability of drinking water and offered a novel possible option to restrict microbial regrowth in drinking water distribution system by applying appropriate technologies to remove phosphorus efficiently from drinking water in China.

  6. Astrovirus survival in drinking water.

    PubMed

    Abad, F X; Pintó, R M; Villena, C; Gajardo, R; Bosch, A

    1997-08-01

    A method based on infection of CaCo-2 cultured cell monolayers (CC) and reverse transcription-PCR (RT-PCR) was developed for the specific detection of infectious astrovirus. The procedure was validated by titrating poliovirus stocks in parallel in CaCo-2 cells by determining the most probable number of cytopathogenic units and by cell culture and subsequent RT-PCR (CC-RT-PCR). CC-RT-PCR was then employed to measure the persistence of astrovirus suspended in dechlorinated tap water. After 60 days, the decay of astrovirus infectivity was 2 log units at 4 +/- 1 degrees C and 3.2 log units at 20 +/- 1 degrees C, while after 90 days, the titer reduction was 3.3 and 5 log units at 4 +/- 1 degrees C and 20 +/- 1 degrees C, respectively. Astrovirus decay in the presence of free chlorine (FC) was monitored by CC-RT-PCR. Residual infectivity was found after 2 h in the presence of 1 mg of FC/liter. Under these conditions, astrovirus shows a log titer reduction (LTR) or 4, while 0.5 mg of FC/liter induced an LTR of 2.4. The possibility of acquiring data on the survival of fastidious viruses in the environment opens new perspectives on the epidemiology of some significant infections transmitted by the fecal-oral route. PMID:9251198

  7. Analysis of physical and chemical parameters of bottled drinking water.

    PubMed

    Mahajan, Rakesh Kumar; Walia, T P S; Lark, B S; Sumanjit

    2006-04-01

    Seventeen different brands of bottled drinking water, collected from different retail shops in Amritsar, were analyzed for different physical and chemical parameters to ascertain their compliability with the prescribed/recommended limits of the World Heath Organization (WHO) and the United States Environmental Protection Agency (USEPA). It was found that the majority of the brands tested were over-treated. Lower values of hardness, total dissolved solids (TDS) and conductance than the prescribed limits of WHO showed that water was deficient in essential minerals. Minerals like magnesium, potassium, calcium and fluoride were present in some cases in such a low concentration that water seemed to be as good as distilled water. Samples showing fluoride lesser than 0.5 mg/l warranted additional sources of fluoride for the people consuming only bottled water for drinking purposes. Zero values for chlorine demand as shown by all the bottled water samples showed that water samples were safe from micro-organisms. In case of heavy metals, only lead had been found to be greater than the limit of 0.015 mg/l as prescribed by WHO and USEPA, in seven out of 17 samples. Lead even at such a low concentration can pose a great health hazard.

  8. Drinking water standard for tritium-what's the risk?

    PubMed

    Kocher, D C; Hoffman, F O

    2011-09-01

    This paper presents an assessment of lifetime risks of cancer incidence associated with the drinking water standard for tritium established by the U.S. Environmental Protection Agency (USEPA); this standard is an annual-average maximum contaminant level (MCL) of 740 Bq L(-1). This risk assessment has several defining characteristics: (1) an accounting of uncertainty in all parameters that relate a given concentration of tritium in drinking water to lifetime risk (except the number of days of consumption of drinking water in a year and the number of years of consumption) and an accounting of correlations of uncertain parameters to obtain probability distributions that represent uncertainty in estimated lifetime risks of cancer incidence; (2) inclusion of a radiation effectiveness factor (REF) to represent an increased biological effectiveness of low-energy electrons emitted in decay of tritium compared with high-energy photons; (3) use of recent estimates of risks of cancer incidence from exposure to high-energy photons, including the dependence of risks on an individual's gender and age, in the BEIR VII report; and (4) inclusion of risks of incidence of skin cancer, principally basal cell carcinoma. By assuming ingestion of tritium in drinking water at the MCL over an average life expectancy of 80 y in females and 75 y in males, 95% credibility intervals of lifetime risks of cancer incidence obtained in this assessment are (0.35, 12) × 10(-4) in females and (0.30, 15) × 10(-4) in males. Mean risks, which are considered to provide the best single measure of expected risks, are about 3 × 10(-4) in both genders. In comparison, USEPA's point estimate of the lifetime risk of cancer incidence, assuming a daily consumption of drinking water of 2 L over an average life expectancy of 75.2 y and excluding an REF for tritium and incidence of skin cancer, is 5.6 × 10(-5). Probability distributions of annual equivalent doses to the whole body associated with the drinking

  9. Contaminants and drinking-water sources in 2001; recent findings of the U. S. Geological Survey

    USGS Publications Warehouse

    Patterson, G.G.; Focazio, M.J.

    2000-01-01

    As the Nation's principal earth-science agency, the U.S. Geological Survey (USGS) studies numerous issues related to contamination of drinking-water sources. The work includes monitoring to determine the spatial and temporal distribution of contaminants; research to determine sources, transport, transformations, and fate of contaminants, and assessments of vulnerability. Much of the work is conducted in cooperation with the U.S. Environmental Protection Agency and other Federal, State, Tribal, and local governments, to help provide a scientific basis for resource management and regulation. Examples of recent results are presented for two broad categories of drinking-water projects: occurrence studies, and source-water assessments.

  10. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  11. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater. PMID:26953706

  12. A National Assessment of the Potential Impacts of Hydraulic Fracturing Activities on Drinking Water Resources

    NASA Astrophysics Data System (ADS)

    Ridley, C.; Burden, S.; Fleming, M. M.; Knightes, C. D.; Koplos, J.; LeDuc, S. D.; Ring, S.; Stanek, J.; Tuccillo, M. E.; Weaver, J.; Frithsen, J.

    2015-12-01

    The U.S. Environmental Protection Agency recently released a draft assessment of the potential impacts of hydraulic fracturing on drinking water resources. As part of the draft assessment, we reviewed, analyzed, and synthesized information from over 950 sources and concluded that there are above and below ground mechanisms by which hydraulic fracturing activities have the potential to impact drinking water resources. These mechanisms include: Water withdrawals in times of, or in areas with, low water availability; Spills of hydraulic fracturing fluids and produced water; Fracturing directly into underground drinking water resources; Below ground migration of liquids and gases; and Inadequate treatment and discharge of wastewater. Of the potential mechanisms identified in this report, we found specific instances where one or more mechanisms led to impacts on drinking water resources, including contamination of drinking water wells. The number of identified cases, however, was small compared to the number of hydraulically fractured wells. This finding could reflect a rarity of effects on drinking water resources, but may also be due to other limiting factors. These factors include: insufficient pre- and post-fracturing data on the quality of drinking water resources; the paucity of long-term systematic studies; the presence of other sources of contamination precluding a definitive link between hydraulic fracturing activities and an impact; and the inaccessibility of some information on hydraulic fracturing activities and potential impacts. Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or polices of the EPA.

  13. [Revision of the drinking water regulations].

    PubMed

    Hauswirth, S

    2011-11-01

    The revision the Drinking Water Regulations will come into effect on 01.11.2011. Surveillance authorities and owners of drinking water supply systems had hoped for simplifications and reductions because of the new arrangements. According to the official statement for the revision the legislature intended to create more clarity, consider new scientific findings, to change regulations that have not been proved to close regulatory gaps, to deregulate and to increase the high quality standards. A detailed examination of the regulation text, however, raises doubts. The new classification of water supply systems requires different modalities of registration, water analyses and official observation, which will complicate the work of the authorities. In particular, the implementation of requirements of registration and examination for the owners of commercial and publicly-operated large hot-water systems in accordance with DVGW Worksheet W 551 requires more effort. According to the estimated 30 000 cases of legionellosis in Germany the need for a check of such systems for Legionella, however, is not called into question. Furthermore, the development of sampling plans and the monitoring of mobile water supply systems requires more work for the health authorities.

  14. 76 FR 13172 - Placer County Water Agency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Energy Regulatory Commission Placer County Water Agency Notice of Application Tendered for Filing with... Filed: February 23, 2011 d. Applicant: Placer County Water Agency e. Name of Project: Middle Fork... Manager, Placer County Water Agency, 144 Ferguson Road, Auburn, CA 95603; Telephone: (530) 823-4490....

  15. Diarrhoea following contamination of drinking water with copper.

    PubMed

    Stenhammar, L

    1999-06-28

    Three cases of children with suspected copper intoxication from the drinking water are described. The children presented with protracted diarrhoea, which promptly disappeared, when they were given drinking water of low copper concentration but reappeared when given their domestic water. It is concluded that the use of copper tubing in the water pipes may under certain circumstances result in the presence of copper in the drinking water and the risk of intoxication, especially in small children. PMID:10383874

  16. Presence of Cryptosporidium spp. and Giardia duodenalis through drinking water.

    PubMed

    Castro-Hermida, José Antonio; García-Presedo, Ignacio; Almeida, André; González-Warleta, Marta; Correia Da Costa, José Manuel; Mezo, Mercedes

    2008-11-01

    To evaluate the presence of Cryptosporidium spp. and Giardia duodenalis in the influent and final effluent of sixteen drinking water treatment plants located in a hydrographic basin in Galicia (NW Spain) - in which the principal river is recognised as a Site of Community Importance (SCI) - estimate the efficiency of treatment plants in removing these protozoans and determine the species and genotypes of the parasites by means of a molecular assay. All plant samples of influent and final effluent (50-100 l) were examined in the spring, summer, autumn and winter of 2007. A total of 128 samples were analysed by method 1623, developed by US Environmental Protection Agency for isolation and detection of both parasites. To identify the genotypes present the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and b-giardina (G. duodenalis). The mean concentrations of parasites in the influent were 0.0-10.5 Cryptosporidium spp. oocysts per litre and 1.0-12.8 of G. duodenalis cysts per litre. In the final treated effluent, the mean concentration of parasites ranged from 0.0-3.0 oocysts per litre and 0.5-4.0 cysts per litre. The distribution of results by season revealed that in all plants, the highest numbers of (oo)cysts were recorded in spring and summer. Cryptosporidium parvum, C. andersoni, C. hominis and assemblages A-I, A-II, E of G. duodenalis were detected. Cryptosporidium spp. and G. duodenalis were consistently found at high concentrations in drinking water destined for human and animal consumption in the hydrographic basin under study, in Galicia (NW Spain). It is important that drinking water treatment authorities rethink the relevance of contamination levels of both parasites in drinking water and develop adequate countermeasures.

  17. Water, Water Everywhere, But is it Safe to Drink?

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  18. [Drinking water supply with reference to geogenic arsenic contamination].

    PubMed

    Kevekordes, S; Suchenwirth, R; Gebel, T; Demuth, J; Dunkelberg, H; Küntzel, H

    1998-10-01

    Geogenic Arsenic in Drinking Water. Drinking water production of surface spring water in southern Lower Saxony (Niedersachsen, Germany) was reduced because of microbiological contaminations and unreliably variable water reserves. Surface spring water in general has a low arsenic content. As a consequence ground water has been increasingly used for drinking water. Thus, high geogenic concentrations of arsenic in the central "Buntsandstein" in southern Lower Saxony caused high arsenic contents in the groundwater. Under the regulation of the German Drinking Water Ordinance (1986) the limit for total arsenic (40 micrograms/l) was exceeded in 2% of 150 fountains, wells and sources in southern Lower Saxony. Because of the well-known cancerogenic potential of arsenic the limit for total arsenic in drinking water was reduced from 40 micrograms/l to 10 micrograms/l suspending the new standard value until January 1996. This regulation based on new calculations revealing a skin cancer risk of roughly 6:10,000 and a mortality risk of roughly 1:10(6) in respect of lifetime in case of arsenic concentrations of 10 micrograms As/l drinking water. After that limit change 40% of 150 wells and sources in southern Lower Saxony exceeded the arsenic limit of 10 micrograms/l drinking water. As a matter of fact, it became necessary for a large number of water supply works to eliminate arsenic from the drinking water by technical means or to dilute drinking water with high concentrations of arsenic.

  19. Ammonia pollution characteristics of centralized drinking water sources in China.

    PubMed

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  20. The Role of Microbial Processes in the Oxidation and Removal of Arsenic from Drinking Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) recently reduced the drinking water standard for arsenic (As) in water from 0.05 to 0.010 milligrams/Liter (L) (10 micrograms/L). This reduction was prompted by new health effects research, which concluded th...

  1. ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...

  2. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  3. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  4. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  5. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  6. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  7. Why Drinking Water Is the Way to Go

    MedlinePlus

    ... Here's Help White House Lunch Recipes Why Drinking Water Is the Way to Go KidsHealth > For Kids > Why Drinking Water Is the Way to Go Print A A ... have in common? Give up? You all need water. All living things must have water to survive, ...

  8. Portable Nanomesh Creates Safer Drinking Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Providing astronauts with clean water is essential to space exploration to ensure the health and well-being of crewmembers away from Earth. For the sake of efficient and safe long-term space travel, NASA constantly seeks to improve the process of filtering and re-using wastewater in closed-loop systems. Because it would be impractical for astronauts to bring months (or years) worth of water with them, reducing the weight and space taken by water storage through recycling and filtering as much water as possible is crucial. Closed-loop systems using nanotechnology allow wastewater to be cleaned and reused while keeping to a minimum the amount of drinking water carried on missions. Current high-speed filtration methods usually require electricity, and methods without electricity usually prove impractical or slow. Known for their superior strength and electrical conductivity, carbon nanotubes measure only a few nanometers in diameter; a nanometer is one billionth of a meter, or roughly one hundred-thousandth the width of a human hair. Nanotubes have improved water filtration by eliminating the need for chemical treatments, significant pressure, and heavy water tanks, which makes the new technology especially appealing for applications where small, efficient, lightweight materials are required, whether on Earth or in space. "NASA will need small volume, effective water purification systems for future long-duration space flight," said Johnson Space Center s Karen Pickering. NASA advances in water filtration with nanotechnology are now also protecting human health in the most remote areas of Earth.

  9. Genotoxicity of drinking water from Chao Lake

    SciTech Connect

    Liu, Q.; Jiao, Q.C.; Huang, X.M.; Jiang, J.P.; Cui, S.Q.; Yao, G.H.; Jiang, Z.R.; Zhao, H.K.; Wang, N.Y.

    1999-02-01

    Genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Comparisons of extracts of settled versus chlorinated water have confirmed that chlorinating during water treatment produces mutagenic activity in the mutagenicity tests. Present work on XAD-2 extracts of raw, chlorinated (treated), and settled water from the Chao Lake region of China has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) induction in Chinese hamster lung (CHL) cells, and the micronucleus (MN) induction in the peripheral blood erythrocytes of silver carp. Extracts of raw and treated water but not the settled water are mutagenic in the Salmonella assay. On the other hand, extracts of three water samples show activity in the SCE and MN assays, especially the raw and treated water. These data show that contamination and chlorinating contribute mutagens to drinking water and suggest that the mammalian assays may be more sensitive for detecting mutagenicity in aquatic environment than the Salmonella test.

  10. Fluoride in drinking water and dental fluorosis.

    PubMed

    Mandinic, Zoran; Curcic, Marijana; Antonijevic, Biljana; Carevic, Momir; Mandic, Jelena; Djukic-Cosic, Danijela; Lekic, Charles P

    2010-08-01

    In this study we determined the fluoride content in drinking water and hair of 12-year-old schoolchildren from different Serbian municipalities, i.e. Valjevo, Veliko Gradiste, Kacarevo and Vranjska Banja. The analyses were performed using composite fluoride ion-selective electrode. Average fluoride levels were 0.10, 0.15, 0.79 and 11 ppm in well water, 0.07, 0.10, 0.17 and 0.15 ppm in tap water, 19.3, 21.5, 25.4, and 32.5 ppm in hair samples, in Valjevo, Veliko Gradiste, Kacarevo and Vranjska Banja, respectively. Correlation analysis indicated statistically significant positive relationship between fluoride in wells water and fluoride in hair, for all municipalities: correlation coefficients were 0.54 (p < 0.05), 0.89, 0.97 and 0.99 (p < 0.001), in Vranjska Banja, Valjevo, Veliko Gradiste, and Kacarevo, respectively. Positive correlation was obtained also between fluoride in tap water and hair samples in all regions under the study, with statistical significance only in Valjevo municipality, p < 0.05. Dental examination of schoolchildren confirmed dental fluorosis only in the region of Vranjska Banja. Moreover, in endemic fluorotic region of Vranjska Banja, positive and statistically significant correlations were confirmed between fluoride in well water and dental fluorosis level (r = 0.61; p < 0.01) and additionally between fluoride in hair and dental fluorosis level (0.62; p < 0.01). The primary findings from this study have shown that fluoride content in hair is highly correlated with fluoride content in drinking water and dental fluorosis level, indicating that hair may be regarded as biomaterial of high informative potential in evaluating prolonged exposure to fluorides and to individuate children at risk of fluorosis regardless of the phase of teeth eruption. PMID:20580811

  11. USEPA/USGS Study of CECs in Source Water and Treated Drinking Water: Assessment of Estrogenic Activity Using an In Vitro Bioassay, T47D-KBluc.

    EPA Science Inventory

    Scientists from the U.S. Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from up to 50 drinking water trea...

  12. Comparative risk analysis of six volatile organic compounds in California drinking water.

    PubMed

    Williams, Pamela; Benton, Laurie; Warmerdam, John; Sheehans, Patrick

    2002-11-15

    The widespread use and storage of volatile organic compounds (VOCs) in the United States has led to releases of these chemicals into the environment, including groundwater sources of drinking water. Many of these VOCs are commonly found in public drinking water supplies across the nation and are considered by state or federal agencies to be potentially carcinogenic to humans. In this paper, we evaluate the detection frequencies, detected concentrations, and relative cancer risks of six VOCs in drinking water sources in California from 1995 to 2001. We find that during this 7-year period, the most frequently detected VOCs in sampled drinking water sources were chloroform (12-14%), PCE (11-13%), and TCE (10-12%). Detection frequencies in water were lower for 1,1-DCE (3-6%), MTBE (1-3%), and benzene (<1%). Mean detected concentrations were also consistently above California's primary maximum contaminant level for some VOCs, including benzene, PCE, and TCE. Although none of the six VOCs necessarily poses a significant public health threat from drinking water exposures, 1,1-DCE and benzene werefound to pose the greatest cancer risk relative to the other VOCs. However, after adjusting for the occurrence of each VOC in drinking water, chloroform and PCE were found to pose the greatest relative cancer risk. Despite media reports about significant MTBE contamination of drinking watersupplies in California, MTBE detections were infrequent and this chemical was found to pose the least cancer risk relative to the other VOCs.

  13. ARSENIC DESORPTION FROM DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has recently lowered the maximum contaminant level (MCL) for arsenic from 0.050 mg/L to 0.010 mg/L for all community and non-community water sources. The new MCL for arsenic must be met by January 2006. Recent studies have found th...

  14. Research needs in drinking water: a basis in regulations in the United States.

    PubMed

    Jacangelo, Joseph G; Askenaizer, Daniel J; Schwab, Kellogg

    2006-01-01

    Regulations are one of the primary drivers for research on contaminants in drinking water in the United States. Since the original Safe Drinking Water Act (SDWA), enacted in 1974, the United States Environmental Protection Agency (USEPA) has developed a series of drinking water regulations. These regulations are focused on protecting public health. When evaluating available information on whether or not to regulate a constituent in drinking water, USEPA considers available information on health effects and occurrence of the constituent. The authors provide their view of the research needed for these contaminants. For inorganics, more data are needed on perchlorate. For organics, greater treatment and health effects information is warranted for N-nitrosodimethylamine (NDMA), methyl tertiary butyl ether (MTBE) and pharmaceuticals and personal care products. Finally, more research is needed on analytical methods for noroviruses and other emerging pathogens. PMID:16493893

  15. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water

    EPA Science Inventory

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  16. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water**

    EPA Science Inventory

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  17. SAB report: Radionuclides in drinking water. Review of the Office of Drinking Water`s criteria documents and related reports for uranium, radon, and man-made beta-gamma emitters by the radiation advisory committee

    SciTech Connect

    1991-12-01

    EPA`s Office of Drinking Water developed draft criteria documents and related reports that were the basis for new drinking water standards for uranium, radium, radon and man-made beta-gamma emitting radionuclides during the period November 1989-July 1990. The overall quality of the four draft criteria documents submitted to the Subcommittee for its review was not good. Taken as a set, the documents are inconsistent in approach and with Agency practice in the derivation of drinking water criteria for other contaminants.

  18. Review of fluoride removal from drinking water.

    PubMed

    Mohapatra, M; Anand, S; Mishra, B K; Giles, Dion E; Singh, P

    2009-10-01

    Fluoride in drinking water has a profound effect on teeth and bones. Up to a small level (1-1.5mg/L) this strengthens the enamel. Concentrations in the range of 1.5-4 mg/L result in dental fluorosis whereas with prolonged exposure at still higher fluoride concentrations (4-10mg/L) dental fluorosis progresses to skeletal fluorosis. High fluoride concentrations in groundwater, up to more than 30 mg/L, occur widely, in many parts of the world. This review article is aimed at providing precise information on efforts made by various researchers in the field of fluoride removal for drinking water. The fluoride removal has been broadly divided in two sections dealing with membrane and adsorption techniques. Under the membrane techniques reverse osmosis, nanofiltration, dialysis and electro-dialysis have been discussed. Adsorption, which is a conventional technique, deals with adsorbents such as: alumina/aluminium based materials, clays and soils, calcium based minerals, synthetic compounds and carbon based materials. Studies on fluoride removal from aqueous solutions using various reversed zeolites, modified zeolites and ion exchange resins based on cross-linked polystyrene are reviewed. During the last few years, layered double oxides have been of interest as adsorbents for fluoride removal. Such recent developments have been briefly discussed.

  19. Defluoridation of drinking water using adsorption processes.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi

    2013-03-15

    Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process.

  20. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  1. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  2. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  3. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  4. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  5. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  6. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  7. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  8. Visions of the Future in Drinking Water Microbiology.

    EPA Science Inventory

    Drinking water microbiology will have a tremendous impact on defining a safe drinking water in the future. There will be breakthroughs in realtime testing of process waters for pathogen surrogates with results made available within 1 hour for application to treatment adjustments ...

  9. The Next Generation of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended healt...

  10. The Safe Drinking Water Act First 180 Days

    ERIC Educational Resources Information Center

    Lehr, Jay H.

    1975-01-01

    The Safe Drinking Water Act protects our drinking and ground water resources. The Water Advisory Council interprets and implements the law. Implementation principles include high priorities for public health, cost considerations, state and local participation, environmental impact, decentralized decision making, and use of federal and state…

  11. Variation of {sup 222}Rn in public drinking water supplies

    SciTech Connect

    Drane, W.K.; York, E.L.; Hightower, J.H. III; Watson, J.E. Jr.

    1997-12-01

    The U.S. Environmental Protection Agency has proposed regulating {sup 222}Rn in public drinking water. When implemented, the regulation will require periodic sampling to demonstrate compliance. The work reported in this paper was conducted to evaluate how reliably grab samples can be used to characterize the average {sup 222}Rn concentration in a ground-water source. Periodic samples were collected from 14 wells over sampling periods ranging from 2 to 26 mo. Samples were collected using a {open_quotes}slow-flow{close_quotes} collection method. and samples were analyzed using liquid scintillation techniques. The results reveal variation in {sup 222}Rn concentration over the study period; however, for the 1,468 samples collected from the 14 wells, approximately 97% of the measurement results were within 30% of the mean value for the well. 11 refs., 14 figs., 2 tabs.

  12. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  13. [Hydraulic fracturing - a hazard for drinking water?].

    PubMed

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring.

  14. [Hydraulic fracturing - a hazard for drinking water?].

    PubMed

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. PMID:24285158

  15. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  16. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  17. Microbiological contamination of drinking water in a commercial household water filter system.

    PubMed

    Daschner, F D; Rüden, H; Simon, R; Clotten, J

    1996-03-01

    The microbiological quality of filtered water in a commercial water filter system (Brita) was tested in households and in two laboratories. In 24 of 34 filters used in households, bacterial counts increased in the filtered water up to 6,000 cfu/ml. In 4 of 6 filters tested in the laboratory, bacterial counts in the fresh filtrate were higher than in tap water after approximately one week of use both at room temperature and at 4 degrees C, suggesting growth or biofilm formation in the filter material. In some cases colony counts in the filtered water were 10,000 times those in tap water. The filter material of 5 of 13 new commercial filters was contaminated with bacteria or moulds. National or international regulatory agencies should ensure that water filters marketed for domestic use do not allow deterioration in the microbiological quality of drinking water. PMID:8740859

  18. [The EU drinking water recommendations: objectives and perspectives].

    PubMed

    Blöch, H

    2011-12-01

    Protection of our drinking water resources and provision of safe drinking water are key requirements of modern water management and health policy. Microbiological and chemical quality standards have been established in the EU water policy since 1980, and are now complemented by a comprehensive protection of water as a resource. This contribution reflects a presentation at the scientific conference of the Federal Associations of Physicians and Dentists within the Public Health Service in May 2011 and provides an overview on objectives and challenges for drinking water protection at the European level.

  19. Safe drinking water act: Amendments, regulations and standards

    SciTech Connect

    Calabrese, E.J.; Gilbert, C.E.; Pastides, H.

    1989-01-01

    This book approaches the topic of safe drinking water by communicating how the EPA has responded to the mandates of Congress. Chapter 1 summarizes what is and will be involved in achieving safe drinking water. Chapter 2 describes the historical development of drinking water regulations. Chapter 3 summarizes the directives of the Safe Drinking Water Act Amendments of 1986. Chapters 4 through 9 discuss each phase of the regulatory program in turn. Specific problems associated with volatile organic chemicals, synthetic organics, inorganic chemicals, and microbiological contaminants are assessed in Chapter 4 and 5. The unique characteristics of radionuclides and their regulation are treated in Chapter 6. The disinfection process and its resultant disinfection by-products are presented in Chapter 7. The contaminant selection process and the additional contaminants to be regulated by 1989 and 1991 and in future years are discussed in Chapters 8 and 9. EPA's Office of Drinking Water's Health Advisory Program is explained in Chapter 10. The record of public water system compliance with the primary drinking water regulations is detailed in Chapter 11. Chapter 12 offers a nongovernmental perspective on the general quality of drinking water and how this is affected by a wide range of drinking water treatment technologies. Separate abstracts are processed for 5 chapters in this book for inclusion in the appropriate data bases.

  20. Drinking water microbiology--new directions toward water quality enhancement.

    PubMed

    Geldreich, E E

    1989-12-01

    Drinking water microbiology has emerged from decades of relative complacency to recognize there can be major concerns with potable water quality. Many of these issues are a result of an explosion of information on new waterborne agents, treatment problems with raw-source water qualities, biofilm development in some distribution systems and specialized requirements in water quality unique to hospitals and industries. Protozoan cyst survival after some disinfection practices involving surface water impoundments and virus occurrence in poorly protected groundwaters have provided reasons for expanding minimum treatment of surface waters and for requiring disinfection of all groundwaters unless there is a demonstrative data base to support exceptions in treatment requirements. Official monitoring of small water supplies must be increased on a monthly basis and a rapid alert established to inform water plant operators of unsatisfactory water qualities. As an option, application of operational tests to analyse water quality in terms of chlorine residual, turbidity, total coliforms and heterotrophic bacterial counts in small water plant operations should be encouraged. This would provide the operator at remote locations with the opportunity to utilize the information to make necessary treatment adjustments or corrections in water distribution deficiencies promptly and be a supplement to the official regional monitoring program. Application of drinking water alternative sources (bottled water and water from point-of-use treatment devices) should be viewed by the health authorities as only a temporary solution, not as a permanent fix for a public water supply known to present some established health risk to consumers. The public must also recognize that bottled water is not frequently monitored by health laboratories for acceptable quality and the use of home treatment devices places the responsibility of proper maintenance on the user. Microbial quality improvements in

  1. Research plan for arsenic in drinking water

    SciTech Connect

    1998-02-01

    The document stresses the implications of recent research findings and emphasizes identification of key strengths and sources of uncertainty and variability in the arsenic risk assessment. This document also explains how information gained through research can: impact the method used in new investigations to assess the risks of arsenic, and support or suggest changes in the assumptiosn and methods used in arsenic risk assessments. This Arsenic Research Plan addresses the protection of human health, especially the research needed to implement the 1996 Safe Drinking Water Act Amendments (SDWAA). It is intended to serve as a blueprint that will be discussed with parties interested in addressing key strengths and uncertainties in the arsenic risk assessment.

  2. 78 FR 42692 - Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 573 Food Additives Permitted in Feed and Drinking Water of Animals; Ammonium Formate AGENCY: Food and Drug Administration, HHS. ACTION: Final...

  3. EXTRACTION AND SPECIATION OF ARSENIC CONTAINING DRINKING WATER TREATMENT SOLIDS BY IC-ICP-MS

    EPA Science Inventory

    In 2001, the U.S. Environmental Protection Agency (EPA) passed the Arsenic Rule, which established a maximum contaminant level of 105g/L. Compliance with this regulation has caused a number of drinking water utilities to investigate potential treatment options. The adsorption o...

  4. 76 FR 22100 - Notification of a Public Teleconference of the Science Advisory Board; Drinking Water Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... March 30-31, 2011 [see Federal Register Notice dated March 10, 2011 (76 FR 13181-13182)]. Materials from... Augmented for the Review of the Effectiveness of Partial Lead Service Line Replacements AGENCY... Office announces a public teleconference of the SAB Drinking Water Committee Augmented for the Review...

  5. ARSENIC REMOVAL FROM DRINKING WATER BY ACTIVATED ALUMINA AND ANION EXCHANGE TREATMENT

    EPA Science Inventory

    In preparation of the U.S. Environmental Protection Agency (USEPA) revising the arsenic maximum contaminant level (MCL) in the year 2001, a project was initiated to evaluate the performance of nine, full-scale drinking water treatment plants for arsenic removal. Four of these sy...

  6. Methods for Measuring Occurrence and Exposure From Viruses in Drinking and Recreational Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) has an active research program to develop and improve methods for detecting human enteric viruses in recreational, source, and drinking waters. EPA is also developing methods to measure exposure to waterborne viruses and ap...

  7. HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: VI. DEVELOPMENTAL EFFECTS.

    EPA Science Inventory

    HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
    VI. DEVELOPMENTAL EFFECTS

    Richard K. Kwok, M.S.P.H., Judy L. Mumford, Ph.D., Pauline Mendola, Ph.D. Epidemiology and Biomarkers Branch, NHEERL, US Environmental Protection Agency; Yajua...

  8. USEPA'S APPROACH TO THE DEVELOPMENT OF NEW ANALYTICAL METHODS FOR EMERGING CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    The 1996 Amendments to the Safe Drinking Water Act require USEPA to perform Unregulated Contaminant Monitoring (UCM) for chemicals of interest to the Agency for possible future regulation. Many of these chemicals fall into the category of "emerging contaminants". An important e...

  9. HALONITROMETHANE DRINKING WATER DISINFECTION BY-PRODUCTS: CHEMICAL CHARACTERIZATION AND MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY

    EPA Science Inventory

    Halonitromethanes are drinking water disinfection by-products that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency. Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to deter...

  10. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-products
    Authors & affiliations:
    Narotsky1, M.G. and S. Bielmeier Laffan2.
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  11. THE INDUCTION OF COLON NEOPLASIA IN MALE RATS EXPOSED TO TRIHALOMETHANES (THMS) IN THE DRINKING WATER

    EPA Science Inventory

    THE INDUCTION OF COLON NEOPLASIA IN MALE RATS EXPOSED TO TRIHALO METHANES (THMs) IN THE DRINKING WATER
    Christopher Sistrunk and Tony DeAngelo, North Carolina Central University and US Environmental Protection Agency
    The THMs are the most widely distributed and the most co...

  12. Mineralogical and Molecular Microbial Characterization of a Lead Pipe Removed from a Drinking Water Distribution System

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (US EPA) Lead and Copper Rule established an action level for lead of 0.0 15 mg/L in a 1 liter first draw sample at the consumer's tap. Lead corrosion and solubility in drinking water distribution systems are largely controlled by the fo...

  13. Contamination of surface, ground, and drinking water from pharmaceutical production.

    PubMed

    Fick, Jerker; Söderström, Hanna; Lindberg, Richard H; Phan, Chau; Tysklind, Mats; Larsson, D G Joakim

    2009-12-01

    Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these microcontaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. The present study investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from approximately 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of 12 pharmaceuticals with liquid chromatography-mass spectrometry. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine, and citalopram were detected at more than 1 microg/L in several wells. Very high concentrations of ciprofloxacin (14 mg/L) and cetirizine (2.1 mg/L) were found in the effluent of the treatment plant, together with high concentrations of seven additional pharmaceuticals. Very high concentrations of ciprofloxacin (up to 6.5 mg/L), cetirizine (up to 1.2 mg/L), norfloxacin (up to 0.52 mg/L), and enoxacin (up to 0.16 mg/L) were also detected in the two lakes, which clearly shows that the investigated area has additional environmental sources of insufficiently treated industrial waste. Thus, insufficient wastewater management in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory

  14. Should children drink more water?: the effects of drinking water on cognition in children.

    PubMed

    Edmonds, Caroline J; Burford, Denise

    2009-06-01

    While dehydration has well-documented negative effects on adult cognition, there is little research on hydration and cognitive performance in children. We investigated whether having a drink of water improved children's performance on cognitive tasks. Fifty-eight children aged 7-9 years old were randomly allocated to a group that received additional water or a group that did not. Results showed that children who drank additional water rated themselves as significantly less thirsty than the comparison group (p=0.002), and they performed better on visual attention tasks (letter cancellation, p=0.02; spot the difference memory tasks, ps=0.019 and 0.014).

  15. DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY

    EPA Science Inventory

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...

  16. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  17. Studies on Disinfection By-Products and Drinking Water

    USGS Publications Warehouse

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  18. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  19. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  20. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  1. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  2. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  3. Safety on Tap: A Citizen's Drinking Water Handbook.

    ERIC Educational Resources Information Center

    Loveland, David Gray; Reichheld, Beth

    This citizen's guide to ensuring a safe supply of drinking water for all provides the information and analysis that individuals need to understand the issues and to participate in local decision making. The sources of drinking water, the types of human activities that results in contamination, and the contaminants that are of most concern are…

  4. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  5. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Food and drinking water requirements..., and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking water... commerce must be offered food as often as necessary and appropriate for the species involved or...

  6. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Food and drinking water requirements..., and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking water... commerce must be offered food as often as necessary and appropriate for the species involved or...

  7. SEMINAR PUBLICATION: CONTROL OF LEAD AND COPPER IN DRINKING WATER

    EPA Science Inventory

    This publication presents subjects relating to the control of lead and copper in drinking water systems. t is of interest to system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment te...

  8. NEUROXOTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection byproducts (DBPs). Dibromoacetic acid (DBA) is one of many DBPs produced by the chlorination of drinking water. Its chlorinated analog, ...

  9. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  10. Health-risk assessment of trichlorofluoromethane in California drinking water

    SciTech Connect

    Reed, N.R.; Reed, W.; Weir, K.; Beltran, K.; Babapour, R.

    1988-12-22

    Existing literature is reviewed that is pertinent to the health risk posed by the use of Freon-11 contaminated drinking water, an estimation of the Freon-11 exposure for California residents based on the most recent data on Freon-11 concentrations in California drinking-water supplies, and a delineation of the level of Freon-11 that may cause a noncarcinogenic health effect.

  11. U.S. DRINKING WATER REGULATIONS: TREATMENT TECHNOLOGIES AND COST.

    EPA Science Inventory

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the U.S. drinking water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of th...

  12. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and drinking water requirements..., and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking water... commerce must be offered food as often as necessary and appropriate for the species involved or...

  13. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and drinking water requirements..., and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking water... commerce must be offered food as often as necessary and appropriate for the species involved or...

  14. IDENTIFICATION OF NEW BROMINATED ACIDS IN DRINKING WATER

    EPA Science Inventory

    Since chloroform was identified as the first disinfection by-product (DBP) in drinking water, there has been more than 25 years of research on DBPs. Despite these efforts, more than 50% of the total organic halide (TOX) formed in chlorinated drinking water remains unknown. Ther...

  15. Availability of drinking water in US public school cafeterias.

    PubMed

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school.

  16. Availability of drinking water in US public school cafeterias.

    PubMed

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. PMID:24726348

  17. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  18. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  19. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  20. Lonely drinking fountains and comforting coolers: paradoxes of water value and ironies of water use.

    PubMed

    Kaplan, Martha

    2011-01-01

    This article focuses ethnographically on Americans and technologies of drinking water, as tokens of and vehicles for health, agency, and surprising kinds of community. Journalists and water scholars have argued that bottled water is a material concomitant of privatization and alienation in U.S. society. But, engaging Latour, this research shows that water technologies and the groups they assemble, are plural. Attention to everyday entwining of workplace lives with drinking fountains, single-serve bottles, and spring water coolers shows us several different quests, some individualized, some alienated, but some seeking health via public, collective care, acknowledgment of stakeholding, and community organizing. Focused on water practices on a college campus, in the roaring 1990s and increasingly sober 2000s in the context of earlier U.S. water histories of inclusion and exclusion, I draw on ethnographic research from the two years that led up to the recession and the presidential election of 2008. I argue for understanding of water value through attention to water use, focusing both on the social construction of water and the use of water for social construction.

  1. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. PMID:25622134

  2. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities.

  3. Pesticides and their breakdown products in Lake Waxahachie, Texas, and in finished drinking water from the lake

    USGS Publications Warehouse

    Ging, Patricia B.

    2002-01-01

    Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.

  4. OVERVIEW OF USEPA MICROBIOLOGICAL RESEARCH IN DRINKING WATER

    EPA Science Inventory

    The Microbial Contaminants Control Branch (MCCB) conducts research on microbiological problems related to drinking water treatment, distribution and storage, and has recently become involved in watershed and source water quality issues such as fecal indicator bacteria and fecal p...

  5. Arsenic in Drinking Water-A Global Environmental Problem

    ERIC Educational Resources Information Center

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  6. Survey of the mutagenicity of surface water, sediments, and drinking water from the Penobscot Indian Nation.

    PubMed

    Warren, Sarah H; Claxton, Larry D; Diliberto, Janet; Hughes, Thomas J; Swank, Adam; Kusnierz, Daniel H; Marshall, Valerie; DeMarini, David M

    2015-02-01

    U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S.

  7. A conceptual model to be used for community-based drinking-water improvements.

    PubMed

    Anstiss, Richard G; Ahmed, Mushfique

    2006-09-01

    A conceptual model that can be applied to improve community-based drinking-water in crisis-type situations has been developed from the original general science and technology/development bridging concept and from a case study in Northwest Bangladesh. The main feature of this model is the strengthened role of communities in identifying and implementing appropriate drinking-water improvements with facilitation by multi-disciplinary collaborative regional agency networks. These combined representative community/regional agency networks make decisions and take actions that involve environmental and health data, related capacity factors, and appropriateness of drinking-water improvements. They also progressively link regional decisions and actions together, expanding them nationally and preferably within a sustainable national policy-umbrella. This use of the model reflects stronger community control and input with more appropriate solutions to such drinking-water crisis situations and minimization of risk from potentially-inappropriate 'externally-imposed' processes. The application here is not intended as a generic or complete poverty-alleviation strategy by itself but as a crisis-solving intervention, complementary to existing and developing sustainable national policies and to introduce how key principles and concepts can relate in the wider context. In terms of the Bangladesh arsenic crisis, this translates into community/regional networks in geographic regions making assessments on the appropriateness of their drinking-water configuration. Preferred improvement options are decided and acted upon in a technological framework. Options include: pond-sand filters, rainwater harvesting, dugwell, deep-protected tubewell, and shallow tubewell with treatment devices. Bedding in the regional drinking-water improvement configuration protocols then occurs. This involves establishing ongoing representative monitoring and screening, clear delineation of arsenic

  8. Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India.

    PubMed

    Viswanathan, Gopalan; Jaswanth, A; Gopalakrishnan, S; Siva Ilango, S; Aditya, G

    2009-10-01

    Fluoride ion in drinking water is known for both beneficial and detrimental effects on health. The prevalence of fluorosis is mainly due to the intake of large quantities of fluoride through drinking water owing to more than 90% bioavailability. The objective of this study is to predict optimal fluoride level in drinking water for fluoride endemic regions by comprising the levels of fluoride and other water quality parameters in drinking water, prevalence of fluorosis, fluoride intake through water, food and beverages such as tea and coffee and also considering the progressive accumulation of fluoride in animal bones, by comparing with non fluoride endemic areas comprise of the same geological features with the aid of regression analysis. Result of this study shows that increase of fluoride level above 1.33 mg/l in drinking water increases the community fluorosis index (CFI) value more than 0.6, an optimum index value above which fluorosis is considered to be a public health problem. Regression plot between water fluoride and bone fluoride levels indicates that, every increase of 0.5mg/l unit of water fluoride level increases the bone fluoride level of 52 mg/kg unit within 2 to 3 years. Furthermore, the consumption of drinking water containing more than 0.65 mg/l of fluoride can raise the total fluoride intake per day more than 4 mg, which is the optimum fluoride dose level recommended for adults by the Agency for Toxic Substances and Disease Registry. From the result, the people in fluoride endemic areas in South India are advised to consume drinking water with fluoride level within the limit of 0.5 to 0.65 mg/l to avoid further fluorosis risk.

  9. Using silicates to lower lead levels in drinking water

    SciTech Connect

    Not Available

    1994-09-01

    York is a small resort town on the coast of Maine, near the New Hampshire border. The town's population of 5,000 usually doubles during the summer tourist season. Like many small water systems in New England, its soft, moderately alkaline water corrodes its unlined, cast-iron pipe distribution system, picking up significant quantities of iron along the way. Customers served by these lines have complained about the red water. York Water District officials hoped that a new 4-mgd treatment facility brought into service in spring 1990 would alleviate the red water problems, but they were also considering ways to address the requirements of the Lead and Copper Rule from the EPA promulgated in 1991. With the assistance of their consulting engineering firm, York Water District officials evaluated treatment strategies and decided against using polyphosphates to control lead and copper because of their ability to complex with the metals, possibly causing an increase in concentration. The officials eventually chose sodium silicates to lower the iron, lead, and copper levels in the system. Several utilities in Maine had reported using sodium silicate as a common strategy for red water problems. In addition, sodium silicate was favored because it reacts with metal for form a barrier to corrosion. York Water District, with assistance from its consultant, designed an 18-month program to add sodium silicates to its system, track metal concentrations, and monitor red water complaints. The district prepared a report for the EPA, covering data collected over the first 12 months of the program -- essentially calendar year 1991. According to Michael R. Schock, research chemist with the EPA's Drinking Water Research Division in Cincinnati, the agency is anxious to obtain as much quantitative information as possible on using sodium silicate for pH and/or corrosion control. This article describes the monitoring system, water treatment and study results.

  10. Evaluation of semidecentralized emergency drinking water treatment.

    PubMed

    Eloidin, Océane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of < 1 cfu/100 mL) was always attained and log reductions of up to 5 were achieved. The other product (CDP-T) did not exhibit any measurable coagulation and disinfection properties, indicating the variability of product quality and the need to conduct evaluations such as the ones presented in this study. Such results are of relevance to relief agencies delivering water supply interventions.

  11. Occurrence of uranium in Swiss drinking water.

    PubMed

    Stalder, E; Blanc, A; Haldimann, M; Dudler, V

    2012-02-01

    The results of a nationwide survey of uranium in Swiss drinking water are reported. Elevated concentrations of uranium in groundwater are found mainly in the alpine regions and can be traced back to the geology of the bedrock. Water sources were systematically surveyed and analysed for the presence of Li, B, Si, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sn, Sb, Ba, Tl, Pb and U and the results were analysed to determine if any correlation with uranium concentration was apparent. No correlation was found. The results are interpreted in relation to the current WHO guideline and those of other countries with a view to determining which areas would be affected if a maximum value were to be adopted and which areas require further investigation. Uranium content varied considerably, from below the limit of detection to almost 100 μg L(-1). Of the 5548 data samples, 98% are below the 2004 WHO provisional guideline value of 15 μg L(-1) and 99.7% below the revised (2011) value of 30 μg L(-1).

  12. [Special aspects of microbiological monitoring of drinking water quality].

    PubMed

    Feuerpfeil, I; Hummel, A; Renner, P

    2007-03-01

    The new drinking water ordinance (TrinkwV 2001) entered into force in 2003. In this paper we report about experiences with monitoring microbiological quality of drinking water. Special problems, for instance requirements concerning the quality of raw water, new and "old" microbiological parameters, microbiological methods, assessment of parametric values, especially in the case of values higher than the imperative value, are also described. Possible developments in this field are discussed. The paper should support microbiological laboratories, public health officers and other public authorities in monitoring and assessment of drinking water quality.

  13. Cardiovascular responses to water drinking: does osmolality play a role?

    PubMed

    Brown, Clive M; Barberini, Luc; Dulloo, Abdul G; Montani, Jean-Pierre

    2005-12-01

    Water drinking activates the autonomic nervous system and induces acute hemodynamic changes. The actual stimulus for these effects is undetermined but might be related to either gastric distension or to osmotic factors. In the present study, we tested whether the cardiovascular responses to water drinking are related to water's relative hypoosmolality. Therefore, we compared the cardiovascular effects of a water drink (7.5 ml/kg body wt) with an identical volume of a physiological (0.9%) saline solution in nine healthy subjects (6 male, 3 female, aged 26 +/- 2 years), while continuously monitoring beat-to-beat blood pressure (finger plethysmography), cardiac intervals (electrocardiography), and cardiac output (thoracic impedance). Total peripheral resistance was calculated as mean blood pressure/cardiac output. Cardiac interval variability (high-frequency power) was assessed by spectral analysis as an index of cardiac vagal tone. Baroreceptor sensitivity was evaluated using the sequence technique. Drinking water, but not saline, decreased heart rate (P = 0.01) and increased total peripheral resistance (P < 0.01), high-frequency cardiac interval variability (P = 0.03), and baroreceptor sensitivity (P = 0.01). Neither water nor saline substantially increased blood pressure. These responses suggest that water drinking simultaneously increases sympathetic vasoconstrictor activity and cardiac vagal tone. That these effects were absent after drinking physiological saline indicate that the cardiovascular responses to water drinking are influenced by its hypoosmotic properties.

  14. SMALL DRINKING WATER SYSTEMS: STATE OF THE INDUSTRY AND TREATMENT TECHNOLOGIES TO MEET THE SAFE DRINKING WATER ACT REQUIREMENTS

    EPA Science Inventory

    This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...

  15. Public exposure to radon in drinking water in Serbia.

    PubMed

    Todorovic, Natasa; Nikolov, Jovana; Forkapic, Sofija; Bikit, Istvan; Mrdja, Dusan; Krmar, Miodrag; Veskovic, Miroslav

    2012-03-01

    Radon is the main source of natural radiation that is received by population. The results of radon activity measurements in water from public drinking fountain, from bottled drinking water and from tap water in the city of Novi Sad, Serbia, are presented in this paper. The measurements were performed by RAD 7 radon detector manufactured by DURRIDGE COMPANY Inc. The corrected value of radon concentration in one sample exceeded the European Commission recommendation reference level for radon in drinking water of 100 Bql(-1). In order to make the correlation between radon and radium concentrations in the tap water and in the water from public drinking fountain, the gamma-spectrometric measurements were performed. The results of (222)Rn activity concentration measurements from soil in the city of Novi Sad using RAD 7 detector are presented.

  16. Perceived Agency in Retirement and Retiree Drinking Behavior: Job Satisfaction as a Moderator

    ERIC Educational Resources Information Center

    Bacharach, Samuel; Bamberger, Peter; Biron, Michal; Horowitz-Rozen, Mickey

    2008-01-01

    Based on recent findings that post-retirement adjustment may be influenced by the conditions leading up to the decision to retire, we examine the impact of individual agency in the retirement decision on problematic drinking behavior, as well as the extent to which such an effect may itself depend upon the valence of the pre-retirement work…

  17. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users.

  18. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health.

  19. The psychology of drinking water quality: An exploratory study

    NASA Astrophysics Data System (ADS)

    Syme, Geoffrey J.; Williams, Katrina D.

    1993-12-01

    Perceptions of drinking water quality were measured for residents at four locations in Western Australia. The total dissolved solid levels for the locations varied. Four scales of drinking water satisfaction were measured: acceptability of water quality; water quality risk judgment; perception of neighborhood water quality; and attitudes toward fluoride as an additive. Responses to each of these scales did not appear to be highly related to total dissolved solids. The relationship between attitudes toward water quality and a variety of psychological, attitudinal, experiential, and demographic variables was investigated. It was found that responses to the acceptability of water quality and water quality risk judgment scales related to perceived credibility of societal institutions and feelings of control over water quality and environmental problems. For the remaining two scales few significant correlations were found. The results support those who advocate localized information and involvement campaigns on drinking water quality issues.

  20. Diversity and significance of mold species in Norwegian drinking water.

    PubMed

    Hageskal, Gunhild; Knutsen, Ann Kristin; Gaustad, Peter; de Hoog, G Sybren; Skaar, Ida

    2006-12-01

    In order to determine the occurrence, distribution, and significance of mold species in groundwater- and surface water-derived drinking water in Norway, molds isolated from 273 water samples were identified. Samples of raw water, treated water, and water from private homes and hospital installations were analyzed by incubation of 100-ml membrane-filtered samples on dichloran-18% glycerol agar. The total count (number of CFU per 100 ml) of fungal species and the species diversity within each sample were determined. The identification of mold species was based on morphological and molecular methods. In total, 94 mold species belonging to 30 genera were identified. The mycobiota was dominated by species of Penicillium, Trichoderma, and Aspergillus, with some of them occurring throughout the drinking water system. Several of the same species as isolated from water may have the potential to cause allergic reactions or disease in humans. Other species are common contaminants of food and beverages, and some may cause unwanted changes in the taste or smell of water. The present results indicate that the mycobiota of water should be considered when the microbiological safety and quality of drinking water are assessed. In fact, molds in drinking water should possibly be included in the Norwegian water supply and drinking water regulations.

  1. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  2. Drinking water quality in household supply infrastructure--A survey of the current situation in Germany.

    PubMed

    Völker, Sebastian; Schreiber, Christiane; Kistemann, Thomas

    2010-06-01

    As a result of the amendment to the German Drinking Water Ordinance in 2001, local public health authorities are obliged to monitor the water supply in installations providing water for public use (Section 18 German Drinking Water Ordinance). With a systematic and nationwide survey of locally available data relating to hygienic drinking water quality and the existing drinking water infrastructure in buildings, the extent of microbial contamination of in-building distribution systems in Germany is intended to be assessed. To gain an overview of the microbial contamination of drinking water in public buildings all 419 local public health authorities in Germany were contacted in 2007. In a detailed study with a representative cooperation level of 5% of these local public health authorities, the available data relating to microbiological, chemical, physical and technical parameters gained from in-building distribution systems were collected. Drinking water parameters were combined with regard to the total number of analyses and the absolute number as well as the percentage of limit compliance failures (n=108,288). Limits exceeded were classified as the failure to comply with the German Drinking Water Ordinance, DVGW technical regulations and Federal Environment Agency recommended limits. The highest rates of samples exceeding these limits were found for the parameter Legionella sp. which contaminated 12.8% of all samples (n=22,786; limit: 100 CFU/100ml), followed by heterotrophic plate count at 36 degrees C (3.5%, n=10,928; limit: 100 CFU/1 ml) and Pseudomonas sp. (2.9%, n=3468; limit: 0 CFU/100ml). Legionella sp. and Pseudomonas sp. pose a direct health risk to immunosuppressed users. Additionally, for some chemical parameters, such as nickel, iron and lead, a potential risk for the health of consumers was detected. Further data analysis may reveal whether this contamination is related to stagnation where there is only sporadic use or whether other factors are

  3. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  4. Time to revisit arsenic regulations: comparing drinking water and rice

    PubMed Central

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  5. Organochlorine pesticides residues in bottled drinking water from Mexico City.

    PubMed

    Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey

    2009-06-01

    This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.

  6. [Research development on disinfection technology for viruses in drinking water].

    PubMed

    Zhang, Yun; Zhang, Qiang; Liu, Yan; Dai, Ruihua; Liu, Xiang

    2010-09-01

    With the deterioration of water source pollution, the quality requirements for drinking water of countries will become stricter and stricter, and the microbe index has been one of the important aspects. The introduction of the virus index and the development of disinfection technology focusing on virus have significant importance for the improvement of the drinking water standards and for the protection of people health in every country. To be familiar with the domestic and abroad research development of the disinfection control technology focusing on virus provides certain theory guidance and technological support for continuously improving drinking water standard in our country and for establishing safer drinking water processing technologies. So, this article will comprehensively describes 4 aspects: resistance comparison of virus over every disinfection technology, influential factors of disinfection, research development of new technology, and the mechanisms.

  7. Source-Water Protection and Water-Quality Investigations in the Cambridge, Massachusetts, Drinking-Water Supply System

    USGS Publications Warehouse

    Waldron, Marcus C.; Norton, Chip; MacDonald, Timothy W.D.

    1998-01-01

    Introduction The Cambridge Water Department (CWD) supplies about 15 million gallons of water each day to more than 95,000 customers in the City of Cambridge, Massachusetts. Most of this water is obtained from a system of reservoirs located in Cambridge and in parts of five other suburban-Boston communities. The drainage basin that contributes water to these reservoirs includes several potential sources of drinking-water contaminants, including major highways, secondary roads, areas of commercial and industrial development, and suburban residential tracts. The CWD is implementing a comprehensive Source-Water Protection Plan to ensure that the highest quality water is delivered to the treatment plant. A key element of this plan is a program that combines systematic monitoring of the drainage basin with detailed investigations of the effects of nonpoint-source contaminants, such as highway-deicing chemicals, nutrients, oxygen-demanding organic compounds, bacteria, and trace metals arising from stormwater runoff. The U.S. Geological Survey (USGS) is working with the CWD and the Massachusetts Highway Department (MassHighway) to develop a better understanding of the sources, transport, and fate of many of these contaminants. This Fact Sheet describes source-water protection and water-quality investigations currently underway in the Cambridge drinking-water supply system. The investigations are designed to complement a national effort by the USGS to provide water suppliers and regulatory agencies with information on the vulnerability of water supplies and the movement and fate of source-water contaminants.

  8. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  9. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  10. A survey of ²²²Rn in drinking water in Mexico City.

    PubMed

    Vázquez-López, C; Zendejas-Leal, B E; Golzarri, J I; Espinosa, G

    2011-05-01

    In Mexico City there are more than 22 millions of inhabitants (10 in the metropolitan area and 12 in the suburban zone) exposed to drinking water. The local epidemiological authorities recognised that exposure to radon contaminated drinking water is a potential health hazard, as has been considered worldwide. The United States Environmental Protection Agency has proposed a limit of 11.1 Bq l(-1) for the radon level in drinking water. In Mexico a maximum contamination level of radon in drinking water has not yet even considered. In this work, a (222)Rn study of drinking water in Mexico City has revealed a range of concentrations from background level to 3.8 Bq l(-1). (222)Rn was calculated using a portable degassing system (AquaKIT) associated with an AlphaGUARD measuring system. Samples from 70 wells of the water system of the south of the Valley Basin of Mexico City and from houses of some other political administrative divisions of Mexico City were taken. PMID:21467584

  11. Safe and Affordable Drinking Water for Developing Countries

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2008-09-01

    Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.

  12. Federal regulation of lead in drinking water

    SciTech Connect

    Reiss, K.M.

    1991-12-31

    The decline of the Roman Empire has been attributed, in part, to lead poisoning. Scholars have reported that Roman food, water and wine all contained excessive amounts of lead. Although Americans ingest considerably less lead than did the ancient Romans, lead poisoning still poses a significant public health threat in this country, particularly to children. The Federal Centers for Disease Control (CDC) recently reported that more than four million children suffer from lead poisoning. The director of the CDC has stated that {open_quotes}lead poisoning is the No. 1 environmental problem facing America`s children.{close_quotes} In addition to threatening children, lead poisoning presents health dangers to adults and, ironically, to federal government officials themselves. For example, at the Environmental Protection Agency (EPA) headquarters, water samples at nineteen sources were found to contain excessive amounts of lead. Additionally, a survey of twelve Capitol Hill buildings found that twenty-one percent of the water sources tested contained excessive lead levels.

  13. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    PubMed

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.

  14. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.

  15. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health. PMID:15371202

  16. [DIRECTIONALITY OF THE BIOLOGICAL EFFECT OF DRINKING WATER].

    PubMed

    Gibert, K K; Karasev, A K; Marasanov, A V; Stekhin, A A; Iakovleva, G V

    2015-01-01

    There have been performed the studies of the dimensional parameters of peroxide associates in drinking water, per- forming regulatory functions in cellular metabolism, that determine the character of the biological response of the human body to drinking water The direction of action of peroxide associates type Σ [(HO2-(*) ... OH-(*) (H2O) tp)]q, (where (H2O) tp is an associate with the tetragonal structure (Walrafen pentamer Is ice VI), q is the degree of association p--parameter of ion coordination) on the cellular structures of the organism is associated with their quantum properties, determining the macroscopic parameters of the electron wave packets. Research has confirmed the addressness of the nonlocal entering electron to certain cellular structures of the body, which is determined by the structural similarity of centers of condensation of electrons in the cells of systems and organs of the body with the parameters of the electron wave packets in the associates. Methodology for the estimation of the orientation of biological effect of the drinking water to the systems of the body on the base of the analysis of variations in heart rhythm under non-contact influence of water on the human body and its relationship with the dimensional parameters and peroxide activity of associates in drinking water can be suggested for the implementation of screening tests for drinking water quality, taking into account both the individualfeatures of responses of body systems to drinking water and its group action.

  17. Arsenic drinking water regulations in developing countries with extensive exposure.

    PubMed

    Smith, Allan H; Smith, Meera M Hira

    2004-05-20

    The United States Public Health Service set an interim standard of 50 microg/l in 1942, but as early as 1962 the US Public Health Service had identified 10 microg/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 microg/l of arsenic over many years may die from internal cancers attributable to arsenic, with lung cancer being the surprising main contributor. A prudent public health response is to reduce the permissible drinking water arsenic concentrations. However, the appropriate regulatory response in those developing countries with large populations with much higher concentrations of arsenic in drinking water, often exceeding 100 microg/l, is more complex. Malnutrition may increase risks from arsenic. There is mounting evidence that smoking and arsenic act synergistically in causing lung cancer, and smoking raises issues of public health priorities in developing countries that face massive mortality from this product. Also, setting stringent drinking water standards will impede short term solutions such as shallow dugwells. Developing countries with large populations exposed to arsenic in water might reasonably be advised to keep their arsenic drinking water standards at 50 microg/l.

  18. Can drinking water standards be reliably derived from industrial TLVs?

    PubMed

    Calabrese, E J

    1979-06-01

    The accuracy of TLV derived drinking water standards is evaluated. When using the identical TLV conversion methodology which Stokinger and Woodward (1) used in deriving the standard for barium in drinking water, standards for arsenic, cadmium, chromium and lead offer 6, 200, 60, and 10 times less protection than the present drinking water standards, respectively. However, using the same methodology, the TLV derived drinking water standard for fluoride offers greater protection than the present standard by a factor of approximately 2. Thus, the use of the TLV conversion factor should be viewed in as one of many lines of potential evidence which should be reviewed in the standard derivation process - but it should not, if at all possible, be considered alone - as in the case of barium.

  19. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.

  20. MOLECULAR DIVERSITY OF DRINKING WATER MICROBIAL COMMUNITIES: A PHYLOGENETIC APPROACH

    EPA Science Inventory

    Culture-based methods are traditionally used to determine microbiological quality of drinking water even though these methods are highly selective and tend to underestimate the densities and diversity bacterial populations inhabiting distribution systems. In order to better under...

  1. Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies

    EPA Science Inventory

    Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...

  2. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  3. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  4. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  5. Fate of High Priority Pesticides During Drinking Water Treatment

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...

  6. Monochloramine Cometabolism by Nitrosomonas europaea under Drinking Water Conditions

    EPA Science Inventory

    Chloramine use is widespread in United States drinking water systems as a secondary disinfectant. While beneficial from the perspective of controlling disinfectant by-product formation, chloramination may promote the growth of nitrifying bacteria because ammonia is present. At ...

  7. Scientific and Regulatory Challenges of Controlling Lead in Drinking Water

    EPA Science Inventory

    Safe Drinking Water Act 1986 Amendments Corrections when necessary, mandatory review every 6 years Lead and Copper Rule section of SDWA Proposed 1988 Proposal revised and promulgated 1991 Many minor revisions, primarily administrative clarifications Major admin. revisions and te...

  8. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  9. Communicating Research to Small Drinking Water Systems: Dissemination by Researchers

    EPA Science Inventory

    This talk discusses the challenges of disseminating research relevant to small systems. The presentation discusses efforts by the U.S. EPA’s Office of Research and Development to effectively communicating drinking water information. In particular, communication approaches ...

  10. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. PMID:26574105

  11. Institutional solutions to drinking water problems: Maine case studies

    SciTech Connect

    Not Available

    1993-03-01

    The paper recounts how four Maine communities sought and found institutional solutions to drinking water problems. Each scenario describes the system, outlines the problems, reviews the chronology of events, points out the lessons learned and gives the system's current status.

  12. Chloramination of Organophosphorus Pesticides Found in Drinking Water Sources

    EPA Science Inventory

    The degradation of commonly detected organophosphorus (OP) pesticides, in drinking water sources, was investigated under simulated chloramination conditions. Due to monochloramine autodecomposition, it is difficult to observe the direct reaction of monochloramine with each OP pe...

  13. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SDWA) required EPA to establish a Contaminant Candidate List (CCL), that contains a list of drinking water contaminants that the Agency will consider for future regulation. EPA must make a regulatory determination on a minimum ...

  14. Drinking water standards for radionuclides: the dilemma and a possible resolution.

    PubMed

    Kocher, D C

    2001-05-01

    The U.S. Environmental Protection Agency (EPA) is undertaking a revision of existing standards for radionuclides in drinking water. The Safe Drinking Water Act specifies that any revision "shall maintain or provide for greater protection of the health of persons." This provision appears to require that existing standards (maximum contaminant levels, MCLs) cannot be relaxed. Such a requirement presents a dilemma for two reasons. First, EPA has shown that the MCL for radium was not cost-effective. Second, MCLs for beta/gamma-emitting radionuclides incorporate outdated approaches to estimating dose from ingestion of radionuclides and, thus, appear to violate provisions of the Safe Drinking Water Act concerning the use of sound science in setting standards. We suggest that this dilemma can be resolved based on an argument that the standard for protection of public health mandated by the Safe Drinking Water Act is one of applying best-available technology for removal of contaminants from drinking water at a reasonable cost, not one of meeting previously established MCLs. PMID:11316079

  15. Lead in drinking water: sampling in primary schools and preschools in south central Kansas.

    PubMed

    Massey, Anne R; Steele, Janet E

    2012-03-01

    Studies in Philadelphia, New York City, Houston, Washington, DC, and Greenville, North Carolina, have revealed high lead levels in drinking water. Unlike urban areas, lead levels in drinking water in suburban and rural areas have not been adequately studied. In the study described in this article, drinking water in primary schools and preschools in five suburban and rural south central Kansas towns was sampled to determine if any exceeded the U.S. Environmental Protection Agency (U.S. EPA) guidance level for schools and child care facilities of 20 parts per billion (ppb). The results showed a total of 32.1% of the samples had detectable lead levels and 3.6% exceeded the U.S. EPA guidance level for schools and child care providers of 20 ppb. These results indicate that about one-third of the drinking water consumed by children age six and under in the five suburban and rural south central Kansas towns studied has some lead contamination, exposing these children to both short-term and long-term health risks. The authors suggest a need for increased surveillance of children's drinking water in these facilities.

  16. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  17. Unregulated drinking water initiative for environmental surveillance and public health.

    PubMed

    Backer, Lorraine C; Tosta, Nancy

    2011-03-01

    The critical public health need to assess and protect the drinking water used by 37 million Americans requires attention and resources. NCEH, in partnership with states, has begun the process to identify information available on unregulated drinking water sources to improve the availability of data to support decisive public health actions and resource allocation. Far more attention and resources are needed to complete this process.

  18. Nitrates in drinking water and the risk of death from brain cancer: does hardness in drinking water matter?

    PubMed

    Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh

    2011-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was <0.38 ppm, the adjusted OR (95% CI) for brain cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.

  19. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    PubMed

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-01

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies.

  20. Standards for chemical quality of drinking water: a critical assessment.

    PubMed

    Zielhuis, R L

    1982-01-01

    The author critically reviews present standards for the chemical quality of drinking water, particularly the limits proposed by the Commission of the European Communities (CEC) in 1979. Particularly, the general principles of standard setting are discussed. It appears that there exists a surprisingly high similarity in drinking water limits, issued by various national and international authorities, although for other environmental compartments important discrepancies exist. Usually, drinking water limits lack adequate documentation, and appear often to be copied from other existing lists. There is an apparent lack of logical consistency in limits set for food, ambient or workroom air, and drinking water, probably due to lack of communication between health experts and decision-making authorities. Moreover, there is a lack of toxicologic studies, explicitly aimed at setting limits. Extrapolation from the acceptable daily intakes (ADI) for food or the Threshold Limit Value (TLV)-Maximum Acceptable Concentration (MAC) for workroom air could be undertaken to derive tentative drinking water limits, as long as explicitly designed studies for drinking water are not yet available. PMID:6749691

  1. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  2. Formation of disinfection byproducts in typical Chinese drinking water.

    PubMed

    Liu, Wenbo; Zhao, Yanmei; Chow, Christopher W K; Wang, Dongsheng

    2011-01-01

    Eight typical drinking water supplies in China were selected in this study. Both source and tap water were used to investigate the occurrence of chlorinated disinfection byproducts (DBPs), and seasonal variation in the concentrations of trihalomethanes (THMs) of seven water sources was compared. The results showed that the pollution level for source water in China, as shown by DBP formation potential, was low. The most encountered DBPs were chloroform, dichloroacetic acid, trichloroacetic acid, and chlorodibromoacetic acid. The concentration of every THMs and haloacetic acid (HAA) compound was under the limit of standards for drinking water quality. The highest total THMs concentrations were detected in spring.

  3. [Acute gastric lesions induced by drinking water, in rats].

    PubMed

    Laudano, O M

    1994-01-01

    The ability of certain beverages and drinking waters to induce acute gastric lesions was studied and the measurement of their pH was performed. 1) Saline; 2) tap water; 3) well-water; 4) well water plus puritabs; 5) saline plus 2 Cl drips; 6) saline plus 4 Cl drops; 7) saline plus 8 Cl drops; 8) boiled water after 30 min; 9) apartment deposit water; 10) WC bowl water; 11) ice water; 12) Paraná river water (Northern Rosario); 13) Paraná river water (Southern Rosario); 14) rain water (Rosario); 15) rain water) countryside); 16) carbonated mineral water; 17) non-carbonated mineral water; 18) soda; 19) flavored electrolytic water I; 20) flavored electrolytic water II; and 21) cola drink. We can conclude that: 1) a remarkable variance in saline and tap water pH is observed. 2) Rain water and Paraná river water were slightly acid, in contrast electrolytic carbonated beverages and cola drink were strongly acid (pH 2.5). 3) Saline, pH 6.68; saline plus 2 Cl drops; and non-carbonated mineral water were the only beverages that did not induce acute gastric lesions in rats.

  4. [Parasitic zoonoses transmitted by drinking water. Giardiasis and cryptosporidiosis].

    PubMed

    Exner, M; Gornik, V

    2004-07-01

    Nowadays, the parasitic zoonose organisms Giardia lamblia und Cryptosporidium spp. are among the most relevant pathogens of drinking water-associated disease outbreaks. These pathogens are transmitted via a fecal-oral route; in both cases the dose of infection is low. Apart from person-to-person or animal-to-person transmissions, the consumption of contaminated food and water are further modes of transmission. The disease is mainly characterized by gastrointestinal symptoms. In industrialized countries, the prevalence rate of giardiasis is 2-5 % and of cryptosporidiosis 1-3%. Throughout the world, a large number of giardiasis and cryptosporidiosis outbreaks associated with drinking water were published; in 2001 the first case in Germany was identified. Giardia and Cryptosporidium are detected in surface water and sporadically in unprotected groundwater. Use of these waters for drinking water abstraction makes high demands on the technology of the treatment process: because of the disinfectant resistance of the parasites, safe elimination methods are needed, which even at high contamination levels of source water guarantee safe drinking water. Further measures for prevention and control are implementation of the HACCP concept, which includes the whole chain of procedures of drinking water supply from catchment via treatment to tap and a quality management system.

  5. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  6. Sources of chlorate ion in US drinking water

    SciTech Connect

    Bolyard, M. ); Fair, P.S. ); Hautman, D.P. )

    1993-09-01

    Samples of untreated source water and finished drinking water were obtained from 42 water utilities which treated their water with oxidants-disinfectants that included chlorine dioxide (ClO[sub 2]), gaseous chlorine, hypochlorite solutions, and chloramines. Chlorite ion was only detected in water from utilities that used ClO[sub 2]. Finished water from utilities that used ClO[sub 2] or hypochlorite solutions contained comparable concentrations of chlorate ion (ClO[sub 3][sup [minus

  7. 40 CFR 799.5075 - Drinking water contaminants subject to testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Drinking water contaminants subject to... TESTING REQUIREMENTS Multichemical Test Rules § 799.5075 Drinking water contaminants subject to testing... performed using drinking water. However, if, due to poor stability or palatability, a drinking water test...

  8. 40 CFR 799.5075 - Drinking water contaminants subject to testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Drinking water contaminants subject to... TESTING REQUIREMENTS Multichemical Test Rules § 799.5075 Drinking water contaminants subject to testing... performed using drinking water. However, if, due to poor stability or palatability, a drinking water test...

  9. 40 CFR 799.5075 - Drinking water contaminants subject to testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Drinking water contaminants subject to... TESTING REQUIREMENTS Multichemical Test Rules § 799.5075 Drinking water contaminants subject to testing... performed using drinking water. However, if, due to poor stability or palatability, a drinking water test...

  10. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  11. Biological instability in a chlorinated drinking water distribution network.

    PubMed

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  12. Refractive Errors in Northern China Between the Residents with Drinking Water Containing Excessive Fluorine and Normal Drinking Water.

    PubMed

    Bin, Ge; Liu, Haifeng; Zhao, Chunyuan; Zhou, Guangkai; Ding, Xuchen; Zhang, Na; Xu, Yongfang; Qi, Yanhua

    2016-10-01

    The purpose of this study was to evaluate the refractive errors and the demographic associations between drinking water with excessive fluoride and normal drinking water among residents in Northern China. Of the 1843 residents, 1415 (aged ≥40 years) were divided into drinking-water-excessive fluoride (DWEF) group (>1.20 mg/L) and control group (≤1.20 mg/L) on the basis of the fluoride concentrations in drinking water. Of the 221 subjects in the DWEF group, with 1.47 ± 0.25 mg/L (fluoride concentrations in drinking water), the prevalence rates of myopia, hyperopia, and astigmatism were 38.5 % (95 % confidence interval [CI] = 32.1-45.3), 19.9 % (95 % CI = 15-26), and 41.6 % (95 % CI = 35.1-48.4), respectively. Of the 1194 subjects in the control group with 0.20 ± 0.18 mg/L, the prevalence of myopia, hyperopia, and astigmatism were 31.5 % (95 % CI = 28.9-34.2), 27.6 % (95 % CI = 25.1-30.3), and 45.6 % (95 % CI = 42.8-48.5), respectively. A statistically significant difference was not observed in the association of spherical equivalent and fluoride concentrations in drinking water (P = 0.84 > 0.05). This report provides the data of the refractive state of the residents consuming drinking water with excess amounts of fluoride in northern China. The refractive errors did not result from ingestion of mild excess amounts of fluoride in the drinking water.

  13. A review of arsenic presence in China drinking water

    NASA Astrophysics Data System (ADS)

    He, Jing; Charlet, Laurent

    2013-06-01

    Chronic endemic arsenicosis areas have been discovered in China since 1960s. Up to 2012, 19 provinces had been found to have As concentration in drinking water exceeding the standard level (0.05 mg/L). Inner Mongolia, Xinjiang and Shanxi Province are historical well-known “hotspots” of geogenic As-contaminated drinking water. The goal of this review is to examine, summarize and discuss the information of As in drinking water for all provinces and territories in China. Possible natural As sources for elevating As level in drinking water, were documented. Geogenic As-contaminated drinking water examples were taken to introduce typical environmental conditions where the problems occurred: closed basins in arid or semi-arid areas and reducing aquifers under high pH conditions. Geothermal water or mineral water in mountains areas can be high-As water as well. For undiscovered areas, prediction of potential As-affected groundwater has been carried out by some research groups by use of logistic regression. Modeled maps of probability of geogenic As contamination in groundwater are promising to be used as references to discover unknown areas. Furthermore, anthropogenic As contaminations were summarized and mining, smelters and chemical industries were found to be major sources for As pollution in China.

  14. Review of Campylobacter spp. in drinking and environmental waters.

    PubMed

    Pitkänen, Tarja

    2013-10-01

    Consumption of contaminated drinking water is a significant cause of Campylobacter infections. Drinking water contamination is known to result from septic seepage and wastewater intrusion into non-disinfected sources of groundwater and occasionally from cross-connection into drinking water distribution systems. Wastewater effluents, farm animals and wild birds are the primary sources contributing human-infectious Campylobacters in environmental waters, impacting on recreational activities and drinking water sources. Culturing of Campylobacter entails time-consuming steps that often provide qualitative or semi-quantitative results. Viable but non-culturable forms due to environmental stress are not detected, and thus may result in false-negative assessments of Campylobacter risks from drinking and environmental waters. Molecular methods, especially quantitative PCR applications, are therefore important to use in the detection of environmental Campylobacter spp. Processing large volumes of water may be required to reach the desired sensitivity for either culture or molecular detection methods. In the future, applications of novel molecular techniques such as isothermal amplification and high-throughput sequencing applications are awaited to develop and become more affordable and practical in environmental Campylobacter research. The new technologies may change the knowledge on the prevalence and pathogenicity of the different Campylobacter species in the water environment.

  15. REDUCING ARSENIC LEVELS IN DRINKING WATER: APPROACHES AND CONSIDERATIONS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. It has been projected that the State of Ohio will have nearly 140 community and non-community non-transient water systems in violation of the Rule. This ...

  16. Condition Assessment for Drinking Water Transmission and Distribution Mains

    EPA Science Inventory

    This project seeks to improve the capability to characterize the condition of water infrastructure. The integrity of buried drinking water mains is critical, as it influences water quality, losses, pressure and cost. This research complements the U.S. Environmental Protection A...

  17. MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?

    EPA Science Inventory

    Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...

  18. Microflora of drinking water distributed through decentralized supply systems (Tomsk)

    NASA Astrophysics Data System (ADS)

    Khvaschevskaya, A. A.; Nalivaiko, N. G.; Shestakova, A. V.

    2016-03-01

    The paper considers microbiological quality of waters from decentralized water supply systems in Tomsk. It has been proved that there are numerous microbial contaminants of different types. The authors claim that the water distributed through decentralized supply systems is not safe to drink without preliminary treatment.

  19. Drinking water consumption patterns of residents in a Canadian community.

    PubMed

    Jones, A Q; Dewey, C E; Doré, K; Majowicz, S E; McEwen, S A; Waltner-Toews, D

    2006-03-01

    A cross-sectional survey using computer-assisted telephone interviewing was performed to assess the drinking water consumption patterns in a Canadian community, and to examine the associations between these patterns and various demographic characteristics. The median amount of water consumed daily was four 250 ml servings (1.01), although responses were highly variable (0 to 8.01). Bottled water consumption was common, and represented the primary source of drinking water for approximately 27% of respondents. Approximately 49% of households used water treatment devices to treat their tap water. The observed associations between some demographic characteristics and drinking water consumption patterns indicated potential differences in risk of exposure to waterborne hazards in the population. Our results lend support to the federal review of the bottled water regulations currently in progress in Canada. Additionally, they may lend support to a provincial/territorial government review of bottled water regulations, and both federal and provincial/territorial level reviews of the water treatment device industry. Further investigation of the use of alternative water sources and the perceptions of drinking water in Canada is also needed to better understand, and subsequently address, concerns among Canadians.

  20. Particulate Arsenic Release in a Drinking Water Distribution System

    EPA Science Inventory

    Trace contaminants, such as arsenic, have been shown to accumulate in solids found in drinking water distribution systems. The obvious concern is that the contaminants in these solids could be released back into the water resulting in elevated levels in a consumer’s tap water. Th...

  1. Risk of internal cancers from arsenic in drinking water.

    PubMed Central

    Morales, K H; Ryan, L; Kuo, T L; Wu, M M; Chen, C J

    2000-01-01

    The U.S. Environmental Protection Agency is under a congressional mandate to revise its current standard for arsenic in drinking water. We present a risk assessment for cancers of the bladder, liver, and lung from exposure to arsenic in water, based on data from 42 villages in an arseniasis-endemic region of Taiwan. We calculate excess lifetime risk estimates for several variations of the generalized linear model and for the multistage-Weibull model. Risk estimates are sensitive to the model choice, to whether or not a comparison population is used to define the unexposed disease mortality rates, and to whether the comparison population is all of Taiwan or just the southwestern region. Some factors that may affect risk could not be evaluated quantitatively: the ecologic nature of the data, the nutritional status of the study population, and the dietary intake of arsenic. Despite all of these sources of uncertainty, however, our analysis suggests that the current standard of 50 microg/L is associated with a substantial increased risk of cancer and is not sufficiently protective of public health. Images Figure 1 Figure 2 Figure 3 PMID:10903620

  2. Drinking water public right-to-know requirements in the United States.

    PubMed

    Blette, Veronica

    2008-01-01

    The United States Environmental Protection Agency implements a national drinking-water program under the authority of the Federal Safe Drinking Water Act. Amendments to the Act in 1996 added new provisions to enhance consumer understanding of drinking-water issues. Notification requirements associated with annual consumer confidence reports, source water assessments and state compliance reports are intended to enhance the public's knowledge of the quality of their drinking water. Water utilities are also subject to public notification requirements to provide more timely information to consumers in response to violations of health standards. These right-to-know requirements are intended to build the public's confidence, but communicating with consumers can be challenging for both utility managers and government leaders. This paper discusses the need for timely communication, the challenge of providing information when there is uncertainty in the science and the importance of preparing to respond to critical incidents. Because surveys have shown that other members of the community may have better access to consumers or are more trusted, it is important for water utilities to establish relationships with the media and the local public health community.

  3. Bee guide to complying with the Safe Drinking Water Act. Final report

    SciTech Connect

    Garland, J.G.; Acker, A.M.

    1991-08-01

    This report provides current information on the Safe Drinking Water Act and recent amendments. The report describes the evolution of the Safe Drinking Water Act and the responsibilities of base personnel involved in compliance with the Act. It also describes the monitoring requirements, analytical requirements, best available technology for controlling contaminants, and public notification requirements for regulated contaminants. The appendixes include proposed contaminants and state water quality agencies. Each Air Force public water distribution system (PWDS) must comply with the SDWA, and the National Primary Drinking Water Regulations (NPDWRs). In the United States and its territories, the provisions of the SDWA and the NPDWRs are enforced by the states except in the few instances in which the state has not been delegated primary enforcement responsibility (primacy) by the EPA. States that have primacy may establish drinking water regulations, monitoring schedules, and reporting requirements more stringent than, or in addition to, those in the NPDWRs. Air Force public water systems in these states are required to comply with these additional requirements as well as federal enforcement actions as carried out by the EPA Regional Office.

  4. Drinking water public right-to-know requirements in the United States.

    PubMed

    Blette, Veronica

    2008-01-01

    The United States Environmental Protection Agency implements a national drinking-water program under the authority of the Federal Safe Drinking Water Act. Amendments to the Act in 1996 added new provisions to enhance consumer understanding of drinking-water issues. Notification requirements associated with annual consumer confidence reports, source water assessments and state compliance reports are intended to enhance the public's knowledge of the quality of their drinking water. Water utilities are also subject to public notification requirements to provide more timely information to consumers in response to violations of health standards. These right-to-know requirements are intended to build the public's confidence, but communicating with consumers can be challenging for both utility managers and government leaders. This paper discusses the need for timely communication, the challenge of providing information when there is uncertainty in the science and the importance of preparing to respond to critical incidents. Because surveys have shown that other members of the community may have better access to consumers or are more trusted, it is important for water utilities to establish relationships with the media and the local public health community. PMID:18401128

  5. DEVELOPING ANALYTICAL METHODS FOR GATHERING NATIONWIDE OCCURRENCE DATA FOR CHEMICALS ON THE DRINKING WATER CONTAMINANT CANDIDATE LIST (CCL)

    EPA Science Inventory

    Amendments to the Safe Drinking Water Act (SDWA) require the United States Environmental Protection Agency (USEPA) to publish a list of contaminants that are known or anticipated to occur in public water systems, and which may require regulation under the SDWA. In response to th...

  6. Arsenic Removal from Drinking Water by Adsorptive Media USEPA Demonstration Project at Bow, NH Final performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the U.S. Environmental Protection Agency (EPA) arsenic removal treatment technology demonstration project at the White Rock Water Company (WRWC) public water system, a small residential drinking w...

  7. METHOD-SPECIFIC PRECISION AND BIAS RELATIONSHIPS DEVELOPED FROM DATA SUBMITTED DURING USEPA DRINKING WATER LABORATORY PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    This paper documents the process used by the United States Environmental Protection Agency (USEPA) to estimate the mean and standard deviation of data reported by in-control drinking water laboratories during Water Supply (WS) studies. This process is then applied to the data re...

  8. Development and Multi-laboratory Verification of U.S. EPA Method 540 for the Analysis of Drinking Water Contaminants by Solid Phase Extraction-LC/MS/MS

    EPA Science Inventory

    A drinking water method for 12 chemicals, predominately pesticides, is presented that addresses the occurrence monitoring needs of the U.S. Environmental Protection Agency (EPA) for a future Unregulated Contaminant Monitoring Regulation (UCMR). The method employs solid phase ext...

  9. Concentration of Ra-226 in Malaysian Drinking and Bottled Mineral Water

    NASA Astrophysics Data System (ADS)

    Amin, Y. B. Mohd; Jemangin, M. H.; Mahat, R. H.

    2010-07-01

    The concentration of the radionuclide 226Ra was determined in the drinking water which was taken from various sources. It was found that the concentration varies from non-detectable (ND) to highest value of 0.30 Bq per liter. The concentration was found to be high in mineral water as compare with surface water such as domestic pipe water. Some of these values have exceeded the EPA (Environmental Protection Agency) of America regulations. The activity concentrations obtained are compared with data from other countries. The estimated annual effective doses from drinking the water are determined. The values obtained range from 0.02 mSv to about 0.06 mSv per year.

  10. Concentration of Ra-226 in Malaysian Drinking and Bottled Mineral Water

    SciTech Connect

    Amin, Y. B. Mohd; Jemangin, M. H.; Mahat, R. H.

    2010-07-07

    The concentration of the radionuclide {sup 226}Ra was determined in the drinking water which was taken from various sources. It was found that the concentration varies from non-detectable (ND) to highest value of 0.30 Bq per liter. The concentration was found to be high in mineral water as compare with surface water such as domestic pipe water. Some of these values have exceeded the EPA (Environmental Protection Agency) of America regulations. The activity concentrations obtained are compared with data from other countries. The estimated annual effective doses from drinking the water are determined. The values obtained range from 0.02 mSv to about 0.06 mSv per year.

  11. A look at the federal drinking water revolving loan fund proposals

    SciTech Connect

    Pontius, F.W.

    1994-05-01

    The lack of funding is a primary reason behind the difficulty many water systems have with installing needed treatment, upgrading existing systems, or making other improvements necessary to meet new regulations set under the Safe Drinking Water Act (SDWA). Providing a mechanism for federal funding for drinking water systems is a key objective of pending legislation. Current legislative proposals are patterned after the state revolving loan fund (SRF) concept used for funding wastewater treatment facilities under the Clean Water Act (CWA). The federal government would provide capitalization grants to states that meet the minimum requirements set by the US Environmental Protection Agency (USEPA). The states would provide loans and other financial assistance to eligible water systems who would repay the loans, thereby perpetuating the fund. This article compares the SRF proposals currently pending in Congress.

  12. [The survey on arsenism caused by drinking water].

    PubMed

    Wu, D

    1993-08-01

    This paper reports the epidemiologic and clinical observations on arsenism caused by drinking water in Zhi Ji Liang and Tie Men Gen, Huhhot. Results showed that the content of arsenic in drinking water was eleven times as much as that of the national standard. The incidence rate of arsenism increased with the rise of arsenic content in water. In contrast to the high As content, the contents of Pb, Zn, Se were low in water and the pH value was slightly acidic. Arsenic contents in hair, fingernails and urine were all higher than those of the control. Patients with arsenism showed symptoms of anaemia.

  13. [The hardness of drinking water and cardiovascular diseases].

    PubMed

    Belojević, G

    1992-01-01

    The paper deals with the results of the investigations so far, which have pointed out an inverse correlation between drinking-water hardness and morbidity and mortality rates of cardiovascular diseases. Among the water hardness elements special attention has been given to magnesium, as its deficiency in organism is likely to present an important risk factor for cardiovascular disorders. The options of preventive measures in this field are discussed-adding of magnesium to soft drinking-waters, salt enriched with magnesium, consumption of natural mineral waters, or Mg supplements.

  14. Monitoring of Cryptosporidium and Giardia in Czech drinking water sources.

    PubMed

    Dolejs, P; Ditrich, O; Machula, T; Kalousková, N; Puzová, G

    2000-01-01

    In Czech raw water sources for drinking water supply, Cryptosporidium was found in numbers from 0 to 7400 per 100 liters and Giardia from 0 to 485 per 100 liters. The summer floods of 1997 probably brought the highest numbers of Cryptosporidium oocysts into one of the reservoirs sampled; since then these numbers decreased steadily. A relatively high number of Cryptosporidium oocysts was found in one sample of treated water. Repeated sampling demonstrated that this was a sporadic event. The reason for the presence of Cryptosporidium in a sample of treated drinking-water is unclear and requires further study.

  15. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    PubMed

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031

  16. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    PubMed

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water.

  17. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea

    PubMed Central

    Luby, Stephen P.; Halder, Amal K.; Huda, Tarique Md.; Unicomb, Leanne; Sirajul Islam, M.; Arnold, Benjamin F.; Johnston, Richard B.

    2015-01-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031

  18. Artificial sweetener sucralose in U.S. drinking water systems.

    PubMed

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  19. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.

    PubMed

    Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie

    2015-05-01

    Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. PMID:25676921

  20. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.

    PubMed

    Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie

    2015-05-01

    Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water.

  1. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  2. New perspectives in monitoring drinking water microbial quality.

    PubMed

    Figueras, M José; Borrego, Juan J

    2010-12-01

    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of drinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated.

  3. Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?

    PubMed Central

    Falconer, Ian R.

    2006-01-01

    There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water. In

  4. Are endocrine disrupting compounds a health risk in drinking water?

    PubMed

    Falconer, Ian R

    2006-06-01

    There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17Beta-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water

  5. Ensuring safe drinking water in regional NSW: the role of regulation.

    PubMed

    Byleveld, Paul M; Cretikos, Michelle A; Leask, Sandy D; Durrheim, David N

    2008-01-01

    In regional and rural areas of NSW, drinking water is provided by 107 local water utilities serving a total population of some 1.7 million and operating 323 water supply systems. NSW Health exercises public health oversight of these regional water utilities through the NSW Health Drinking Water Monitoring Program, which provides guidance to water utilities on implementing elements of the Australian Drinking Water Guidelines 2004, including drinking water monitoring.

  6. Occurrence of organophosphate flame retardants in drinking water from China.

    PubMed

    Li, Jun; Yu, Nanyang; Zhang, Beibei; Jin, Ling; Li, Meiying; Hu, Mengyang; Zhang, Xiaowei; Wei, Si; Yu, Hongxia

    2014-05-01

    Several organophosphate flame retardants (OPFRs) have been identified as known or suspected carcinogens or neurotoxic substances. Given the potential health risks of these compounds, we conducted a comprehensive survey of nine OPFRs in drinking water in China. We found total concentrations of OPFRs in tap water ranging from 85.1 ng/L to 325 ng/L, and tris(2-butoxyethyl) phosphate (TBEP), triphenyl phosphate (TPP), and tris(2-chloroisopropyl) phosphate (TCPP) were the most common components. Similar OPFR concentrations and profiles were observed in water samples processed through six different waterworks in Nanjing, China. However, boiling affected OPFR levels in drinking water by either increasing (e.g., TBEP) or decreasing (e.g., tributyl phosphate, TBP) concentrations depending on the particular compound and the state of the indoor environment. We also found that bottled water contained many of the same major OPFR compounds with concentrations 10-25% lower than those in tap water, although TBEP contamination in bottled water remained a concern. Finally, we concluded that the risk of ingesting OPFRs through drinking water was not a major health concern for either adults or children in China. Nevertheless, drinking water ingestion represents an important exposure pathway for OPFRs.

  7. Metal contamination of drinking water from corrosion of distribution pipes.

    PubMed

    Alam, I A; Sadiq, M

    1989-01-01

    The objectives of this study were to evaluate metal contamination of drinking water resulting from the corrosion of distribution pipes and its significance to human health. A community in Dhahran, which is served from its own desalination facilities, was chosen for this study. About 150 drinking water samples were collected and analyzed for metal concentrations using an inductively coupled argon plasma analyzer. It was found that copper, iron and zinc in the drinking water increased during its transportation from the desalination plant to the consumers. This increase was related to the length and material of distribution pipes. Concentrations of copper and zinc were increased during overnight storage of water in the appliances. Metal concentrations found in this study are discussed with reference to human health.

  8. Metal contamination of drinking water from corrosion of distribution pipes.

    PubMed

    Alam, I A; Sadiq, M

    1989-01-01

    The objectives of this study were to evaluate metal contamination of drinking water resulting from the corrosion of distribution pipes and its significance to human health. A community in Dhahran, which is served from its own desalination facilities, was chosen for this study. About 150 drinking water samples were collected and analyzed for metal concentrations using an inductively coupled argon plasma analyzer. It was found that copper, iron and zinc in the drinking water increased during its transportation from the desalination plant to the consumers. This increase was related to the length and material of distribution pipes. Concentrations of copper and zinc were increased during overnight storage of water in the appliances. Metal concentrations found in this study are discussed with reference to human health. PMID:15092461

  9. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  10. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    USGS Publications Warehouse

    Smith, Kirk P.

    2008-01-01

    mean specific conductance for water year 2005 which was 737 uS/cm. However, the annual mean specific conductance at Stony Brook near Route 20 in Waltham (U.S. Geological Survey (USGS) station 01104460), on the principal tributary to the Stony Brook Reservoir, and at USGS station 01104475 on a smaller tributary to the Stony Brook Reservoir were about 15 and 13 percent lower, respectively, than the previous annual mean specific conductances of 538 and 284 uS/cm, respectively for water year 2005. The annual mean specific conductance for Fresh Pond Reservoir decreased from 553 uS/cm in the 2005 water year to 514 uS/cm in the 2006 water year. Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during water year 2006. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 4 days. Composite samples, consisting of as many as 100 subsamples, were collected by automatic samplers during storms. Concentrations of most dissolved constituents were generally lower in samples of stormwater than in samples collected during base flow; however, the average concentration of total phosphorus in samples of stormwater were from 160 to 1,109 percent greater than the average concentration in water samples collected during base-flow conditions. Concentrations of total nitrogen in water samples collected during base-flow conditions and composite samples of stormwater at USGS stations 01104415, 01104460, and 01104475 were similar, but mean concentrations of total nitrogen in samples of stormwater differed by about 0.5 mg/L (milligrams per liter) from those in water samples collected during base-flow conditions at U.S. Geological Survey stations 01104433 and 01104455. In six water samples, measurements of pH were lower than the U.S. Environmental Protection Agency (USEPA) national recommended freshwater quality criteria and the USEPA secondary drinking water-standa

  11. [Nitrate water pollution of drinking water in the Bydgoszcz district].

    PubMed

    Sinkiewicz, J; Doboszyńska, B

    1992-01-01

    The study was undertaken to evaluate the degree of drinking water pollution in the towns and countryside of the Bydgoszcz District, supplied by various installations, on the basis of the results of investigations of sanitary-epidemiological stations. Evaluation was done according to the state in 1985 as compared with that of 1981 to establish the eventual dynamics of the changes. The data presented in the tables indicate that the water supplied by the big water lines (public and institutional) does not contain nitrate quantities exceeding the norm (above 10 mg N/dm3). Their presence at a 20 mg N level/dm3 was found only in four (1.5%) lines supplying large state farms. Small installations were much more frequently polluted with nitrates, especially public wells and those of local institutions, a total of 8.8% in towns and as many as 17% in the country, where a tendency to deterioration of this state is also visible in contrast to the towns. Among the plants and institutions supplied by these water sources the situation is most unfavourable in agriculture, schools, educational and food producing and distributing establishments. The nitrate concentration in the analysed water varied in general within the limits of 10-30 mg N/dm3, maximal amounts within 60-200 mg N/dm3, showing an about 50% decrease in the compared time periods. Nitrates occur most frequently and in highest concentrations in water of wells belonging to individual households which supply about 50% of the rural population and about 11% of town dwellers.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Health risks due to radon in drinking water

    SciTech Connect

    Hopke, P.K. Borak, T.B.; Doull, J.

    2000-03-15

    Following more than a decade of scientific debate about the setting of a standard for {sup 222}Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient {sup 222}Rn concentration and the increment of {sup 222}Rn to the indoor-air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air-producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such multimedia mitigation programs were explored.

  13. Health risks due to radon in drinking water

    USGS Publications Warehouse

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  14. [Safe drinking water supply to the Vologda Region's population using risk assessment methodology].

    PubMed

    Kuznetsova, I A; Figurina, T Ia; Shadrina, S Iu

    2011-01-01

    To supply the population with qualitative potable water is a priority problem in the provision of sanitary-and-epidemiologic well-being and in the prevention of disease in the Vologda Region. The monitoring of the results of laboratory control over the quality of drinking-water and the assessment of health risk enabled a package of measures to be proposed to optimize the conditions of drinking water supply in the Vologda Region. The risk assessment technology used by a state agency for sanitary-and-epidemiological surveillance makes it possible to substantiate a system of actions to organize household water use and to include scientifically grounded proposals into the developed regional and local programs.

  15. SMALL DRINKING WATER TREATMENT TECHNOLOGIES FOR COMPLIANCE WITH THE ENHANCED SURFACE WATER TREATMENT RULES

    EPA Science Inventory

    According to FY2003 statistics compiled by the Office of Ground Water and Drinking Water, the U.S. regulates about 160,000 small drinking water systems that impact close to 70 million people. Small systems (serving transient and non-transient populations of 10,000 people or less...

  16. Lead Concentration Levels in Drinking Water from Schools in Oakland, California

    NASA Astrophysics Data System (ADS)

    Araraso, I.; Huang, J.; Lau, S.; Le, A.

    2006-12-01

    Lead was often used in plumbing during the past century because of its malleability and ability to ensure water tight pipe connections. However, when this element was discovered to be poisonous, the use of lead pipes was outlawed. In spite of this, lead solder continued to be used until the late 1980's. In 1991, the Environmental Protection Agency (EPA) passed an act that established a lead concentration limit of 15 ppb (parts per billion) in drinking water. Still, any trace of this heavy metal has been determined to be a health risk. Several schools in the Oakland Unified School District have been built close to one century ago. Many schools were built during the time in which lead pipes or lead solder were allowed. As a result, drinking water at these schools is a cause for concern. In an effort to begin assessing the drinking water quality in Oakland schools, five water samples were collected from each of thirteen schools between mid March and early May 2006. Schools were specifically chosen because of their age and location. The samples were taken to the Lawrence Hall of Science for analysis, and the results were tabulated and analyzed. Preliminary analysis of our data suggests that drinking water in schools built after the 1950's contain average lead concentrations above 15 ppb. Furthermore, out of the thirteen schools from which samples were collected, all but two issued water with lead concentrations that exceed the EPA action limit of 15 ppb. Overall, our work thus far indicates that greater attention should be devoted to investigating lead concentrations in Oakland schools' drinking water, and that in some cases immediate intervention strategies must be devised. To aid in such efforts, we plan to continue our study and further investigate water quality in Oakland Schools by collecting additional samples from a wider range of school sites.

  17. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    EPA Science Inventory

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  18. SAFE DRINKING WATER FROM SMALL SYSTEMS: TREATMENT OPTIONS

    EPA Science Inventory

    Bringing small water systems into compliance with the ever-increasing number of regulations will require flexibility in terms of technology application and institional procedures. his article looks at the means by which small systems can provide safe drinking water, focusing on t...

  19. Wastewater to Drinking Water: Are Emerging Contaminants Making it Through?

    EPA Science Inventory

    Lake Mead serves as the primary drinking water source for Las Vegas, Nevada and surrounding communities. Besides snow-melt from the Rockies water levels in the lake are supplemented by the inflow of treated wastewater from communities along the Colorado River, including Las Vegas...

  20. The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems

    EPA Science Inventory

    The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

  1. INTERACTIVE WORKSHOP ON ARSENIC REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    In 2005, EPA's Office of Water and Office of Research and Development collaborated to present eleven arsenic training events. The workshops provided in-depth treatment technology training to help those affected; state drinking water staff, design engineers, system owners and cert...

  2. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  3. Photocatalytic Coats in Glass Drinking-Water Bottles

    NASA Technical Reports Server (NTRS)

    Andren, Anders W.; Armstrong, David E.; Anderson, Marc A.

    2005-01-01

    According to a proposal, the insides of glass bottles used to store drinking water would be coated with films consisting of or containing TiO2. In the presence of ultraviolet light, these films would help to remove bacteria, viruses, and trace organic contaminants from the water.

  4. USEPA'S RESEARCH EFFORTS IN SMALL DRINKING WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Currently, in the United States there are approximately 50,000 small community and 130,000 non-community systems providing water to over 25 million people. The drinking water treatment systems at these locations are not always adequate to comply with current and pending regulati...

  5. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  6. Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.

    PubMed

    Paranthaman, Karthikeyan; Harrison, Henrietta

    2010-12-01

    Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved.

  7. Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.

    PubMed

    Paranthaman, Karthikeyan; Harrison, Henrietta

    2010-12-01

    Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved. PMID:20705984

  8. Information collection request for proposed National Primary Drinking Water Regulations for synthetic organic chemicals (draft), April 1989

    SciTech Connect

    Not Available

    1989-04-01

    The Environmental Protection Agency (EPA), under the requirements of the Safe Drinking Water Act (Section 1401 and 1412, P.L. 99-339, as amended in 1986), has proposed National Primary Drinking Water Regulations (NPDWR) pertaining to the contamination of public water systems by synthetic organic chemical (SOCs) contaminants. The proposed regulations require the collection of information by public water systems, states, and the EPA. Information collection requirements include monitoring, reporting, and recordkeeping activities that are discussed in this Information Collection Requests (ICR) document.

  9. Fluoride concentration in drinking water of Karachi city (Pakistan).

    PubMed

    Siddique, Azhar; Mumtaz, Majid; Saied, Sumayya; Karim, Zahida; Zaigham, Nayyer A

    2006-09-01

    The ground and municipal water supply samples of Karachi city were analyzed for their fluoride contents. The fluoride contents in water samples collected from the subsurface and river sources were found below the WHO recommended value for the general health of the people. However, in some industrial areas the groundwater sample showed higher level of fluoride concentration. Continuous monitoring of water resources and cautious fluoridation is suggested to maintain proper status of fluoride concentration in the drinking water.

  10. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects

    PubMed Central

    Weyer, Peter J.; Brender, Jean D.; Romitti, Paul A.; Kantamneni, Jiji R.; Crawford, David; Sharkey, Joseph R.; Shinde, Mayura; Horel, Scott A.; Vuong, Ann M.; Langlois, Peter H.

    2016-01-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997–2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers’ overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS. PMID:25473985

  11. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects.

    PubMed

    Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H

    2014-12-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.

  12. Determination of trace level perchlorate in drinking water and ground water by ion chromatography.

    PubMed

    Jackson, P E; Laikhtman, M; Rohrer, J S

    1999-07-30

    Ammonium perchlorate, a key ingredient in solid rocket propellants, has recently been found in ground and surface waters in the USA in a number of states, including California, Nevada, Utah, and West Virginia. Perchlorate poses a health risk and preliminary data from the US Environmental Protection Agency reports that exposure to less than 4-18 micrograms/l provides adequate human health protection. An ion chromatographic method was developed for the determination of low microgram/l levels of perchlorate in drinking and ground waters based on a Dionex IonPac AS11 column, a 100 mM hydroxide eluent, large loop (1000 microliters) injection, and suppressed conductivity detection. The method is free of interferences from common anions, linear in the range of 2.5-100 micrograms/l, and quantitative recoveries were obtained for low microgram/l levels of perchlorate in spiked drinking and ground water samples. The method detection limit of 0.3 microgram/l permits quantification of perchlorate below the levels which ensure adequate health protection. A new polarizable anion analysis column, the IonPac AS16, and its potential applicability for this analysis is also discussed.

  13. Energy-efficient drinking water disinfection for greenhouse gas mitigation

    SciTech Connect

    Gadgil, A.J.; Greene, D.M.; Rosenfeld, A.

    1998-07-01

    Anecdotal evidence suggests that approximately one billion people worldwide use cookstoves to boil their drinking water. About half of this population is in China. Some populations (e.g. Jakarta) spend 1% of their GDP on boiling drinking water. Impoverished and/or ignorant populations not yet boiling their drinking water will do so when they can both afford it and understand the risks of unsafe drinking water. A recently developed water disinfection technology (UV Waterworks) can produce safe drinking water while earning tradable carbon credits (or credit as a clean development mechanism) when implemented as part of national energy, health, and carbon emissions trading policy, UV Waterworks uses approximately 6,000 times less energy than boiling over a biomass cookstove. Each unit that replaces boiling may save up to 175 or 300 tons/year of carbon-equivalent GHG emissions, depending on if it replaces sustainably harvested biomass (SHB) or non-SHB. For the approximately 500M Chinese boiling their drinking water over biomass (assumed SHB), this suggests a technical potential (that is, potential under the limiting case of 100% market adoption) of saving 87M tons/year of carbon-equivalent non-CO{sub 2} GHG emissions. The energy savings and corresponding emissions reductions will vary with cookstove fuels and stove efficiency: non-SHB and kerosene represent the most and least GHG-producing cookstove fuels, respectively, among those readily available to the populations of interest. The authors bracket the global technical potential for carbon emission reductions resulting from implementation of UV Waterworks, and estimate the value of tradable carbon credits earned from these reductions.

  14. [On the rating of Helicobacter pylori in drinking water].

    PubMed

    Fedichkina, T P; Solenova, L G; Zykova, I E

    2014-01-01

    There are considered the issues related to the possibility to rate of Helicobacter pylori (H. pylori) content in drinking water. There is described the mechanism of of biofilm formation. The description refers to the biofilm formation mechanism in water supply systems and the existence of H. pylori in those systems. The objective premises of the definition of H. pylori as a potential limiting factor for assessing the quality of drinking water have been validated as follows: H. pylori is an etiologic factor associated to the development of chronic antral gastritis, gastric ulcer and duodenal ulcer, and gastric cancer either, in the Russian population the rate of infection with H. pylori falls within range of 56 - 90%, water supply pathway now can be considered as a source of infection of the population with H. pylori, the existence of WHO regulatory documents considering H. pylori as a candidate for standardization of the quality of the drinking water quite common occurrence of biocorrosion, the reduction of sanitary water network reliability, that creates the possibility of concentrating H. pylori in some areas of the water system and its delivery to the consumer of drinking water, and causes the necessity of the prevention of H. pylori-associated gastric pathology of the population. A comprehensive and harmonized approach to H. pylori is required to consider it as a candidate to its rating in drinking water. Bearing in mind the large economic losses due to, on the one hand, the prevalence of disease caused by H. pylori, and, on the other hand, the biocorrosion of water supply system, the problem is both relevant in terms of communal hygiene and economy.

  15. Monitoring dissolved organic carbon in surface and drinking waters.

    PubMed

    Volk, Christian; Wood, Larry; Johnson, Bruce; Robinson, Jeff; Zhu, Hai Wei; Kaplan, Louis

    2002-02-01

    The presence of natural organic matter (NOM) strongly impacts drinking water treatment, water quality, and water behavior during distribution. Dissolved organic carbon (DOC) concentrations were determined daily over a 22 month period in river water before and after conventional drinking water treatment using an on-line total organic carbon (TOC) analyzer. Quantitative and qualitative variations in organic matter were related to precipitation and runoff, seasons and operating conditions. Following a rainfall event, DOC levels could increase by 3.5 fold over baseflow concentrations, while color, UV absorbance values and turbidity increased by a factor of 8, 12 and 300, respectively. Treated water DOC levels were closely related to the source water quality, with an average organic matter removal of 42% after treatment.

  16. [The protection of drinking water in a public health department].

    PubMed

    Monari, R; Petrolo, A; Mascelli, M; Vannucchi, G

    2008-01-01

    The protection of drinking water is a key issue in a Public Health Department's activity. A substantial amount of planning and monitoring work is involved in the development and implementation of a water safety plan, aimed not only at the enforcement of public health regulations, but also at the improvement of the quality water. We provide an overview of the quality monitoring program of the municipality of Prato, a highly populated and industrialized area, where ground water is contaminated by anthropogenic pollutants such as trichloroethylene, tetrachloroethylene and nitrate. We show how, in spite of the intrinsically poor quality of the basic water resource, the careful application of an appropriate prevention plan, with the cooperation of the local water authority, allows the delivery of drinking water of increasing safety and quality.

  17. Effects of chlorinated drinking water on human lipid metabolism

    SciTech Connect

    Wones, R.G.; Glueck, C.J.

    1986-11-01

    Atherosclerosis with its complications is the most important health problem affecting American adults. The levels of serum cholesterol, of high and low density lipoproteins, and of apolipoproteins A1, A2, and B are major risk factors for the development of atherosclerotic lesions. Animals studies suggest that chlorinated drinking water may elevate the serum cholesterol. Studies are too limited to confirm or refute this effect in humans. Since millions of humans have had daily exposure to chlorinated drinking water, it is essential to study the effects of such exposure on human lipid metabolism. The authors have begun a protocol to discover whether consuming chlorinated drinking water elevates serum cholesterol and the other lipid components of blood known to be associated with atherosclerosis. This protocol has been designed to improve the change of observing an effect while preserving the ability to generalize the data.

  18. Pathogens in drinking water: Are there any new ones

    SciTech Connect

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  19. Estimating effects of improved drinking water and sanitation on cholera.

    PubMed

    Leidner, Andrew J; Adusumilli, Naveen C

    2013-12-01

    Demand for adequate provision of drinking-water and sanitation facilities to promote public health and economic growth is increasing in the rapidly urbanizing countries of the developing world. With a panel of data on Asia and Africa from 1990 to 2008, associations are estimated between the occurrence of cholera outbreaks, the case rates in given outbreaks, the mortality rates associated with cholera and two disease control mechanisms, drinking-water and sanitation services. A statistically significant and negative effect is found between drinking-water services and both cholera case rates as well as cholera-related mortality rates. A relatively weak statistical relationship is found between the occurrence of cholera outbreaks and sanitation services.

  20. Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter?

    PubMed

    Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for kidney cancer was 0.98 (0.77-1.25) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.