Science.gov

Sample records for agency drinking-water standards

  1. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guide to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.

  2. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium...

  3. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...

  4. The Environmental Protection Agency: What They do to Keep Your Drinking Water Safe

    EPA Science Inventory

    The EPA has been around for 35 years, but it was only in 1974 that they passed the Safe Drinking Water Act. The Act was amended several times in order to improve the minimum drinking water standards. These standards, which are in effect today, are constantly being evaluated and...

  5. Drinking water quality standards and standard tests: Worldwide. (Latest citations from Food Science & Technology Abstracts (FSTA)). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning the laws, regulations, standards, and testing methods for drinking water from domestic and international sources. Citations discuss quality standardization and control. Topics include safety codes for drinking water systems and installations, contaminated water and toxicity analyses, biological and chemical standards, diseases derived from drinking water, plastic materials for water packaging, and natural mineral drinking water. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  7. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  8. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05 Fluoride 1.4-2.4 Lead 0.05 Mercury 0.002 Nitrate (as N) 10 Selenium 0.01 Silver 0.05 Endrin 0.0002...

  9. Investigation of Higher Than Standard Lead Concentrations in Drinking Water From Washington, D.C.

    NASA Astrophysics Data System (ADS)

    Adarkwah, N. E.; Ararso, I.; Garcia, N.; Goldman, A.; Lieu, C.; Mondragon, J.; Swamy, V.; Unigarro, M.; Cuff, K.

    2005-12-01

    For over two years, the Washington, D.C. area has been plagued by the incidence of alarming concentrations of lead found in local drinking water. During this period, water with lead concentration levels above the U.S. Environmental Protection Agency's (EPA) action limit of 15 ppb has been found in approximately 66% of the homes tested. Because of the problems with lead in drinking water in the D.C. area, the EPA has begun the process of trying to determine whether or not this problem occurs nationwide by obtaining as much lead data as possible. However, it recently reported that no current information exists on lead levels from 78 percent of the nation's public drinking water systems, and that it has no data from as many as 20 states. In an effort to generate information that contributes to a greater understanding of the scope and nature of this real-world environmental health problem, we have begun collecting and performing lead analysis of drinking water samples from different parts of the country. As San Francisco Bay Area - based participants in the NSF-sponsored Environmental Science Information Technology Activities (ESITA) project, we began by establishing E-mail correspondence with children who attend elementary schools in the Washington, D.C. area two years ago, during the first year of the lead crisis. Since that time the elementary school children have sent over 150 water samples from their homes and schools, along with information on the locations from which the water samples were collected to the Bay Area. Upon receipt, we prepare and analyze these samples at UC Berkeley's Lawrence Hall of Science. Following analysis results are compiled, statistically analyzed, and used to create maps that aid in the interpretation of our data. The majority of samples collected from the D.C. area were obtained from schools and homes located in the central north-northeast section of the District. Of these samples, 72% contained lead in excess of the EPA action limit

  10. Developing hexanal as an odor reference standard for sensory analysis of drinking water.

    PubMed

    Omür-Ozbek, Pinar; Dietrich, Andrea M

    2008-05-01

    There are many analytical and sensory methods to analyze drinking water for flavor and off-flavors before it reaches consumers. Flavor profile analysis (FPA) is one of the most comprehensive methods. A well-trained panel is essential for FPA and although taste standards are well established, FPA training lacks an odor reference standard. In search of an odor reference standard, four different panel groups were trained and tested for n-hexanal at various concentrations (1-1000 microg/L) over 14 months. The Weber-Fechner plots for n-hexanal showed a linear and overlapping relationship for all panels. Analytical measurements demonstrated that the headspace concentration of n-hexanal was constant after 5 sniffs at 45 degrees C and it remained constant during FPA sessions for up to 4 h. The panelists liked the grassy odor of n-hexanal, which did not result in fatigue, and testing demonstrated that approximately 95% of the population can detect n-hexanal's odor. n-Hexanal is proposed as an odor reference standard for FPA training to define odor intensities because it is chemically stable, follows Weber-Fechner law, mimics grassy odors found in drinking water, and was acceptable to the human panelists. PMID:18280533

  11. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes

    PubMed Central

    Ntim, Susana Addo; Mitra, Somenath

    2011-01-01

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L−1. The absorption capacity of the composite was 1723 µg g−1 and 189 µg g−1 for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. PMID:21625394

  12. Effectiveness of the Preservation Protocol within the Environmental Protection Agency (EPA) Method 200.8 for Soluble and Particulate Lead Recovery in Drinking Water

    EPA Science Inventory

    Lead (Pb) is a toxic trace metal that is regulated in drinking water. The U.S. Environmental Protection Agency (USEPA) issued the Lead and Copper Rule (LCR), which defines the action level for lead at the tap as 0.015 mg/L. Researchers and drinking water utilities typically emplo...

  13. Drinking Water

    EPA Science Inventory

    This encyclopedic entry deals with various aspects of microbiology as it relates to drinking water treatment. The use of microbial indicators for assessing fecal contamination is discussed as well as current national drinking water regulations (U.S. EPA) and guidelines proposed ...

  14. Drinking water quality standards and standard tests: Worldwide. (Latest citations from the Food Science and Technology Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning standards and standard tests for water quality in drinking water sources, reservoirs, and distribution systems. Standards from domestic and international sources are presented. Glossaries and vocabularies that concern water quality analysis, testing, and evaluation are included. Standard test methods for individual elements, selected chemicals, sensory properties, radioactivity, and other chemical and physical properties are described. Discussions for proposed standards on new pollutant materials are briefly considered. (Contains a minimum of 203 citations and includes a subject term index and title list.)

  15. Economic evaluation of the new U.S. arsenic standard for drinking water: A disaggregate approach

    NASA Astrophysics Data System (ADS)

    Cho, Yongsung; Easter, K. William; Konishi, Yoshifumi

    2010-10-01

    We evaluate the welfare consequences of the new U.S. arsenic standard for drinking water, using contingent valuation survey and recent cost data for the small rural community water systems in Minnesota that have had arsenic levels above the new standard prior to its implementation. Using variation in actual arsenic levels and an elicitation method that recognizes the dependence of welfare values on both ambient arsenic concentrations and self-protection levels, the welfare values of the new arsenic rule are estimated at 6-23 per household per year for communities with less than 10 μg/L of arsenic currently in their water and 31-78 for communities with more than 10 μg/L of arsenic. Given cost estimates of 230-2,006 and the fact that a substantial portion of the cost needs to be internally financed, the new rule may have substantially negative welfare consequences for a number of small communities.

  16. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan.

    PubMed

    Nawab, Javed; Khan, Sardar; Ali, Sharafat; Sher, Hassan; Rahman, Ziaur; Khan, Kifayatullah; Tang, Jianfeng; Ahmad, Aziz

    2016-05-01

    Human beings are frequently exposed to pathogens and heavy metals through ingestion of contaminated drinking water throughout the world particularly in developing countries. The present study aimed to assess the quality of water used for drinking purposes in Malakand Agency, Pakistan. Water samples were collected from different sources (dug wells, bore wells, tube wells, springs, and hand pumps) and analyzed for different physico-chemical parameters and bacterial pathogens (fecal coliform bacteria) using standard methods, while heavy metals were analyzed using atomic absorption spectrophotometry (AAS-PEA-700). In the study area, 70 % of water sources were contaminated with F. coliform representing high bacterial contamination. The heavy metals, such as Cd (29 and 8 %), Ni (16 and 78 %), and Cr (7 %), exceeded their respective safe limits of WHO (2006) and Pak-EPA (2008), respectively, in water sources, while Pb (9 %) only exceeded from WHO safe limit. The risk assessment tools such as daily intake of metals (DIMs) and health risk indexes (HRIs) were used for health risk estimation and were observed in the order of Ni > Cr > Mn > Pb > Cd and Cd > Ni > Pb > Mn > Cr, respectively. The HRI values of heavy metals for both children and adults were <1, showing lack of potential health risk to the local inhabitants of the study area. PMID:27075311

  17. Health-risk based approach to setting drinking water standards for long-term space missions

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Dunsky, Elizabeth C.

    1992-01-01

    In order to develop plausible and appropriate drinking water contaminant standards for longer-term NASA space missions, such as those planned for the Space Exploration Initiative, a human health risk characterization was performed using toxicological and exposure values typical of space operations and crew. This risk characterization showed that the greatest acute waterborne health concern was from microbial infection leading to incapacitating gastrointestinal illness. Ingestion exposure pathways for toxic materials yielded de minimus acute health risks unlikely to affect SEI space missions. Risks of chronic health problems were within acceptable public health limits. Our analysis indicates that current Space Station Freedom maximum contamination levels may be unnecessarily strict. We propose alternative environmental contaminant values consistent with both acceptable short and long-term crew health safety.

  18. REGULATED CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...

  19. Drinking Water

    MedlinePlus

    ... safest water supplies in the world, but drinking water quality can vary from place to place. It depends on the condition of the source water and the treatment it receives. Treatment may include ...

  20. Drinking Water

    MedlinePlus

    We all need to drink water. How much you need depends on your size, activity level, and the weather where you live. The water you drink is a combination of surface water and groundwater. Surface water ...

  1. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    PubMed Central

    van Grinsven, Hans JM; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-01-01

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution. PMID:16989661

  2. A Review of Literature to Support a Sodium Drinking Water Standard

    ERIC Educational Resources Information Center

    Calabrese, Edward J.; Tuthill, Robert W.

    1977-01-01

    Discusses the contamination of drinking water supplies from highway salt applications. The toxicological and epidemiological literature indicates, at present, only that sodium in the diet is a factor in hypertension and general human ill-health. (MR)

  3. Drinking-water standards and regulations. Volume 4. Manual for 1979-1988

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1988-10-10

    This report covers eight important documents: (1) The U.S. Safe Drinking Water Act Title XIV, as amended by the Safe Drinking Water Act Amendments of 1986, by U.S. EPA; (2) Summary of the Safe Drinking Water Act Regulations, by CDM, June 1988; (3) Sampling Procedure for Analysis of Bacteria and Chemicals in Tap Water, by LIR, June 1988; (4) Discontinuing Certification of Seven Analytes, by NY-DOH, August 1986; (5) Disinfection of Individual Water Supply Systems, by MA-DEQE, June 1988; (6) U.S. EPA Letter to Dr. L. K. Wang Regarding the Use of Liquid Household Bleach for Sanitizing Domestic Water Systems, by U.S. EPA, August 1988; (7) Guidelines for Public Water Systems by MA-DEQE, May 1979; and (8) Supplement to Guidelines for Public Water Systems--1979 Edition, by MA-DEQE, September 1984, approved in October 1986.

  4. [Drinking water quality standards and methods of its enforcement in Poland].

    PubMed

    Zerbe, J; Siepak, J

    2001-01-01

    In the paper quality requirements towards drinking water according to the Directive of the European Community and according to the Polish rules currently in force were compared. It was pointed at excessive enlargement of the Polish regulations in the field of physico-chemical index norming as well as objective difficulties in executing of these regulations, caused by lack of adequate methods of analytical control. Necessity of requirement rationalization within the novelization being carried out now was also emphasized. PMID:11957785

  5. DRINKING WATER MULTI-YEAR PLAN

    EPA Science Inventory

    The Safe Drinking Water Act Amendments of 1996 direct EPA to conduct research to strengthen the scientific foundation for standards that limit public exposure to drinking water contaminants. The Amendments contain specific requirements for research on waterborne pathogens, such a...

  6. Heavy metals in drinking water: Standards, sources, and effects. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning studies of heavy metal pollutants in drinking water and their effects on public health. Topics examine the toxicological effects of prolonged exposure incurred by ingestion of lead, copper, nickel, mercury, cadmium, manganese, and zinc. Quantification factors, federal and state regulations and standards, and laboratory animal studies are discussed. Goundwater contamination by landfill leachates, acid precipitation contributions to groundwater pollution, and corrosion by-products in residential plumbing and public water supply transport systems are included. (Contains 250 citations and includes a subject term index and title list.)

  7. Standard addition method for the determination of pharmaceutical residues in drinking water by SPE-LC-MS/MS.

    PubMed

    Cimetiere, Nicolas; Soutrel, Isabelle; Lemasle, Marguerite; Laplanche, Alain; Crocq, André

    2013-01-01

    The study of the occurrence and fate of pharmaceutical compounds in drinking or waste water processes has become very popular in recent years. Liquid chromatography with tandem mass spectrometry is a powerful analytical tool often used to determine pharmaceutical residues at trace level in water. However, many steps may disrupt the analytical procedure and bias the results. A list of 27 environmentally relevant molecules, including various therapeutic classes and (cardiovascular, veterinary and human antibiotics, neuroleptics, non-steroidal anti-inflammatory drugs, hormones and other miscellaneous pharmaceutical compounds), was selected. In this work, a method was developed using ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) and solid-phase extraction to determine the concentration of the 27 targeted pharmaceutical compounds at the nanogram per litre level. The matrix effect was evaluated from water sampled at different treatment stages. Conventional methods with external calibration and internal standard correction were compared with the standard addition method (SAM). An accurate determination of pharmaceutical compounds in drinking water was obtained by the SAM associated with UPLC-MS/MS. The developed method was used to evaluate the occurrence and fate of pharmaceutical compounds in some drinking water treatment plants in the west of France. PMID:24617062

  8. COMPARISON OF THE RECOVERIES OF ESCHERICHIA COLI AND TOTAL COLIFORMS FROM DRINKING WATER BY THE MI AGAR METHOD AND THE U.S. ENVIRONMENTAL PROTECTION AGENCY-APPROVED MEMBRANE FILTER METHOD

    EPA Science Inventory

    Drinking water regulations under the Final Coliform Rule require that total coliform-positive drinking water samples be examined for the presence of Escherichia coli or fecal coliforms. The current U.S. Environmental Protection Agency-approved membrane filter (MF) method for E. c...

  9. 75 FR 61751 - National Drinking Water Advisory Council: Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... National Drinking Water Advisory Council (Council). This 15-member Council was established by the Safe Drinking Water Act (SDWA) to provide practical and independent advice, consultation and recommendations...

  10. AN OVERVIEW OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S DRINKING WATER TREATMENT AND DISTRIBUTION SYSTEM RESEARCH PROGRAM

    EPA Science Inventory

    This presentation will provide an overview of drinking water research being conducted by the National Risk Management Research Laboratory (NRMRL) of the U.S. EPA. The Water Supply and Water Resources Division (WSWRD) is an internationally known water research organization establi...

  11. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  12. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  13. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  14. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  15. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  16. Drinking Water FAQ

    MedlinePlus

    ... Water & Nutrition Camping, Hiking, Travel Drinking Water Treatment & Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Drinking Water Healthy Swimming / Recreational Water Global Water, Sanitation, & Hygiene Other Uses of Water Water-related Emergencies & ...

  17. Drinking water health advisory for boron

    SciTech Connect

    Cantilli, R.

    1991-04-01

    The Health Advisory Program, sponsored by the Environmental Protection Agency's Office of Water, has issued its report on the element boron: included are the compounds boric acid and borax(sodium tetraborate). It provides information on the health effects, analytical methodology, and treatment technology that would be useful in dealing with the contamination of drinking water. Health Advisories (HAs) describe nonregulatory concentrations of drinking water contaminants at which adverse health effects would not be anticipated to occur over specific exposure durations. HAs serve as informal technical guidance to assist Federal, State, and local officials responsible for protecting public health when emergency spills or contamination situations occur. They are not legally enforceable Federal Standards and are subject to change as new information becomes available.

  18. AIRCRAFT DRINKING WATER RULE

    EPA Science Inventory

    Under the Safe Drinking Water Act (SDWA), any interstate carrier conveyance (ICC) that regularly serves drinking water to an average of at least 25 individuals daily, at least 60 days per year, is subject to the National Primary Drinking Water Regulations (NPDWR). An ICC is a car...

  19. The risks of drinking water

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1984-04-01

    Three researchers from the Energy and Environmental Policy Center at Harvard University have come up with a new method of calculating the risk from contaminants in drinking water, one that they believe takes into account some of the uncertainties in pronouncing water safe or dangerous to drink. The new method concentrates on the risk of cancer, which authors Edmund Crouch, Richard Wilson, and Lauren Zeise believe has not been properly considered in establishing drinking water standards.Writing in the December 1983 issue of Water Resources Research, the authors state that “current [drinking water] standards for a given chemical or class of chemicals do not account for the presence of other pollutants” that could combine to create dangerous substances. According to Wilson, “Over a hundred industrial pollutants and chlorination byproducts have been found in various samples of drinking water, some of which are known carcinogens, others suspected carcinogens.” The same chlorine that solves one major health problem—the threat of bacterial disease—can thus contribute to another, according to the authors, by increasing the long-term risk of cancer. The largest risks are due to halomethanes such as chloroform and bromoform, produced as chlorine reacts with organic matter in drinking water.

  20. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  1. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  2. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  3. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  4. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  5. Drinking Water and Health.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to a provision of the Safe Drinking Water Act of 1974 which called for a study that would serve as a scientific basis for revising the primary drinking water regulations that were promulgated under the Act, a study of the scientific literature was undertaken in order to assess the implications for human health of the constituents of…

  6. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  7. Safe drinking water act

    SciTech Connect

    Calabrese, E.J.; Gilbert, C.E. )

    1989-01-01

    This book covers drinking water regulations such as disinfectant by-products, synthetic organics, inorganic chemicals, microbiological contaminants, volatile organic chemicals, radionuclides, fluoride, toxicological approaches to setting new national drinking water regulations, and trihalomethanes. Gives organic and inorganic compounds scheduled to be regulated in 1989 and candidates for the 1990s regulations.

  8. 76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY... meeting of the National Drinking Water Advisory Council (NDWAC or Council), established under the Safe Drinking Water Act. The Council will consider various issues associated with drinking water protection...

  9. SAFE DRINKING WATER INFORMATION SYSTEM/FEDERAL COMPONENT

    EPA Science Inventory

    Resource Purpose:The Safe Drinking Water Act (SDWA) gives EPA the authority to regulate public drinking water supplies. Using its authority under law, EPA has set health-based standards for contaminants that may be found in drinking water. EPA regulates over 80 contaminant...

  10. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and drinking water requirements..., and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking water requirements. (a) Those marine mammals that require drinking water must be offered potable water within 4...

  11. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    NASA Astrophysics Data System (ADS)

    Brima, Eid I.

    2014-11-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  12. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... AGENCY Tribal Drinking Water Operator Certification Program AGENCY: Environmental Protection Agency (EPA... Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be recognized as certified operators by...

  13. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE FOR COLLECTION, STORAGE, AND SHIPMENT OF FLUSH AND DRINKING WATER OR DRINKING WATER SAMPLES FOR METALS AND ARSENIC BY EPA METHOD 200.8 (RTI/

    EPA Science Inventory

    This protocol describes the procedures for the collection, storage, and shipping of flush and drinking water samples to be analyzed by EPA Method 200.8 (version 5.4). Samples of flush water, defined as tap water that is collected after water flows through the tap for a specified ...

  14. Drinking water and cancer.

    PubMed Central

    Morris, R D

    1995-01-01

    Any and all chemicals generated by human activity can and will find their way into water supplies. The types and quantities of carcinogens present in drinking water at the point of consumption will differ depending on whether they result from contamination of the source water, arise as a consequence of treatment processes, or enter as the water is conveyed to the user. Source-water contaminants of concern include arsenic, asbestos, radon, agricultural chemicals, and hazardous waste. Of these, the strongest evidence for a cancer risk involves arsenic, which is linked to cancers of the liver, lung, bladder, and kidney. The use of chlorine for water treatment to reduce the risk of infectious disease may account for a substantial portion of the cancer risk associated with drinking water. The by-products of chlorination are associated with increased risk of bladder and rectal cancer, possibly accounting for 5000 cases of bladder cancer and 8000 cases of rectal cancer per year in the United States. Fluoridation of water has received great scrutiny but appears to pose little or no cancer risk. Further research is needed to identify and quantify risks posed by contaminants from drinking-water distribution pipes, linings, joints, and fixtures and by biologically active micropollutants, such as microbial agents. We need more cost-effective methods for monitoring drinking-water quality and further research on interventions to minimize cancer risks from drinking water. PMID:8741788

  15. SAB report: Radionuclides in drinking water. Review of the Office of Drinking Water`s criteria documents and related reports for uranium, radon, and man-made beta-gamma emitters by the radiation advisory committee

    SciTech Connect

    1991-12-01

    EPA`s Office of Drinking Water developed draft criteria documents and related reports that were the basis for new drinking water standards for uranium, radium, radon and man-made beta-gamma emitting radionuclides during the period November 1989-July 1990. The overall quality of the four draft criteria documents submitted to the Subcommittee for its review was not good. Taken as a set, the documents are inconsistent in approach and with Agency practice in the derivation of drinking water criteria for other contaminants.

  16. Naphthalene: Drinking water health advisory

    SciTech Connect

    Not Available

    1990-03-01

    The Drinking Water Health Advisory, Office of Water, U.S. Environmental Protection Agency, has issued its report on the chemical, naphthalene. Naphthalene is used in the manufacture of phthalic and anthranilic acids and other derivatives, and in making dyes; in the manufacture of resins, celluloid, lampblack and smokeless gunpowder; and as moth repellant, insecticide, anthelmintic, vermicide, and intestinal antiseptic. The report covers the following areas: the occurrence of the chemical in the environment; its environmental fate; the chemical's absorption, distribution, metabolism, and excretion in the human body; and its health effects on humans and animals, including its mutagenicity and carcinogenicity characteristics. Also included is the quantification of its toxicological effects.

  17. DRINKING WATER ISSUES

    EPA Science Inventory

    According to recent reports by the California Department of Health Services, the State of Maine, and the United State Geological Survey (USGS); the fuel oxygenate methyl teri-butyl ether (MTBE) is present in 5 to 20 percent of the drinking water sources in California and the nort...

  18. 78 FR 65981 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). The meeting is scheduled for December 11 and 12, 2013. This meeting of...

  19. 75 FR 54872 - Drinking Water Strategy Contaminants as Group(s)-Notice of Public Stakeholder Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... (202) 564-0293 or bauman.shari@epa.gov . For more information about the Drinking Water Strategy, visit... AGENCY Drinking Water Strategy Contaminants as Group(s)--Notice of Public Stakeholder Meeting AGENCY... Agency (EPA) Administrator Lisa P. Jackson announced the Drinking Water Strategy, a new vision to...

  20. 78 FR 48158 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). This meeting is scheduled for October 9 and 10, 2013, in Arlington, VA....

  1. DRINKING WATER INFRASTRUCTURE NEEDS SURVEY

    EPA Science Inventory

    Conducted every 4 years, the Drinking Water Infrastructure Needs Survey (DWINS) is an EPA-conducted statistically-based survey of the infrastructure investment needs of the Nation's drinking water systems for the next 20 years.

  2. The Role of Microbial Processes in the Oxidation and Removal of Arsenic from Drinking Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) recently reduced the drinking water standard for arsenic (As) in water from 0.05 to 0.010 milligrams/Liter (L) (10 micrograms/L). This reduction was prompted by new health effects research, which concluded th...

  3. 78 FR 68838 - National Drinking Water Advisory Council; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AGENCY National Drinking Water Advisory Council; Request for Nominations AGENCY: Environmental Protection... candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA) to provide...

  4. 77 FR 64113 - National Drinking Water Advisory Council: Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA) to provide...

  5. 76 FR 61355 - National Drinking Water Advisory Council; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... AGENCY National Drinking Water Advisory Council; Request for Nominations AGENCY: Environmental Protection... of qualified candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA)...

  6. Development of EPA Method 525.3 for the Analysis of Semivolatiles in Drinking Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water (OGWDW) collects nationwide occurrence data on contaminants in drinking water using the Unregulated Contaminant Monitoring Regulations (UCMRs). The unregulated contaminants, which ar...

  7. Removal of dibromochloropropane from drinking water: laboratory and field experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dibromochloropropane (1,2-dibromo-3-chloropropane or DBCP) is regulated by the U.S. Environmental Protection Agency under the National Primary Drinking Water Regulations to a maximum of 0.2 µg/L (0.2 ppb) in drinking water. DBCP was primarily used as an unclassified nematicide for vegetables and per...

  8. DRINKING WATER CRITERIA DOCUMENT FOR ENDRIN (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on endrin. The Criteria Document is an extensive review of the following topics: Physical and chemical properties of endrin, Toxicokinetics and human exposure ...

  9. DRINKING WATER CRITERIA DOCUMENT FOR POLYCHLORINATED BIPHENYLS (PCBS) (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on PCBs. The Criteria Document is an extensive review of the following topics: Physical and chemical properties of PCBs, Toxicokinetics and human exposure to P...

  10. DRINKING WATER CRITERIA DOCUMENT FOR ETHYLBENZENE (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on ethylbenzene. This Criteria Document is an extensive review of the following topics: Physical and chemical properties of ethylbenzene; Toxicokinetics and hu...

  11. [EXPERIMENTAL GROUNDS ON POSSIBILITY TO MAKE AND TO USE PREDICTION MODELS OF PESTICIDES DESIGN STANDARD IN THE WATER OF PONDS USED FOR HOUSEHOLD AND DRINKING WATER SUPPLY].

    PubMed

    Vavrinevych, O P; Omel'chuk, S T

    2015-01-01

    Taking into account the fact that current calculation methods for substantiation of standards in the water of water reservoirs valid in Ukraine are outdated the aim of our research was to scientifically substantiate the possibility to make and to use prediction models of pesticides design standard in the water of ponds used for household and drinking water supply. Array of experimentally substantiated and approved to use in Ukraine maximum allowable concentrations (MAC) of organic pesticides active ingredients in the water was analyzed (n = 201). Analysis of dependence between MAC value of pesticides in the water and its physical and chemical properties, indices of ecotoxicological hazard and persistency in the water was carried out using correlation and regression analysis methods. Twelve regression equations to establish design value of pesticides MAC in the water were proposed on the grounds of performed analysis. The results of reliability testing of proposed procedure on pesticides design tentatively allowable levels (TAL) in the water indicate on needs to apply the least value of TAL obtained in the process of calculations using proposed equations. It was proved that mathematical models proposed for prediction of pesticide design standard in the water are adequate and significant by Fisher's test (P < 0.05). Proposed algorithm allows considerably simplify procedure of obtaining temporary hygienic standard in the water for new pesticides. PMID:27491169

  12. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DRINKING WATER SAMPLES FOR ANALYSIS OF PERSISTENT ORGANIC POLLUTANTS (SOP 5.23)

    EPA Science Inventory

    The method for extracting and preparing a drinking water sample for analysis of atrazine is summarized in this SOP. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/ mass spectrometry.

  13. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  14. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  15. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  16. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  17. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  18. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  19. Drinking Water. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of drinking water. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words. The book…

  20. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... impacts of hydraulic fracturing on drinking water resources. DATES: EPA will accept data and literature in... scientific research to examine the relationship between hydraulic fracturing and drinking water...

  1. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... research to examine the relationship between hydraulic fracturing and drinking water resources. The...

  2. APPLICATION OF USEPA'S DRINKING WATER REGULATIONS TOWARDS RAINWATER CATCHMENT SYSTEMS

    EPA Science Inventory

    Rainwater harvesting is receiving increased attention worldwide as an alternative source of drinking water. Although federal agencies such as the USEPA acknowledge the existence of rainwater collection systems, the monitoring of this water source is still typically carried out b...

  3. Lead in School Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  4. Drinking Water Treatability Database (Database)

    EPA Science Inventory

    The drinking Water Treatability Database (TDB) will provide data taken from the literature on the control of contaminants in drinking water, and will be housed on an interactive, publicly-available USEPA web site. It can be used for identifying effective treatment processes, rec...

  5. Drinking Water Database

    NASA Technical Reports Server (NTRS)

    Murray, ShaTerea R.

    2004-01-01

    This summer I had the opportunity to work in the Environmental Management Office (EMO) under the Chemical Sampling and Analysis Team or CS&AT. This team s mission is to support Glenn Research Center (GRC) and EM0 by providing chemical sampling and analysis services and expert consulting. Services include sampling and chemical analysis of water, soil, fbels, oils, paint, insulation materials, etc. One of this team s major projects is the Drinking Water Project. This is a project that is done on Glenn s water coolers and ten percent of its sink every two years. For the past two summers an intern had been putting together a database for this team to record the test they had perform. She had successfully created a database but hadn't worked out all the quirks. So this summer William Wilder (an intern from Cleveland State University) and I worked together to perfect her database. We began be finding out exactly what every member of the team thought about the database and what they would change if any. After collecting this data we both had to take some courses in Microsoft Access in order to fix the problems. Next we began looking at what exactly how the database worked from the outside inward. Then we began trying to change the database but we quickly found out that this would be virtually impossible.

  6. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China.

    PubMed

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-11-01

    This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals. PMID:26569281

  7. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China

    PubMed Central

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-01-01

    This study aimed to describe the households’ choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10−9~3.62 × 10−5. The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water’s highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals. PMID:26569281

  8. DRINKING WATER AND CANCER MORTALITY

    EPA Science Inventory

    The problem of understanding the possible adverse health effects of organic chemical contaminants in drinking water is not new, but national concern has intensified in recent years. Despite this concern and regulatory efforts, no definitive relationship has been established betwe...

  9. 77 FR 52023 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... FR 34382) for September 12 and 13, 2012, in Chicago, Illinois. While the meeting will still be held... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (NDWAC or Council), established...

  10. Two-year monitoring of Cryptosporidium parvum and Giardia lamblia occurrence in a recreational and drinking water reservoir using standard microscopic and molecular biology techniques.

    PubMed

    Helmi, Karim; Skraber, Sylvain; Burnet, Jean-Baptiste; Leblanc, Laurence; Hoffmann, Lucien; Cauchie, Henry-Michel

    2011-08-01

    Starting in 2006, a monitoring of Giardia lamblia and Cryptosporidium parvum occurrence was conducted for 2 years in the largest drinking water reservoir of Luxembourg (Esch-sur-Sûre reservoir) using microscopy and qPCR techniques. Parasite analyses were performed on water samples collected from three sites: site A located at the inlet of the reservoir, site B located 18 km downstream site A, at the inlet of the drinking water treatment plant near the dam of the reservoir and site C where the finished drinking water is injected in the distribution network. Results show that both parasites are present in the reservoir throughout the year with a higher occurrence of G. lamblia cysts compared to C. parvum oocysts. According to our results, only 25% of the samples positive by microscopy were confirmed by qPCR. (Oo)cyst concentrations were 10 to 100 times higher at site A compared to site B and they were positively correlated to the water turbidity and negatively correlated to the temperature. Highest (oo)cyst concentrations were observed in winter. In contrast, no relationship between the concentrations of (oo)cysts in the reservoir and rain events could be established. Though a correlation has been observed between both parasites and faecal indicators in the reservoir, some discrepancies highlight that the latter do not represent a reliable tool to predict the presence/absence of these pathogenic protozoa. In summer 2007, the maximal risk of parasite infection per exposure event for swimmers in the reservoir was estimated to be 0.0015% for C. parvum and 0.56% for G. lamblia. Finally, no (oo)cysts could be detected in large volumes of finished drinking water. PMID:20890786

  11. Drinking water public right-to-know requirements in the United States.

    PubMed

    Blette, Veronica

    2008-01-01

    The United States Environmental Protection Agency implements a national drinking-water program under the authority of the Federal Safe Drinking Water Act. Amendments to the Act in 1996 added new provisions to enhance consumer understanding of drinking-water issues. Notification requirements associated with annual consumer confidence reports, source water assessments and state compliance reports are intended to enhance the public's knowledge of the quality of their drinking water. Water utilities are also subject to public notification requirements to provide more timely information to consumers in response to violations of health standards. These right-to-know requirements are intended to build the public's confidence, but communicating with consumers can be challenging for both utility managers and government leaders. This paper discusses the need for timely communication, the challenge of providing information when there is uncertainty in the science and the importance of preparing to respond to critical incidents. Because surveys have shown that other members of the community may have better access to consumers or are more trusted, it is important for water utilities to establish relationships with the media and the local public health community. PMID:18401128

  12. ENSURING SAFE DRINKING WATER

    EPA Science Inventory

    This brochure is part of a series of information packages prepared by the United States Environmental Protection Agency (EPA). Aimed at the international community, the packages focus on key environmental and public health issues being investigated by EPA. The products highlighte...

  13. CYANOBACTERIA, CYANOBACTERIA TOXINS & USEPA DRINKING WATER TREATMENT RESEARCH TO ADDRESS THE PROBLEM

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as th...

  14. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY GAC, AIR STRIPPING, AND MEMBRANE PROCESSES

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  15. EPA Method 544: A Case Study in USEPA Drinking Water Method Develpment

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act required the U.S. Environmental Protection Agency (USEPA) to establish a Drinking Water Contaminant Candidate List (CCL) of chemicals and microbes that the Agency will consider for future regulation. One of the key pieces of info...

  16. 77 FR 34382 - Meetings of the National Drinking Water Advisory Council-Notice of Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Water Act (SDWA) of 1974, Public Law 93-523, 42 U.S.C. 300j-5, and is operated in accordance with the... AGENCY Meetings of the National Drinking Water Advisory Council--Notice of Public Meetings AGENCY.../conference call and one in-person meeting of the National Drinking Water Advisory Council (NDWAC or...

  17. 76 FR 67187 - National Drinking Water Advisory Council; Notice of a Public Teleconference Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...The U.S. Environmental Protection Agency (EPA or Agency) is announcing a public teleconference of the National Drinking Water Advisory Council (NDWAC or Council) on November 18, 2011. The Council will consult with EPA regarding potential modifications to the lead service line replacement requirements of the National Drinking Water Regulations for Lead and...

  18. POINT-OF-ENTRY DRINKING WATER TREATMENT SYSTEMS FOR SUPERFUND APPLICATIONS

    EPA Science Inventory

    The U.S. Environmental Protection AGency (EPA) and State Superfund agencies need a technical assistance manualto assist their personnel in the selection of an effective drinking water treatment system for aindividualhouseholds in areas whre the drinking water has been adversely a...

  19. Time to revisit arsenic regulations: comparing drinking water and rice

    PubMed Central

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  20. INJURED COLIFORMS IN DRINKING WATER

    EPA Science Inventory

    Coliforms were enumerated by using m-Endo agar LES and m-T7 agar in 102 routine samples of drinking water from three New England community water systems to investigate the occurrence and significance of injured coliforms. Samples included water collected immediately after convent...

  1. Uranium in Kosovo's drinking water.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-11-01

    The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations. PMID:24070912

  2. Correlation Between Surface Area and Dissolving Properties of Lead - A Step in the Investigation of Higher than Standard Lead Concentration in Drinking Water in Washington, D.C.

    NASA Astrophysics Data System (ADS)

    Hua, M.; Garduno, L.; Mondragon, J. D.; Cuff, K. E.

    2004-12-01

    Several recently published articles by the Washington Post exposing the alarming concentration of lead in drinking water from schools and homes in the Washington D.C. area sparked our interest in the correlation between lead-containing materials used in plumbing and rate of lead solubility. Elementary children who attend schools in various regions of the District were contacted by San Francisco Bay Area- based high school students who are participants in the NSF-sponsored Environmental Science Information Technology Activities (ESITA) project. After receiving a thorough explanation of required sampling procedures, the elementary school children sent 500 ml water samples from their homes and schools to Berkeley along with information on the locations from which the water samples were collected. These water samples were analyzed for lead content at the Environmental Science Research Program laboratory at Lawrence Hall of Science. The majority of the samples contained more than 15 ppb of lead, which is the EPA action level. We hypothesize that there are three possible sources of lead in the drinking water: 1) lead pipes in the water main; 2) lead pipes in the service main; and 3) lead soldering that was often previously used to connect piping. We chose to investigate the effect of lead-based solder on the overall lead concentration in water. Using a soldering iron, we melted lead solder to create discs ranging from one to five centimeter diameter and one to thirty-six grams of mass. These discs were then placed into a beaker with 500 ml of 7.1pH distilled water and allowed to stand for 48 hours. At the end of 48 hours, the water samples were prepared for analysis using the EPA approved lead-dithizone procedure. Results showed an exponential relationship between disc surface area and the concentration of dissolved lead measured in the sample. Therefore, lead-based solder can represent a possible major source of lead contamination.

  3. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  4. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  5. ARSENIC IN DRINKING WATER: USING SOUND SCIENCE FOR RISK MANAGEMENT AND ASSISTING COMMUNITY DECISION-MAKERS - A MULTI-AGENCY, COMMUNITY-BASED RESEARCH PROJECT

    EPA Science Inventory

    Studies have indicated that arsenic concentrations greater than the new U.S. Environmental Protection Agency (U.S. EPA) maximum contaminant level (MCL) concentration of 10 micrograms per liter (ug/L) occur in numerous aquifers around the United States. One such aquifer is the Cen...

  6. Cleaning Up Our Drinking Water

    SciTech Connect

    Manke, Kristin L.

    2007-08-01

    Imagine drinking water that you wring out of the sponge you’ve just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. “We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,” said Pacific Northwest National Laboratory’s Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues.

  7. 7TH JAPAN - U.S. CONFERENCE ON DRINKING WATER QUALITY MANAGEMENT AND WASTEWATER CONTROL

    EPA Science Inventory

    Update on U.S. Drinking Water and Water Quality Research

    The U.S. Environmental Protection Agency's (U.S. EPA) Office of Research and development continues to conduct drinking water and water quality related research to address high priority environmental problems. Curr...

  8. ETV COLLABORATIVE EVALUATIONS OF MARKET-READY TECHNOLOGIES FOR ARSENIC REMOVAL IN DRINKING WATER

    EPA Science Inventory

    How well do some commercially marketed package treatment systems perform to reduce arsenic from drinking water supplies? The Environmental Technology Verification (ETV) Drinking Water Systems (DWS) Center is a partnership between the U.S. Environmental Protection Agency (U.S. EPA...

  9. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL JUDICIAL REVIEW UNDER EPA-ADMINISTERED STATUTES § 23.7 Timing of Administrator's action under Safe Drinking Water Act. Unless...

  10. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL JUDICIAL REVIEW UNDER EPA-ADMINISTERED STATUTES § 23.7 Timing of Administrator's action under Safe Drinking Water Act. Unless...

  11. 40 CFR 23.7 - Timing of Administrator's action under Safe Drinking Water Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Timing of Administrator's action under Safe Drinking Water Act. 23.7 Section 23.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL JUDICIAL REVIEW UNDER EPA-ADMINISTERED STATUTES § 23.7 Timing of Administrator's action under Safe Drinking Water Act. Unless...

  12. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... the document. DATES: The fifth in-person CRWU Working Group meeting will take place on September 23... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC)....

  13. Drinking-Water Criteria Document for Asbestos (final draft), March 1985

    SciTech Connect

    Sonich-Mullin, C.; Patel, Y.; Bayard, S.; Mossman, B.T.

    1985-03-01

    The Office of Drinking Water (ODW), Environmental Protection Agency has prepared a Drinking Water Criteria Document on Asbestos. This Criteria Document is an extensive review of the following topics: Physical and chemical properties of Asbestos; Toxicokinetics and human exposure to Asbestos; Health Effects of Asbestos in humans and animals; Mechanisms of toxicity of Asbestos; Quantification of toxicological effects of Asbestos.

  14. RESEARCH FOR THE TREATMENT OF ORGANICS IN DRINKING WATER

    EPA Science Inventory

    The U.S. Environmental Protection Agency-Drinking Water Research Division uses a three tiered approach to research. The first step is bench-scale, where the chemical behavior of the organic contaminant can be investigated in a closely controlled environment. The next level, pilot...

  15. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  16. DBP CONTROL IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is currently attempting to balance the complex trade-offs in chemical and microbial risks associated with controlling disinfection and disinfection byproducts (D/DBP) in drinking water. In attempting to achieve this balance, the...

  17. REAL-TIME REMOTE MONITORING OF DRINKING WATER QUALITY

    EPA Science Inventory

    Over the past eight years, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) has funded the testing and evaluation of various online "real-time" technologies for monitoring drinking water quality. The events of 9/11 and subsequent threats t...

  18. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  19. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. PMID:26409148

  20. The U.S. Geological Survey Drinking Water Initiative

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Safe drinking-water supplies are critical to maintaining and preserving public health. Although the Nation's drinking water is generally safe, natural and introduced contaminants in water supplies throughout the country have adversely affected human health. This new U.S. Geological Survey (USGS) initiative will provide information on the vulnerability of water supplies to be used by water-supply and regulatory agencies who must balance water-supply protection with the wise use of public funds. Using the results of the initiative, they will be better able to focus on the supplies most at risk and the variability of contaminants of most concern, and so address the mandates of the Safe Drinking Water Act. With its store of geologic, hydrologic, and land use and land cover data and its network of information in every State, the USGS can help to identify potential sources of contamination, delineate source areas, determine the vulnerability of waters to potential contamination, and evaluate strategies being used to protect source waters in light of the scientific information available. Many recent and ongoing studies by the USGS concern drinking-water issues. This fact sheet highlights four particular studies begun under the Drinking Water Initiative.

  1. Determination of bromate in drinking water by ultraperformance liquid chromatography-tandem mass spectrometry.

    PubMed

    Alsohaimi, Ibrahim Hotan; Alothman, Zeid Abdullah; Khan, Mohammad Rizwan; Abdalla, Mohammad Abulhassan; Busquets, Rosa; Alomary, Ahmad Khodran

    2012-10-01

    Bromate is a byproduct formed as a result of disinfection of bromide-containing source water with ozone or hypochlorite. The International Agency for Research on Cancer has recognized bromate as a possible human carcinogen, thus it is essential to determine in drinking water. Present work highlights a development of sensitive and fast analytical method for bromate determination in drinking water by using ultraperformance liquid chromatography-tandem mass spectrometry. The quality parameters of the developed method were established, obtaining very low limit of detection (0.01 ng/mL), repeatability and reproducibility have been found to be less than 3% in terms of relative standard deviation when analyzing a bromate standard at 0.05 μg/mL with 0.4 min analysis time. Developed method was applied for the analysis of metropolitan and bottled water from Saudi Arabia; 22 samples have been analyzed. Bromate was detected in the metropolitan water samples (from desalinization source) at concentrations ranging between 3.43 and 75.04 ng/mL and in the bottled water samples at concentrations ranging between 2.07 and 21.90 ng/mL. Moreover, in comparison to established analytical methods such as liquid chromatography-tandem mass spectrometry, the proposed method was found to be very sensitive, selective and rapid for the routine analysis of bromate at low level in drinking water. PMID:22815069

  2. Health risks due to radon in drinking water

    USGS Publications Warehouse

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  3. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and drinking water requirements..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking...

  4. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Food and drinking water requirements..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking...

  5. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Food and drinking water requirements..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking...

  6. Drinking Water with Uranium below the U.S. EPA Water Standard Causes Estrogen Receptor–Dependent Responses in Female Mice

    PubMed Central

    Raymond-Whish, Stefanie; Mayer, Loretta P.; O’Neal, Tamara; Martinez, Alisyn; Sellers, Marilee A.; Christian, Patricia J.; Marion, Samuel L.; Begay, Carlyle; Propper, Catherine R.; Hoyer, Patricia B.; Dyer, Cheryl A.

    2007-01-01

    Background The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal–chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. Objective We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. Methods In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 μg/L (0.001 μM) to 28 mg/L (120 μM). Results Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. Conclusions Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers. PMID:18087588

  7. A review of arsenic presence in China drinking water

    NASA Astrophysics Data System (ADS)

    He, Jing; Charlet, Laurent

    2013-06-01

    Chronic endemic arsenicosis areas have been discovered in China since 1960s. Up to 2012, 19 provinces had been found to have As concentration in drinking water exceeding the standard level (0.05 mg/L). Inner Mongolia, Xinjiang and Shanxi Province are historical well-known “hotspots” of geogenic As-contaminated drinking water. The goal of this review is to examine, summarize and discuss the information of As in drinking water for all provinces and territories in China. Possible natural As sources for elevating As level in drinking water, were documented. Geogenic As-contaminated drinking water examples were taken to introduce typical environmental conditions where the problems occurred: closed basins in arid or semi-arid areas and reducing aquifers under high pH conditions. Geothermal water or mineral water in mountains areas can be high-As water as well. For undiscovered areas, prediction of potential As-affected groundwater has been carried out by some research groups by use of logistic regression. Modeled maps of probability of geogenic As contamination in groundwater are promising to be used as references to discover unknown areas. Furthermore, anthropogenic As contaminations were summarized and mining, smelters and chemical industries were found to be major sources for As pollution in China.

  8. Drinking water regulations and health advisories

    SciTech Connect

    Not Available

    1994-05-01

    The report provides maximum contaminant level of goals, maximum contaminant levels, reference doses, and drinking water equivalent levels for over 250 organic and inorganic chemicals, radionuclides, and microbes.

  9. EPA’s Drinking Water Treatability Database: A Tool for All Drinking Water Professionals

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) is being developed by the USEPA Office of Research and Development to allow drinking water professionals and others to access referenced information gathered from thousands of literature sources and assembled on one site. Currently, ...

  10. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Food and drinking water requirements. 3.115 Section 3.115 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine...

  11. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  12. Concentrations and potential health risks of methyl tertiary-butyl ether (MTBE) in air and drinking water from Nanning, South China.

    PubMed

    Zhang, Li'e; Qin, Jian; Zhang, Zhiyong; Li, Qin; Huang, Jiongli; Peng, Xiaowu; Qing, Li; Liang, Guiqiang; Liang, Linhan; Huang, Yuman; Yang, Xiaobo; Zou, Yunfeng

    2016-01-15

    Levels of methyl tertiary-butyl ether (MTBE) in occupational air, ambient air, and drinking water in Nanning, South China, were investigated, and then their potential health risks to occupational workers and the general public were evaluated. Results show that the MTBE concentration in occupational air from 13 service stations was significantly higher than that in ambient air from residential areas (p<0.0001); both are far lower than the threshold limit value-time weighted average of MTBE regulated in the United States (US). The drinking water samples from household taps yielded detectable MTBE in the range of 0.04-0.33 μg/L, which is below the US drinking water standard of 20-40 μg/L. The non-carcinogenic risk of MTBE from air inhalation may be negligible because the calculated hazard quotient was less than 1. The mean MTBE lifetime cancer risk was within the acceptable limit of 1 × 10(-6) to 1 × 10(-4), but the lifetime cancer risk of refueling workers in the urban service station at the 95th percentile slightly exceeded the maximum acceptable carcinogen risk (1 × 10(-4)), indicating the potential carcinogenic health effects on the population highly exposed to MTBE in this region. The hazard index and carcinogenic risk of MTBE in drinking water were significantly lower than the safe limit of US Environmental Protection Agency, suggesting that drinking water unlikely poses significant health risks to the residents in Nanning. PMID:26479908

  13. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest. PMID:12830937

  14. STATISTICAL PROCEDURES FOR DETERMINATION AND VERIFICATION OF MINIMUM REPORTING LEVELS FOR DRINKING WATER METHODS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) Office of Ground Water and Drinking Water (OGWDW) has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which fu...

  15. 77 FR 44562 - Public Meeting: Potential Regulatory Implications of the Reduction of Lead in Drinking Water Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... Lead in Drinking Water Act of 2011 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... consumers on the implementation of the Reduction of Lead in Drinking Water Act of 2011 (``the Act''). The... are not ``lead free'' (as defined by SDWA), and makes it unlawful to introduce into commerce...

  16. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY ENHANCED COAGULATION, POWDERED ACTIVATED CARBON, CHEMICAL SOFTENING, AND OXIDATION

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  17. A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes

    PubMed Central

    Manassaram, Deana M.; Backer, Lorraine C.; Moll, Deborah M.

    2006-01-01

    In this review we present an update on maternal exposure to nitrates in drinking water in relation to possible adverse reproductive and developmental effects, and also discuss nitrates in drinking water in the United States. The current standard for nitrates in drinking water is based on retrospective studies and approximates a level that protects infants from methemoglobinemia, but no safety factor is built into the standard. The current standard applies only to public water systems. Drinking water source was related to nitrate exposure (i.e., private systems water was more likely than community system water to have nitrate levels above the maximum contaminant limit). Animal studies have found adverse reproductive effects resulting from higher doses of nitrate or nitrite. The epidemiologic evidence of a direct exposure–response relationship between drinking water nitrate level and adverse reproductive effect is still not clear. However, some reports have suggested an association between exposure to nitrates in drinking water and spontaneous abortions, intrauterine growth restriction, and various birth defects. Uncertainties in epidemiologic studies include the lack of individual exposure assessment that would rule out confounding of the exposure with some other cause. Nitrates may be just one of the contaminants in drinking water contributing to adverse outcomes. We conclude that the current literature does not provide sufficient evidence of a causal relationship between exposure to nitrates in drinking water and adverse reproductive effects. Future studies incorporating individual exposure assessment about users of private wells—the population most at risk—should be considered. PMID:16507452

  18. Drinking Water: A Community Action Guide.

    ERIC Educational Resources Information Center

    Boyd, Susan, Ed.; And Others

    While much of the drinking water in the United States is safe for consumption, protecting its quality and assuring its availability are becoming increasingly difficult. This booklet is written for individuals and groups who are concerned about the drinking water in their communities. It provides a general introduction to the complex issues of…

  19. DRINKING WATER ARSENIC AND PERINATAL OUTCOMES

    EPA Science Inventory

    Drinking Water Arsenic and Perinatal Outcomes
    DT Lobdell, Z Ning, RK Kwok, JL Mumford, ZY Liu, P Mendola

    Many studies have documented an association between drinking water arsenic (DWA) and cancer, vascular diseases, and dermatological outcomes, but few have investigate...

  20. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  1. ARSENIC COMPLIANCE DATABASE FOR DRINKING WATER

    EPA Science Inventory

    Resource Purpose:Section 1412(b)(12)(A) of the Safe Drinking Water Act (SDWA) (42 U.S.C. ? 300f-300j), as amended in 1996, required EPA to propose a National Primary Drinking Water Regulation for arsenic by January 1, 2000, and to issue a final regulation by January 1, 20...

  2. Monitoring of Microbes in Drinking Water

    EPA Science Inventory

    Internationally there is a move towards managing the provision of safe drinking water by direct assessment of the performance of key pathogen barriers (critical control points), rather than end point testing (i.e. in drinking water). For fecal pathogens that breakthrough the vari...

  3. GENOTOXICITY STUDIES OF DRINKING WATER MIXTURES

    EPA Science Inventory

    Investigations into the mutagenicity and mutational mechanisms of single chemicals within drinking water as well as of organic extracts of drinking water are being pursued using the Salmonella (Ames) mutagenicity assay as well as in human samples. For example, the semi-volatile ...

  4. New approaches to safe drinking water.

    PubMed

    Barron, Gerald; Buchanan, Sharunda; Hase, Denise; Mainzer, Hugh; Ransom, Montrece McNeill; Sarisky, John

    2002-01-01

    Up to half the population of some states in the United States drink water from small systems not regulated by the Safe Drinking Water Act. The quality of the drinking water from these systems is generally unknown and may be suspect. In many jurisdictions, private wells are the primary source of water. In some instances, construction of wells may have met regulatory requirements but may not have adequately prevented disease transmission. Anecdotal information, periodic water-borne outbreaks, and recent well surveys suggest that there are public health concerns associated with these and similar systems. This article provides an assessment of the need for governmental oversight (regulatory and non-regulatory) of drinking water supplies, describes how a "systems-based" approach might be used to evaluate water supply systems and to identify and prevent possible contamination, and presents case studies describing the systems-based approach as well as a comprehensive approach to environmental health that includes drinking water regulation. PMID:12508511

  5. Risk of internal cancers from arsenic in drinking water.

    PubMed Central

    Morales, K H; Ryan, L; Kuo, T L; Wu, M M; Chen, C J

    2000-01-01

    The U.S. Environmental Protection Agency is under a congressional mandate to revise its current standard for arsenic in drinking water. We present a risk assessment for cancers of the bladder, liver, and lung from exposure to arsenic in water, based on data from 42 villages in an arseniasis-endemic region of Taiwan. We calculate excess lifetime risk estimates for several variations of the generalized linear model and for the multistage-Weibull model. Risk estimates are sensitive to the model choice, to whether or not a comparison population is used to define the unexposed disease mortality rates, and to whether the comparison population is all of Taiwan or just the southwestern region. Some factors that may affect risk could not be evaluated quantitatively: the ecologic nature of the data, the nutritional status of the study population, and the dietary intake of arsenic. Despite all of these sources of uncertainty, however, our analysis suggests that the current standard of 50 microg/L is associated with a substantial increased risk of cancer and is not sufficiently protective of public health. Images Figure 1 Figure 2 Figure 3 PMID:10903620

  6. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  7. Social Disparities in Drinking Water Quality in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Ray, I.; Balazs, C.; Hubbard, A.; Morello-Frosch, R.

    2011-12-01

    Social Disparities in Drinking Water Quality in California's San Joaquin Valley Carolina Balazs, Rachel Morello-Frosch, Alan Hubbard and Isha Ray Little attention has been given to research on social disparities and environmental justice in access to safe drinking water in the USA. We examine the relationship between nitrate and arsenic concentrations in community water systems (CWS) and the ethnic and socioeconomic characteristics of their customers. We hypothesized that systems in the San Joaquin Valley that serve a higher proportion of minority (especially Latino) residents, and/or lower socioeconomic status (proxied by rates of home ownership) residents, have higher nitrate levels and higher arsenic levels. We used water quality monitoring datasets (1999-2001) to estimate nitrate as well as arsenic levels in CWS, and source location and Census block group data to estimate customer demographics. We found that percent Latino was associated with a .04 mg NO3/L increase in a CWS' estimated nitrate ion concentration (95% CI, -.08, .16) and rate of home ownership was associated with a .16 mg NO3/L decrease (95% CI, -.32, .002). We also found that each percent increase in home ownership rate was associated with a .30 ug As/L decrease in arsenic concentrations (p<.05), but our data showed no significant correlation between arsenic concentration and percent Latino. These results show that exposure disparities and compliance burdens in accordance with EPA standards fell most heavily on socio-economically disadvantaged communities. Selected References Cory DC, Rahman T. 2009. Environmental justice and enforcement of the safe drinking water act: The arizona arsenic experience. Ecological Economics 68: 1825-1837. Krieger N, Williams DR, Moss NE. 1997. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health 18(341-378). Moore E, Matalon E, Balazs C, Clary J, Firestone L, De Anda S, Guzman, M. 2011. The

  8. Emergency response planning to reduce the impact of contaminated drinking water during natural disasters

    NASA Astrophysics Data System (ADS)

    Patterson, Craig L.; Adams, Jeffrey Q.

    2011-12-01

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water systems. Prior to an event, utilities and municipalities can use "What if"? scenarios to develop emergency operation, response, and recovery plans designed to reduce the severity of damage and destruction. Government agencies including the EPA are planning ahead to provide temporary supplies of potable water and small drinking water treatment technologies to communities as an integral part of emergency response activities that will ensure clean and safe drinking water.

  9. Chemical Contamination of California Drinking Water

    PubMed Central

    Russell, Hanafi H.; Jackson, Richard J.; Spath, David P.; Book, Steven A.

    1987-01-01

    Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs. PMID:3321714

  10. Chlorine resistance of poliovirus isolants recovered from drinking water.

    PubMed Central

    Shaffer, P T; Metcalf, T G; Sproul, O J

    1980-01-01

    Poliovirus 1 isolants were recovered from finished drinking water produced by a modern, well-operated water treatment plant. These waters contained free chlorine residuals in excess of 1 mg/liter. The chlorine inactivation of purified high-titer preparations of two such isolants was compared with the inactivation behavior of two stock strains of poliovirus 1, LSc and Mahoney. The surviving fraction of virus derived from the two natural isolants was shown to be orders of magnitude greater than that of the standard strains. These results raise the question whether indirect drinking water standards based on free chlorine residuals are adequate public health measures, or whether direct standards based on virus determinations might be necessary. Images PMID:6257162

  11. Drinking water arsenic in Utah: A cohort mortality study.

    PubMed Central

    Lewis, D R; Southwick, J W; Ouellet-Hellstrom, R; Rench, J; Calderon, R L

    1999-01-01

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected and analyzed under the auspices of the State of Utah Department of Environmental Quality, Division of Drinking Water. Cohort members were assembled using historical documents of the Church of Jesus Christ of Latter-day Saints. Standard mortality ratios (SMRs) were calculated. Using residence history and median drinking water arsenic concentration, a matrix for cumulative arsenic exposure was created. Without regard to specific exposure levels, statistically significant findings include increased mortality from hypertensive heart disease [SMR = 2.20; 95% confidence interval (CI), 1.36-3.36], nephritis and nephrosis (SMR = 1.72; CI, 1.13-2.50), and prostate cancer (SMR = 1.45; CI, 1.07-1. 91) among cohort males. Among cohort females, statistically significant increased mortality was found for hypertensive heart disease (SMR = 1.73; CI, 1.11-2.58) and for the category of all other heart disease, which includes pulmonary heart disease, pericarditis, and other diseases of the pericardium (SMR = 1.43; CI, 1.11-1.80). SMR analysis by low, medium, and high arsenic exposure groups hinted at a dose relationship for prostate cancer. Although the SMRs by exposure category were elevated for hypertensive heart disease for both males and females, the increases were not sequential from low to high groups. Because the relationship between health effects and exposure to drinking water arsenic is not well established in U.S. populations, further evaluation of effects in low-exposure populations is warranted. PMID:10210691

  12. Drinking water arsenic in Utah: A cohort mortality study.

    PubMed

    Lewis, D R; Southwick, J W; Ouellet-Hellstrom, R; Rench, J; Calderon, R L

    1999-05-01

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected and analyzed under the auspices of the State of Utah Department of Environmental Quality, Division of Drinking Water. Cohort members were assembled using historical documents of the Church of Jesus Christ of Latter-day Saints. Standard mortality ratios (SMRs) were calculated. Using residence history and median drinking water arsenic concentration, a matrix for cumulative arsenic exposure was created. Without regard to specific exposure levels, statistically significant findings include increased mortality from hypertensive heart disease [SMR = 2.20; 95% confidence interval (CI), 1.36-3.36], nephritis and nephrosis (SMR = 1.72; CI, 1.13-2.50), and prostate cancer (SMR = 1.45; CI, 1.07-1. 91) among cohort males. Among cohort females, statistically significant increased mortality was found for hypertensive heart disease (SMR = 1.73; CI, 1.11-2.58) and for the category of all other heart disease, which includes pulmonary heart disease, pericarditis, and other diseases of the pericardium (SMR = 1.43; CI, 1.11-1.80). SMR analysis by low, medium, and high arsenic exposure groups hinted at a dose relationship for prostate cancer. Although the SMRs by exposure category were elevated for hypertensive heart disease for both males and females, the increases were not sequential from low to high groups. Because the relationship between health effects and exposure to drinking water arsenic is not well established in U.S. populations, further evaluation of effects in low-exposure populations is warranted. PMID:10210691

  13. A WATERSHED APPROACH TO DRINKING WATER QUALITY

    EPA Science Inventory

    The purpose of this presentation is to describe emerging technologies and strategies managing watersheds with the goal of protecting drinking water sources. Included are discussions on decentralized wastewater treatment, whole organism biomonitor detection systems, treatment of...

  14. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  15. Drinking Water Program 1992 annual report

    SciTech Connect

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG&G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG&G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a {open_quotes}community water system{close_quotes} (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG&G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG&G Idaho production wells.

  16. SCOPING THE CHEMICALS IN YOUR DRINKING WATER

    EPA Science Inventory

    Chlorine, the most common drinking water disinfectant in the United States, is effective for killing harmful microorganisms, but it produces a few disinfection byproducts (DBPS) about which health concerns have been raised. mong the more predominant chlorination DBPs are trihalom...

  17. THE FATE OF FLUOROSILICATE DRINKING WATER ADDITIVES

    EPA Science Inventory

    Periodically, the EPA reexamines its information on regulated drinking water contaminants to deterime if further study is required. Fluoride is one such contaminant undergoing review. The chemical literature indicates that some deficiencies exist in our understanding of the spe...

  18. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Nutrition Camping, Hiking, Travel Drinking Water Treatment and Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related Hygiene Related Sites Get Email Updates ...

  19. Drinking Water (Environmental Health Student Portal)

    MedlinePlus

    ... water. A Guide to Drinking Water Treatment and Sanitation for Backcountry & Travel Use (Centers for Disease Control ... runoff is and its hazardous effects on the environment. Commercially Bottled Water (Centers for Disease Control and ...

  20. Giardia and Drinking Water from Private Wells

    MedlinePlus

    ... Nutrition Camping, Hiking, Travel Drinking Water Treatment and Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related Hygiene Related Sites Get Email Updates ...

  1. Drinking water safely during cancer treatment

    MedlinePlus

    ... Disease Control and Prevention. A guide to drinking water treatment technologies for household use. http://www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html. Accessed May 7, 2014.

  2. Condition Assessment for Drinking Water Systems

    EPA Science Inventory

    This project will enable a systematic approach to characterizing the value of condition assessment of drinking water mains that will provide the basis for better communication among, and decisions by, stakeholders regarding goals and priorities for research, development, and tech...

  3. OVERVIEW OF RADIONUCLIDES IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Invited presentation at the 2007 National Rural Water Association National Conference, Philadelphia, PA, September 23-26, 2007. The presentation reviews the chemistry of radium and uranium in drinking water sources, treatment options, and guidelines for disposal. Presentation giv...

  4. Radon in private drinking water wells.

    PubMed

    Otahal, P; Merta, J; Burian, I

    2014-07-01

    At least 10% of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq·l(-1). This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. PMID:24714110

  5. The risk of MTBE relative to other VOCs in public drinking water in California.

    PubMed

    Williams, Pamela R D; Benton, Laurie; Sheehan, Patrick J

    2004-06-01

    Ongoing publicity about methyl tertiary butyl ether (MTBE) suggests that this chemical is of greater concern than other contaminants commonly found in drinking water. The purpose of this article is to evaluate the available MTBE data in context with other volatile organic compounds (VOCs) that are detected in public drinking water sources in California. We find that of the 28 VOCs with a primary maximum contaminant level (MCL) in California, 21 were found in 50 or more drinking water sources from 1985 to 2002. Over the last 10 years, the most frequently detected VOCs were chloroform, tetrachloroethylene (PCE), and trichloroethylene (TCE), which were found in about 9-15% of all sampled drinking water sources. These same chemicals were found to have the highest mean detected concentrations over the last 5 years, ranging from 13 to 15 microg/L. Many VOCs were also found to routinely exceed state and federal drinking water standards, including benzene and carbon tetrachloride. By comparison, MTBE was found in approximately 1% of sampled drinking water sources for most years, and of those drinking water sources found to contain MTBE from 1998 to 2002, over 90% had detected concentrations below California's primary MCL of 13 microg/L. Relative to the other VOCs evaluated, MTBE has the lowest estimated California cancer potency value, and was found to pose one of the least cancer risks from household exposures to contaminated drinking water. These findings suggest that MTBE poses an insignificant threat to public drinking water supplies and public health in California, particularly when compared to other common drinking water contaminants. PMID:15209934

  6. 40 CFR 142.19 - EPA review of State implementation of national primary drinking water regulations for lead and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... national primary drinking water regulations for lead and copper. 142.19 Section 142.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Primary Enforcement Responsibility § 142.19 EPA review of...

  7. 40 CFR 142.19 - EPA review of State implementation of national primary drinking water regulations for lead and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... national primary drinking water regulations for lead and copper. 142.19 Section 142.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Primary Enforcement Responsibility § 142.19 EPA review of...

  8. 40 CFR 142.19 - EPA review of State implementation of national primary drinking water regulations for lead and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... national primary drinking water regulations for lead and copper. 142.19 Section 142.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Primary Enforcement Responsibility § 142.19 EPA review of...

  9. 40 CFR 142.19 - EPA review of State implementation of national primary drinking water regulations for lead and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... national primary drinking water regulations for lead and copper. 142.19 Section 142.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Primary Enforcement Responsibility § 142.19 EPA review of...

  10. 40 CFR 142.19 - EPA review of State implementation of national primary drinking water regulations for lead and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... national primary drinking water regulations for lead and copper. 142.19 Section 142.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Primary Enforcement Responsibility § 142.19 EPA review of...

  11. REAGENTLESS FIELD-USABLE FIXED-SITE AND PORTABLE ANALYZER FOR TRIHALOMETHANE (THM) CONCENTRATIONS IN DRINKING WATER - PHASE I

    EPA Science Inventory

    Environmental Protection Agency rules stipulate that corrective action be taken for drinking water distribution systems that exceed the maximum contaminant level (MCL) for total Trihalomethanes (TTHMs) 80μg/L.  Real-time, or even periodic, monitoring of drinking water i...

  12. A National Assessment of the Potential Impacts of Hydraulic Fracturing Activities on Drinking Water Resources

    NASA Astrophysics Data System (ADS)

    Ridley, C.; Burden, S.; Fleming, M. M.; Knightes, C. D.; Koplos, J.; LeDuc, S. D.; Ring, S.; Stanek, J.; Tuccillo, M. E.; Weaver, J.; Frithsen, J.

    2015-12-01

    The U.S. Environmental Protection Agency recently released a draft assessment of the potential impacts of hydraulic fracturing on drinking water resources. As part of the draft assessment, we reviewed, analyzed, and synthesized information from over 950 sources and concluded that there are above and below ground mechanisms by which hydraulic fracturing activities have the potential to impact drinking water resources. These mechanisms include: Water withdrawals in times of, or in areas with, low water availability; Spills of hydraulic fracturing fluids and produced water; Fracturing directly into underground drinking water resources; Below ground migration of liquids and gases; and Inadequate treatment and discharge of wastewater. Of the potential mechanisms identified in this report, we found specific instances where one or more mechanisms led to impacts on drinking water resources, including contamination of drinking water wells. The number of identified cases, however, was small compared to the number of hydraulically fractured wells. This finding could reflect a rarity of effects on drinking water resources, but may also be due to other limiting factors. These factors include: insufficient pre- and post-fracturing data on the quality of drinking water resources; the paucity of long-term systematic studies; the presence of other sources of contamination precluding a definitive link between hydraulic fracturing activities and an impact; and the inaccessibility of some information on hydraulic fracturing activities and potential impacts. Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or polices of the EPA.

  13. Neurotoxicity and Immunotoxicity Outcomes following Gestational Exposure to Four Lab Drinking Water Concentrates

    EPA Science Inventory

    To evaluate whether developmental exposure to drinking water concentrates altered other endpoints, standard neuro- and immunotoxicity tests were conducted on the offspring. Male and female offspring (10/sex/treatment) exposed to chlorinated concentrated water (CCW) or reverse os...

  14. Investigation of Drinking Water Quality in Kosovo

    PubMed Central

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  15. Investigation of drinking water quality in Kosovo.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  16. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    PubMed Central

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  17. 75 FR 35801 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY: Environmental Protection Agency. ACTION: Notice. SUMMARY: Under Section 10(a)(2) of Public Law 92-423, ``The Federal Advisory Committee Act,'' notice is hereby given of a meeting of the National Drinking...

  18. 75 FR 70918 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY: Environmental Protection Agency. ACTION: Notice. SUMMARY: Under Section 10(a)(2) of Public Law 92-423, ``The Federal Advisory Committee Act,'' notice is ] hereby given of a meeting of the National Drinking...

  19. 76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... AGENCY Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting AGENCY: Environmental Protection Agency. ACTION: Notice. SUMMARY: Under Section 10(a)(2) of Public Law 92-423, ``The Federal Advisory Committee Act,'' notice is hereby given of a meeting of the National Drinking...

  20. Renal effects of uranium in drinking water.

    PubMed Central

    Kurttio, Päivi; Auvinen, Anssi; Salonen, Laina; Saha, Heikki; Pekkanen, Juha; Mäkeläinen, Ilona; Väisänen, Sari B; Penttilä, Ilkka M; Komulainen, Hannu

    2002-01-01

    Animal studies and small studies in humans have shown that uranium is nephrotoxic. However, more information about its renal effects in humans following chronic exposure through drinking water is required. We measured uranium concentrations in drinking water and urine in 325 persons who had used drilled wells for drinking water. We measured urine and serum concentrations of calcium, phosphate, glucose, albumin, creatinine, and beta-2-microglobulin to evaluate possible renal effects. The median uranium concentration in drinking water was 28 microg/L (interquartile range 6-135, max. 1,920 microg/L) and in urine 13 ng/mmol creatinine (2-75), resulting in the median daily uranium intake of 39 microg (7-224). Uranium concentration in urine was statistically significantly associated with increased fractional excretion of calcium and phosphate. Increase of uranium in urine by 1 microg/mmol creatinine increased fractional excretion of calcium by 1.5% [95% confidence interval (CI), 0.6-2.3], phosphate by 13% (1.4-25), and glucose excretion by 0.7 micromol/min (-0.4-1.8). Uranium concentrations in drinking water and daily intake of uranium were statistically significantly associated with calcium fractional excretion, but not with phosphate or glucose excretion. Uranium exposure was not associated with creatinine clearance or urinary albumin, which reflect glomerular function. In conclusion, uranium exposure is weakly associated with altered proximal tubulus function without a clear threshold, which suggests that even low uranium concentrations in drinking water can cause nephrotoxic effects. Despite chronic intake of water with high uranium concentration, we observed no effect on glomerular function. The clinical and public health relevance of the findings are not easily established, but our results suggest that the safe concentration of uranium in drinking water may be within the range of the proposed guideline values of 2-30 microg/L. PMID:11940450

  1. Health Risk Assessment for Groundwater Resource Used for Drinking Water in Pingtung Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Ching-Ping; Wang, Shen-Wei

    2014-05-01

    Groundwater has been massively used for drinking by local residents due to deficiency in surface water in Pingtung Plain, Taiwan. A long-term survey of groundwater quality revealed that concentrations of water quality items in some of the monitoring wells exceeded the Taiwanese standards for drinking water quality. Water of poor quality can have an adverse health impact. Effective health risk-based groundwater management typically faces great challenges because of the inherent spatial variability in groundwater quality. In this study, we target to spatially analyze the health hazard and risk from consumption of groundwater for drinking. We computed the hazard quotient and health risk using exposure and risk model and hydrochemical data surveyed by Taiwan Water Resource Agency and Environmental Protection Agency. The zone suitable for groundwater used is delineated based on the results of the spatial health risk map. The results of the analysis can help government administrator in managing groundwater used for drinking in Pingtung Plain in Taiwan.

  2. Giardia and Cryptosporidium spp. in filtered drinking water supplies.

    PubMed

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-09-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level. PMID:1768135

  3. Giardia and Cryptosporidium spp. in filtered drinking water supplies.

    PubMed Central

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-01-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level. PMID:1768135

  4. Presence, introduction and removal of mutagenic activity during the preparation of drinking water in the Netherlands.

    PubMed Central

    Kool, H J; van Kreijl, C F; de Greef, E; van Kranen, H J

    1982-01-01

    A survey of the presence of mutagenic activity in drinking water of 18 cities in the Netherlands revealed that in drinking water of 13 cities mutagenic activity could be demonstrated. The activity was detected in the Ames test after concentrating the organic mutagens with a XAD-4/8 procedure. Dose-related responses were observed with concentrates corresponding to 0.5 to 3.0 liters of drinking water. A study of the changes in mutagenic activity during the preparation of drinking water in a few waterworks showed that breakpoint chlorination, transport chlorination and post chlorination increased the mutagenic activity, while ozonation only reduced the activity with metabolic activation. When adsorption on activated carbon powder was used, a certain reduction of mutagenic activity was observed. The use of activated carbon filters, however, removed the activity completely. The majority of organic mutagens present in drinking water concentrates were shown to be nonvolatile and relatively stable and probably consist of compounds with a molecular weight in the order of 200. These mutagens are not identical to the organics identified up till now in drinking water by standard gas chromatography/mass spectrometry analysis. Finally, a group of organic mutagens, which adsorbs only at pH 2-3 on XAD-4/8 (acid fraction), could be demonstrated in Ames-positive drinking waters. PMID:6759109

  5. Drinking Water Contaminants -- Standards and Regulations

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  6. Sustaining Waters: From Hydrology to Drinking Water

    NASA Astrophysics Data System (ADS)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  7. Drinking water quality monitoring using trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control. PMID:24937217

  8. Anencephalus, drinking water, geomagnetism and cosmic radiation.

    PubMed

    Archer, V E

    1979-01-01

    The mortality rates from anencephalus from 1950-1969 in Canadian cities are shown to be strongly correlated with city growth rate and with horizontal geomagnetic flux, which is directly related to the intensity of cosmic radiation. They are also shown to have some association with the magnesium content of drinking water. Prior work with these data which showed associations with magnesium in drinking water, mean income, latitude and longitude was found to be inadequate because it dismissed the observed geographic associations as having little biological meaning, and because the important variables of geomagnetism and city growth rate were overlooked. PMID:433919

  9. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  10. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran

    PubMed Central

    2013-01-01

    Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505

  11. Pesticides in Drinking Water – The Brazilian Monitoring Program

    PubMed Central

    Barbosa, Auria M. C.; Solano, Marize de L. M.; Umbuzeiro, Gisela de A.

    2015-01-01

    Brazil is the world largest pesticide consumer; therefore, it is important to monitor the levels of these chemicals in the water used by population. The Ministry of Health coordinates the National Drinking Water Quality Surveillance Program (Vigiagua) with the objective to monitor water quality. Water quality data are introduced in the program by state and municipal health secretariats using a database called Sisagua (Information System of Water Quality Monitoring). Brazilian drinking water norm (Ordinance 2914/2011 from Ministry of Health) includes 27 pesticide active ingredients that need to be monitored every 6 months. This number represents <10% of current active ingredients approved for use in the country. In this work, we analyzed data compiled in Sisagua database in a qualitative and quantitative way. From 2007 to 2010, approximately 169,000 pesticide analytical results were prepared and evaluated, although approximately 980,000 would be expected if all municipalities registered their analyses. This shows that only 9–17% of municipalities registered their data in Sisagua. In this dataset, we observed non-compliance with the minimum sampling number required by the norm, lack of information about detection and quantification limits, insufficient standardization in expression of results, and several inconsistencies, leading to low credibility of pesticide data provided by the system. Therefore, it is not possible to evaluate exposure of total Brazilian population to pesticides via drinking water using the current national database system Sisagua. Lessons learned from this study could provide insights into the monitoring and reporting of pesticide residues in drinking water worldwide. PMID:26581345

  12. Residential exposure to drinking water arsenic in Inner Mongolia, China

    SciTech Connect

    Ning Zhixiong; Lobdell, Danelle T.; Kwok, Richard K. Liu Zhiyi; Zhang Shiying; Ma Chenglong; Riediker, Michael; Mumford, Judy L.

    2007-08-01

    In the Ba Men region of Inner Mongolia, China, a high prevalence of chronic arsenism has been reported in earlier studies. A survey of the arsenic contamination among wells from groundwater was conducted to better understand the occurrence of arsenic (As) in drinking water. A total of 14,866 wells (30% of all wells in the region) were analyzed for their arsenic-content. Methods used to detect arsenic were Spectrophotometric methods with DCC-Ag (detection limit, 0.5 {mu}g of As/L); Spot method (detection limit, 10 {mu}g of As/L); and air assisted Colorimetry method (detection limit, 20 {mu}g of As/L). Arsenic-concentrations ranged from below limit of detection to 1200 {mu}g of As/L. Elevated concentrations were related to well depth (10 to 29 m), the date the well was built (peaks from 1980-1990), and geographic location (near mountain range). Over 25,900 individuals utilized wells with drinking water arsenic concentrations above 20 {mu}g of As/L (14,500 above 50 {mu}g of As/L-the current China national standard in drinking water and 2198 above 300 {mu}g of As/L). The presented database of arsenic in wells of the Ba Men region provides a useful tool for planning future water explorations when combined with geological information as well as support for designing upcoming epidemiological studies on the effects of arsenic in drinking water for this region.

  13. Fisk-based criteria to support validation of detection methods for drinking water and air.

    SciTech Connect

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  14. Comparative risk analysis of six volatile organic compounds in California drinking water.

    PubMed

    Williams, Pamela; Benton, Laurie; Warmerdam, John; Sheehans, Patrick

    2002-11-15

    The widespread use and storage of volatile organic compounds (VOCs) in the United States has led to releases of these chemicals into the environment, including groundwater sources of drinking water. Many of these VOCs are commonly found in public drinking water supplies across the nation and are considered by state or federal agencies to be potentially carcinogenic to humans. In this paper, we evaluate the detection frequencies, detected concentrations, and relative cancer risks of six VOCs in drinking water sources in California from 1995 to 2001. We find that during this 7-year period, the most frequently detected VOCs in sampled drinking water sources were chloroform (12-14%), PCE (11-13%), and TCE (10-12%). Detection frequencies in water were lower for 1,1-DCE (3-6%), MTBE (1-3%), and benzene (<1%). Mean detected concentrations were also consistently above California's primary maximum contaminant level for some VOCs, including benzene, PCE, and TCE. Although none of the six VOCs necessarily poses a significant public health threat from drinking water exposures, 1,1-DCE and benzene werefound to pose the greatest cancer risk relative to the other VOCs. However, after adjusting for the occurrence of each VOC in drinking water, chloroform and PCE were found to pose the greatest relative cancer risk. Despite media reports about significant MTBE contamination of drinking watersupplies in California, MTBE detections were infrequent and this chemical was found to pose the least cancer risk relative to the other VOCs. PMID:12487291

  15. [100 years of drinking water regulation. Retrospective review, current situation and prospects].

    PubMed

    Rakhmanin, Yu A; Krasovsky, G N; Egorova, N A; Mikhailova, R I

    2014-01-01

    There is considered the history of the development of legislative requirements to the regulation of the quality of drinking water in different countries and international organizations during the period from 1912 to the present time. In terms of comparative analysis there is analyzed the current state of regulatory frameworks of the Russian Federation, WHO, EU, Finland, the UK, Singapore, Australia, Japan, China, Nigeria, the United States and Canada in the field of providing favorable conditions of population drinking water use. There has been noted the significant progress in standardization of the content of the biogenic elements and chemical pollution of drinking water in the absence of uniform requirements to the composition and properties of drinking water globally, that is bound to the need to take into account the national peculiarities of drinking water supply within the separate countries. As promising directions for improving regulation of drinking water quality there are noted: the development of new standards for prioritized water pollution, periodic review ofstandards after appearance of the new scientific data on the biological action of substances, the use of the concept of risk, the harmonization of the normative values and the assessment of the possibility of introduction into the practice the one more criterion of profitableness of population water use--the bioenergetic state of the water. PMID:25051731

  16. Small Drinking Water Systems Research and Development

    EPA Science Inventory

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...

  17. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbes...

  18. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbest...

  19. Compliance Monitoring of Drinking Water Supplies

    ERIC Educational Resources Information Center

    Haukebo, Thomas; Bernius, Jean

    1977-01-01

    The most frequent testing required under the Safe Drinking Water Act of 1974 is for turbidity and coliform. Free chlorine residual testing can be substituted for part of the coliform requirement. Described are chemical procedures for performing this test. References are given. (Author/MA)

  20. DETERMINING THE NUTRIENT STATUS OF DRINKING WATER

    EPA Science Inventory

    The presence of biodegradable organic matter in drinking water can result in biologically unstable water that has been linked to various taste, odor and color problems. hen the implicated bacteria are members of the total coliform group, those occurrences can result if major comp...

  1. EPA’s Drinking Water Treatment Research

    EPA Science Inventory

    Riverbank filtration has been utilized for decades as a pretreatment for waters that will be used for drinking water. A study investigating the occurrence and potential for removal of suspected endocrine disrupting compounds (EDCs) during riverbank filtration at a municipal well...

  2. SAFE DRINKING WATER INFORMATION SYSTEM (STATE)

    EPA Science Inventory

    Resource Purpose:The Safe Drinking Water Information System (STATE) (SDWIS/STATE) is an information system OGWDW is developing for states and EPA regions to manage their water industry. SDWIS/STATE is not an information system for which EPA HQ is using to store or retrie...

  3. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  4. MUTAGENICITY OF DRINKING WATER FOLLOWING DISINFECTION

    EPA Science Inventory

    Many drinking water utilities in the USA are considering alternatives to chlorine for disinfection in order to comply with federal regulations regarding disinfection by-products. An evaluation is thus needed of the potential risks associated with the use of alternative disinfecta...

  5. Microfiltration and Ultrafiltration Membranes for Drinking Water

    EPA Science Inventory

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  6. CONTROL OF ZOONOTIC DISEASES IN DRINKING WATER

    EPA Science Inventory

    For over a century, the process of providing hygienically safe drinking water has focused on utilizing treatment processes to provide barriers to the passage of infectious disease-causing organisms to humans. This concept is often considered the cornerstone of sanitary engineerin...

  7. TREATABILITY DATABASE FOR DRINKING WATER CHEMICALS (CCL)

    EPA Science Inventory

    The Treatability Data Base will assemble referenced data on the control of contaminants in drinking water. It will be an interactive data base, housed in an EPA, web-accessible site. It may be used for many purposes, including: identifying an effective treatment process or a se...

  8. DEFLUORIDATION OF DRINKING WATER IN SMALL COMMUNITIES

    EPA Science Inventory

    The report discusses the results of a study of defluoridation of drinking water in small communities using either central or point-of-use treatment. The ten sites used for project data collection had natural fluoride in their groundwater supplies in excess of the Maximum Contamin...

  9. SMALL DRINKING WATER SYSTEM PEER REVIEW PROGRAM

    EPA Science Inventory

    The United South and Eastern Tribes, Inc., which is made up of twenty-four (24) tribes, ranging in location, geographically, from Maine to Texas, AND three (3) states, Mississippi, Kentucky, and Georgia, participated in a program, "The Small Drinking Water System Peer Review Prog...

  10. UPTAKE OF URANIUM FROM DRINKING WATER

    EPA Science Inventory

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234U and 238U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion, the subjects collected 24 hour ...

  11. Treatment Strategies for Lead in Drinking Water

    EPA Science Inventory

    Lead pipes are capable of lasting hundreds of years. Conservatively, there are over 12 million, still serving drinking water in the US. Probably, this is a substantial underestimate. Leaded solder joining copper pipe abounds. Leaded brasses have dominated the materials used for...

  12. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  13. CHLORINE DIOXIDE FOR DRINKING WATER RESEARCH DIVISION

    EPA Science Inventory

    In order to comply with the trihalomethane regulation, many drinking water utilities have had to alter their treatment methods. ne option available to these utilities is to use a disinfectant other than chlorine such as chlorine dioxide. ith chlorine dioxide disinfection, trihalo...

  14. DRINKING WATER SUPPLY MANAGEMENT: AN INTERACTIVE APPROACH

    EPA Science Inventory

    In February 1977, a massive discharge of carbon tetrachloride into the Kanawha River in West Virginia threatened much of the Ohio River Valley with contaminated drinking water potentially affecting over one million consumers. The episode heightened the awareness of consumers and ...

  15. REMOVAL OF RADIUM FROM DRINKING WATER

    EPA Science Inventory

    This report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water...

  16. REMOVAL OF ALACHLOR FROM DRINKING WATER

    EPA Science Inventory

    Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...

  17. Lead in the School's Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    The purpose of this manual is to assist school officials by providing information on the effects of lead in school drinking water on children, how to detect the presence of lead, how to reduce the lead, and how to provide training for sampling and remedial programs. A protocol is provided for procedures to determine the location and source of lead…

  18. Emerging Contaminants in the Drinking Water Cycle

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-µg/L) in surface, ground and drinking water. The most common...

  19. COST EQUATIONS FOR SMALL DRINKING WATER SYSTEMS

    EPA Science Inventory

    This report presents capital and operation/maintenance cost equations for 33 drinking water treatment processes as applied to small flows (2,500 gpd to 1 mgd). The equations are based on previous cost data development work performed under contract to EPA. These equations provide ...

  20. DRINKING WATER CRITERIA DOCUMENT FOR CHLORAMINES

    EPA Science Inventory

    Critical to establishing a regulatory strategy for drinking water is identifying those contaminants which pose the greatest risk to human health and consequently, what treatments could be developed to address those risks and at what cost. The National Center for Environmental Ass...

  1. Contaminants and drinking-water sources in 2001; recent findings of the U. S. Geological Survey

    USGS Publications Warehouse

    Patterson, G.G.; Focazio, M.J.

    2000-01-01

    As the Nation's principal earth-science agency, the U.S. Geological Survey (USGS) studies numerous issues related to contamination of drinking-water sources. The work includes monitoring to determine the spatial and temporal distribution of contaminants; research to determine sources, transport, transformations, and fate of contaminants, and assessments of vulnerability. Much of the work is conducted in cooperation with the U.S. Environmental Protection Agency and other Federal, State, Tribal, and local governments, to help provide a scientific basis for resource management and regulation. Examples of recent results are presented for two broad categories of drinking-water projects: occurrence studies, and source-water assessments.

  2. A conceptual model to be used for community-based drinking-water improvements.

    PubMed

    Anstiss, Richard G; Ahmed, Mushfique

    2006-09-01

    A conceptual model that can be applied to improve community-based drinking-water in crisis-type situations has been developed from the original general science and technology/development bridging concept and from a case study in Northwest Bangladesh. The main feature of this model is the strengthened role of communities in identifying and implementing appropriate drinking-water improvements with facilitation by multi-disciplinary collaborative regional agency networks. These combined representative community/regional agency networks make decisions and take actions that involve environmental and health data, related capacity factors, and appropriateness of drinking-water improvements. They also progressively link regional decisions and actions together, expanding them nationally and preferably within a sustainable national policy-umbrella. This use of the model reflects stronger community control and input with more appropriate solutions to such drinking-water crisis situations and minimization of risk from potentially-inappropriate 'externally-imposed' processes. The application here is not intended as a generic or complete poverty-alleviation strategy by itself but as a crisis-solving intervention, complementary to existing and developing sustainable national policies and to introduce how key principles and concepts can relate in the wider context. In terms of the Bangladesh arsenic crisis, this translates into community/regional networks in geographic regions making assessments on the appropriateness of their drinking-water configuration. Preferred improvement options are decided and acted upon in a technological framework. Options include: pond-sand filters, rainwater harvesting, dugwell, deep-protected tubewell, and shallow tubewell with treatment devices. Bedding in the regional drinking-water improvement configuration protocols then occurs. This involves establishing ongoing representative monitoring and screening, clear delineation of arsenic

  3. [The hygiene of drinking water after purification in practices and households].

    PubMed

    Sonntag, H G

    1989-04-01

    According to the drinking water regulations which were modified in 1986 drinking water in FRG fulfills high standards. But there are still special needs for an additional processing of drinking water including --disinfection and removal of pyrogenous substances, --water softening, --removal of heavy metals and solvents, --removal of substances of bad taste. Methods actually used for processing of drinking water like disinfection, filtration, UV-treatment, exchange of ions, are described and the hygienic problems in connection with these methods are pointed out. Results of our own studies on water filtration systems and on contaminated water pipe lines in dental units are demonstrated. Our data obtained suggest that additional processing of drinking water should fulfill the following demands: --the need of processing should be confirmed strictly, --the methods used should be controlled according to their propagated effectiveness by independent specialists, --there should be a reasonable relation between operation costs and efficacy of processing system, --there should be no loss of quality of drinking water during processing with the risk of induction of infection or intoxication in man. PMID:2500801

  4. DISINFECTION BY-PRODUCTS IN DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  5. 6 Million Americans Drink Water Tainted with Toxic Chemicals

    MedlinePlus

    ... news/fullstory_160327.html 6 Million Americans Drink Water Tainted With Toxic Chemicals: Report Many systems contain ... unsafe levels of dangerous chemicals in their drinking water that may trigger a host of health problems, ...

  6. CHARACTERIZING TOXICOLOGICALLY IMPORTANT DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  7. An Environmental Assessment of United States Drinking Water Watersheds

    EPA Science Inventory

    There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of drinking water watersheds using data on land cover, hydrography a...

  8. EPA's Drinking Water Treatability Database and Treatment Cost Models

    EPA Science Inventory

    USEPA Drinking Water Treatability Database and Drinking Water Treatment Cost Models are valuable tools for determining the effectiveness and cost of treatment for contaminants of emerging concern. The models will be introduced, explained, and demonstrated.

  9. RESPONDING TO THREATS AND INCIDENTS OF INTENTIONAL DRINKING WATER CONTAMINATION

    EPA Science Inventory

    All drinking water systems have some degree of vulnerability to contamination, and analysis shows that it is possible to contaminate drinking water at levels causing varying degrees of harm. Furthermore, experience indicates that the threat of contamination, overt or circumstant...

  10. ENDOTOXINS, ALGAE AND 'LIMULUS' AMOEBOCYTE LYSATE TEST IN DRINKING WATER

    EPA Science Inventory

    Field and laboratory studies were conducted to determine the distribution of algae and bacteria, and investigate sources of endotoxins (lipopolysaccharides) in drinking water. The field survey was performed on five drinking water systems located in Allegheny County, Pennsylvania ...

  11. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  12. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  13. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  14. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  15. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  16. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  17. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  18. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  19. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  20. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  1. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  2. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  3. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  4. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  5. BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"

    EPA Science Inventory

    Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...

  6. Is there still a problem with lead in drinking water in the European Union?

    PubMed

    Hayes, C R; Skubala, N D

    2009-12-01

    The presence of lead in drinking water poses a range of risks to human health, including the retardation of some aspects of child development, the inducement of abortion, and other clinical disorders. The extent of these risks has not been quantified at the European Union (EU) scale. A number of sampling methods are in use across the EU, some of which are inadequate for determining the concentrations of lead in drinking water at consumers' taps. In consequence, non-compliance with the EU standards for lead in drinking water has been under-estimated. Emerging data indicates significant non-compliance with these standards in some countries, particularly with the 10 microg(-1) standard that will become a legal requirement in 2013; the current interim standard of 25 microg l(-1) is also exceeded in some locations. An initial estimate is that 25% of domestic dwellings in the EU have a lead pipe, either as a connection to the water main, or as part of the internal plumbing, or both, potentially putting 120 million people at risk from lead in drinking water within the EU. These issues are relevant to the implementation of the Protocol on Water and Health and to drinking water safety planning. PMID:19590124

  7. [Isolation of Escherichia vulneris in drinking water].

    PubMed

    Le Querler, L; Donnio, P Y; Poisson, M; Rouzet-Gras, S; Avril, J L

    1997-01-01

    Over a 2-year period, we performed 33 bacteriological controls of drinking water supplied by refrigerated fountains located in a nursing home. Amongst 24 strains of gram-negative bacilli isolated from 16 samples. 10 were identified as belonging to the species Escherichia vulneris. Viable bacterial counts were always less than 10 ufc/100 ml. During the same period no clinical isolate of E. vulneris was recovered from the nursing home. The signification of E. vulneris in drinking water is unknown. However, considering that E. vulneris has been implicated as cause of various infections, its presence in potable water supply systems would seem to be a potential risk factor for severely immunocompromised patients. PMID:9099249

  8. Climate vulnerability of drinking water supplies

    NASA Astrophysics Data System (ADS)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  9. Improving Drinking Water Quality by Remineralisation.

    PubMed

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite. PMID:26680713

  10. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  11. Modelling fate and transport of pesticides in river catchments with drinking water abstractions

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet; Touchant, Kaatje

    2010-05-01

    When drinking water is abstracted from surface water, the presence of pesticides may have a large impact on the purification costs. In order to respect imposed thresholds at points of drinking water abstraction in a river catchment, sustainable pesticide management strategies might be required in certain areas. To improve management strategies, a sound understanding of the emission routes, the transport, the environmental fate and the sources of pesticides is needed. However, pesticide monitoring data on which measures are founded, are generally scarce. Data scarcity hampers the interpretation and the decision making. In such a case, a modelling approach can be very useful as a tool to obtain complementary information. Modelling allows to take into account temporal and spatial variability in both discharges and concentrations. In the Netherlands, the Meuse river is used for drinking water abstraction and the government imposes the European drinking water standard for individual pesticides (0.1 ?g.L-1) for surface waters at points of drinking water abstraction. The reported glyphosate concentrations in the Meuse river frequently exceed the standard and this enhances the request for targeted measures. In this study, a model for the Meuse river was developed to estimate the contribution of influxes at the Dutch-Belgian border on the concentration levels detected at the drinking water intake 250 km downstream and to assess the contribution of the tributaries to the glyphosate loads. The effects of glyphosate decay on environmental fate were considered as well. Our results show that the application of a river model allows to asses fate and transport of pesticides in a catchment in spite of monitoring data scarcity. Furthermore, the model provides insight in the contribution of different sub basins to the pollution level. The modelling results indicate that the effect of local measures to reduce pesticides concentrations in the river at points of drinking water

  12. DRINKING WATER CRITERIA DOCUMENT FOR 2(2,4,5-TRICHLOROPHENOXY)PROPIONIC ACID (2,4,5-TP) (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on 2,4,5-TP. This Criteria Document is an extensive review of the following topics: Physical and chemical properties of 2,4,5-TP; Toxicokinetics and human expo...

  13. USEPA/USGS Study of CECs in Source Water and Treated Drinking Water: Assessment of Estrogenic Activity Using an In Vitro Bioassay, T47D-KBluc.

    EPA Science Inventory

    Scientists from the U.S. Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from up to 50 drinking water trea...

  14. Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SDWA) required EPA to establish a Contaminant Candidate List (CCL), that contains a list of drinking water contaminants that the Agency will consider for future regulation. EPA must make a regulatory determination on a minimum ...

  15. Tainted water on tap: what to tell patients about preventing illness from drinking water.

    PubMed

    Chalupka, Stephanie

    2005-11-01

    Annual cases of waterborne illness in the United States are estimated to number about 900,000, but most experts believe the incidence to be much higher. The U.S. Environmental Protection Agency regulates the nation's drinking water supply, setting maximum allowable levels for 87 known natural and synthetic contaminants; but thousands more go unregulated. This article describes selected contaminants and their known health effects, which range from acute gastroenteritis to cancer and reproductive and developmental effects. It discusses which populations are more vulnerable, outlines assessment, and elucidates nurses' roles in patient education and as community advocates for safer drinking water. PMID:16264302

  16. 40 CFR 799.5075 - Drinking water contaminants subject to testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Drinking water contaminants subject to testing. 799.5075 Section 799.5075 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Multichemical Test...

  17. USEPA'S APPROACH TO THE DEVELOPMENT OF NEW ANALYTICAL METHODS FOR EMERGING CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    The 1996 Amendments to the Safe Drinking Water Act require USEPA to perform Unregulated Contaminant Monitoring (UCM) for chemicals of interest to the Agency for possible future regulation. Many of these chemicals fall into the category of "emerging contaminants". An important e...

  18. Mineralogical and Molecular Microbial Characterization of a Lead Pipe Removed from a Drinking Water Distribution System

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (US EPA) Lead and Copper Rule established an action level for lead of 0.0 15 mg/L in a 1 liter first draw sample at the consumer's tap. Lead corrosion and solubility in drinking water distribution systems are largely controlled by the fo...

  19. 78 FR 36183 - State Allotment Percentages for the Drinking Water State Revolving Fund Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...In this notice, the U.S. Environmental Protection Agency (EPA) is announcing the revised Drinking Water State Revolving Fund (DWSRF) allotments that will be provided to the States, the District of Columbia, Puerto Rico, U.S. Territories, American Indian Tribes and Alaska Native Villages if the President's budget request for Fiscal Year 2014 is enacted. These allotments reflect the results from......

  20. CONTROL OF MICROBIAL CONTAMINANTS AND DISINFECTION BY-PRODUCTS IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is in the process of developing a sophisticated regulatory strategy in an attempt to balance the risks associated with disinfectants and disinfection by-products (D/DBP) in drinking water. A major aspect of this strategy is the...

  1. USEPA'S SMALL DRINKING WATER TREATMENT TECHNOLOGY DEMONSTRATIONS IN ECUADOR AND MEXICO

    EPA Science Inventory

    In order to support and help in the struggle to improve the quality of drinking water in the United States and abroad, the United States Environmental Protection Agency (USEPA) conducts research studies for the demonstration and evaluation of alternative and innovative drinking w...

  2. HALONITROMETHANE DRINKING WATER DISINFECTION BY-PRODUCTS: CHEMICAL CHARACTERIZATION AND MAMMALIAN CELL CYTOTOXICITY AND GENOTOXICITY

    EPA Science Inventory

    Halonitromethanes are drinking water disinfection by-products that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency. Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to deter...

  3. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-products
    Authors & affiliations:
    Narotsky1, M.G. and S. Bielmeier Laffan2.
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  4. 76 FR 8674 - Notice of a Public Meeting: Environmental Justice Considerations for Drinking Water Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...The U.S. Environmental Protection Agency (EPA) is hosting a public meeting to discuss and solicit input on environmental justice considerations related to several upcoming regulatory efforts. These regulatory efforts include the long-term revisions to the Lead and Copper Rule (LCR) and the third Regulatory Determinations from the drinking water Contaminant Candidate List 3. EPA recently......

  5. 40 CFR 194.53 - Consideration of underground sources of drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PILOT PLANT'S COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Individual and Ground-Water Protection Requirements § 194.53 Consideration of underground sources... drinking water. 194.53 Section 194.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  6. SUBACUTE AND SUBCHRONIC TOXICITY OF ETHYLENE GLYCOL ADMINISTERED IN DRINKING WATER TO SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Subacute (10-day) and subchronic (90-day) toxicity studies of ethylene glycol (EG) were conducted in male and female sprague-Dawley rats to provide the U.S. Environmental Protection Agency's (EPA) Office of Drinking Water with toxicity data for final preparation of a Health Advis...

  7. ARSENIC REMOVAL FROM DRINKING WATER BY ACTIVATED ALUMINA AND ANION EXCHANGE TREATMENT

    EPA Science Inventory

    In preparation of the U.S. Environmental Protection Agency (USEPA) revising the arsenic maximum contaminant level (MCL) in the year 2001, a project was initiated to evaluate the performance of nine, full-scale drinking water treatment plants for arsenic removal. Four of these sy...

  8. HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: VI. DEVELOPMENTAL EFFECTS.

    EPA Science Inventory

    HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
    VI. DEVELOPMENTAL EFFECTS

    Richard K. Kwok, M.S.P.H., Judy L. Mumford, Ph.D., Pauline Mendola, Ph.D. Epidemiology and Biomarkers Branch, NHEERL, US Environmental Protection Agency; Yajua...

  9. EXTRACTION AND SPECIATION OF ARSENIC CONTAINING DRINKING WATER TREATMENT SOLIDS BY IC-ICP-MS

    EPA Science Inventory

    In 2001, the U.S. Environmental Protection Agency (EPA) passed the Arsenic Rule, which established a maximum contaminant level of 105g/L. Compliance with this regulation has caused a number of drinking water utilities to investigate potential treatment options. The adsorption o...

  10. 40 CFR 144.7 - Identification of underground sources of drinking water and exempted aquifers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Identification of underground sources of drinking water and exempted aquifers. 144.7 Section 144.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM General Provisions § 144.7 Identification...

  11. Pesticides and their breakdown products in Lake Waxahachie, Texas, and in finished drinking water from the lake

    USGS Publications Warehouse

    Ging, Patricia B.

    2002-01-01

    Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.

  12. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    PubMed

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. PMID:24239814

  13. Adaptive forest management for drinking water protection under climate change

    NASA Astrophysics Data System (ADS)

    Koeck, R.; Hochbichler, E.

    2012-04-01

    Drinking water resources drawn from forested catchment areas are prominent for providing water supply on our planet. Despite the fact that source waters stemming from forested watersheds have generally lower water quality problems than those stemming from agriculturally used watersheds, it has to be guaranteed that the forest stands meet high standards regarding their water protection functionality. For fulfilling these, forest management concepts have to be applied, which are adaptive regarding the specific forest site conditions and also regarding climate change scenarios. In the past century forest management in the alpine area of Austria was mainly based on the cultivation of Norway spruce, by the way neglecting specific forest site conditions, what caused in many cases highly vulnerable mono-species forest stands. The GIS based forest hydrotope model (FoHyM) provides a framework for forest management, which defines the most crucial parameters in a spatial explicit form. FoHyM stratifies the spacious drinking water protection catchments into forest hydrotopes, being operational units for forest management. The primary information layer of FoHyM is the potential natural forest community, which reflects the specific forest site conditions regarding geology, soil types, elevation above sea level, exposition and inclination adequately and hence defines the specific forest hydrotopes. For each forest hydrotope, the adequate tree species composition and forest stand structure for drinking water protection functionality was deduced, based on the plant-sociological information base provided by FoHyM. The most important overall purpose for the related elaboration of adaptive forest management concepts and measures was the improvement of forest stand stability, which can be seen as the crucial parameter for drinking water protection. Only stable forest stands can protect the fragile soil and humus layers and hence prevent erosion process which could endanger the water

  14. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    NASA Astrophysics Data System (ADS)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  15. APPLICATION OF MODIFIED ALUMINUM AND GFASS METHODS TO BERYLLIUM DETERMINATION IN DRINKING WATER

    EPA Science Inventory

    On July 25, 1990, the USEPA proposed to establish a drinking water standard for beryllium of 1.0 ug/L. he proposed standard will require water utilities to demonstrate compliance through a set of monitoring requirements. he EPA has recommended three analytical techniques that can...

  16. Drinking Water Supplies: Protection Through Watershed Management

    NASA Astrophysics Data System (ADS)

    Page, G. William

    1984-04-01

    The practice of purchasing land to protect surface water supply sources is rarely practical today. This is particularly true near urban areas. Therefore, Drinking Water Supplies attempts to provide an action-oriented guidebook on how to develop and implement watershed management strategies to protect surface water supplies from contamination under the constraints of today's economic, legal, institutional, and political conditions. The book succeeds in providing a very clear and useful guide to the process of developing such a strategy. It should be helpful to small and moderate-sized water supply systems and local governments interested in taking action to protect their surface water supply sources.

  17. Viable but nonculturable bacteria in drinking water.

    PubMed Central

    Byrd, J J; Xu, H S; Colwell, R R

    1991-01-01

    Klebsiella pneumoniae, Enterobacter aerogenes, Agrobacterium tumefaciens, Streptococcus faecalis, Micrococcus flavus, Bacillus subtilis, and Pseudomonas strains L2 and 719 were tested for the ability to grow and maintain viability in drinking water. Microcosms were employed in the study to monitor growth and survival by plate counts, acridine orange direct counts (AODC), and direct viable counts (DVC). Plate counts dropped below the detection limit within 7 days for all strains except those of Bacillus and Pseudomonas. In all cases, the AODC did not change. The DVC also did not change except that the DVC, on average, were ca. 10-fold lower than the AODC. PMID:2039237

  18. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and

  19. [Survey on children's dental fluorosis and fluoride content in urine after defluridation to improve drinking water].

    PubMed

    Wu, J; Zhang, J; Chen, Z; Du, G

    2000-07-01

    The authors surveyed the dental fluorosis and fluoride content in urine of 8-12 years old children's in 1993 to 1999 for the evaluation of the efficiency to prevent endemic fluorosis after defluoridation to change drinking water source in Guangdong Province. Three villages: slight fluorosis area in Dazhai village, middle fluorosis area in Hupi village and severe fluorosis area in Anquan village in Fengshun County were surveyed. The results showed that the fluoride contents in drinking water were 1 mg/L (or less) in Anquan village, at the same time the prevalence of dental fluorosis and indexes of dental fluorosis were decreasing as changing water time. Fluoride contents in urine were normal. But in other two villages, the fluoride contents in drinking water exceeded 1 mg/L, therefore the children's prevalence rates and indexes of dental fluorosis were higher than the national standards. It is important to keep fluoride contents in drinking water under 1 mg/L for preventing endemic fluorosis by defluoridation to improve drinking water. PMID:12520923

  20. Occurrence and risk assessment of selected phthalates in drinking water from waterworks in China.

    PubMed

    Liu, Xiaowei; Shi, Jianghong; Bo, Ting; Li, Huiyuan; Crittenden, John C

    2015-07-01

    The first nationwide survey of six phthalates (diethyl phthalate (DEP); dimethyl phthalate (DMP); di-n-butyl phthalate (DBP); butyl benzyl phthalate (BBP); bis(2-ethylhexyl) phthalate (DEHP); din-octyl phthalate (DnOP)) in drinking waters from waterworks was conducted across seven geographical zones in China. Of the six target phthalates, DBP and DEHP were the highest abundant phthalates with median (± interquartile range) values of 0.18 ± 0.47 and 0.18 ± 0.97 μg/L, respectively, but did not exceed the limit values in China's Standards for Drinking Water Quality. These phthalates in drinking water were generally higher in the northern regions of China than those in the southern and eastern regions. Based on the investigated concentrations, lifetime exposure risk assessment indicated that phthalates in drinking water did not pose carcinogenic and noncarcinogenic risks to Chinese residents, even under the conservative scenario (with 95th percentile risk). In addition, we found that DEHP contributed the greatest risk to the total exposure risk of all the selected phthalates and oral ingestion was the main exposure route for phthalates in drinking water. PMID:25752631

  1. Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state

    NASA Astrophysics Data System (ADS)

    Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba

    2016-07-01

    Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.

  2. Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid.

    PubMed

    Alpmann, Alexander; Morlock, Gertrud

    2008-01-01

    On the basis of a novel derivatization, a new planar chromatographic method has been developed for the determination of acrylamide (AA) in drinking water at the ultra-trace level. After SPE, the water extracts were oversprayed on a high-performance thin-layer chromatography (HPTLC) silica gel plate with the derivatization agent dansulfinic acid and derivatized in situ. Chromatography was performed with ethyl acetate and the fluorescent product was quantified at 366/>400 nm. Verification was based on HPTLC-ESI/MS, HPTLC-direct analysis in real-time (DART)-TOF/MS and NMR. The routine HPTLC-fluorescence detection (FLD) method was validated for spiked drinking water. The regression analysis was linear (r >0.9918) in the range of 0.1-0.4 microg/L. LOD was calculated to be 0.025 microg/L and experimentally proved for spiked samples at levels down to 0.05 microg/L (S/N = 6) which was suited for monitoring the EU limit value of 0.1 microg/L in drinking water (0.5 microg/L demanded by World Health Organization (WHO)/US Environmental Protection Agency (EPA)). Within-run precision and the mean between-run precision (RSD, n = 3, three concentration levels each) were evaluated to be 4.8 and 11.0%, respectively. The mean recovery (0.1, 0.2, and 0.3 microg/L) was 96% corrected by the internal standard. The method, in comparison with HPLC-MS/MS showed comparable results and demonstrated the accuracy of the method. PMID:18058860

  3. A prospective study of rural drinking water quality and acute gastrointestinal illness

    PubMed Central

    Strauss, Barbara; King, Will; Ley, Arthur; Hoey, John R

    2001-01-01

    Background This study examined the relationship between the bacteriological contamination of drinking water from private wells and acute gastrointestinal illness (AGII), using current government standards for safe drinking water. Methods A prospective cohort study was conducted using 235 households (647 individuals) randomly selected from four rural hamlets. Data were collected by means of a self-administered questionnaire, a self-report diary of symptoms and two drinking water samples. Results Twenty percent of households sampled, had indicator bacteria (total coliform or Escherichia coli (E. coli)) above the current Canadian and United States standards for safe drinking water. No statistically significant associations between indicator bacteria and AGII were observed. The odds ratio (OR) for individuals exposed to E. coli above the current standards was 1.52 (95% confidence interval (CI), 0.33–6.92), compared to individuals with levels below current standards. The odds ratio estimate for individuals exposed to total coliforms above the current standards was 0.39 (95% CI, 0.10–1.50). Conclusions This study observed a high prevalence of bacteriological contamination of private wells in the rural hamlets studied. Individual exposure to contaminated water defined by current standards may be associated with an increased risk of AGII. PMID:11580869

  4. VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States

    USGS Publications Warehouse

    Squillace, P.J.; Scott, J.C.; Moran, M.J.; Nolan, B.T.; Kolpin, D.W.

    2002-01-01

    Samples of untreated groundwater from 1255 domestic drinking-water wells and 242 public supply wells were analyzed as part of the National Water-Quality Assessment Program of the U.S. Geological Survey between 1992 and 1999. Wells were sampled to define the regional quality of the groundwater resource and, thus, were distributed geographically across large aquifers, primarily in rural areas. For each sample, as many as 60 volatile organic compounds (VOCs), 83 pesticides, and nitrate were analyzed. On the basis of previous studies, nitrate concentrations as nitrogen ≥3 mg/L were considered to have an anthropogenic origin. VOCs were detected more frequently (44%) than pesticides (38%) or anthropogenic nitrate (28%). Seventy percent of the samples contained at least one VOC, pesticide, or anthropogenic nitrate; 47% contained at least two compounds; and 33% contained at least three compounds. The combined concentrations of VOCs and pesticides ranged from about 0.001 to 100 μg/L, with a median of 0.02 μg/L. Water from about 12% of the wells contained one or more compounds that exceeded U.S. Environmental Protection Agency drinking-water standards or human health criteria, primarily because of nitrate concentrations exceeding the maximum contaminant level in domestic wells. A mixture is defined as a unique combination of two or more particular compounds, regardless of the presence of other compounds that may occur in the same sample. There were 100 mixtures (significantly associated with agricultural land use) that had a detection frequency between 2% and 19%. There were 302 mixtures (significantly associated with urban land use) that had a detection frequency between 1% and <2%. Only 14 compounds (seven VOCs, six pesticides, and nitrate) contributed over 95% of the detections in these 402 mixtures; however, most samples with these mixtures also contain a variety of other compounds.

  5. Harmful algal blooms: a case study in two mesotrophic drinking water supply reservoirs in South Carolina

    USGS Publications Warehouse

    Journey, Celeste A.; Beaulieu, Karen M.; Knight, Rodney R.; Graham, Jennifer L.; Arrington, Jane M.; West, Rebecca; Westcott, John; Bradley, Paul M.

    2010-01-01

    Algal blooms can be harmful and a nuisance in a variety of aquatic ecosystems, including reservoirs and lakes. Cyanobacterial(blue-green algae) harmful algal blooms are notorious for producing both taste-and-odor compounds and potent toxins that may affect human health. Taste–and-odor episodes are aesthetic problems often caused by cyanobacterial-produced organic compounds (geosmin and methylisoborneol) and are common in reservoirs and lakes used as source water supplies. The occurrences of these taste-and-odor compounds and toxins (like microcystin) can be sporadic and vary in intensity both spatially and temporally. Recent publications by the U.S. Geological Survey address this complexity and provide protocols for cyanotoxin and taste-and-odor sampling programs. A case study conducted by the U.S. Geological Survey, in cooperation with Spartanburg Water, monitored two mesotrophic reservoirs that serve as public drinking water supplies in South Carolina. Study objectives were (1) to identify spatial and temporal occurrence of the taste-and-odor compound geosmin and the cyanotoxin microcystin and (2) to assess the associated limnological conditions before, during, and after these occurrences. Temporal and spatial occurrence of geosmin and microcystin were highly variable from 2007 to 2009. The highest geosmin concentrations tended to occur in the spring. Microcystin tended to occur in the late summer and early fall, but occurrence was rare and well below World Health Organization guidelines for finished drinking water and recreational activities. No current U.S. Environmental Protection Agency standards are applicable to cyanotoxins in drinking or ambient water. In general, elevated geosmin and microcystin concentrations were the result of complex interactions between cyanobacterial ⬚community composition, nutrient availability, water clarity, hydraulic residence time, and stratification.

  6. DRINKING WATER AND CANCER INCIDENCE IN IOWA. 2. RADIOACTIVITY IN DRINKING WATER

    EPA Science Inventory

    This paper presents a logical epidemiologic exploration into possible associations between exposures to radium-226 in drinking water and incidence rates for cancers of the bladder, breast, colon, lung, prostate, and rectum. The most striking finding is the increasing gradient of ...

  7. Arsenic in drinking water and pregnancy outcomes.

    PubMed Central

    Ahmad, S A; Sayed, M H; Barua, S; Khan, M H; Faruquee, M H; Jalil, A; Hadi, S A; Talukder, H K

    2001-01-01

    We studied a group of women of reproductive age (15-49 years) who were chronically exposed to arsenic through drinking water to identify the pregnancy outcomes in terms of live birth, stillbirth, spontaneous abortion, and preterm birth. We compared pregnancy outcomes of exposed respondents with pregnancy outcomes of women of reproductive age (15-49 years) who were not exposed to arsenic-contaminated water. In a cross-sectional study, we matched the women in both exposed and nonexposed groups for age, socioeconomic status, education, and age at marriage. The total sample size was 192, with 96 women in each group (i.e., exposed and nonexposed). Of the respondents in the exposed group, 98% had been drinking water containing [Greater and equal to] 0.10 mg/L arsenic and 43.8% had been drinking arsenic-contaminated water for 5-10 years. Skin manifestation due to chronic arsenic exposure was present in 22.9% of the respondents. Adverse pregnancy outcomes in terms of spontaneous abortion, stillbirth, and preterm birth rates were significantly higher in the exposed group than those in the nonexposed group (p = 0.008, p = 0.046, and p = 0.018, respectively). PMID:11445518

  8. Future Challenges to Protecting Public Health from Drinking-Water Contaminants

    PubMed Central

    Murphy, Eileen A.; Post, Gloria B.; Buckley, Brian T.; Lippincott, Robert L.; Robson, Mark G.

    2014-01-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation. PMID:22224887

  9. Future challenges to protecting public health from drinking-water contaminants.

    PubMed

    Murphy, Eileen A; Post, Gloria B; Buckley, Brian T; Lippincott, Robert L; Robson, Mark G

    2012-04-01

    Over the past several decades, human health protection for chemical contaminants in drinking water has been accomplished by development of chemical-specific standards. This approach alone is not feasible to address current issues of the occurrence of multiple contaminants in drinking water, some of which have little health effects information, and water scarcity. In this article, we describe the current chemical-specific paradigm for regulating chemicals in drinking water and discuss some potential additional approaches currently being explored to focus more on sustaining quality water for specific purposes. Also discussed are strategies being explored by the federal government to screen more efficiently the toxicity of large numbers of chemicals to prioritize further intensive testing. Water reuse and water treatment are described as sustainable measures for managing water resources for potable uses as well as other uses such as irrigation. PMID:22224887

  10. The urgent need for environmental sanitation and a safe drinking water supply in Mbandjock, Cameroon.

    PubMed

    Tchounwou, P B; Lantum, D M; Monkiedje, A; Takougang, I; Barbazan, P

    1997-07-01

    Studies were conducted to assess the physical, chemical, and bacteriological qualities of drinking water in Mbandjock, Cameroon. Study results indicated that the vast majority of drinking water sources possessed acceptable physical and chemical qualities, according to the World Health Organization standards. However, microbiological analyses revealed that only the waters treated by the Cameroon National Water Company (SNEC) and the Sugar Processing Company (SOSUCAM) were acceptable for human consumption. All spring and well waters presented evidences of fecal contamination from human and/or animal origin. Water from these sources should, therefore, be treated before use for drinking. Since the majority of the population gets its water from wells and springs, there is an urgent need to develop a health education program, within the framework of primary health care, with respect to environmental sanitation and safe drinking water supply in this community. PMID:9216865

  11. Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide--implications for compliance with the Australian drinking water guidelines.

    PubMed

    Orr, Philip T; Jones, Gary J; Hamilton, Geoffrey R

    2004-12-01

    In a laboratory-scale trial, we studied the removal of saxitoxins from water by ozone, granular activated carbon (GAC) and H(2)O(2), and considered the implications of residual toxicity for compliance with the Australian drinking water standards. Cell-free extracts of Anabaena circinalis were added to raw, untreated drinking water obtained from a water supply reservoir to provide a toxicity of 30 microg (STX equivalents)l(-1). Ozone alone, or in combination with H(2)O(2), failed to destroy the highly toxic STX and GTX-2/3, and only partially destroyed dc-STX, and the low-toxicity C-toxins and GTX-5. In all cases, the toxicity of the water was reduced by less than 10%. GAC removed all of the STX, dc-STX and GTXs, but only partially removed the C-toxins. However, the residual toxicity was reduced to the suggested Australian drinking water guideline concentration of 3 microg (STX equivalents)l(-1) without O(3) pre-treatment. Modelling the spontaneous chemical degradation of residual C-toxins following treatment shows that residual toxicity could increase to 10 microgl(-1) after 11 d due to formation of dc-GTXs and would then gradually decay. In all, residual toxicity would exceed the Australian drinking water guideline concentration for a total of 50 d. PMID:15556220

  12. ASBESTOS IN DRINKING WATER AND CANCER INCIDENCE IN THE SAN FRANCISCO BAY AREA

    EPA Science Inventory

    Age-adjusted, sex- and race-specific 1969-1971 cancer incidence ratios for the 722 census tracts of the San Francisco-Oakland Standard Metropolitan Statistical Area were compared with measured chrysotile asbestos counts in tract drinking waters. The water supplies serving the are...

  13. EVALUATION OF A FIELD TEST KIT FOR MONITORING LEAD IN DRINKING WATER.

    EPA Science Inventory

    This article describes a conceptual framework for designing evaluation studies of test kits for the analysis of significant drinking water constituents. A commercial test kit for the analysis of lead in tap waters was evaluated and compared with a standard graphite furnace atomic...

  14. 40 CFR 144.82 - What must I do to protect underground sources of drinking water?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements in 40 CFR parts 144 through 147, and you must comply with any other measures required by your... contaminant may cause a violation of the primary drinking water standards under 40 CFR part 141, other health... in 40 CFR parts 144 through 147. While most of the relevant requirements are repeated or...

  15. HETEROTROPHIC PLATE COUNT BACTERIA - WHAT IS THEIR SIGNIFICANCE IN DRINKING WATER?

    EPA Science Inventory

    The possible health significance of heterotrophic plate count (HPC) bacteria, also know in earlier terminology as standard plate count (SPC) bacteria, in drinking water has been debated for decades. While the literature documents the universal occurrence of HPC bacteria in soil, ...

  16. Serogroups of Escherichia coli from drinking water.

    PubMed

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently. PMID:17057960

  17. Can biosensors help to protect drinking water?

    PubMed

    Evans, G P; Briers, M G; Rawson, D M

    1986-01-01

    A large proportion of drinking water is abstracted for treatment from lowland rivers--about 30% in the UK--and this water is at particular risk from sudden and poisonous industrial or agricultural pollution. To cover the range of potential pollutants it may be possible to use biosensors as broadband monitors for toxins. The underlying assumption is that some biological processes, when challenged with a toxin, will be affected in a way analogous to that of man, and that therefore on-line scrutiny of such processes will provide early warning of substances liable to be detrimental to human health. Suitable processes for study might involve multi-cellular organisms, whole cells or enzymes. To date, most practical work has concentrated on fish, but enzymes and single cells hold out the promise of quicker response and, possibly, easier maintenance. PMID:3619957

  18. The case for re-evaluating the upper limit value for selenium in drinking water in Europe.

    PubMed

    Barron, E; Migeot, V; Rabouan, S; Potin-Gautier, M; Séby, F; Hartemann, P; Lévi, Y; Legube, B

    2009-12-01

    Selenium is an essential trace element for life, which can be toxic for humans when intakes reach a certain amount. Therefore, since the margin between healthy intake and toxic intake is narrow, the selenium concentration of tap water is a parameter that must be monitored because of its potential for increased intake. The present work gives an overview of the different approaches used to calculate safe limits for selenium. As recommended by WHO, the guidelines for drinking water form the basis of national legislated standards for drinking water. Before setting a maximum acceptable level in drinking water, it is necessary to take into account the total intake of selenium in both food and beverage. The limit value of 10 microg l(-1) for drinking water laid down in the European regulations for all countries should be adapted depending on geographic area, as previously recommended by WHO. PMID:19590130

  19. [Health Risk Assessment of Drinking Water Quality in Tianjin Based on GIS].

    PubMed

    Fu, Gang; Zeng, Qiang; Zhao, Liang; Zhang, Yue; Feng, Bao-jia; Wang, Rui; Zhang, Lei; Wang, Yang; Hou, Chang-chun

    2015-12-01

    This study intends to assess the potential health hazards of drinking water quality and explore the application of geographic information system( GIS) in drinking water safety in Tianjin. Eight hundred and fifty water samples from 401 sampling points in Tianjin were measured according to the national drinking water standards. The risk assessment was conducted using the environmental health risk assessment model recommended by US EAP, and GIS was combined to explore the information visualization and risk factors simultaneously. The results showed that the health risks of carcinogens, non-carcinogens were 3.83 x 10⁻⁵, 5.62 x 10⁻⁹ and 3.83 x 10⁻⁵ for total health risk respectively. The rank of health risk was carcinogen > non-carcinogen. The rank of carcinogens health risk was urban > new area > rural area, chromium (VI) > cadmium > arsenic > trichlormethane > carbon tetrachloride. The rank of non-carcinogens health risk was rural area > new area > urban, fluoride > cyanide > lead > nitrate. The total health risk level of drinking water in Tianjin was lower than that of ICRP recommended level (5.0 x 10⁻⁵), while was between US EPA recommended level (1.0 x 10⁻⁴-1.0 x 10⁻⁶). It was at an acceptable level and would not cause obvious health hazards. The main health risks of drinking water came from carcinogens. More attentions should be paid to chromium (VI) for carcinogens and fluoride for non-carcinogens. GIS can accomplish information visualization of drinking water risk assessment and further explore of risk factors. PMID:27011993

  20. Development and Multi-laboratory Verification of U.S. EPA Method 540 for the Analysis of Drinking Water Contaminants by Solid Phase Extraction-LC/MS/MS

    EPA Science Inventory

    A drinking water method for 12 chemicals, predominately pesticides, is presented that addresses the occurrence monitoring needs of the U.S. Environmental Protection Agency (EPA) for a future Unregulated Contaminant Monitoring Regulation (UCMR). The method employs solid phase ext...

  1. Fluoride in drinking water and dental fluorosis.

    PubMed

    Mandinic, Zoran; Curcic, Marijana; Antonijevic, Biljana; Carevic, Momir; Mandic, Jelena; Djukic-Cosic, Danijela; Lekic, Charles P

    2010-08-01

    In this study we determined the fluoride content in drinking water and hair of 12-year-old schoolchildren from different Serbian municipalities, i.e. Valjevo, Veliko Gradiste, Kacarevo and Vranjska Banja. The analyses were performed using composite fluoride ion-selective electrode. Average fluoride levels were 0.10, 0.15, 0.79 and 11 ppm in well water, 0.07, 0.10, 0.17 and 0.15 ppm in tap water, 19.3, 21.5, 25.4, and 32.5 ppm in hair samples, in Valjevo, Veliko Gradiste, Kacarevo and Vranjska Banja, respectively. Correlation analysis indicated statistically significant positive relationship between fluoride in wells water and fluoride in hair, for all municipalities: correlation coefficients were 0.54 (p < 0.05), 0.89, 0.97 and 0.99 (p < 0.001), in Vranjska Banja, Valjevo, Veliko Gradiste, and Kacarevo, respectively. Positive correlation was obtained also between fluoride in tap water and hair samples in all regions under the study, with statistical significance only in Valjevo municipality, p < 0.05. Dental examination of schoolchildren confirmed dental fluorosis only in the region of Vranjska Banja. Moreover, in endemic fluorotic region of Vranjska Banja, positive and statistically significant correlations were confirmed between fluoride in well water and dental fluorosis level (r = 0.61; p < 0.01) and additionally between fluoride in hair and dental fluorosis level (0.62; p < 0.01). The primary findings from this study have shown that fluoride content in hair is highly correlated with fluoride content in drinking water and dental fluorosis level, indicating that hair may be regarded as biomaterial of high informative potential in evaluating prolonged exposure to fluorides and to individuate children at risk of fluorosis regardless of the phase of teeth eruption. PMID:20580811

  2. Drinking water incidents due to chemical contamination in England and Wales, 2006-2008.

    PubMed

    Paranthaman, Karthikeyan; Harrison, Henrietta

    2010-12-01

    Contamination of drinking water by microbiological and chemical agents can lead to adverse health effects. In England and Wales, the Chemicals Hazards and Poisons Division (CHaPD) of the Health Protection Agency provides expert advice on the consequences to public health of chemical contamination incidents affecting drinking water. In this study, we extracted data from the National Database on the type and nature of drinking water contamination events reported to the CHaPD between 2006 and 2008. Eighty-two incidents with confirmed chemical contamination were identified. Among the 70 incidents where data was available, 40% (28/70) of incidents related to contamination of drinking water provided by private suppliers, 31% (22/70) were due to contamination occurring close to the point of consumption (i.e. near consumer) and 29% (20/70) related to incidents where public water supplies were identified as the contaminated source. For the majority of incidents, little or no information was available on the critical exposure variables such as duration of contamination and actual or estimates of the population affected. Reassuringly, the levels of exposure in most incidents were considered unlikely to cause serious immediate or long term ill health effects. Recording of exposure data for reported contamination incidents needs to be improved. PMID:20705984

  3. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. PMID:25622134

  4. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.

    PubMed

    Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie

    2015-05-01

    Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. PMID:25676921

  5. NEUROXOTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection byproducts (DBPs). Dibromoacetic acid (DBA) is one of many DBPs produced by the chlorination of drinking water. Its chlorinated analog, ...

  6. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  7. DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY

    EPA Science Inventory

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...

  8. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  9. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  10. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  11. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  12. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  13. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  14. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  15. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  16. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  17. SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE

    EPA Science Inventory

    Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...

  18. RESEARCH AND GUIDANCE ON DRINKING WATER CONTAMINANT MIXTURES

    EPA Science Inventory

    Accurate assessment of potential human health risk(s) from multiple-route exposures to multiple chemicals in drinking water is needed because of widespread daily exposure to this complex mixture. Hundreds of chemicals have been identified in drinking water with the mix of chemic...

  19. The Next Generation of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended healt...

  20. U.S. DRINKING WATER REGULATIONS: TREATMENT TECHNOLOGIES AND COST.

    EPA Science Inventory

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the U.S. drinking water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of th...

  1. ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...

  2. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  3. Studies on Disinfection By-Products and Drinking Water

    USGS Publications Warehouse

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  4. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  5. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  6. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  7. Safety on Tap: A Citizen's Drinking Water Handbook.

    ERIC Educational Resources Information Center

    Loveland, David Gray; Reichheld, Beth

    This citizen's guide to ensuring a safe supply of drinking water for all provides the information and analysis that individuals need to understand the issues and to participate in local decision making. The sources of drinking water, the types of human activities that results in contamination, and the contaminants that are of most concern are…

  8. Visions of the Future in Drinking Water Microbiology.

    EPA Science Inventory

    Drinking water microbiology will have a tremendous impact on defining a safe drinking water in the future. There will be breakthroughs in realtime testing of process waters for pathogen surrogates with results made available within 1 hour for application to treatment adjustments ...

  9. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  10. Why Drinking Water Is the Way to Go

    MedlinePlus

    ... Here's Help White House Lunch Recipes Why Drinking Water Is the Way to Go KidsHealth > For Kids > Why Drinking Water Is the Way to Go Print A A ... have in common? Give up? You all need water. All living things must have water to survive, ...

  11. SEMINAR PUBLICATION: CONTROL OF LEAD AND COPPER IN DRINKING WATER

    EPA Science Inventory

    This publication presents subjects relating to the control of lead and copper in drinking water systems. t is of interest to system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment te...

  12. IDENTIFICATION OF NEW BROMINATED ACIDS IN DRINKING WATER

    EPA Science Inventory

    Since chloroform was identified as the first disinfection by-product (DBP) in drinking water, there has been more than 25 years of research on DBPs. Despite these efforts, more than 50% of the total organic halide (TOX) formed in chlorinated drinking water remains unknown. Ther...

  13. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  14. EJ SMALL GRANT: SAFE DRINKING WATER FOR LOW INCOME COMMUNITIES

    EPA Science Inventory

    Legal Aid Services of Oregon (LASO) has determined that both EPA Region 10 and the Oregon Health Division have identified regulatory defects in the Safe Drinking Water Act with respect to migrant farmworker drinking water sources. Lack of mandatory testing, lack of enforcement a...

  15. MANAGEMENT OF POINT-OF-USE DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    One alternative solution to drinking water contamination problems which has received more attention in recent years is treatment of contaminated water at the home, or point-of-use. While point-of-use treatment may provide a cost effective solution to drinking water contamination,...

  16. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  17. Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India.

    PubMed

    Hussain, Ikbal; Arif, Mohd; Hussain, Jakir

    2012-08-01

    Fluoride concentration in groundwater sources used as major drinking water source in rural area of block Nawa (Nagaur District), Rajasthan was examined and the toxic effects by intake of excess fluoride on rural habitants were studied. In block 13, habitations (30%) were found to have fluoride concentration more than 1.5 mg/l (viz. maximum desirable limit of Indian drinking water standards IS 10500, 1999). In five habitations (11%), fluoride concentration in groundwater is at toxic level (viz. above 3.0 mg/l). The maximum fluoride concentration in the block is 5.91 mg/l from Sirsi village. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by World Health Organization or by Bureau of Indian Standards, the groundwater of about 13 habitations of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water, several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. There is an instant need to take ameliorative steps in this region to prevent the population from fluorosis. Groundwater sources of block Nawa can be used for drinking after an effective treatment in absence of other safe source. The evaluation of various defluoridation methods on the basis of social and economical structure of India reveals that the clay pot chip, activated alumina adsorption, and Nalgonda techniques are the most promising. PMID:21931948

  18. 21 CFR 900.22 - Standards for certification agencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Standards for certification agencies. 900.22 Section 900.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MAMMOGRAPHY QUALITY STANDARDS ACT MAMMOGRAPHY States as Certifiers § 900.22 Standards for certification agencies. The certification...

  19. Evaluation of minerals content of drinking water in Malaysia.

    PubMed

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  20. Case study of complaints on drinking water quality: relationship to copper content?

    PubMed

    Pizarro, Fernando; Araya, Magdalena; Vásquez, Marcela; Lagos, Gustavo; Olivares, Manuel; Méndez, Marco A; Leyton, Bárbara; Reyes, Arturo; Letelier, Victoria; Uauy, Ricardo

    2007-05-01

    Several families of Talca city, Chile complained to health authorities for what they attributed to consumption of copper (Cu)-contaminated drinking water. We assessed the situation 6-12 mo after the initiation of complaints by characterizing the symptoms reported, the chemistry of drinking water, and the Cu concentration in stagnant drinking water. After completing a census, 1778 households accepted participation and were categorized as follows: category 1, Cu plumbing for tap water and dwellers reporting health complaints (HC); category 2, Cu plumbing for tap water and dwellers reporting no HC; category 3, plastic plumbing for tap water and dwellers reporting no HC. Questionnaires recorded characteristics of households and symptoms presented by each member of the family in the last 3 mo. The Cu concentration in drinking water was measured in a subsample of 80 homes with Cu pipes. In category 1, participants presented significantly more abdominal pain, diarrhea, and/or vomiting (gastrointestinal [GI] symptoms) in comparison to category 3 and to categories 2 plus 3. The stagnant Cu concentrations measured in drinking water in all houses studied were below the US Environmental Protection Agency guideline value (<1.3 mg Cu/L). In summary, data obtained by interviews suggested that individuals in some areas of Talca city were suffering more GI symptoms potentially related to Cu excess, but measurement of Cu concentration in stagnant tap waters ruled out the association between Cu exposure and GI symptom reports at the time of this study. The dose-response curves for GI symptoms and Cu exposure now available were crucial in the analyses of results. PMID:17646683

  1. Environmental health sciences center task force review on halogenated organics in drinking water

    PubMed Central

    Deinzer, M.; Schaumburg, F.; Klein, E.

    1978-01-01

    The disinfection of drinking water by chlorination has in recent years come under closer scrutiny because of the potential hazards associated with the production of stable chlorinated organic chemicals. Organic chemical contaminants are common to all water supplies and it is now well-established that chlorinated by-products are obtained under conditions of disinfection, or during tertiary treatment of sewage whose products can ultimately find their way into drinking water supplies. Naturally occurring humic substances which are invariably present in drinking waters are probably the source of chloroform and other halogenated methanes, and chloroform has shown up in every water supply investigated thus far. The Environmental Protection Agency is charged with the responsibility of assessing the public health effects resulting from the consumption of contaminated drinking water. It has specifically undertaken the task of determining whether organic contaminants or their chlorinated derivatives have a special impact, and if so, what alternatives there are to protect the consumer against bacterial and viral diseases that are transmitted through infected drinking waters. The impetus to look at these chemicals is not entirely without some prima facie evidence of potential trouble. Epidemiological studies suggested a higher incidence of cancer along the lower Mississippi River where the contamination from organic chemicals is particularly high. The conclusions from these studies have, to be sure, not gone unchallenged. The task of assessing the effects of chemicals in the drinking water is a difficult one. It includes many variables, including differences in water supplies and the temporal relationship between contamination and consumption of the finished product. It must also take into account the relative importance of the effects from these chemicals in comparison to those from occupational exposure, ingestion of contaminated foods, inhalation of polluted air, and many

  2. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    USGS Publications Warehouse

    Smith, Kirk P.

    2007-01-01

    station 01104455) were generally higher than the medians of the monthly mean specific conductances for the period of record. The annual mean specific conductance for Fresh Pond Reservoir increased from 514 microsiemens per centimeter (?S/cm) in the 2004 water year to 553 ?S/cm for the 2005 water year. Water samples were collected from four tributaries during base-flow and stormflow conditions in December 2004, and July, August, and September 2005 and analyzed for suspended sediment, 6 major dissolved ions, total nitrogen, total phosphorus, 8 total metals, 18 polyaromatic hydrocarbons (PAHs), 61 pesticides and metabolites, and Escherichia coli bacteria. Concentrations for most dissolved constituents in samples of stormwater were generally lower than the concentrations observed in samples collected during base flow; however, concentrations of total phosphorus, PAHs, suspended sediment, and some total recoverable metals were substantially greater in stormwater samples. Concentrations of dissolved chloride and total recoverable manganese in water samples collected during base-flow conditions from three tributaries exceeded the U.S. Environmental Protection Agency (USEPA) secondary drinking water standards of 250 and 0.05 milligrams per liter (mg/L), respectively. Concentrations of total recoverable manganese exceeded the secondary drinking water standard in samples of stormwater from each tributary. Concentrations of total recoverable iron in water samples exceeded the (USEPA) secondary drinking water standard of 0.3 mg/L periodically in water samples collected at (USEPA) stations 01104415, 01104455, and 01104475, and consistently in all water samples collected at USGS station 01104433. Concentrations of Escherichia coli bacteria in water samples collected during base flow ranged from 4 to 1,400 colony-forming units per 100 milliliters (col/100mL). Concentrations of Escherichia coli bacteria in composite samples of stormwater ranged between 1,700 to 43,000 c

  3. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  4. Genotoxicity of drinking water from Chao Lake

    SciTech Connect

    Liu, Q.; Jiao, Q.C.; Huang, X.M.; Jiang, J.P.; Cui, S.Q.; Yao, G.H.; Jiang, Z.R.; Zhao, H.K.; Wang, N.Y.

    1999-02-01

    Genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Comparisons of extracts of settled versus chlorinated water have confirmed that chlorinating during water treatment produces mutagenic activity in the mutagenicity tests. Present work on XAD-2 extracts of raw, chlorinated (treated), and settled water from the Chao Lake region of China has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) induction in Chinese hamster lung (CHL) cells, and the micronucleus (MN) induction in the peripheral blood erythrocytes of silver carp. Extracts of raw and treated water but not the settled water are mutagenic in the Salmonella assay. On the other hand, extracts of three water samples show activity in the SCE and MN assays, especially the raw and treated water. These data show that contamination and chlorinating contribute mutagens to drinking water and suggest that the mammalian assays may be more sensitive for detecting mutagenicity in aquatic environment than the Salmonella test.

  5. [Hydraulic fracturing - a hazard for drinking water?].

    PubMed

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. PMID:24285158

  6. Portable Nanomesh Creates Safer Drinking Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Providing astronauts with clean water is essential to space exploration to ensure the health and well-being of crewmembers away from Earth. For the sake of efficient and safe long-term space travel, NASA constantly seeks to improve the process of filtering and re-using wastewater in closed-loop systems. Because it would be impractical for astronauts to bring months (or years) worth of water with them, reducing the weight and space taken by water storage through recycling and filtering as much water as possible is crucial. Closed-loop systems using nanotechnology allow wastewater to be cleaned and reused while keeping to a minimum the amount of drinking water carried on missions. Current high-speed filtration methods usually require electricity, and methods without electricity usually prove impractical or slow. Known for their superior strength and electrical conductivity, carbon nanotubes measure only a few nanometers in diameter; a nanometer is one billionth of a meter, or roughly one hundred-thousandth the width of a human hair. Nanotubes have improved water filtration by eliminating the need for chemical treatments, significant pressure, and heavy water tanks, which makes the new technology especially appealing for applications where small, efficient, lightweight materials are required, whether on Earth or in space. "NASA will need small volume, effective water purification systems for future long-duration space flight," said Johnson Space Center s Karen Pickering. NASA advances in water filtration with nanotechnology are now also protecting human health in the most remote areas of Earth.

  7. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge.

    PubMed

    Zamyadi, Arash; MacLeod, Sherri L; Fan, Yan; McQuaid, Natasha; Dorner, Sarah; Sauvé, Sébastien; Prévost, Michèle

    2012-04-01

    The detection of cyanobacteria and their associated toxins has intensified in recent years in both drinking water sources and the raw water of drinking water treatment plants (DWTPs). The objectives of this study were to: 1) estimate the breakthrough and accumulation of toxic cyanobacteria in water, scums and sludge inside a DWTP, and 2) to determine whether chlorination can be an efficient barrier to the prevention of cyanotoxin breakthrough in drinking water. In a full scale DWTP, the fate of cyanobacteria and their associated toxins was studied after the addition of coagulant and powdered activated carbon, post clarification, within the clarifier sludge bed, after filtration and final chlorination. Elevated cyanobacterial cell numbers (4.7 × 10(6)cells/mL) and total microcystins concentrations (up to 10 mg/L) accumulated in the clarifiers of the treatment plant. Breakthrough of cells and toxins in filtered water was observed. Also, a total microcystins concentration of 2.47 μg/L was measured in chlorinated drinking water. Cyanobacterial cells and toxins from environmental bloom samples were more resistant to chlorination than results obtained using laboratory cultured cells and dissolved standard toxins. PMID:22137293

  8. Exposure assessment of metal intakes from drinking water relative to those from total diet in Japan.

    PubMed

    Ohno, Koichi; Ishikawa, Kohei; Kurosawa, Yuki; Matsui, Yoshihiko; Matsushita, Taku; Magara, Yasumoto

    2010-01-01

    Daily intakes of 17 metals (boron, aluminium, chromium, manganese, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony, lead, uranium, magnesium, calcium, and iron) via drinking water and total diet were investigated in six cities in Japan. The daily metal intakes were estimated and compared with tolerable daily intake (TDI) values proposed by the WHO or Joint FAO/WHO Expert Committee on Food Additives for toxic metals and with recommended dietary allowances (RDAs) or adequate intake (AI) values proposed for essential metals by the Japanese Ministry of Health, Labour and Welfare. Among the 13 toxic metals, mean dietary intakes of 10 (except arsenic, selenium, and molybdenum) were less than 50% of TDI, suggesting that for these 10 metals the allocation of intake to drinking water in establishing guidelines or standards could possibly be increased from the normal allocation of 10-20% of TDI. For the 13 toxic metals, the contribution of drinking water to TDI was 2% or less in all six cities. Mean dietary intakes of the essential elements magnesium, calcium, and iron were less than the RDA or AI values. Drinking water did not contribute much to essential metal intake, accounting for less than 10% of RDA or AI. PMID:21099058

  9. [Surveillance of drinking water supply systems on markets and in vehicles].

    PubMed

    Rädel, U; Puchert, W; Suchenwirth, R

    2007-03-01

    The new German Drinking Water Ordinance (TrinkwV 2001) demands that the requirements of water intended for human consumption be met up to the intrinsic tap, at which the water is used. This also applies to water supply systems for food trade aboard non-stationary facilities and in vehicles for commercial purposes. In contrast to stationary units for drinking water supply, the nonstationary units relocate and the responsibility changes with each public health authority agent. Therefore, a coordinated action between the federal states is desirable and necessary. The experience of the public health departments presents many non-compliant parameters of microbiology in water supply systems on markets and in vehicles. The development of practical and consistent recommendations for the surveillance of non-stationary units is required to give consistent standards to the users. The article gives a review about legal foundations and technical rules in order to define the drinking water supply systems on markets and in vehicles in compliance with the German Drinking Water Ordinance. Examples of laboratory results from different monitoring episodes from three federal states are shown. PMID:17334887

  10. Innovative reuse of drinking water sludge in geo-environmental applications.

    PubMed

    Caniani, D; Masi, S; Mancini, I M; Trulli, E

    2013-06-01

    In recent years, the replacement of natural raw materials with new alternative materials, which acquire an economic, energetic and environmental value, has gained increasing importance. The considerable consumption of water has favoured the increase in the number of drinking water treatment plants and, consequently, the production of drinking water sludge. This paper proposes a protocol of analyses capable of evaluating chemical characteristics of drinking water sludge from surface water treatment plants. Thereby we are able to assess their possible beneficial use for geo-environmental applications, such as the construction of barrier layers for landfill and for the formation of "bio-soils", when mixed with the stabilized organic fraction of municipal solid waste. This paper reports the results of a study aimed at evaluating the quality and environmental aspects of reconstructed soils ("bio-soil"), which are used in much greater quantities than the usual standard, for "massive" applications in environmental actions such as the final cover of landfills. The granulometric, chemical and physical analyses of the sludge and the leaching test on the stabilized organic fraction showed the suitability of the proposed materials for reuse. The study proved that the reuse of drinking water sludge for the construction of barrier layers and the formation of "bio-soils" reduces the consumption of natural materials, the demand for landfill volumes, and offers numerous technological advantages. PMID:23490362

  11. Bromate in chlorinated drinking waters: occurrence and implications for future regulation.

    PubMed

    Weinberg, Howard S; Delcomyn, Carrie A; Unnam, Vasu

    2003-07-15

    Bromate is a contaminant of commercially produced solutions of sodium hypochlorite used for disinfection of drinking water. However, no methodical approach has been carried out in U.S. drinking waters to determine the impact of such contamination on drinking water quality. This study utilized a recently developed method for quantitation of bromate down to 0.05 microg/L to determine the concentration of bromate present in finished waters that had been chlorinated using hypochlorite. Forty treatment plants throughout the United States using hypochlorite in the disinfection step were selected and the levels of bromate in the water both prior to and following the addition of hypochlorite were measured. The levels of bromate in the hypochlorite feedstock were also measured and together with the dosage information provided by the plants and the amount of free chlorine in the feedstock, it was possible to calculate the theoretical level of bromate that would be imparted to the water. A mass balance was performed to compare the level of bromate in finished drinking water samples to that found in the corresponding hypochlorite solution used for treatment. Additional confirmation of the source of elevated bromate levels was provided by monitoring for an increase in the level of chlorate, a co-contaminant of hypochlorite, atthe same point in the treatment plant where bromate was elevated. This study showed that bromate in hypochlorite-treated finished waters varies across the United States based on the source of the chemical feedstock, which can add as much as 3 microg/L bromate into drinking water. Although this is within the current negotiated industry standard that allows up to 50% of the maximum contaminant level (MCL) for bromate in drinking water to be contributed by hypochlorite, it would be a challenge to meet a tighter standard. Given that distribution costs encourage utilities to purchase chemical feedstocks from local suppliers, utilities in certain regions of the

  12. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  13. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost. PMID:12696647

  14. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    PubMed

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  15. Assessing clarity of message communication for mandated USEPA drinking water quality reports.

    PubMed

    Phetxumphou, Katherine; Roy, Siddhartha; Davy, Brenda M; Estabrooks, Paul A; You, Wen; Dietrich, Andrea M

    2016-04-01

    The United States Environmental Protection Agency mandates that community water systems (CWSs), or drinking water utilities, provide annual consumer confidence reports (CCRs) reporting on water quality, compliance with regulations, source water, and consumer education. While certain report formats are prescribed, there are no criteria ensuring that consumers understand messages in these reports. To assess clarity of message, trained raters evaluated a national sample of 30 CCRs using the Centers for Disease Control Clear Communication Index (Index) indices: (1) Main Message/Call to Action; (2) Language; (3) Information Design; (4) State of the Science; (5) Behavioral Recommendations; (6) Numbers; and (7) Risk. Communication materials are considered qualifying if they achieve a 90% Index score. Overall mean score across CCRs was 50 ± 14% and none scored 90% or higher. CCRs did not differ significantly by water system size. State of the Science (3 ± 15%) and Behavioral Recommendations (77 ± 36%) indices were the lowest and highest, respectively. Only 63% of CCRs explicitly stated if the water was safe to drink according to federal and state standards and regulations. None of the CCRs had passing Index scores, signaling that CWSs are not effectively communicating with their consumers; thus, the Index can serve as an evaluation tool for CCR effectiveness and a guide to improve water quality communications. PMID:27105408

  16. Long-term mortality patterns in a residential cohort exposed to inorganic selenium in drinking water.

    PubMed

    Vinceti, Marco; Ballotari, Paola; Steinmaus, Craig; Malagoli, Carlotta; Luberto, Ferdinando; Malavolti, Marcella; Giorgi Rossi, Paolo

    2016-10-01

    Selenium (Se) is a metalloid of considerable nutritional and toxicological importance in humans. To date, limited epidemiologic evidence exists about the health effects of exposure to this trace element in drinking water. We investigated the relationship between Se levels in water and mortality in the municipality of Reggio Emilia, Italy, where high levels of Se were previously observed in drinking water. From 1974 to 1985, 2065 residents consumed drinking water with Se levels close to the European standard of 10μg/l, in its inorganic hexavalent form (selenate). Follow-up was conducted for the years 1986-2012 in Reggio Emilia and a lesser exposed comparison group of around 100,000 municipal residents, with comparable socio-demographic characteristics. Overall mortality from all causes, cardiovascular disease and cancer showed little evidence of differences. However, excess rate ratios were seen for some site specific cancers such as neoplasms of buccal cavity and pharynx, urinary tract, lymphohematopoietic tissue, melanoma, and two neurodegenerative diseases, Parkinson's disease and amyotrophic lateral sclerosis. Excess mortality in the exposed cohort for specific outcomes was concentrated in the first period of follow-up (1986-1997), and waned starting 10 years after the high exposure ended. We also found lower mortality from breast cancer in females during the first period of follow-up. When we extended the analysis to include residents who had been consuming the high-selenium drinking water for a shorter period, mortality rate ratios were also increased, but to a lesser extent. Overall, we found that the mortality patterns related to long-term exposure to inorganic hexavalent selenium through drinking water were elevated for several site-specific cancers and neurodegenerative disease. PMID:27344266

  17. Influence of lepidocrocite (gamma-FeOOH) on Escherichia coli cultivability in drinking water.

    PubMed

    Grandjean, D; Jorand, F; Yañez, C; Appenzeller, B M R; Block, J-C

    2005-02-01

    A washed suspension of the bacteria Escherichia coli, pre-grown on a complex culture medium, was stored in sterilized drinking water for 21 days at 25 degrees C in glass flasks in order to assess the effect of iron corrosion products on the persistenceof the bacteria in drinking water. Four conditions were tested: aerobic with 50 mM lepidocrocite (gamma-FeOOH, an insoluble iron corrosion product), anaerobic with 50 mM lepidocrocite, aerobic without lepidocrocite and anaerobic without lepidocrocite. The survival of E. coli was monitored by their cultivability and their membrane integrity (propidium iodide staining). When the samples were not supplemented with the iron oxide, the cultivability and cell integrity of the bacteria were dramatically altered: from the 10(7) initially added, only 10 CFU ml(-1) remained after 21 days; 90% of the cells exhibited membrane alteration after 2 weeks of storage. In contrast, bacteria with lepidocrocite preserved their cultivability and integrity over the 21 days of storage. In the presence of di-oxygen and without iron oxide, the alteration of cell cultivability was more pronounced than that in anaerobic conditions, suggesting that oxidative stress was part of the phenomenon. When the cells were pre-grown in a growth medium supplemented by a large excess of an easily available form of iron (ferric-citrate), the cells stored a higher amount of iron and persisted one week longer in the iron-free drinking water than cells pre-grown in the standard growth medium. Therefore, in an oligotrophic environment like drinking water, E. coli cells can find the ability to survive a long time through the presence of iron corrosion products. The necessity of controlling the corrosiveness of drinking water for sanitary reasons is therefore emphasized by this study. PMID:15791802

  18. Microbiological evaluation of drinking water sold by roadside vendors of Delhi, India

    NASA Astrophysics Data System (ADS)

    Chauhan, Abhishek; Goyal, Pankaj; Varma, Ajit; Jindal, Tanu

    2015-07-01

    Delhi has emerged as one of the greenest capital city of the world. Microbiological assessment of drinking water emphasizes estimation of the hygienic quality of the water sold with reference to community health significance. This study was conducted to evaluate the quality of drinking water sold by roadside vendors in east, west, north and south zones of capital of India. A total number of 36 samples (nine from each zone) were collected as per national guidelines and studied for microbiological assessment. All the drinking water samples were collected in gamma-sterilized bottles and were kept in an ice pack to prevent any significant change in the microbial flora of the samples during the transportation. The water samples were transported to the laboratory in vertical position maintaining the temperature 1-4 °C with ice pack enveloped conditions. Samples were analyzed for total MPN coliform per 100 ml and for the presence and absence of common human pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus and Pseudomonas aeruginosa. All the samples were found to be contaminated with coliform organisms in the range of 14 to >1600 per 100 ml of sample. Out of 36 water samples, the occurrence of E. coli was 61 %, Salmonella 25 % S. aureus 14 % and P. aeruginosa 53 % as 22, 9, 5 and 19 samples were found contaminated, respectively. The numbers of coliform bacteria and presence of some common pathogenic bacteria suggested that the quality of drinking water sold by roadside vendors is not within the Indian standard and WHO guidelines laid down for drinking water quality. Hence, there is a vital need to study the root cause in terms of hygiene, sanitation of vendors and source of contamination to prevent waterborne diseases.

  19. Drinking Water Quality Guidelines across Canadian Provinces and Territories: Jurisdictional Variation in the Context of Decentralized Water Governance

    PubMed Central

    Dunn, Gemma; Bakker, Karen; Harris, Leila

    2014-01-01

    This article presents the first comprehensive review and analysis of the uptake of the Canadian Drinking Water Quality Guidelines (CDWQG) across Canada’s 13 provinces and territories. This review is significant given that Canada’s approach to drinking water governance is: (i) highly decentralized and (ii) discretionary. Canada is (along with Australia) only one of two Organization for Economic Cooperation and Development (OECD) member states that does not comply with the World Health Organization’s (WHO) recommendation that all countries have national, legally binding drinking water quality standards. Our review identifies key differences in the regulatory approaches to drinking water quality across Canada’s 13 jurisdictions. Only 16 of the 94 CDWQG are consistently applied across all 13 jurisdictions; five jurisdictions use voluntary guidelines, whereas eight use mandatory standards. The analysis explores three questions of central importance for water managers and public health officials: (i) should standards be uniform or variable; (ii) should compliance be voluntary or legally binding; and (iii) should regulation and oversight be harmonized or delegated? We conclude with recommendations for further research, with particular reference to the relevance of our findings given the high degree of variability in drinking water management and oversight capacity between urban and rural areas in Canada. PMID:24776725

  20. REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES

    EPA Science Inventory

    In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...

  1. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  2. TREATMENT OF DRINKING WATER CONTAINING TRICHLOROETHYLENE AND RELATED INDUSTRIAL SOLVENTS

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  3. Communicating Research to Small Drinking Water Systems: Dissemination by Researchers

    EPA Science Inventory

    This talk discusses the challenges of disseminating research relevant to small systems. The presentation discusses efforts by the U.S. EPA’s Office of Research and Development to effectively communicating drinking water information. In particular, communication approaches ...

  4. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  5. Willingness to pay for improvements in drinking water quality

    NASA Astrophysics Data System (ADS)

    Jordan, Jeffrey L.; Elnagheeb, Abdelmoneim H.

    1993-02-01

    In this paper, data from a 1991 survey of Georgia residents were used to study people's willingness to pay (WTP) for improvements in drinking water quality and people's perceptions of potential groundwater contamination. Results showed that 27% of the respondents served by public water supplies rated drinking water quality as poor, and 23% were uncertain about their drinking water quality. The contingent valuation method was used to estimate WTP using a checklist format. The median estimated WTP was 5.49 per month above their current water bills for people on public systems and 7.38 for those using private wells, after rejecting outliers and using the maximum likelihood method. The aggregate WTP for all of Georgia was estimated to be about 111.5 million per year for public water users and 42.3 million per year for private well owners. This aggregate WTP can serve as an estimate of benefits to consumers from improvements in drinking water quality statewide.

  6. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  7. OVERVIEW OF USEPA MICROBIOLOGICAL RESEARCH IN DRINKING WATER

    EPA Science Inventory

    The Microbial Contaminants Control Branch (MCCB) conducts research on microbiological problems related to drinking water treatment, distribution and storage, and has recently become involved in watershed and source water quality issues such as fecal indicator bacteria and fecal p...

  8. PERSISTENCE AND DETECTION OF COLIFORMS IN TURBID FINISHED DRINKING WATER

    EPA Science Inventory

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were conducted to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Results indicated that disinfection eff...

  9. DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER

    EPA Science Inventory

    This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...

  10. APPLICATION OF MULTIMEDIA EXPOSURE ASSESSMENT TO DRINKING WATER

    EPA Science Inventory

    A potentially important exposure route for humans is the ingestion of chemicals via drinking water. If comprehensive exposure assessments are to be completed for either existing or proposed new chemicals and cost effective control strategies develop, then a quantitative understan...

  11. Fate of High Priority Pesticides During Drinking Water Treatment

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...

  12. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications... gallon per 100 pounds of body weight per day for 4 days; as sodium sulfaethoxypyridazine; do not...

  13. Scientific and Regulatory Challenges of Controlling Lead in Drinking Water

    EPA Science Inventory

    Safe Drinking Water Act 1986 Amendments Corrections when necessary, mandatory review every 6 years Lead and Copper Rule section of SDWA Proposed 1988 Proposal revised and promulgated 1991 Many minor revisions, primarily administrative clarifications Major admin. revisions and te...

  14. Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies

    EPA Science Inventory

    Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...

  15. PROTOZOAN SOURCES OF SPONTANEOUS COLIFORM OCCURRENCE IN CHLORINATED DRINKING WATER

    EPA Science Inventory

    The spontaneous occurrence of coliforms in chlorinated drinking waters has resulted in concern over their potential source and mechanism(s) of introduction into water delivery systems. Previous observations related to protozoal resistance to chlorine coupled with the ingestion of...

  16. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  17. Chloramination of Organophosphorus Pesticides Found in Drinking Water Sources

    EPA Science Inventory

    The degradation of commonly detected organophosphorus (OP) pesticides, in drinking water sources, was investigated under simulated chloramination conditions. Due to monochloramine autodecomposition, it is difficult to observe the direct reaction of monochloramine with each OP pe...

  18. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. PMID:26574105

  19. Monochloramine Cometabolism by Nitrosomonas europaea under Drinking Water Conditions

    EPA Science Inventory

    Chloramine use is widespread in United States drinking water systems as a secondary disinfectant. While beneficial from the perspective of controlling disinfectant by-product formation, chloramination may promote the growth of nitrifying bacteria because ammonia is present. At ...

  20. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  1. DEVELOPING APPROACHES TO ESTIMATE CUMULATIVE RISKS OF DRINKING WATER CONTAMINANTS

    EPA Science Inventory

    Humans are exposed daily to complex mixtures of drinking water disinfection by-products (DBPs) via oral, dermal, and inhalation routes. Some positive epidemiological studies suggest reproductive and developmental effects and cancer are associated with consumption of chlorinated d...

  2. MOLECULAR DIVERSITY OF DRINKING WATER MICROBIAL COMMUNITIES: A PHYLOGENETIC APPROACH

    EPA Science Inventory

    Culture-based methods are traditionally used to determine microbiological quality of drinking water even though these methods are highly selective and tend to underestimate the densities and diversity bacterial populations inhabiting distribution systems. In order to better under...

  3. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  4. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  5. Arsenic in Drinking Water-A Global Environmental Problem

    ERIC Educational Resources Information Center

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  6. Regulatory Considerations to Ensure Clean and Safe Drinking Water

    EPA Science Inventory

    Federal drinking water regulations are based on risk assessment of human health effects and research conducted on source water, treatment technologies, residuals, and distribution systems. The book chapter summarizes the role that EPA research plays in ensuring pure drinking wat...

  7. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  8. EPIDEMIOLOGICAL EVIDENCE OF CARCINOGENICITY OF CHLORINATED ORGANICS IN DRINKING WATER

    EPA Science Inventory

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer ris...

  9. DEVELOPING ANALYTICAL METHODS FOR GATHERING NATIONWIDE OCCURRENCE DATA FOR CHEMICALS ON THE DRINKING WATER CONTAMINANT CANDIDATE LIST (CCL)

    EPA Science Inventory

    Amendments to the Safe Drinking Water Act (SDWA) require the United States Environmental Protection Agency (USEPA) to publish a list of contaminants that are known or anticipated to occur in public water systems, and which may require regulation under the SDWA. In response to th...

  10. 40 CFR 2.304 - Special rules governing certain information obtained under the Safe Drinking Water Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Special rules governing certain information obtained under the Safe Drinking Water Act. 2.304 Section 2.304 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC INFORMATION Confidentiality of Business Information § 2.304 Special rules governing certain...

  11. 40 CFR 2.304 - Special rules governing certain information obtained under the Safe Drinking Water Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Special rules governing certain information obtained under the Safe Drinking Water Act. 2.304 Section 2.304 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC INFORMATION Confidentiality of Business Information § 2.304 Special rules governing certain...

  12. 76 FR 33756 - Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Regulations: (1) Stage 2 Disinfectants and Disinfection Byproducts Rule (January 4, 2006, 71 FR 388) and (2) Long Term 2 Enhanced Surface Water Treatment Rule (January 5, 2006, 71 FR 654). During the review of... AGENCY Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations...

  13. 40 CFR 2.304 - Special rules governing certain information obtained under the Safe Drinking Water Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Special rules governing certain information obtained under the Safe Drinking Water Act. 2.304 Section 2.304 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC INFORMATION Confidentiality of Business Information § 2.304 Special rules governing certain...

  14. HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA: V. BIOMARKER STUDIES - A PILOT STUDY

    EPA Science Inventory

    Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: V. Biomarker Studies - a Pilot Study

    Michael T. Schmitt, M.S.P.H., Judy S. Mumford, Ph.D., National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agenc...

  15. THE EFFECT OF PH, PHOSPHATE AND OXIDANT ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    EPA Science Inventory

    Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to reduce the previous arsenic maximum contaminant level (MCL) of ...

  16. THE EFFECT OF PH, PHOSPHATE AND OXIDANT ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    EPA Science Inventory

    Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to recently reduce the previous arsenic maximum contaminant level ...

  17. Sources Contributing Inorganic Species to Drinking Water Intakes During Low Flow Conditions on the Allegheny River in Western Pennsylvania

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting a study of the potential impacts of hydraulic fracturing for oil and gas on drinking water resources. This study was initiated in Fiscal Year 2010 when Congress urged the EPA to examine the relationship between hydraul...

  18. Evaluation of semidecentralized emergency drinking water treatment.

    PubMed

    Eloidin, Océane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of < 1 cfu/100 mL) was always attained and log reductions of up to 5 were achieved. The other product (CDP-T) did not exhibit any measurable coagulation and disinfection properties, indicating the variability of product quality and the need to conduct evaluations such as the ones presented in this study. Such results are of relevance to relief agencies delivering water supply interventions. PMID:26121019

  19. Safe and Affordable Drinking Water for Developing Countries

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2008-09-01

    Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.

  20. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. PMID:19766285

  1. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    PubMed

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-01

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies. PMID:26042958

  2. Environmental protection agency aircraft emissions standards

    NASA Technical Reports Server (NTRS)

    Kittredge, G. D.

    1977-01-01

    Emissions of air pollutants from aircraft were investigated in order to determine: (1) the extent to which such emissions affect air quality in air quality control regions throughout the United States; and (2) the technological feasibility of controlling such emissions. The basic information supporting the need for aircraft emissions standards is summarized. The EPA ambient air quality standards are presented. Only the primary (health related) standards are shown. Of the six pollutants, only the first three, carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides, are influenced significantly by aircraft.

  3. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  4. SMALL DRINKING WATER SYSTEMS: STATE OF THE INDUSTRY AND TREATMENT TECHNOLOGIES TO MEET THE SAFE DRINKING WATER ACT REQUIREMENTS

    EPA Science Inventory

    This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...

  5. [Assessment of drinking water quality in Avellino (Italy) by multivariate analysis].

    PubMed

    Mainolfi, Pietro; Prudente, Michelina Elisa; Ambrosone, Edoardo; Nunziata, Ferdinando; Mainolfi, Chiara; Galgano, Erberto

    2014-01-01

    The aim of this study was to assess the quality of the drinking water supply in the district of Avellino (Italy), by evaluating physico-chemical parameters and presence of contaminants. A multivariate approach was used to analyse data and to evaluate compliance to norms and standards. Study results indicate that statistical modeling is a powerful descriptive method to identify qualitative temporal trends in water quality and, if repeated in time, allows an evaluation of representativeness of the sampling points. PMID:25715892

  6. 75 FR 39935 - Drinking Water Strategy Contaminants as Group(s)-Notice of Web Dialogue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...On March 22, 2010, Administrator Lisa P. Jackson announced the Drinking Water Strategy, a new vision to expand public health protection for drinking water by going beyond the traditional framework. The Drinking Water Strategy includes the following four principles: Addressing some contaminants as group(s) rather than one at a time so that enhancement of drinking water protection can be......

  7. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  8. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  9. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  10. Virological examination of drinking water: a Canadian collaborative study.

    PubMed

    Payment, P; Trudel, M; Sattar, S A; Springthorpe, V S; Subrahmanyan, T P; Gregory, B E; Vajdic, A H; Blaskovic, P; Guglielmi, I J; Kudrewko, O

    1984-01-01

    A collaborative virological survey of drinking water was initiated in three major Canadian urban areas, Montreal, Ottawa, and Toronto. In each selected area, three water purification plants were sampled monthly for up to 18 months. The total population served by all nine plants was about 1 500 000. Samples of raw (100 L) and treated (1000 L) water were examined by virus concentration procedures based on adsorption-elution. Sample concentrates were assayed for cytopathic viruses on BS-C-1 cells and the results were expressed as the most probable number of cytopathic units (MPNCU). Viruses were detected in 57% (0-15.35 MPNCU/L) of the raw water samples from Montreal, 37% (0-46.0 MPNCU/L) in Ottawa, and 33% (0-4.91 MPNCU/L) in Toronto. The majority of isolates were reoviruses, but picornaviruses were also found. All finished waters (177 samples) met bacteriological, turbidity, and residual chlorine standards and were free of detectable viruses. PMID:6713298

  11. [Fluoride levels in commercial dentifrices and drinking water in Algeria].

    PubMed

    Merghache, D; Bellout, B; Merghache, S; Boucherit-Atmani, Z

    2011-12-01

    More and more scientific evidence show that fluorides have a cariostatic action to the plaque-saliva-tooth interface during cariogenous dissolution. Fluorides slow down demineralization and enhance remineralization. Their action is optimal, in the oral environment, when used at low concentrations on a continuous basis. The use of the fluorinated toothpastes during brushing of the teeth is a simple, rational method of daily topics application of fluorine, largely used in the context of prevention of dental caries and which can even be regarded as a public health measure. The water ingestion fluorinated represents itself an excellent average of the local application of fluorine. Our work concerned a quantitative study of fluorine in toothpaste and drinking water, and comparative between the local product and the imported one for the toothpastes, and the mineral water and public supply. The standard method of fluorine based on the potentiometry and distillation has shown that 50% of the tested toothpastes contain adequate concentration so that a product of dental care fights against decay. The Tlemcen tap water contains acceptable fluorine content, but the mineral water, with an excessive contribution, can cause fluorose. Of this, we can deduce that a topical application of a suitable quantity of fluorine on a daily basis in accordance with the precautions is not only the prevention of dental caries, but also to stabilize it if it already exists. PMID:22457989

  12. Effects of drinking-water filtration on Cryptosporidium seroepidemiology, Scotland.

    PubMed

    Ramsay, Colin N; Wagner, Adam P; Robertson, Chris; Smith, Huw V; Pollock, Kevin G J

    2014-01-01

    Continuous exposure to low levels of Cryptosporidium oocysts is associated with production of protective antibodies. We investigated prevalence of antibodies against the 27-kDa Cryptosporidium oocyst antigen among blood donors in 2 areas of Scotland supplied by drinking water from different sources with different filtration standards: Glasgow (not filtered) and Dundee (filtered). During 2006-2009, seroprevalence and risk factor data were collected; this period includes 2007, when enhanced filtration was introduced to the Glasgow supply. A serologic response to the 27-kDa antigen was found for ≈75% of donors in the 2 cohorts combined. Mixed regression modeling indicated a 32% step-change reduction in seroprevalence of antibodies against Cryptosporidium among persons in the Glasgow area, which was associated with introduction of enhanced filtration treatment. Removal of Cryptosporidium oocysts from water reduces the risk for waterborne exposure, sporadic infections, and outbreaks. Paradoxically, however, oocyst removal might lower immunity and increase the risk for infection from other sources. PMID:24377436

  13. Fluoride Content of Bottled Drinking Water in Chennai, Tamilnadu

    PubMed Central

    Ravi, Karunya; Rajapandian, K.; Gurunathan, Deepa

    2015-01-01

    Context The optimum level of fluoride in drinking water is 0.7 to 1.2 ppm. Decreased fluoride concentration leads to increased risk of caries and increased concentration can lead to dental or skeletal fluorosis. One crore liters of water is supplied to Chennai and surrounding areas through pouches and bottles which carters about one third of city population. Aim The aim of this study is to determine the fluoride concentration in top 10 bottled waters in Chennai and to check the accuracy of their labelling. Materials and Methods Top selling bottled waters, 6 multinational and 4 Non- multinational brands were selected for the study. Three different batches of each brand were purchased. The labels of the bottled were removed after collecting the details regarding fluoride content. All the bottles were numbered and sent for fluoride content analysis using SPADNS calorimetric method. Results All the brands and batches which were analysed for the study had less than optimal fluoride content and there is a significant variation in fluoride concentration of each brand and among different batches of same brand bottled waters. The range of fluoride level in tested samples was between 0.27 to 0.59. Only one brand’s label had information regarding the fluoride content. Conclusion Standardization of fluoride levels in bottled waters and labelling of fluoride content should become mandatory. PMID:26557612

  14. Cancer incidence following exposure to drinking water with asbestos leachate

    SciTech Connect

    Howe, H.L.; Wolfgang, P.E.; Burnett, W.S.; Nasca, P.C.; Youngblood, L.

    1989-05-01

    In November 1985, the New York State Department of Health was altered to extraordinary concentrations of asbestos leachate in the drinking water in the Town of Woodstock. Concentrations of 3.2 million fibers per liter (MFL) to 304.5 MFL were found, depending on location. An investigation of cancer incidence in the area was conducted for the period 1973-83 using the State Cancer Registry to compute standardized incidence ratios. No evidence was found of elevated cancer incidence at sites associated with asbestos exposure. A statistically non-significant excess of kidney cancer was seen among men, but not women. Colon cancer among men was significantly low, but incidence among women was similar to that expected. Lung cancer incidence was lower than expected for both sexes. Ovarian cancer rates were not different from expected rates. At sites not previously related to asbestos exposure, cancer of the oral cavity was significantly high, with most affected persons having a history of cigarette smoking. Surveillance of the community is continuing because of an insufficient latent period for some exposed groups.

  15. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    NASA Astrophysics Data System (ADS)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  16. Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water - United States, 2011-2012.

    PubMed

    Beer, Karlyn D; Gargano, Julia W; Roberts, Virginia A; Hill, Vincent R; Garrison, Laurel E; Kutty, Preeta K; Hilborn, Elizabeth D; Wade, Timothy J; Fullerton, Kathleen E; Yoder, Jonathan S

    2015-08-14

    Advances in water management and sanitation have substantially reduced waterborne disease in the United States, although outbreaks continue to occur. Public health agencies in the U.S. states and territories* report information on waterborne disease outbreaks to the CDC Waterborne Disease and Outbreak Surveillance System (http://www.cdc.gov/healthywater/surveillance/index.html). For 2011-2012, 32 drinking water-associated outbreaks were reported, accounting for at least 431 cases of illness, 102 hospitalizations, and 14 deaths. Legionella was responsible for 66% of outbreaks and 26% of illnesses, and viruses and non-Legionella bacteria together accounted for 16% of outbreaks and 53% of illnesses. The two most commonly identified deficiencies† leading to drinking water-associated outbreaks were Legionella in building plumbing§ systems (66%) and untreated groundwater (13%). Continued vigilance by public health, regulatory, and industry professionals to identify and correct deficiencies associated with building plumbing systems and groundwater systems could prevent most reported outbreaks and illnesses associated with drinking water systems. PMID:26270059

  17. TOXICOLOGICAL BASIS FOR DRINKING WATER RISK ASSESSMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is charged with protecting human health and the environment. Environmental protection decisions are often guided by risk assessments that are used to develop regulatory policy and other related guidance. Historically, in environmen...

  18. Are endocrine disrupting compounds a health risk in drinking water?

    PubMed

    Falconer, Ian R

    2006-06-01

    There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17Beta-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water

  19. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  20. Corrosion and Scaling Potential in Drinking Water Distribution System of Tabriz, Northwestern Iran

    PubMed Central

    Taghipour, Hassan; Shakerkhatibi, Mohammad; Pourakbar, Mojtaba; Belvasi, Mehdi

    2012-01-01

    Background: This paper discusses the corrosion and scaling potential of Tabriz drinking water distribution system in Northwest of Iran. Internal corrosion of piping is a serious problem in drinking water industry. Corrosive water can cause intrusion of heavy metals especially lead in to water, therefore effecting public health. The aim of this study was to determine corrosion and scaling potential in potable water distribution system of Tabriz during the spring and summer in 2011. Methods: This study was carried out using Langlier Saturation Index, Ryznar Stability Index, Puckorius Scaling Index, and Aggressiveness indices. Eighty samples were taken from all over the city within two seasons, spring, and summer. Related parameters including temperature, pH, total dissolved solids, calcium hardness, and total alkalinity in all samples were measured in laboratory according to standard method manual. For the statistical analysis of the results, SPSS software (version 11.5) was used Results: The mean and standard deviation values of Langlier, Ryznar, Puckorius and Aggressiveness Indices were equal to -0.68 (±0.43), 8.43 (±0.55), 7.86 (±0.36) and 11.23 (±0.43), respectively. By survey of corrosion indices, it was found that Tabriz drinking water is corrosive. Conclusion: In order to corrosion control, it is suggested that laboratorial study with regard to the distribution system condition be carried out to adjust effective parameters such as pH. PMID:24688924

  1. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    SciTech Connect

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  2. German drinking water regulations, pesticides, and axiom of concern

    NASA Astrophysics Data System (ADS)

    Dieter, Hermann H.

    1992-01-01

    The limit value of 0.1 µg/liter for “substances used in plant treatment and pest control including their main toxic degradation products” (PBSM) established in the German Drinking Water Regulations (Trinkwasserverordnung) serves comprehensively to protect drinking water from unexpected toxicological risks and thus corresponds to the axiom of concern (Besorgnisgrundsatz) contained in §11,2 of the Federal Communicable Disease Control Act (Bundesseuchengesetz), which is an essential cornerstone of the Drinking Water Regulations. Furthermore, precautionary values that are specific to the particular substance and near the valid limit can be found for about 10% of all registered active substances. The goal of the PBSM Recommendations of the Federal Health Office (BGA) issued in July 1989 is to preserve and restore groundwater and drinking water through measures to be taken by the causal party, while reducing consumer health risks to the greatest extent possible. The EC commission's drawbacks on these recommendations and the imminent EC-wide directive for the uniform registration of pesticides being based solely on Article 43 of the European Treaty would seriously endanger this goal. Therefore, a situation threatens in Europe similar to that in the United States, where at least 18 active ingredients have been detected in groundwater in concentrations of up to 1000 times the toxicologically established limits for drinking water.

  3. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    PubMed

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031

  4. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea

    PubMed Central

    Luby, Stephen P.; Halder, Amal K.; Huda, Tarique Md.; Unicomb, Leanne; Sirajul Islam, M.; Arnold, Benjamin F.; Johnston, Richard B.

    2015-01-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031

  5. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  6. [The occurrence of salmonellae in drinking water (author's transl)].

    PubMed

    Müller, H E

    1979-01-01

    A total of 7187 samples of drinking water from different areas of the Lower Saxonian District of Braunschweig was investigated according to regulations of the Trinkwasser-Verordnung during June 1977 and May 1979. The bacteriological results are given in Tab. 1 and 2. Salmonellae were isolated in three samples of drinking water and in one sample of sludge from a municipal pipe of drinking water (see also Tab. 2). Additional experiments confirm that growth of salmonellae and other enterobacteria is possible in that sludge (Fig. 1 and 2). These findings implicate some considerations: E. coli and coliforms are the most important microbial water quality indicators of the Trinkwasser-Verordnung. It is presupposed that, when the indicator density is low (less than 1 per 100 ml) the probability that pathogen are present also will be very low. But the question is how low. The risk factor may be estimated on the base of the E. coli-Salmonella ratio in raw sewage of about 10(6). But this relation lessens already in effluents of sewage treatment plants to 10(3) and it seems to be often 10(2) in inadequately disinfected drinking water. For example, we have found four Salmonella serotypes and 408 E. coli during two years. Therefore, the judgement of the presence of E. coli or coliforms in samples of drinking water must impact highly on the improvement of the water quality by disinfection in future. PMID:397701

  7. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health. PMID:15371202

  8. Spatial Analysis of the Relationship between Mortality from Cardiovascular and Cerebrovascular Disease and Drinking Water Hardness

    PubMed Central

    Ferrándiz, Juan; Abellán, Juan J.; Gómez-Rubio, Virgilio; López-Quílez, Antonio; Sanmartín, Pilar; Abellán, Carlos; Martínez-Beneito, Miguel A.; Melchor, Inmaculada; Vanaclocha, Hermelinda; Zurriaga, Óscar; Ballester, Ferrán; Gil, José M.; Pérez-Hoyos, Santiago; Ocaña, Ricardo

    2004-01-01

    Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case–control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991–1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strategy of analysis used in our study conforms to the exploratory nature of the RIF that is used as a tool to obtain quick and flexible insight into epidemiologic surveillance problems. This article describes the use of the RIF to explore possible associations between disease indicators and environmental factors. We used exposure analysis to assess the effect of both protective factors—calcium and magnesium—on mortality from cerebrovascular (ICD-9 430–438) and ischemic heart (ICD-9 410–414) diseases. This study provides statistical evidence of the relationship between mortality from cardiovascular diseases and hardness of drinking water. This relationship is stronger in cerebrovascular disease than in ischemic heart disease, is more pronounced for women than for men, and is more apparent with magnesium than with calcium concentration levels. Nevertheless, the protective nature of these two factors is not clearly established. Our results suggest the possibility of protectiveness but cannot be claimed as conclusive. The weak effects of these covariates make it difficult to separate them from the influence of socioeconomic and environmental factors. We have also performed disease mapping of standardized mortality ratios to detect clusters of municipalities with high risk. Further standardization by levels of calcium and magnesium in drinking water shows changes in the maps when we remove the

  9. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    PubMed

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  10. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    PubMed Central

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  11. Pathogens in drinking water: Are there any new ones

    SciTech Connect

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  12. DISEASE OUTBREAKS CAUSED BY DRINKING WATER

    EPA Science Inventory

    Thirty-two waterborne disease outbreaks were reported to the Centers for Disease Control (CDC) and the Environmental Protection Agency in 1981. The outbreaks occurred in 17 states and involved 4430 cases. This was only 64% of the number of outbreaks that were reported in 1980 and...

  13. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    SciTech Connect

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  14. Microscale extraction of perchlorate in drinking water with low level detection by electrospray-mass spectrometry.

    PubMed

    Magnuson, M L; Urbansky, E T; Kelty, C A

    2000-06-21

    Improper treatment and disposal of perchlorate can be an environmental hazard in regions where solid rocket motors are used, tested, or stored. The solubility and mobility of perchlorate lends itself to ground water contamination, and some of these sources are used for drinking water. Perchlorate in drinking water has been determined at sub-mug l(-1) levels by extraction of the ion-pair formed between the perchlorate ion and a cationic surfactant with electrospray-mass spectrometry detection. Confidence in the selective quantification of the perchlorate ion is increased through both the use of the mass based detection as well as the selectivity of the ion pair. This study investigates several extraction solvents and experimental work-up procedures in order to achieve high sample throughput. The method detection limit for perchlorate based on 3.14sigma(n-1) of seven replicate injections was 300 ng l(-1) (parts-per-trillion) for methylene chloride extraction and 270 ng l(-1) for methyl isobutyl ketone extraction. Extraction with methylene chloride produces linear calibration curves, enabling standard addition to be used to quantify perchlorate in drinking water. Perchlorate determination of a contaminated water compared favorably with results determined by ion chromatography. PMID:18967987

  15. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    PubMed

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. PMID:26925543

  16. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. PMID:27089422

  17. Health risk assessment of phthalate esters (PAEs) in drinking water sources of China.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Wang, Chao; He, Tao; Hu, Hong-Ying

    2015-03-01

    Phthalate esters (PAEs) with endocrine disruption effects and carcinogenicity are widely detected in water environment. Occurrences of PAEs in source water and removal efficiencies of PAEs by drinking water treatment plants (DWTPs) in China were surveyed from publications in the last 10 years. Concentration of diethylhexyl phthalate (DEHP) in source water with median value of 1.3 μg/L was higher than that of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP). If the removal efficiencies of DEHP and DnBP reached 60 and 90 %, respectively, the calculated PAE concentration in drinking water can generally meet Standards for Drinking Water Quality in China. The health risks of PAEs, including non-carcinogenic and carcinogenic risks via the "water source-DWTP-oral ingestion/dermal permeation" pathway, were evaluated with Monte Carlo simulation and sensitivity analysis under certain removal efficiencies from 0 to 95 %. The carcinogenic risk of DEHP was lower than the upper acceptable carcinogenic risk level (10(-4)), while the probability of DEHP's carcinogenic risk between lower (10(-6)) and upper (10(-4)) acceptable carcinogenic risk level decreased from about 21.2 to 0.4 % through increasing DEHP removal efficiency from 0 to 95 %. The non-carcinogenic risk of DEHP was higher than that of DEP and DnBP. In all cases, the total non-carcinogenic risk of DEP, DnBP, and DEHP was lower than 1, indicating that there would be unlikely incremental non-carcinogenic risk to humans. Both carcinogenic risk and non-carcinogenic risk of PAEs in drinking water to female were a little higher than those to male. PMID:25253058

  18. Social Disparities in Nitrate-Contaminated Drinking Water in California’s San Joaquin Valley

    PubMed Central

    Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-01-01

    Background: Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. Objectives: We hypothesized that CWSs in California’s San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. Methods: We used water quality monitoring data sets (1999–2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Results: Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS’s estimated NO3 concentration [95% confidence interval (CI), –0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, –0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03–0.84) and a decrease of 0.15 mg NO3/L (95% CI, –0.64 to 0.33), respectively. Conclusions: Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality. PMID:21642046

  19. Characterization of aquifers designated as potential drinking-water sources in Mississippi

    USGS Publications Warehouse

    Gandl, L.A.

    1982-01-01

    The Environmental Protection Agency has established that all ground water having a dissolved-solids concentration of less than 10,000 milligrams per liter is to be protected from injection of waste material. The Underground Injection Control program is intended to protect aquifers that are possible future sources of drinking water. Fourteen aquifers in Mississippi have been studied and their downdip limits for water containing 10 ,000 milligrams per liter dissolved solids have been delineated. Maps have been prepared showing the top, bottom, thickness, and potentiometric surface of the aquifers. 

  20. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes.

    PubMed

    Lalancette, Cindy; Papineau, Isabelle; Payment, Pierre; Dorner, Sarah; Servais, Pierre; Barbeau, Benoit; Di Giovanni, George D; Prévost, Michèle

    2014-05-15

    Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with

  1. Gaseous, chlorine-free chlorine dioxide for drinking water

    SciTech Connect

    Gordon, G.; Rosenblatt, A.

    1996-11-01

    The benefits of applying chlorine dioxide (ClO{sub 2}) for the oxidative treatment of drinking water are well established. Chlorine dioxide treated finished water typically has substantially lower trihalomethane (THM) levels because ClO{sub 2} will not form chlorinated organic species as a by-product of disinfection. The THMs that are formed are probably due to chlorine from the generator or chlorine used to maintain a post-disinfection residual. An emerging regulatory issue concerning the formation of disinfection by-products (DBPs) is causing the water industry to set standards for the generation and delivery of ClO{sub 2}. The Federal Register (11 February 1994) contains language developed to limit the production of the unwanted inorganic by-products chlorite (ClO{sub 2}{sup -}), chlorate (ClO{sub 3}{sup -}), and bromate (BrO{sub 3}{sup -}) ions by requiring utilities to maintain high (95%) generation efficiencies and by limiting the amount of excess Cl{sub 2} that can be used during the generation process. The efficiency and excess Cl{sub 2} regulations may be problematic for utilities that over-chlorinate to attain chlorine dioxide high yields. Many utilities will have to decide either to reduce the amount of Cl{sub 2} used to react with sodium chlorite (NaClO{sub 2}), thereby increasing the ClO{sub 2}{sup -} residual in finished water, or over-chlorinate to increase yields and surpass the excess Cl{sub 2} limits.

  2. Workshop on funding opportunities within the Food Standards Agency.

    PubMed

    Ashwell, Margaret

    2004-11-01

    During this workshop, held as part of a joint Nutrition Society and Food Standards Agency (Agency) meeting on Micronutrient interactions and public health, several precepts for a successful funding application to the Agency were discussed. These precepts, many of which can be used as guiding principles for project proposals to other funding bodies, are summarised as follows: remember that the Agency only supports research that will help them formulate or change human food policy; read the research requirements document thoroughly and plan your project to answer the call; remember that the Agency issues contracts, not grants; your project will be just one project within a focused and coordinated programme; collaborative work is encouraged, but this type of approach is not a licence to double or treble your costs; write a one-page executive summary and attach it to the front of the form;the statistical basis for your experimental design and proposed statistical analysis of your results are important criteria in the evaluation of your proposal; your plans for dissemination and exploitation are very important;match your project duration against your research plan; abide by the Agency plan for quality assurance for the management of research; make full use of the programme adviser and the Agency policy contact and the 'feedback' stage to refine your scientific ideas in line with Agency policy. PMID:15831126

  3. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    EPA Science Inventory

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  4. METHODS FOR THE DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Thirteen analytical methods for the identification and measurement of organic compounds in drinking water are described in detail. ix of the methods are for volatile organic compounds (VOC's) and certain disinfection byproducts and these methods were cited in the Federal Register...

  5. Photocatalytic Coats in Glass Drinking-Water Bottles

    NASA Technical Reports Server (NTRS)

    Andren, Anders W.; Armstrong, David E.; Anderson, Marc A.

    2005-01-01

    According to a proposal, the insides of glass bottles used to store drinking water would be coated with films consisting of or containing TiO2. In the presence of ultraviolet light, these films would help to remove bacteria, viruses, and trace organic contaminants from the water.

  6. Condition Assessment for Drinking Water Transmission and Distribution Mains

    EPA Science Inventory

    This project seeks to improve the capability to characterize the condition of water infrastructure. The integrity of buried drinking water mains is critical, as it influences water quality, losses, pressure and cost. This research complements the U.S. Environmental Protection A...

  7. ABSORPTION OF LEAD FROM DRINKING WATER WITH VARYING MINERAL CONTENT

    EPA Science Inventory

    Lead (Pb) (200 ppm) was administered via drinking water to rats for nine weeks. In addition, the rats were grouped so that they received 75, 100, 150 and 250% of the minimum daily requirements (MDR) of calcium (Ca), iron (Fe), and magnesium (Mg) as required for normal growth. The...

  8. NITRATE REMOVAL FROM DRINKING WATER IN GLENDALE, ARIZONA

    EPA Science Inventory

    A 15-month pilot-scale study of nitrate removal from drinking water by ion exchange (IX), reverse osmosis (RO), and electrodialysis (ED) was carried out in Glendale, Arizona, where the raw water contained 18 to 25 mg/L NO3-N. The experiments were carried out using the University ...

  9. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  10. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. quations relating disinfectant residual to the disinfectant's reaction rate, the tank volume, and the fill and drain rates are presented. n analytical solution for the...

  11. Occurrence and hygienic relevance of fungi in drinking water.

    PubMed

    Kanzler, D; Buzina, W; Paulitsch, A; Haas, D; Platzer, S; Marth, E; Mascher, F

    2008-03-01

    Fungi, above all filamentous fungi, can occur almost everywhere, even in water. They can grow in such a quantity in water that they can affect the health of the population or have negative effects on food production. There are several reports of fungal growth in water from different countries, but to our knowledge none from Austria so far. The aim of this study was to gain an overview of the spectrum of filamentous fungi and yeasts in drinking water systems. Thirty-eight water samples from drinking water and groundwater were analysed. Fungi were isolated by using membrane filtration and plating method with subsequent cultivation on agar plates. The different taxa of fungi were identified using routine techniques as well as molecular methods. Fungi were isolated in all water samples examined. The mean value for drinking water was 9.1 CFU per 100 ml and for groundwater 5400 CFU per 100 ml. Altogether 32 different taxa of fungi were found. The taxa which occurred most frequently were Cladosporium spp., Basidiomycetes and Penicillium spp. (74.6%, 56.4% and 48.7%, respectively). This study shows that drinking water can be a reservoir for fungi, among them opportunists, which can cause infections in immunosuppressed patients. PMID:18254755

  12. UNREGULATED DRINKING WATER CONTAMINANTS AND INNOVATIVE APPROACHES FOR DETERMINING NEUROTOXICITY

    EPA Science Inventory

    EPA's Office of Water (OW) is concerned about potential neurotoxicity of monomethyl, dimethyl, monobutyl, and dibutyl organotins that can leach into drinking water from PVC pipe. NTD’s evaluation of these organotins indicated that they were not likely to be a significant risk at ...

  13. Wastewater to Drinking Water: Are Emerging Contaminants Making it Through?

    EPA Science Inventory

    Lake Mead serves as the primary drinking water source for Las Vegas, Nevada and surrounding communities. Besides snow-melt from the Rockies water levels in the lake are supplemented by the inflow of treated wastewater from communities along the Colorado River, including Las Vegas...

  14. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  15. URBAN DRINKING WATER DISTRIBUTION SYSTEMS: A U.S. PERSPECTIVE

    EPA Science Inventory

    This paper will examine several case studies that illustrate the critical role drinking water treatment and distribution systems play in protecting public health. It will also present a case study that documents the dramatic impact that the regulations promulgated under the Safe...

  16. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  17. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    The Food Quality Protection Act (FQPA) of 1996 requires that all tolerances for pesticide chemical residuals in or on food be considered for anticipated exposure. Drinking water is considered a potential pathway for dietary exposure and there is reliable monitoring data for the ...

  18. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    EPA Science Inventory

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  19. EVALUATION OF DRINKING WATER TREATMENT TECHNIQUES FOR EDC REMOVAL

    EPA Science Inventory

    Many of the chemicals identified as potential endocrine disrupting chemicals (EDCs) may be present in surface or ground waters used as drinking water sources, due to their disposal via domestic and industrial sewage treatment systems and wet-weather runoff. In order to decrease t...

  20. FETOTOXIC EFFECTS OF NICKEL IN DRINKING WATER IN MICE

    EPA Science Inventory

    Nickel chloride was administered in drinking water to pregnant mice from the 2nd through the 17th day of gestation at nickel doses of 0, 500, or 1000 ppm. Fetal or maternal toxicity was not seen after administration of 500 ppm of nickel. However, the higher dose caused spontaneou...

  1. Oxidative decomposition of vitamin C in drinking water.

    PubMed

    Jansson, Patric J; Jung, Hye R; Lindqvist, Christer; Nordström, Tommy

    2004-08-01

    We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15 min. After 3h incubation at room temperature, 93% of the added (2 mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed. PMID:15493459

  2. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water**

    EPA Science Inventory

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  3. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water

    EPA Science Inventory

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  4. DETECTION OF ENTERIC VIRUSES IN TREATED DRINKING WATER

    EPA Science Inventory

    The occurrence of viruses in conventionally treated drinking water derived from a heavily polluted source was evaluated by collecting and analyzing 38 large volume (65 to 756 liter) samples of water from a 9m3/sec (205 mgd) water treatment plant. Samples of raw, clarified, filter...

  5. CONTROL OF MICROBES AND DBPS IN DRINKING WATER: AN OVERVIEW

    EPA Science Inventory

    Historically drinking water utilities in the United States (U.S.) have played a major role in protecting public health through the reduction of waterborne disease. These reductions in waterborne disease outbreaks were brought about by the use of sand filtration, disinfection and...

  6. ELEVATED LEVELS OF SODIUM IN COMMUNITY DRINKING WATER

    EPA Science Inventory

    A comparison study of students from towns with differing levels of sodium in drinking water revealed statistically significantly higher blood pressure distributions among the students from the town with high sodium levels. Differences were found in both systolic and diastolic rea...

  7. DRINKING WATER DISINFECTION USING A UV/PHOTOCATALYST

    EPA Science Inventory

    Worldwide, lack of safe drinking water takes an inestimable toll on human health. The objective of this project is to develop a small-scale sustainable water disinfection technology requiring a minimum of treatment time. The technology to be developed will be simple, sustain...

  8. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. PMID:25280176

  9. TREATMENT TECHNIQUES FOR CONTROLLING TRIHALOMETHANES IN DRINKING WATER

    EPA Science Inventory

    In this volume, the authors attempt to bring together information developed over the past 6 years, on all aspects of trihalomethanes as they relate to drinking water. Section I summarizes with references to the primary literature the discovery of the trihalomethane problem, healt...

  10. Drinking Water Activities for Students, Teachers, and Parents.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This guide provides teachers with materials, information, and classroom activities to enhance any drinking water curriculum. Students can use the activity sheets to further lessons and stimulate thought. Parents can use the guide to develop science projects that will provoke thought, encourage research, and provide a scientific approach to…

  11. REMOVING ESOTERIC CONTAMINANTS FROM DRINKING WATERS: IMPACTS OF TREATMENT IMPLEMENTATION

    EPA Science Inventory

    At first blush, the production and distribution of drinking water seems to be a very straight forward process. There is a need to remove microbial agents and any anthropogenic or autochthonous contaminants that may be of health concern. Finally, a disinfectant is usually added to...

  12. The Safe Drinking Water Act First 180 Days

    ERIC Educational Resources Information Center

    Lehr, Jay H.

    1975-01-01

    The Safe Drinking Water Act protects our drinking and ground water resources. The Water Advisory Council interprets and implements the law. Implementation principles include high priorities for public health, cost considerations, state and local participation, environmental impact, decentralized decision making, and use of federal and state…

  13. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  14. NUTRIENTS FOR BACTERIAL GROWTH IN DRINKING WATER: BIOASSAY EVALUATION

    EPA Science Inventory

    The regrowth of bacteria in drinking water distribution systems can lead to the deterioration of water quality. Pathogenic bacteria are heterotrophs, and heterotrophs are probably the dominant bacteria associated with the regrowth phenomenon. Only a portion of the total organic c...

  15. Environmental health perspectives. Volume 46. Drinking water disinfectants - December 1982

    SciTech Connect

    Lucier, G.W.; Hook, G.E.R.

    1982-01-01

    Among subjects considered are chlorine dioxide, N-chloramines, mutagenic activity by disinfectant reaction products, trihalomethane and behavioral toxicity, and carcinogenic risk estimation. There are 27 papers on these and related topics. The volume stems from a symposium on drinking water disinfectants and disinfectant by-products.

  16. COMPUTER ASSISTED PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    The purpose of the study was to develop an interactive computer program to aid the design engineer in evaluating the performance and cost for any proposed drinking water treatment system consisting of individual unit processes. The 25 unit process models currently in the program ...

  17. COMPARATIVE RISK DILEMNAS IN DRINKING WATER DISINFECTION [EDITORIAL

    EPA Science Inventory

    Disinfection of drinking water supplies has been one of the most succesful public health interventions of the twentieth century. It has virtually eliminated outbreaks of serious waterborne infectious diseases, such as cholera and typhoid. there are still, however, an average of...

  18. FATE OF PESTICIDES AND TOXIC CHEMICALS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    Regulations require that all relevant routes of human consumption be considered in risk assessments for anthropogenic chemicals. A large percentage of the U.S. population consumes drinking water (DW) that is treated. Limited studies show that some pesticides and toxics occurrin...

  19. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  20. REDUCING ARSENIC LEVELS IN DRINKING WATER: APPROACHES AND CONSIDERATIONS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. It has been projected that the State of Ohio will have nearly 140 community and non-community non-transient water systems in violation of the Rule. This ...

  1. New Perspectives in Monitoring Drinking Water Microbial Quality

    PubMed Central

    Figueras, Ma José; Borrego, Juan J.

    2010-01-01

    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated. PMID:21318002

  2. Particulate Arsenic Release in a Drinking Water Distribution System

    EPA Science Inventory

    Trace contaminants, such as arsenic, have been shown to accumulate in solids found in drinking water distribution systems. The obvious concern is that the contaminants in these solids could be released back into the water resulting in elevated levels in a consumer’s tap water. Th...

  3. MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?

    EPA Science Inventory

    Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...

  4. INEXPENSIVE DRINKING WATER CHLORINATION UNIT FOR SMALL COMMUNITIES - PHASE I

    EPA Science Inventory

    More than 250 drinking water systems exist for small communities in Puerto Rico that serve between 25 and 500 individuals. These water systems fall outside of the Puerto Rico Aqueduct and Sewer Authority and, thus, have insufficient water treatment systems or no water treatmen...

  5. INEXPENSIVE DRINKING WATER CHLORINATION UNIT FOR SMALL COMMUNITIES - PHASE II

    EPA Science Inventory

    Over 250 drinking water systems exist for small communities in Puerto Rico that serve 25-500 individuals. These water systems fall outside of Puerto Rico Aquaduct and Sewer Authority and, thus, have no or insufficient water treatment systems. Water sources for these communit...

  6. Geospatial examination of lithium in drinking water and suicide mortality

    PubMed Central

    2012-01-01

    Background Lithium as a substance occurring naturally in food and drinking water may exert positive effects on mental health. In therapeutic doses, which are more than 100 times higher than natural daily intakes, lithium has been proven to be a mood-stabilizer and suicide preventive. This study examined whether natural lithium content in drinking water is regionally associated with lower suicide rates. Methods Previous statistical approaches were challenged by global and local spatial regression models taking spatial autocorrelation as well as non-stationarity into account. A Geographically Weighted Regression model was applied with significant independent variables as indicated by a spatial autoregressive model. Results The association between lithium levels in drinking water and suicide mortality can be confirmed by the global spatial regression model. In addition, the local spatial regression model showed that the association was mainly driven by the eastern parts of Austria. Conclusions According to old anecdotic reports the results of this study support the hypothesis of positive effects of natural lithium intake on mental health. Both, the new methodological approach and the results relevant for health may open new avenues in the collaboration between Geographic Information Science, medicine, and even criminology, such as exploring the spatial association between violent or impulsive crime and lithium content in drinking water. PMID:22695110

  7. PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    A computer model has been developed for use in estimating the performance and associated costs of proposed and existing water supply systems. Design procedures and cost-estimating relationships for 25 unit processes that can be used for drinking water treatment are contained with...

  8. The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems

    EPA Science Inventory

    The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

  9. DRINKING WATER DISINFECTION BYPRODUCTS AND DURATION OF GESTATION

    EPA Science Inventory

    Recent studies of drinking water disinfection by-products (DBPs) suggest high exposure decreases risk of preterm birth. We examined this association with total trihalomethane (TTHM) and five haloacetic acids (HAA5) among 2,041 women in a prospective pregnancy study conducted from...

  10. TECHNIQUES FOR ANALYZING COMPLEX MIXTURES OF DRINKING WATER DBPS

    EPA Science Inventory

    Although chlorine has been used to disinfect drinking water for approximately 100 years, there have been concerns raised over its use, due to the formation of potentially hazardous by-products. Trihalomethanes (THMs) were the first disinfection by-products (DBPs) identified and ...

  11. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  12. Impact of Plumbing Age on Copper Levels in Drinking Water

    EPA Science Inventory

    Theory and limited practical experiences suggest that higher copper levels in drinking water tap samples are typically associated with newer plumbing systems, and levels decrease with increasing plumbing age. Past researchers have developed a conceptual model to explain the “agin...

  13. ELECTRO-REGENERATED ION-EXCHANGE DEIONIZATION OF DRINKING WATER

    EPA Science Inventory

    This report presents the development of a device for removal of inorganic salts from drinking water to facilitate the subsequent concentration of organic solutes for bioassay. Prior attempts to concentrate the organic solutes by reverse osmosis (RO) resulted in precipitation of t...

  14. TREATMENT ALTERNATIVES FOR CONTROLLING CHLORINATED ORGANIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    A pilot plant study was conducted by the City of Thornton, Colorado, to evaluate techniques for controlling chlorinated organic compounds formed in drinking water as a result of breakpoint, or free, chlorination. The pilot plant was operated for 46 months using the raw water sour...

  15. RESIDENTIAL EXPOSURE TO DRINKING WATER ARSENIC IN INNER MONGOLIA, CHINA

    EPA Science Inventory

    Residential exposure to drinking water arsenic in Inner Mongolia, China
    Zhixiong Ning1, Richard K. Kwok2, Zhiyi Liu1, Shiying Zhang1, Chenglong Ma1, Danelle T. Lobdell2, Michael Riediker3 and Judy L. Mumford2
    1) Institute of Endemic Disease for Prevention and Treatment in I...

  16. ENUMERATION AND IDENTIFICATION OF HETEROTROPHIC BACTERIA FROM DRINKING WATER

    EPA Science Inventory

    Various spread-plating enumeration media and procedures have been tested to determine the method of choice for the enumeration of the highest numbers of heterotrophic bacteria from chlorinated drinking waters. Dilute media, including a caseinate peptone starch medium, a dilute pe...

  17. Decontamination Methods For Drinking Water Treatment And Distribution Systems

    EPA Science Inventory

    Once contamination has occurred in drinking water systems and the contaminated segment has been isolated from other parts of the system, there will be great urgency to decontaminate the areas as rapidly and cost effectively as possible. This article describes available and deve...

  18. MOLECULAR DIVERSITY OF DRINKING WATER MICROBIAL COMMUNITIES: A PHYLOGENETIC APPROACH

    EPA Science Inventory

    The microbiological quality of drinking water is assessed using culture-based methods that are highly selective and that tend to underestimate the densities and diversity of microbial populations inhabiting distribution systems. In order to better understand the effect of differe...

  19. USING WATERSHED ECOLOGICAL RISK ASSESSMENT FOR PROTECTING DRINKING WATER

    EPA Science Inventory

    The first manuscript describes the application of watershed ERA principles to the development of a strategic watershed management plan for Victoria, British Columbia, Canada, where the primary focus was on the protection of drinking water quality, a concern typically addressed by...

  20. SAFE DRINKING WATER FOR THE LITTLE GUY: OPTIONS AND ALTERNATIVES

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA) and its Amendments sets regulations applicable to all community water systems that have 15 or more service connections and/or serve at least 25 people. t first glance, this may appear most inclusive, but in reality there are numerous private hom...