Sample records for agency small solar

  1. Solar Photovoltaic Financing: Deployment by Federal Government Agencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cory, K.; Coggeshall, C.; Coughlin, J.

    2009-07-01

    The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

  2. International Energy Agency Solar Heating and Cooling Program

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  3. Lightweight Solar Power for Small Satellites

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  4. Strategy and methodology for rank-ordering Virginia state agencies regarding solar attractiveness and identification of specific project possibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, R.

    1997-12-31

    This paper describes the strategy and computer processing system that NREL, the Virginia Department of Mines, Minerals and Energy (DMME) and the state energy office, are developing for computing solar attractiveness scores for state agencies and the individual facilities or buildings within each agency. In the case of an agency, solar attractiveness is a measure of that agency`s having a significant number of facilities for which solar has the potential to be promising. In the case of a facility, solar attractiveness is a measure of its potential for being good, economically viable candidate for a solar waste heating system. Virginiamore » State agencies are charged with reducing fossil energy and electricity use and expense. DMME is responsible for working with them to achieve the goals and for managing the state`s energy consumption and cost monitoring program. This is done using the Fast Accounting System for Energy Reporting (FASER) computerized energy accounting and tracking system and database. Agencies report energy use and expenses (by individual facility and energy type) to DMME quarterly. DMME is also responsible for providing technical and other assistance services to agencies and facilities interested in investigating use of solar. Since Virginia has approximately 80 agencies operating over 8,000 energy-consuming facilities and since DMME`s resources are limited, it is interested in being able to determine: (1) on which agencies to focus; (2) specific facilities on which to focus within each high-priority agency; and (3) irrespective of agency, which facilities are the most promising potential candidates for solar. The computer processing system described in this paper computes numerical solar attractiveness scores for the state`s agencies and the individual facilities using the energy use and cost data in the FASER system database and the state`s and NREL`s experience in implementing, testing and evaluating solar water heating systems in commercial

  5. Assessment of the potential of solar thermal small power systems in small utilities

    NASA Technical Reports Server (NTRS)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  6. Investigation of small solar system objects with the space telescope

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1979-01-01

    The application of the space telescope (ST) to study small objects in the solar system in order to understand the birth and the early evolution of the solar system is discussed. The upper size limit of the small bodies is defined as approximately 5000 km and includes planetary satellites, planetary rings, asteroids, and comets.The use of the astronomical instruments aboard the ST, such as the faint object camera, ultraviolet and infrared spectrometers, and spectrophotometers, to study the small solar system objects is discussed.

  7. Funding Solar Projects at Federal Agencies: Mechanisms and Selection Criteria (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Implementing solar energy projects at federal facilities is a process. The project planning phase of the process includes determining goals, building a team, determining site feasibility and selecting the appropriate project funding tool. This fact sheet gives practical guidance to assist decision-makers with understanding and selecting the funding tool that would best address their site goals. Because project funding tools are complex, federal agencies should seek project assistance before making final decisions. High capital requirements combined with limits on federal agency energy contracts create challenges for funding solar projects. Solar developers typically require long-term contracts (15-20) years to spread outmore » the initial investment and to enable payments similar to conventional utility bill payments. In the private sector, 20-year contracts have been developed, vetted, and accepted, but the General Services Administration (GSA) contract authority (federal acquisition regulation [FAR] part 41) typically limits contract terms to 10 years. Payments on shorter-term contracts make solar economically unattractive compared with conventional generation. However, in several instances, the federal sector has utilized innovative funding tools that allow long-term contracts or has created a project package that is economically attractive within a shorter contract term.« less

  8. Solar thermal power plants in small utilities - An economic impact analysis

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.

    1979-01-01

    A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.

  9. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.

    2011-04-10

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less

  10. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  11. On the Dynamics of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Title, A. M.

    1996-01-01

    We report on the dynamics of the small-scale solar magnetic field, based on analysis of very high resolution images of the solar photosphere obtained at the Swedish Vacuum Solar Telescope. The data sets are movies from 1 to 4 hr in length, taken in several wavelength bands with a typical time between frames of 20 s. The primary method of tracking small-scale magnetic elements is with very high contrast images of photospheric bright points, taken through a 12 A bandpass filter centered at 4305 A in the Fraunhofer 'G band.' Previous studies have established that such bright points are unambiguously associated with sites of small-scale magnetic flux in the photosphere, although the details of the mechanism responsible for the brightening of the flux elements remain uncertain. The G band bright points move in the intergranular lanes at speeds from 0.5 to 5 km/s. The motions appear to be constrained to the intergranular lanes and are primarily driven by the evolution of the local granular convection flow field. Continual fragmentation and merging of flux is the fundamental evolutionary mode of small-scale magnetic structures in the solar photosphere. Rotation and folding of chains or groups of bright points are also observed. The timescale for magnetic flux evolution in active region plage is on the order of the correlation time of granulation (typically 6-8 minutes), but significant morphological changes can occur on timescales as short as 100 S. Smaller fragments are occasionally seen to fade beyond observable contrast. The concept of a stable, isolated subarcsecond magnetic 'flux tube' in the solar photosphere is inconsistent with the observations presented here.

  12. Solar Energy and Other Appropriate Technologies for Small ...

    EPA Pesticide Factsheets

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change resulting from the use of fossil fuels in Puerto Rico. In Puerto Rico, petroleum (65%), natural gas (18%) and coal (16%) are imported to generate electricity resulting in electrical rates that are more than twice the US average. In 2012, only 1% of electricity came from renewable energy (US Energy Information Administration). One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water. These small communities (Non-PRASA communities) are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance. Many Non-PRASA groundwater systems (141 out of 247) could use solar-powered pumps to extract and deliver groundwater. Solar power would also extend the life of system electrical components by improving the quality of electrical power supply. Solar power as a renewable energy source for Non-PRASA water systems is a viable approach that also reduces the impact of climate change in the Caribbean.

  13. Siting Issues for Solar Thermal Power Plants with Small Community Applications

    NASA Technical Reports Server (NTRS)

    Holbeck, J. J.; Ireland, S. J.

    1978-01-01

    Technologies for solar thermal plants are being developed to provide energy alternatives for the future. Implementation of these plants requires consideration of siting issues as well as power system technology. While many conventional siting considerations are applicable, there is also a set of unique siting issues for solar thermal plants. Early experimental plants will have special siting considerations. The siting issues associated with small, dispersed solar thermal power plants in the 1 to 10 MWe power range for utility/small community applications are considered. Some specific requirements refer to the first 1 MWe engineering experiment for the Small Power Systems Applications (SPSA) Project. The siting issues themselves are discussed in three categories: (1) system resource requirements, (2) environmental effects on the system, and (3) potential impact of the plant on the environment. Within these categories, specific issues are discussed in a qualitative manner. Examples of limiting factors for some issues are taken from studies of other solar systems.

  14. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.

    PubMed

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang

    2013-11-28

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

  15. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  16. Selection and development of small solar thermal power applications

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Kuehn, T. J.; Gurfield, R. M.

    1979-01-01

    The paper discusses the approach of the JPL Point Focusing Thermal and Electric Power Applications Project to selecting and developing applications for point-focusing distributed-receiver solar thermal electric power systems. Six application categories are defined. Results of application studies of U.S. utilities are presented. The economic value of solar thermal power systems was found to range from $900 to $2100/kWe in small community utilities of the Southwest.

  17. Thermal power systems small power systems application project: Siting issues for solar thermal power plants with small community applications

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.; Ireland, S. J.

    1979-01-01

    The siting issues associated with small, dispersed solar thermal power plants for utility/small community applications of less than 10 MWe are reported. Some specific requirements are refered to the first engineering experiment for the Small Power Systems Applications (SPSA) Project. The background for the subsequent issue discussions is provided. The SPSA Project and the requirements for the first engineering experiment are described, and the objectives and scope for the report as a whole. A overview of solar thermal technologies and some technology options are discussed.

  18. Sample Return from Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.

    With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies

  19. Evaluating a Small Structural Insulated Panel (SIP) Designed Solar Kiln in Southwestern New Mexico - Part 1

    Treesearch

    Richard D. Bergman; Ted E.M. Bilek

    2012-01-01

    With increasing energy costs, using small dry kilns for drying lumber for small-volume value-added wood products has become more of an option when compared with conventional drying. Small solar kilns are one such option, and a number of solar kiln designs exist and are in use. However, questions remain about the design and operation of solar kilns, particularly during...

  20. High Resolution Observations and Modeling of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, Thomas E.

    2001-01-01

    This research contract investigating the radiative transfer and dynamic physics of the smallest observable magnetic structures in the solar photosphere. Due to the lack of a high-resolution visible light satellite instrument for solar studies, all data were acquired using ground-based instrumentation. The primary goal of the investigation was to understand the formation and evolution of "G-band bright points" in relation to the associated magnetic elements. G-band bright points are small (on the order of 100 kin or less in diameter) bright signatures associated with magnetic flux elements in the photosphere. They are seen in the A2A-X2 4308 A molecular bandhead of the CH radical ill the solar spectrum and offer the highest spatial resolution and highest contrast "tracers" of small magnetic structure on the Sun.

  1. Small Power Systems Solar Electric Workshop Proceedings. Volume 1: Executive report. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    Ferber, R. (Editor); Evans, D. (Editor)

    1978-01-01

    The background, objectives and methodology used for the Small Power Systems Solar Electric Workshop are described, and a summary of the results and conclusions developed at the workshop regarding small solar thermal electric power systems is presented.

  2. Studies of relationships among outer solar system small bodies and related objects

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1991-01-01

    This program involves telescopic observations of colorimetry, spectroscopy, and photometry of small bodies of the solar system, emphasizing possible relationships among outer solar system asteroids, comets, and certain satellites. Earth approacher targets of opportunity and lab spectroscopic studies are included.

  3. Proceedings of Small Power Systems Solar Electric Workshop. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    Ferber, R. (Editor)

    1978-01-01

    The focus of this work shop was to present the committment to the development of solar thermal power plants for a variety of applications including utility applications. Workshop activities included panel discussions, formal presentations, small group interactive discussions, question and answer periods, and informal gatherings. Discussion on topics include: (1) solar power technology options; (2) solar thermal power programs currently underway at the DOE, JPL, Electric Power Research Institute (EPRI), and Solar Energy Research Institute (SERI); (3) power options competing with solar; (4) institutional issues; (5) environmental and siting issues; (6) financial issues; (7) energy storage; (8) site requirements for experimental solar installations, and (9) utility planning.

  4. Non-Solar Photovoltaics for Small Space Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Clark, Eric B.; Myers, Matthew G.; Piszazor, Michael F.; Murbach, Marcus S.

    2012-01-01

    NASA has missions planned to targets in the solar system ranging from the permanently shadowed craters of Mercury to the icy reaches of the Kuiper belt and beyond. In 2011, the NASA Office of the Chief Technologist (OCT) requested the NASA Ames and Glenn Research Centers to assess the potential of small power supplies based on direct conversion of energy from radioisotope sources for future NASA missions; and in particular to assess whether alphavoltaic and betavoltaic power sources could be of potential benefit in small missions, as well as examining the use of miniaturized thermophotovoltaic power supplies. This paper summarizes the results of that assessment.

  5. A preliminary assessment of small steam Rankine and Brayton point-focusing solar modules

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Wen, L.; Steele, H.; Elgabalawi, N.; Wang, J.

    1979-01-01

    A preliminary assessment of three conceptual point-focusing distributed solar modules is presented. The basic power conversion units consist of small Brayton or Rankine engines individually coupled to two-axis, tracking, point-focusing solar collectors. An array of such modules can be linked together, via electric transport, to form a small power station. Each module also can be utilized on a stand-alone basis, as an individual power source.

  6. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    PubMed

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C. J.; Doyle, J. G.; Scullion, E. M.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identifymore » EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.« less

  8. Small- Geo Solar Array: New Generation Of Solar Arrays For Commercial Telecom Satellites For Power Ranges Between 2,5 KW And 7,5 KW

    NASA Astrophysics Data System (ADS)

    Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf

    2011-10-01

    In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.

  9. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  10. Small solar system bodies as granular systems

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  11. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  12. A solar thermal electric power plant for small communities

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    A solar power plant has been designed with a rating of 1000-kW electric and a 0.4 annual capacity factor. It was configured as a prototype for plants in the 1000 to 10,000-kWe size range for application to small communities or industrial users either grid-connected or isolated from a utility grid. A small central receiver was selected for solar energy collection after being compared with alternative distributed collectors. Further trade studies resulted in the selection of Hitec (heat transfer salt composed of 53 percent KNO3, 40 percent NaNO2, 7 percent NaNO3) as both the receiver coolant and the sensible heat thermal stroage medium and the steam Rankine cycle for power conversion. The plant is configured with road-transportable units to accommodate remote sites and minimize site assembly requirements. Results of the analyses indicate that busbar energy costs are competitive with diesel-electric plants in certain situations, e.g., off-grid, remote regions with high insolation. Sensitivity of energy costs to plant power rating and system capacity factor are given.

  13. The Role of Small-Scale Processes in Solar Active Region Decay

    NASA Astrophysics Data System (ADS)

    Meyer, Karen; Mackay, Duncan

    2017-08-01

    Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.

  14. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    PubMed

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extrapolation of space weathering processes to other small solar system bodies

    NASA Astrophysics Data System (ADS)

    Gaffey, M. J.

    A diverse range of processes were invoked as the dominant factor or as important contributory factors in the modification of the optical surface and regolith of the moon. These include impact vitrification by large and small projectiles, solar wind implantation and the reduction of oxidized iron during energetic events, sputtering and crystal lattice damage by energetic cosmic rays, shock metamorphism of minerals, mixing of diverse lithologies by impacts, and contamination by external materials. These processes are also potentially important on the rocky surfaces of other small solar system bodies. For icy bodies, several additional processes are also possible, including formation of complex organic compounds from methane and ammonia-bearing ices by ultraviolet irradiation and the condensation of vapor species to form frost layers in the polar or cooler regions of objects at appropriate heliocentric distances. The lunar case, even when completely understood, will not extend in a simple linear fashion to other small rocky objects, nor will the optical surfaces of those objects all be affected to the same degree by each process. The major factors that will control the relative efficacy of a possible mechanism include the efficiency of ejecta retention and the degree to which the regolith materials experience multiple events (primarily a function of body size, escape velocity, and impactor velocities); the mean duration of typical regolith particle exposure at the optical surface and within reach of the micrometeorite, cosmic ray, solar wind, or UV fluxes (a function of the rate and scale of regolith mixing, production, and removal processes); the incident flux of solar (low energy) cosmic rays, solar wind, or UV radiation (inverse square of heliocentric distance) or of galactic (high energy) cosmic rays (slowly increasing flux with heliocentric distance); and the compositional and mineralogical nature of the surface being affected. In general, those processes that

  16. Extrapolation of space weathering processes to other small solar system bodies

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1993-01-01

    A diverse range of processes were invoked as the dominant factor or as important contributory factors in the modification of the optical surface and regolith of the moon. These include impact vitrification by large and small projectiles, solar wind implantation and the reduction of oxidized iron during energetic events, sputtering and crystal lattice damage by energetic cosmic rays, shock metamorphism of minerals, mixing of diverse lithologies by impacts, and contamination by external materials. These processes are also potentially important on the rocky surfaces of other small solar system bodies. For icy bodies, several additional processes are also possible, including formation of complex organic compounds from methane and ammonia-bearing ices by ultraviolet irradiation and the condensation of vapor species to form frost layers in the polar or cooler regions of objects at appropriate heliocentric distances. The lunar case, even when completely understood, will not extend in a simple linear fashion to other small rocky objects, nor will the optical surfaces of those objects all be affected to the same degree by each process. The major factors that will control the relative efficacy of a possible mechanism include the efficiency of ejecta retention and the degree to which the regolith materials experience multiple events (primarily a function of body size, escape velocity, and impactor velocities); the mean duration of typical regolith particle exposure at the optical surface and within reach of the micrometeorite, cosmic ray, solar wind, or UV fluxes (a function of the rate and scale of regolith mixing, production, and removal processes); the incident flux of solar (low energy) cosmic rays, solar wind, or UV radiation (inverse square of heliocentric distance) or of galactic (high energy) cosmic rays (slowly increasing flux with heliocentric distance); and the compositional and mineralogical nature of the surface being affected. In general, those processes that

  17. 77 FR 70210 - Agency Information Collection (VA Subcontracting Report for Service Disabled Veteran-owned Small...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Subcontracting Report for Service Disabled Veteran-owned Small Business and Veteran-owned Small Business Concerns) Activities Under OMB Review AGENCY: Office of Small and Disadvantaged Business Utilization, Department of... U.S.C. 3501-3521), this notice announces that the Office of Small and Disadvantaged Business...

  18. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  19. Small is different: RPC observations of a small scale comet interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    Nilsson, Hans; Burch, James L.; Carr, Christopher M.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Rosetta Plasma Consortium Team

    2016-10-01

    Rosetta followed comet 67P from low activity at more than 3 AU heliocentric distance to peak activity at perihelion and then out again. We study the evolution of the dynamic plasma environment using data from the Rosetta Plasma Consortium (RPC). Observations of cometary plasma began in August 2014, at a distance of 100 km from the comet nucleus and at 3.6 AU from the Sun. As the comet approached the Sun, outgassing from the comet increased, as did the density of the cometary plasma. Measurements showed a highly heterogeneous cold ion environment, permeated by the solar wind. The solar wind was deflected due to the mass loading from newly added cometary plasma, with no discernible slowing down. The magnetic field magnitude increased significantly above the background level, and strong low frequency waves were observed in the magnetic field, a.k.a. the "singing comet". Electron temperatures were high, leading to a frequently strongly negative spacecraft potential. In mid to late April 2015 the solar wind started to disappear from the observation region. This was associated with a solar wind deflection reaching nearly 180°, indicating that mass loading became efficient enough to form a solar wind-free region. Accelerated water ions, moving mainly in the anti-sunward direction, kept being observed also after the solar wind disappearance. Plasma boundaries began to form and a collisionopause was tentatively identified in the ion and electron data. At the time around perihelion, a diamagnetic cavity was also observed, at a surprisingly large distance from the comet. In late 2016 the solar wind re-appeared at the location of Rosetta, allowing for studies of asymmetry of the comet ion environment with respect to perihelion. A nightside excursion allowed us to get a glimpse of the electrodynamics of the innermost part of the plasma tail. Most of these phenomena are dependent on the small-scale physics of comet 67P, since for most of the Rosetta mission the solar wind

  20. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    NASA Astrophysics Data System (ADS)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  1. The impacts of different expansion modes on performance of small solar energy firms: perspectives of absorptive capacity.

    PubMed

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-Long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance.

  2. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  3. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  4. 48 CFR 19.602-3 - Resolving differences between the agency and the Small Business Administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... between the agency and the Small Business Administration. 19.602-3 Section 19.602-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Certificates... and the Small Business Administration. (a) COCs valued between $100,000 and $25,000,000. (1) When...

  5. The Impacts of Different Expansion Modes on Performance of Small Solar Energy Firms: Perspectives of Absorptive Capacity

    PubMed Central

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance. PMID:24453837

  6. 48 CFR 419.602-3 - Resolving differences between the agency and the Small Business Administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between the agency and the Small Business Administration. 419.602-3 Section 419.602-3 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Certificates of... Small Business Administration. The HCA is authorized to appeal the issuance of a COC to SBA Headquarters...

  7. 48 CFR 419.602-3 - Resolving differences between the agency and the Small Business Administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... between the agency and the Small Business Administration. 419.602-3 Section 419.602-3 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Certificates of... Small Business Administration. The HCA is authorized to appeal the issuance of a COC to SBA Headquarters...

  8. 48 CFR 419.602-3 - Resolving differences between the agency and the Small Business Administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... between the agency and the Small Business Administration. 419.602-3 Section 419.602-3 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Certificates of... Small Business Administration. The HCA is authorized to appeal the issuance of a COC to SBA Headquarters...

  9. DESIGN OF A SMALL – SCALE SOLAR CHIMNEY FOR SUSTAINABLE POWER

    EPA Science Inventory

    After several months of design and testing it has been determined that a small scale solar chimney can be built using nearly any local materials and simple hand tools without needing superior construction knowledge. The biggest obstacle to over come was the weather conditions....

  10. Electrical design for origami solar panels and a small spacecraft test mission

    NASA Astrophysics Data System (ADS)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  11. Degradation of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Song, Q. L.; Wang, M. L.; Obbard, E. G.; Sun, X. Y.; Ding, X. M.; Hou, X. Y.; Li, C. M.

    2006-12-01

    Small-molecule organic solar cells with a structure of indium tin oxide (ITO)tris-8-hydroxy-quinolinato aluminum (Alq3) (2nm)fullerene (C60) (40nm)\\copper phthalocyanine (CuPc) (32nm)Au (40nm) were fabricated. The shelf lifetime of unencapsulated devices was over 1500h, and the power conversion efficiency reached 0.76% under AM1.5G (air mass 1.5 global) 75mW/cm2. The long lifetime was attributed to the inverted structure compared to the conventional ITO CuPcC60bufferAl structure since the former could effectively protect C60 from the diffusion of oxygen and modify interfacial electrical properties. The introduction of a 2nm Alq3 layer into the cells enhanced the power conversion efficiency by more than 20 times. The presence of the thin Alq3 film on the ITO substrate lowered the substrate work function and hence increased the electric field in the organic layers, which was beneficial to the collection of free carriers. The reasons for the degradation of such kind of organic solar cells are analyzed in detail.

  12. Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Franzen, M. A.; Preble, J.; Schoenoff, M.; Halona, K.; Long, T. E.; Park, T.; Sears, D. W. G.

    2004-01-01

    The return of samples from solar system bodies is becoming an essential element of solar system exploration. The recent National Research Council Solar System Exploration Decadal Survey identified six sample return missions as high priority missions: South-Aitken Basin Sample Return, Comet Surface Sample Return, Comet Surface Sample Return-sample from selected surface sites, Asteroid Lander/Rover/Sample Return, Comet Nucleus Sample Return-cold samples from depth, and Mars Sample Return [1] and the NASA Roadmap also includes sample return missions [2] . Sample collection methods that have been flown on robotic spacecraft to date return subgram quantities, but many scientific issues (like bulk composition, particle size distributions, petrology, chronology) require tens to hundreds of grams of sample. Many complex sample collection devices have been proposed, however, small robotic missions require simplicity. We present here the results of experiments done with a simple but innovative collection system for sample return from small solar system bodies.

  13. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  14. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  15. SPS market analysis. [small solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Goff, H. C.

    1980-01-01

    A market analysis task included personal interviews by GE personnel and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective small solar thermal power systems (SPS) users. Over 500 firms were contacted, including three ownership classes of electric utilities, industrial firms in the top SIC codes for energy consumption, and design engineering firms. A market demand model was developed which utilizes the data base developed by personal interviews and surveys, and projected energy price and consumption data to perform sensitivity analyses and estimate potential markets for SPS.

  16. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generatingmore » systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)« less

  17. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  18. Interplay between efficiency and device architecture for small molecule organic solar cells.

    PubMed

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  19. 75 FR 51986 - Agency Information Collection Extension; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... questionnaires to collect information on the respondents' knowledge of solar energy and energy efficiency and on installations of solar-energy and energy-efficiency equipment with which the respondents have been personally... DEPARTMENT OF ENERGY Agency Information Collection Extension; Correction AGENCY: U.S. Department...

  20. Navigation for Rendezvous and Orbit Missions to Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Helfrich, C. E.; Scheeres, D. J.; Williams, B. G.; Bollman, W. E.; Davis, R. P.; Synnott, S. P.; Yeomans, D. K.

    1994-01-01

    All previous spacecraft encounters with small solar-system bodies, such as asteroids and comets, have been flybys (e.g. Galileo's flybys of the asteroids Gaspra and Ida). Several future projects plan to build on the flyby experience and progress to the next level with rendezvous and orbit missions to small bodies. This presents several new issues and challenges for navigation which have never been considered before. This paper addresses these challenges by characterizing the different phases of a small body rendezvous and by describing the navigation requirements and goals of each phase. Prior to the encounter with the small body, improvements to its ephemeris and initial estimates of its physical parameters, e.g. size, shape, mass, rotation rate, rotation pole, and possibly outgassing, are made as accurately as ground-based measurements allow. This characterization can take place over years...

  1. The Virtual Solar Observatory: Still a Small Box

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.

    2005-01-01

    Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.

  2. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    PubMed

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  3. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    PubMed

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  4. Exploring small bodies in the outer solar system with stellar occultations

    NASA Technical Reports Server (NTRS)

    Elliot, Jim L.; Dunham, Edward W.; Olkin, C. B.

    1995-01-01

    Stellar occultation observations probe the atmospheric structure and extinction of outer solar system bodies with a spatial resolution of a few kilometers, and an airborne platform allows the observation of occultations by small bodies that are not visible from fixed telescopes. Results from occultations by Triton, Pluto, and Chiron observed with KAO are discussed, and future directions for this program are presented.

  5. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  6. Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  7. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dyemore » loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.« less

  8. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose

  9. Evidence of small-scale magnetic concentrations dragged by vortex motion of solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.

    2010-04-01

    Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.

  10. Development status of the small community solar power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1982-01-01

    The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.

  11. Analysis of electroluminescence images in small-area circular CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko

    2013-09-01

    The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.

  12. Solar Energy Systems

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  13. Long-Term Dynamics of Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Saunders, Steve (Technical Monitor); Holman, Matthew J.

    2005-01-01

    As part of the NASA Planetary Geology and Geophysics program Prof. Norm Murray (CITA) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its predecessor NAG5-7761, supported travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects. We later extended this model to three-body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS. This award singles out one paper published in Science each year for distinction. This grant has also supported, in part, my participate in other solar system dynamics projects. The results from those collaborations are also listed.

  14. General Relativistic Precession in Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Sekhar, Aswin; Werner, Stephanie; Hoffmann, Volker; Asher, David; Vaubaillon, Jeremie; Hajdukova, Maria; Li, Gongjie

    2016-10-01

    Introduction: One of the greatest successes of the Einstein's General Theory of Relativity (GR) was the correct prediction of the precession of perihelion of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre (ω) can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Analytical Approach and Numerical Integrations: Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of ω. Numerical integrations were done with package MERCURY incorporating the GR code to test the same effects. Numerical approach showed the same interesting relationship (as shown by analytical theory) between values of ω and the peaks/dips in MOID values. Previous works have shown that GR precession suppresses Kozai oscillations and this aspect was verified using our integrations. There is an overall agreement between both analytical and numerical methods.Summary and Discussion: We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements). Previous works have looked into impact probabilities and collision scenarios on

  15. Hypervelocity impacts and magnetization of small bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Ahrens, Thomas J.; Hide, Raymond

    1995-01-01

    The observed magnetism of asteroids such as Gaspra and Ida (and other small bodies in the solar system including the Moon and meteorites) may have resulted from an impact-induced shock wave producing a thermodynamic state in which iron-nickel alloy, dispersed in a silicate matrix, is driven from the usual low-temperature, low-pressure, alpha, kaemacite, phase to the paramagnetic, epsilon (hcp), phase. The magnetization was acquired upon rarefaction and reentry into the ferromagnetic, alpha, structure. The degree of remagnetization depends on the strength of the ambient field, which may have been associated with a Solar-System-wide magnetic field. A transient field induced by the impact event itself may have resulted in a significant, or possibly, even a dominant contribution, as well. The scaling law of Housen et al. (Housen, K. R., R. M. Schmidt, and K. A. Holsapple 1991) for catastrophic asteroid impact disaggregation imposes a constraint on the degree to which small planetary bodies may be magnetized and yet survive fragmentation by the same event. Our modeling results show it is possible that Ida was magnetized when a large impact fractured a 125 +/- 22-km-radius protoasteroid to form the Koronis family. Similarly, we calculate that Gaspra could be a magnetized fragment of a 45 +/- 15 km-radius protoasteroid.

  16. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 13 CFR 147.645 - Federal agency or agency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Federal agency or agency. 147.645 Section 147.645 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (NONPROCUREMENT) Definitions § 147.645 Federal agency or agency. Federal...

  18. SUITS/SWUSV: a small-size mission to address solar spectral variability, space weather and solar-climate relations

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Keckhut, Philippe; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane

    2016-07-01

    We present the SUITS/SWUSV microsatellite mission investigation: "Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability" mission. SUITS/SWUSV was developed to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset of CMEs (forecasting). Another major objective is to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging) the solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance measures from 170 to 400 nm). The mission is proposed on a sun-synchronous polar orbit 18h-6h (for almost constant observing) and proposes a 7 instruments model payload of 65 kg - 65 W with: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm; SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII index, CN bandhead and UV bands coverage up to 400 nm; HEBS (High Energy Burst Spectrometers), a large energy coverage (a few tens of keV to a few hundreds of MeV) instrument to characterize large flares; EPT-HET (Electron-Proton Telescope - High Energy Telescope), measuring electrons, protons, and heavy ions over a large energy range; ERBO (Earth Radiative Budget and Ozone) NADIR oriented; and a vector magnetometer. Complete accommodation of the payload has been performed on a PROBA type platform very nicely. Heritage is important both for instruments (SODISM and PREMOS on PICARD, LYRA on PROBA-2, SOLSPEC on ISS

  19. Solar Collector With Image-Forming Mirror Cavity to Irradiate Small Central Volume

    NASA Technical Reports Server (NTRS)

    Buchele, Don; Castle, Charles; Bonoetti, Joseph A.

    2001-01-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and higher temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 K. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlying theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74 m (9 ft) focal length. A quartz lens focuses a small sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is "suspended in space," 7.1 cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  20. Solar Access to Public Capital (SAPC) Mock Securitization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, Michael; Lowder, Travis; Rottman, Mary

    In late 2012, the National Renewable Energy Laboratory (NREL) initiated the Solar Access to Public Capital (SAPC) working group. Backed by a three-year funding facility from the U.S. Department of Energy (DOE), NREL set out to organize the solar, legal, banking, capital markets, engineering, and other relevant stakeholder communities in order to open lower-cost debt investment for solar asset deployment. SAPC engaged its members to standardize contracts, develop best practices, and comprehend how the rating agencies perceive solar project portfolios as an investment asset class. Rating agencies opine on the future creditworthiness of debt obligations. Issuers often seek investment-grade ratingsmore » from the rating agencies in order to satisfy the desires of their investors. Therefore, for the solar industry to access larger pools of capital at a favorable cost, it is critical to increase market participants' understanding of solar risk parameters. The process provided valuable information to address rating agency perceptions of risk that, without such information, could require costly credit enhancement or higher yields to attract institutional investors. Two different securities were developed--one for a hypothetical residential solar portfolio and one for a hypothetical commercial solar portfolio. Five rating agencies (Standard and Poor's, Moody's, KBRA, Fitch, and DBRS) participated and provided extensive feedback, some through conversations that extended several months. The findings represented in this report are a composite summary of that feedback and do not indicate any specific feedback from any single rating agency.« less

  1. Solar and Magnetic Attitude Determination for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Woodham, Kurt; Blackman, Kathie; Sanneman, Paul

    1997-01-01

    During the Phase B development of the NASA New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, detailed analyses were performed for on-board attitude determination using the Sun and the Earth's magnetic field. This work utilized the TRMM 'Contingency Mode' as a starting point but concentrated on implementation for a small spacecraft without a high performance mechanical gyro package. The analyses and simulations performed demonstrate a geographic dependence due to diurnal variations in the Earth magnetic field with respect to the Sun synchronous, nearly polar orbit. Sensitivity to uncompensated residual magnetic fields of the spacecraft and field modeling errors is shown to be the most significant obstacle for maximizing performance. Performance has been evaluated with a number of inertial reference units and various mounting orientations for the two-axis Fine Sun Sensors. Attitude determination accuracy using the six state Kalman Filter executing at 2 Hz is approximately 0.2 deg, 3-sigma, per axis. Although EO-1 was subsequently driven to a stellar-based attitude determination system as a result of tighter pointing requirements, solar/magnetic attitude determination is demonstrated to be applicable to a range of small spacecraft with medium precision pointing requirements.

  2. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  3. Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-12-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  4. Long-Term Dynamics of Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.

    2004-01-01

    As part of the NASA Planetary Geology and Geophysics program Prof. Norm Murray (CITA) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its predecessor NAG5- 7761, supports travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects. We later extended this model to three- body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS. This award singles out one paper published in Science each year for distinction.

  5. Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite

    NASA Astrophysics Data System (ADS)

    Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon

    2001-11-01

    For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  6. Appropriate technology for rural India - solar decontamination of water for emergency settings and small communities.

    PubMed

    Kang, Gagandeep; Roy, Sheela; Balraj, Vinohar

    2006-09-01

    A commercial solar water heating system was evaluated for its effectiveness in decontaminating drinking water with a view to use in emergency situations. A total of 18 seeding experiments carried out over 6 months with 10(5) to 10(7)Escherichia coli/ml showed that the solar heater produced 125 l of bacteriologically safe water in 4 h when the ambient temperature was above 30 degrees C, with a holding time of at least 2 h. The solar water heating system is inexpensive, easy to transport and set up and could provide safer drinking water for 50 people a day. It would be effective in the decrease and prevention of waterborne disease in emergency situations, and is appropriate for use in small communities.

  7. From organic chemistry in small bodies of the solar system to low temperature chemistry in the universe. Preface.

    PubMed

    Levasseur-Regourd, A C; Raulin, F

    1995-01-01

    A COSPAR two days Symposium has been dedicated to "Prebiotic chemistry in Space" at the COSPAR Plenary Meeting, (Hamburg, Germany, July 1994). This Symposium was jointly organized by Commissions B (Space studies of the Earth-Moon system, planets and small bodies of the solar system) and F (Life sciences as related to space). Its goal was to review, from an interdisciplinary approach, our knowledge on organic and prebiotic chemistry in small bodies of the Solar System, and on low temperature chemistry and exobiology. The Symposium was sponsored by COSPAR and the IAU (session 1), ESA, NASA, and ISSOL (session 2).

  8. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; ...

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  9. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  10. The Lightweight Integrated Solar Array and anTenna (LISA-T) Big Power for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations, especially for small spacecraft. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7W and 50W of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts, at a much higher mass and stowage efficiency. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the

  11. Optimization study of small-scale solar membrane distillation desalination systems (s-SMDDS).

    PubMed

    Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong

    2014-11-24

    Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m(2) and 23 m(2) are analyzed. The lowest water production costs are $5.92/m(3) and $5.16/m(3) for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  12. Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS)

    PubMed Central

    Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong

    2014-01-01

    Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction. PMID:25421065

  13. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  14. Powering a Home with Just 25 Watts of Solar PV. Super-Efficient Appliances Can Enable Expanded Off-Grid Energy Service Using Small Solar Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol A.; Jacobson, Arne; Park, Won Young

    Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africamore » and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.« less

  15. Solar collector manufacturing activity, 1988

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public.

  16. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 2: Appendix A - D

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    Recommended conceptual designs for the baseline solar concentrator and electrical subsystems are defined, and trade offs that were evaluated to arrive at the baseline systems are presented. In addition, the developmental history of the Stirling engine is reviewed, the U4 configuration is described, and a Stirling engine heat pipe system is evaluated for solar application where sodium vapor is used as the heat source. An organic Rankine cycle engine is also evaluated for solar small power system application.

  17. A very small and super strong zebra pattern burst at the beginning of a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Baolin; Tan, Chengming; Zhang, Yin

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that ofmore » the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.« less

  18. Magnetic Turbulence, Fast Magnetic Field line Diffusion and Small Magnetic Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Zimbardo, G.; Pommois, P.; Veltri, P.

    2003-09-01

    The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.

  19. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  20. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  1. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  2. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells

    PubMed Central

    Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit

    2016-01-01

    Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672

  3. Using ANTS to explore small body populations in the solar system.

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M.; Truszkowski, W.; Curtis, S.; Marr, G.; Chapman, C.

    2001-11-01

    ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, is a large (100 to 1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft that prospect the asteroid belt. Little data is available for asteroids because the vast majority are too small to be observed except in close proximity. Light curves are available for thousands of asteroids, confirmed trajectories for tens of thousands, detailed shape models for approximately ten. Asteroids originated in the transitional region between the inner (rocky) and outer (solidified gases) solar system. Many have remained largely unmodified since formation, and thus have more primitive composition than planetary surfaces. Determination of the systematic distribution of physical and compositional properties within the asteroid population is crucial in the understanding of solar system formation. The traditional exploration approach of using few, large spacecraft for sequential exploration, could be improved. Our far more cost-effective approach utilizes distributed intelligence in a swarm of tiny highly maneuverable spacecraft, each with specialized instrument capability (e.g., advanced computing, imaging, spectrometry). NASA is at the forefront of Intelligent Software Agents (ISAs) research, performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. The advanced development under consideration here is in the use of ISAs at a strategic level, to explore remote frontiers of the solar system, potentially involving a large class of objects such as asteroids. Supervised clusters of spacecraft operate simultaneously within a broadly defined framework of goals to select targets (> 1000) from among available candidates while developing scenarios for studying targets. Swarm members use solar sails to fly directly to asteroids > 1 kilometer in diameter, and then perform maneuvers appropriate for the instrument carried, ranging from hovering

  4. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, T., E-mail: shimizu@solar.isas.jaxa.jp; Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at themore » photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.« less

  5. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009286 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A portion of the station’s solar array panels and a blue and white part of Earth provide the backdrop for the scene.

  6. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009285 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A portion of the station’s solar array panels and a blue and white part of Earth provide the backdrop for the scene.

  7. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    PubMed

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  8. High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing.

    PubMed

    Li, Lisheng; Xiao, Liangang; Qin, Hongmei; Gao, Ke; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Peng, Xiaobin

    2015-09-30

    Solvent additive processing is important in optimizing an active layer's morphology and thus improving the performance of organic solar cells (OSCs). In this study, we find that how 1,8-diiodooctane (DIO) additive is removed plays a critical role in determining the film morphology of the bulk heterojunction OSCs in inverted structure based on a porphyrin small molecule. Different from the cases reported for polymer-based OSCs in conventional structures, the inverted OSCs upon the quick removal of the additive either by quick vacuuming or methanol washing exhibit poorer performance. In contrast, the devices after keeping the active layers in ambient pressure with additive dwelling for about 1 h (namely, additive annealing) show an enhanced power conversion efficiency up to 7.78% with a large short circuit current of 19.25 mA/cm(2), which are among the best in small molecule-based solar cells. The detailed morphology analyses using UV-vis absorption spectroscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering, and atomic force microscopy demonstrate that the active layer shows smaller-sized phase separation but improved structure order upon additive annealing. On the contrary, the quick removal of the additive either by quick vacuuming or methanol washing keeps the active layers in an earlier stage of large scaled phase separation.

  9. First Solar Power Sail Demonstration by IKAROS

    NASA Astrophysics Data System (ADS)

    Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros

    The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.

  10. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gueymard, Christian

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar powermore » plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.« less

  11. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  12. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  13. A Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Science

    NASA Technical Reports Server (NTRS)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; hide

    2016-01-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  14. A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science

    NASA Astrophysics Data System (ADS)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; Pinto, R.; Auchère, F.; Harrison, R. A.; Eyles, C.; Gan, W.; Lamy, P.; Xia, L.; Eastwood, J. P.; Kong, L.; Wang, J.; Wimmer-Schweingruber, R. F.; Zhang, S.; Zong, Q.; Soucek, J.; An, J.; Prech, L.; Zhang, A.; Rochus, P.; Bothmer, V.; Janvier, M.; Maksimovic, M.; Escoubet, C. P.; Kilpua, E. K. J.; Tappin, J.; Vainio, R.; Poedts, S.; Dunlop, M. W.; Savani, N.; Gopalswamy, N.; Bale, S. D.; Li, G.; Howard, T.; DeForest, C.; Webb, D.; Lugaz, N.; Fuselier, S. A.; Dalmasse, K.; Tallineau, J.; Vranken, D.; Fernández, J. G.

    2016-08-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  15. Long-Term Dynamics of Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Grant, John (Technical Monitor)

    2002-01-01

    As part of the NASA Planetary Geology and Geophysics program, Prof. Norm Murray (CITA (Canadian Institute of Theoretical Astrophysics)) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its successor NAG5-10365, supports travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA (Harvard-Smithsonian Center for Astrophysics) for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects (NEO). We later extended this model to three-body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS (American Association for the Advancement of Science). This award singles out one paper published in Science each year for distinction. A list of grant-related publications is presented, with abstracts included.

  16. Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells.

    PubMed

    Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng

    2014-08-01

    Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Small-scale Pressure-balanced Structures Driven by Mirror-mode Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-10-01

    Recently, small-scale pressure-balanced structures (PBSs) have been studied with regard to their dependence on the direction of the local mean magnetic field B0 . The present work continues these studies by investigating the compressive wave mode forming small PBSs, here for B0 quasi-perpendicular to the x-axis of Geocentric Solar Ecliptic coordinates (GSE-x). All the data used were measured by WIND in the quiet solar wind. From the distribution of PBSs on the plane determined by the temporal scale and angle θxB between the GSE-x and B0 , we notice that at θxB = 115° the PBSs appear at temporal scales ranging from 700 s to 60 s. In the corresponding temporal segment, the correlations between the plasma thermal pressure P th and the magnetic pressure P B, as well as that between the proton density N p and the magnetic field strength B, are investigated. In addition, we use the proton velocity distribution functions to calculate the proton temperatures T and T ∥. Minimum Variance Analysis is applied to find the magnetic field minimum variance vector BN . We also study the time variation of the cross-helicity σc and the compressibility C p and compare these with values from numerical predictions for the mirror mode. In this way, we finally identify a short segment that has T > T ∥, proton β ~= 1, both pairs of P th-P B and N p-B showing anti-correlation, and σc ≈ 0 with C p > 0. Although the examination of σc and C p is not conclusive, it provides helpful additional information for the wave mode identification. Additionally, BN is found to be highly oblique to B0 . Thus, this work suggests that a candidate mechanism for forming small-scale PBSs in the quiet solar wind is due to mirror-mode waves.

  18. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses.

    PubMed

    Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin

    2015-06-17

    We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

  19. The performance of solar thermal electric power systems employing small heat engines

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1980-01-01

    The paper presents a comparative analysis of small (10 to 100 KWe) heat engines for use with a solar thermal electric system employing the point-focusing, distributed receiver (PF-DR) concept. Stirling, Brayton, and Rankine cycle engines are evaluated for a nominal overall system power level of 1 MWe, although the concept is applicable to power levels up to at least 10 MWe. Multiple concentrators are electrically connected to achieve the desired plant output. Best performance is achieved with the Stirling engine, resulting in a system Levelized Busbar Energy Cost of just under 50 mills/kWH and a Capital Cost of $900/kW, based on the use of mass-produced components. Brayton and Rankine engines show somewhat less performance but are viable alternatives with particular benefits for special applications. All three engines show excellent performance for the small community application.

  20. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below <2 eV. The energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  1. The Lightweight Integrated Solar Array and anTenna (LISA-T) - Big Power for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch-stowed, orbit-deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7 watts and 50 watts of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C (Guidance, Navigation and Control) simplicity. In

  2. Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V.

    PubMed

    Ni, Wang; Li, Miaomiao; Kan, Bin; Liu, Feng; Wan, Xiangjian; Zhang, Qian; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-01-11

    A new small molecule named DTBTF with thiobarbituric acid as a terminal group was designed and synthesized as an acceptor for organic photovoltaic applications. DTBTF exhibits strong absorption in the visible region, and a relatively high lying LUMO energy level (-3.62 eV). All-small-molecule organic solar cells based on DR3TSBDT:DTBTF blend films show a considerable PCE of 3.84% with a high V(oc) of 1.15 V.

  3. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  4. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  5. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  6. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  7. 76 FR 62052 - Issuance of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight Solar Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... The proposed DSSFP is a photovoltaic solar electrical generating facility using commercial, thin-film... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight Solar Farm Project AGENCY: U.S. Department of Energy. ACTION: Record of decision. SUMMARY: The U.S...

  8. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systemsmore » are properly specified and installed with respect to the continuing structural integrity of the building.« less

  9. Mass Determination of Small Bodies in the Solar System

    NASA Astrophysics Data System (ADS)

    Paetzold, M.

    2017-12-01

    The masses and gravity fields of the planetary bodies were determined by radio tracking of spacecraft flying by or orbiting that body at a suffiently close distance. Small bodies (asteroids, cometary nuclei...) of the solar system pose certain challenges in order to reveal their masses and gravity fields. Those challenges mostly concerns spacecraft safety and/or optimal instrment operations. In order to resolve an acceptable Doppler shift with regard to the frequency noise, a spacecraft shall flyby at close distances, at slow speed and at an optimal flyby geometry for a given body mass. This cannot always be achieved. The flybys of Mars Express at Phobos, the flyby of Rosetta at asteroid Lutetia, its orbiting about the nucleus of 67P/Churyumov-Gerasimenko shall be reviewed. The prospects and challenges of future flybys like New Horizons at 2016MU69 and Lucy at the Trojan asteroids shall be presented.

  10. Federal solar policies yield neither heat nor light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, M.

    1978-02-06

    Thirty years of Federal energy policies and bureaucracy are criticized for their limited success in promoting nuclear energy and their present involvement in solar technology. Mr. Silverstein feels that poor judgment was shown in pursuit of large-scale solar demonstrations between 1973 and 1976 when Federal agencies ignored existing solar companies and awarded contracts to the large corporations. A fetish for crash research programs, he also feels, led to the creation of the Solar Energy Research Institute (SERI), which concentrates on wasteful high-technology projects rather than building on what has already been developed in the field. He cites ''even more destructive''more » policies adopted by the Housing and Urban Development Agency (HUD), which attacked many solar suppliers without sufficient evidence and then developed a solar-water-heater grant program that effectively distorted the market. The author feels that the solar technology market is sufficiently viable and that government participation is more appropriate in the form of tax credits and guaranteed loans.« less

  11. Hard X-ray Detectability of Small Impulsive Heating Events in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Marsh, A.; Krucker, S.; Christe, S.

    2015-12-01

    Impulsive heating events ("nanoflares") are a candidate to supply the solar corona with its ~2 MK temperature. These transient events can be studied using extreme ultraviolet and soft X-ray observations, among others. However, the impulsive events may occur in tenuous loops on small enough timescales that the heating is essentially not observed due to ionization timescales, and only the cooling phase is observed. Bremsstrahlung hard X-rays could serve as a more direct and prompt indicator of transient heating events. A hard X-ray spacecraft based on the direct-focusing technology pioneered by the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket could search for these direct signatures. In this work, we use the hydrodynamical EBTEL code to simulate differential emission measures produced by individual heating events and by ensembles of such events. We then directly predict hard X-ray spectra and consider their observability by a future spaceborne FOXSI, and also by the RHESSI and NuSTAR spacecraft.

  12. Dynamic Processes of the Solar Wind: Small Scale Magnetic Flux Ropes and Energetic Particles

    NASA Astrophysics Data System (ADS)

    Thompson, S. W.; le Roux, J. A.; Hu, Q.

    2017-12-01

    Magnetic flux ropes are twisted magnetic field lines that have two defining components known as the axial and azimuthal components representing its magnetic field. Flux ropes come in two distinct sizes of large scale and small scale with the flux ropes of interest being the small scale type. Small scale flux ropes can last from a few minutes to hours with a size of .001 AU to .01 AU. To identify and study these small scale flux ropes, the ARTEMIS satellite which is composed of the probes THEMIS B and C was utilized along with the ACE satellite. Based off the IP shock database, three major events recorded by the ACE satellite were selected and used as a reference point to identify the same shocks within the ARTEMIS data. The three events were selected when the sun was in solar maximum and the location of the probes THEMIS B and C were outside of the bow shock and magnetotail of the Earth. The three events were on May 17,2013, May 31,2013, and June 30,2013 during solar cycle 24. The in-situ measurements gathered from the ARTEMIS mission using the SST, ESA, and FGM instrumentations looked at the particle energy flux, density, temperature, velocity, and magnetic field parameters. These parameters will be used to identify downstream flux-rope activity and to look for associated enhanced energetic particle fluxes as an indication for particle acceleration by these structures. As a way for comparison, in-situ measurements of the energy flux from the ACE satellite EPAM instrumentation using the LEMS120 telescope were taken to help identify high-energy ions in MeV for each of the three events. Preliminary results suggest that energetic particle fluxes peak behind the shocks in the vicinity of small-scale flux ropes, and that these results can potentially be explained by a theory combining diffusive shock acceleration with flux-rope acceleration. More investigation and data analysis will be done to see if this theory does in fact hold true for the data gathered.

  13. Implementing Solar Technologies at Airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  14. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  15. Techno-economic projections for advanced small solar thermal electric power plants to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.

    1979-01-01

    Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.

  16. Testing solar panels for small-size satellites: the UPMSAT-2 mission

    NASA Astrophysics Data System (ADS)

    Roibás-Millán, E.; Alonso-Moragón, A.; Jiménez-Mateos, A. G.; Pindado, S.

    2017-11-01

    At present, the development of small-size satellites by universities, companies and research institutions has become usual practice, and is spreading rapidly. In this kind of project cost plays a significant role. One of the main areas are the assembly, integration and test (AIT) plans, which carry an associated cost for simulating environmental conditions. For instance, in the power subsystems test and, in particular, in the testing of solar panels, the irradiance and temperature conditions might be optimum so the performance of the system can be shown next to real operational conditions. To reproduce the environmental conditions in terms of irradiance, solar simulators are usually used, which carries an associated increase in cost for testing the equipment. The aim of this paper is to present an alternative and inexpensive way to perform AIT plans on spacecraft power subsystems, from a testing campaign performed using outdoor clean-sky conditions and an isolation system to protect the panels. A post-process of the measured data is therefore needed, taking into account the conditions in which the test has been accomplished. The I-V characteristics obtained are compared with a theoretical 1-diode/2-resistor equivalent electric circuit, achieving enough precision based solely on the manufacturer’s data.

  17. Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells.

    PubMed

    Freitas, Flavio S; Clifford, John N; Palomares, Emilio; Nogueira, Ana F

    2012-09-14

    In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO(2)/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH(2)- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO(2) surface wettability, improving the TiO(2)/polymer contact. This effect is important to enhance exciton splitting and charge separation.

  18. Small Bodies, Big Discoveries: NASA's Small Bodies Education Program

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Erickson, K. J.

    2014-12-01

    2014 is turning out to be a watershed year for celestial events involving the solar system's unsung heroes, small bodies. This includes the close flyby of comet C/2013 A1 / Siding Spring with Mars in October and the historic Rosetta mission with its Philae lander to comet 67P/Churyumov-Gerasimenko. Beyond 2014, the much anticipated 2015 Pluto flyby by New Horizons and the February Dawn Mission arrival at Ceres will take center stage. To deliver the excitement and wonder of our solar system's small bodies to worldwide audiences, NASA's JPL and GSFC education teams in partnership with NASA EDGE will reach out to the public through multiple venues including broadcast media, social media, science and math focused educational activities, observing challenges, interactive visualization tools like "Eyes on the Solar System" and more. This talk will highlight NASA's focused education effort to engage the public in small bodies mission science and the role these objects play in our understanding of the formation and evolution of the solar system.

  19. A New Tool for Classifying Small Solar System Objects

    NASA Astrophysics Data System (ADS)

    Desfosses, Ryan; Arel, D.; Walker, M. E.; Ziffer, J.; Harvell, T.; Campins, H.; Fernandez, Y. R.

    2011-05-01

    An artificial intelligence program, AutoClass, which was developed by NASA's Artificial Intelligence Branch, uses Bayesian classification theory to automatically choose the most probable classification distribution to describe a dataset. To investigate its usefulness to the Planetary Science community, we tested its ability to reproduce the taxonomic classes as defined by Tholen and Barucci (1989). Of the 406 asteroids from the Eight Color Asteroid Survey (ECAS) we chose for our test, 346 were firmly classified and all but 3 (<1%) were classified by Autoclass as they had been in the previous classification system (Walker et al., 2011). We are now applying it to larger datasets to improve the taxonomy of currently unclassified objects. Having demonstrated AutoClass's ability to recreate existing classification effectively, we extended this work to investigations of albedo-based classification systems. To determine how predictive albedo can be, we used data from the Infrared Astronomical Satellite (IRAS) database in conjunction with the large Sloan Digital Sky Survey (SDSS), which contains color and position data for over 200,000 classified and unclassified asteroids (Ivesic et al., 2001). To judge our success we compared our results with a similar approach to classifying objects using IRAS albedo and asteroid color by Tedesco et al. (1989). Understanding the distribution of the taxonomic classes is important to understanding the history and evolution of our Solar System. AutoClass's success in categorizing ECAS, IRAS and SDSS asteroidal data highlights its potential to scan large domains for natural classes in small solar system objects. Based upon our AutoClass results, we intend to make testable predictions about asteroids observed with the Wide-field Infrared Survey Explorer (WISE).

  20. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  1. Grid-Free 2D Plasma Simulations of the Complex Interaction Between the Solar Wind and Small, Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.

    2014-01-01

    We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions

  2. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  3. Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies. [NASA NIAC Phase I Study

    NASA Technical Reports Server (NTRS)

    Pavone, Marco; Castillo-Rogez, Julie C.; Hoffman, Jeffrey A.; Nesnas, Issa A. D.

    2012-01-01

    This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable.

  4. Solar flare and pulsar detection with small balloon borne scintillator detector

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar; Bhowmick, Debashis; Bhattacharya, Arnab

    2016-07-01

    We present radiation measurement data from the Sun and the Crab Pulsar using a very light weight payload comprising a scintillator detector from one of the ongoing missions carried out by Indian Centre for Space Physics, India. This is a unique observation in the sense that the payload containing the detector unit was carried off above the Earth atmosphere using small weather balloons in a very cost effective way and with severe weight constraints. In this Mission we have been able to observe two consecutive solar flares and radiation from the Crab pulsar when the payload was under 30 km altitude. We present a brief description of the mission strategy and the temporal and spectral analysis of the data from those sources.

  5. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  6. Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations

    NASA Astrophysics Data System (ADS)

    James, Tomin; Subramanian, Prasad

    2018-05-01

    Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.

  7. 48 CFR 15.604 - Agency points of contact.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agency: upcoming solicitations; Broad Agency Announcements; Small Business Innovation Research programs; Small Business Technology Transfer Research programs; Program Research and Development Announcements; or... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Unsolicited Proposals 15.604 Agency points...

  8. Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)

    NASA Astrophysics Data System (ADS)

    Yano, H.

    2013-12-01

    Three decades ago, Japan's deep space exploration started with Sakigake and Suisei, twin flyby probes to P/Halley. Since then, the Solar System small bodies have been one of focused destinations to the Japanese solar system studies even today. Only one year after the Halley armada launch, the very first meeting was held for an asteroid sample return mission at ISAS, which after 25 years, materialized as the successful Earth return of Hayabusa , an engineering verification mission for sample return from surfaces of an NEO for the first time in the history. Launched in 2003 and returned in 2010, Hayabusa became the first to visit a sub-km, rubble-pile potentially hazardous asteroid in near Earth space. Its returned samples solved S-type asteroid - ordinary chondrite paradox by proving space weathering evidences in sub-micron scale. Between the Halley missions and Hayabusa, SOCCER concept by M-V rocket was jointly studied between ISAS and NASA; yet it was not realized due to insufficient delta-V for intact capture by decelerating flyby/encounter velocity to a cometary coma. The SOCCER later became reality as Stardust, NASA Discovery mission for cometary coma dust sample return in1999-2006. Japan has collected the second largest collection of the Antarctic meteorites and micrometeorites of the world and asteromaterial scientists are eager to collaborate with space missions. Also Japan enjoyed a long history of collaborations between professional astronomers and high-end amateur observers in the area of observational studies of asteroids, comets and meteors. Having these academic foundations, Japan has an emphasis on programmatic approach to sample returns of Solar System small bodies in future prospects. The immediate follow-on to Hayabusa is Hayabusa-2 mission to sample return with an artificial impactor from 1999 JU3, a C-type NEO in 2014-2020. Following successful demonstration of deep space solar sail technique by IKAROS in 2010-2013, the solar power sail is a deep

  9. Calibration of solar radiation measuring instruments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahm, R J; Nakos, J C

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  10. Orbit Mechanics about Small Asteroids

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    2007-01-01

    Space missions to small solar system bodies must deal with multiple perturbations acting on the spacecraft. These include strong perturbations from the gravity field and solar tide, but for small bodies the most important perturbations may arise from solar radiation pressure (SRP) acting on the spacecraft. Previous research has generally investigated the effect of the gravity field, solar tide, and SRP acting on a spacecraft trajectory about an asteroid in isolation and has not considered their joint effect. In this paper a more general theoretical discussion of the joint effects of these forces is given.

  11. DOE/solar export opportunities workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-04-01

    The workshop was conducted to bring together persons from government agencies and the US solar industry to initiate dialogue needed to create and implement programs facilitating the export of US solar technology, hardware, and services. A separate abstract was prepared for 23 individual presentations, all of which will appear in Energy Research abstracts (ERA) and Energy Abstracts for Policy Analysis (EAPA).

  12. Overview of Small and Large-Scale Space Solar Power Concepts

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar

  13. Research Staff | Concentrating Solar Power | NREL

    Science.gov Websites

    Research Staff Research Staff Photo of Mark Mehos Mark Mehos Group Manager, Thermal Systems R&D Mark joined NREL in 1986 and manages the Thermal Systems R&D group at NREL, which includes the for the International Energy Agency's SolarPACES "Solar Thermal Electric Power Systems" task

  14. International Energy Agency instrumented facilities survey for solar assisted low energy dwellings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-02-01

    Compiled are surveys outlining the instrumentation of 38 active and passive solar projects in 9 countries (Denmark, Italy, Japan, Netherlands, Sweden, Switzerland, United Kingdom, United States, and West Germany). After the surveys themselves are presented, the data are rearranged to compare answers from similar survey questions for each of the projects. These questions address building, solar system and instrumentation descriptions and meteorological, solar system and building system instrumentatation capabilities. (LEW)

  15. Parker Solar Probe Arrival, Offload, and Transport to Astrotech

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe arrives for launch processing at the agency's Kennedy Space Center. The mission will revolutionize our understanding of the sun, where changing conditions can propegate out into the solar system.

  16. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new

  17. Solar thermoelectricity via advanced latent heat storage: A cost-effective small-scale CSP application

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2017-06-01

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and

  18. Solar Thermoelectricity via Advanced Latent Heat Storage: A Cost-Effective Small-Scale CSP Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales inmore » the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location

  19. Well-aligned Vertically Oriented ZnO Nanorod Arrays and their Application in Inverted Small Molecule Solar Cells.

    PubMed

    Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Chen, Shih-Lun; Tu, Wei-Chen; Lee, Chia-Yen; Chang, Yia-Chung; Chu, Chih-Wei

    2018-04-25

    This manuscript describes how to design and fabricate efficient inverted solar cells, which are based on a two-dimensional conjugated small molecule (SMPV1) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), by utilizing ZnO nanorods (NRs) grown on a high quality Al-doped ZnO (AZO) seed layer. The inverted SMPV1:PC71BM solar cells with ZnO NRs that grew on both a sputtered and sol-gel processed AZO seed layer are fabricated. Compared with the AZO thin film prepared by the sol-gel method, the sputtered AZO thin film exhibits better crystallization and lower surface roughness, according to X-ray diffraction (XRD) and atomic force microscope (AFM) measurements. The orientation of the ZnO NRs grown on a sputtered AZO seed layer shows better vertical alignment, which is beneficial for the deposition of the subsequent active layer, forming better surface morphologies. Generally, the surface morphology of the active layer mainly dominates the fill factor (FF) of the devices. Consequently, the well-aligned ZnO NRs can be used to improve the carrier collection of the active layer and to increase the FF of the solar cells. Moreover, as an anti-reflection structure, it can also be utilized to enhance the light harvesting of the absorption layer, with the power conversion efficiency (PCE) of solar cells reaching 6.01%, higher than the sol-gel based solar cells with an efficiency of 4.74%.

  20. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    PubMed

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Performances and impedance spectroscopy of Small-molecule bulk heterojunction solar cells based on PtOEP: PCBM

    NASA Astrophysics Data System (ADS)

    Abuelwafa, A. A.; Dongol, M.; El-Nahass, M. M.; Soga, T.

    2018-03-01

    Small-molecule bulk heterojunction (SBHJ) solar cells based on platinum octaethylporphyrin (PtOEP) as donor material and phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor were fabricated using spin coating techniques with weight ratios from 1:0.1 to 1:9. The formation of charge transfer complex CTC in the PtOEP: PCBM blend was specified from the redshift of the PtOEP absorption peak after blending with PCBM. The photovoltaic performance for PtOEP: PCBM blends were investigated using the external quantum efficiency (EQE) besides the current density-voltage (J-V) characteristics under illumination100 mW/cm2 (AM1.5G). The BHJ solar cell with PtOEP: PCBM ratio of 1:9 exhibited the best performance. The impedance spectroscopy (IS) was examined in the frequency range from 25 Hz to 1 MHz. The equivalent circuit model was evaluated in details to evaluate the impedance spectroscopy parameters. Dielectric constant {ɛ ^' }, dielectric loss {ɛ ^' ' }} and dielectric modulus were included and discussed in terms of dielectric polarization processes. Dielectric modulus displays the non-Debye relaxation in PtOEP: PCBM BHJ solar cells.

  2. Distant Comets in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    2000-01-01

    The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.

  3. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  4. Complex Organic Materials on Planetary Satellites and Other Small Bodies of the Solar System

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2006-01-01

    The search for organic materials on small bodies of the Solar System is conducted spectroscopically from Earth-based telescopes and from spacecraft. Although the carbonaceous meteorites carry a significant inventory of complex organic solids, the sources of these meteorites have not been identified. Infrared spectra of a sample of the suspected sources, the C- and D-class asteroids, including new data from the Spitzer Space Telescope, show signatures of silicates, but none diagnostic of organic compounds. In the absence of discrete spectral features, the low albedos and colors in the visible and near-IR spectral regions are the principal links between the organic-bearing meteorites and the asteroids. While Pluto and a few trans-neptunian objects show spectral signatures of frozen CH4. Solid CH3OH has been identified on two Centaur objects in the outer Solar System. In some cases the red colors of those objects suggest the presence of tholins. The VIMS instrument aboard the Cassini spacecraft in orbit around Saturn has detected near-IR spectral features on at least three of Saturn's satellites that are indicative or suggestive of organic molecules. One entire hemisphere of the satellite Iapetus is covered with low-albedo material that shows a spectral signature of aromatic hydrocarbons (3.3 microns) and the -CH2 stretching mode bands of an aliphatic component. Organics absorbing at 3.44 microns are suspected in the region of the south pole of Enceladus, and also on the surface of Phoebe. Organic material may originate on icy bodies in the current epoch by various processes of energy deposition into native material, or they may fall to the surface from an external (probably cometary) source. Some organic material may be pre-solar, having originated in the interstellar medium before the formation of the Solar System. Using the techniques of remote sensing, its detection and analysis are slow and difficult.

  5. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  6. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake R.

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology.more » CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.« less

  7. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    NASA Technical Reports Server (NTRS)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  8. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    PubMed Central

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-01-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486

  9. Performance Comparisons and Down Selection of Small Motors for Two-Blade Heliogyro Solar Sail 6U CubeSat

    NASA Technical Reports Server (NTRS)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2015-01-01

    This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.

  10. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70... Threshold. As prescribed in 619.501(c), DS-1910 is prescribed for use in documenting set-aside decisions...

  11. Solar B/Hinode Image of Sunspot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). This image of a sunspot, taken by Hinode, is a prime example of what the spacecraft can offer.

  12. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    NASA Astrophysics Data System (ADS)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  13. Electron-transporting small molecule/ o-xylene hybrid additives to boost the performance of simplified inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Qin, Dashan; Cao, Huan; Zhang, Jidong

    2017-05-01

    Electron-transporting small molecule bathophenanthroline (Bphen) together with o-xylene has been used as hybrid additives to improve the performance of simplified inverted polymer solar cells employing ITO alone as cathode and photoactive layer based on polymer [[2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b] dithiophene] [3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  14. Hinode Satellite Captures Total Solar Eclipse Video Aug. 21

    NASA Image and Video Library

    2017-08-21

    The Japan Aerospace Exploration Agency, the National Astronomical Observatory of Japan and NASA released this video of Aug. 21 total solar eclipse taken by the X-ray telescope aboard the Hinode joint solar observation satellite as it orbited high above the Pacific Ocean.

  15. Solar Air Sampler

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Nation's first solar-cell-powered air monitoring station was installed at Liberty State Park, New Jersey. Jointly sponsored by state agencies and the Department of Energy, system includes display which describes its operation to park visitors. Unit samples air every sixth day for a period of 24 hours. Air is forced through a glass filter, then is removed each week for examination by the New Jersey Bureau of Air Pollution. During the day, solar cells provide total power for the sampling equipment. Excess energy is stored in a bank of lead-acid batteries for use when needed.

  16. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting.

    PubMed

    Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C

    2013-11-26

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  18. Increase in the Amplitude of Line-of-sight Velocities of the Small-scale Motions in a Solar Filament before Eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Daikichi; Isobe, Hiroaki; Otsuji, Kenichi

    We present a study on the evolution of the small-scale velocity field in a solar filament as it approaches the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Activity Research Telescope at Hida Observatory. The SDDI obtains a narrowband full-disk image of the Sun at 73 channels from H α − 9.0 Å to H α + 9.0 Å, allowing us to study the line-of-sight (LOS) velocity of the filament before and during the eruption. The observed filament is a quiescent filament that erupted on 2016 Novembermore » 5. We derived the LOS velocity at each pixel in the filament using the Becker’s cloud model, and made the histograms of the LOS velocity at each time. The standard deviation of the LOS velocity distribution can be regarded as a measure for the amplitude of the small-scale motion in the filament. We found that the standard deviation on the previous day of the eruption was mostly constant around 2–3 km s{sup −1}, and it slightly increased to 3–4 km s{sup −1} on the day of the eruption. It shows a further increase, with a rate of 1.1 m s{sup −2}, about three hours before eruption, and another increase, with a rate of 2.8 m s{sup −2}, about an hour before eruption. From this result we suggest that the increase in the amplitude of the small-scale motions in a filament can be regarded as a precursor of the eruption.« less

  19. Solar electricity and solar fuels

    NASA Astrophysics Data System (ADS)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  20. Structure and sources of solar wind in the growing phase of 24th solar cycle

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  1. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  2. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  3. Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Sholin, Veronica

    Increasing energy demand and the parallel increase of greenhouse gas emissions are challenging researchers to find new and cleaner energy sources. Solar energy harvesting is arguably the most promising candidate for replacing fossil-fuel power generation. Photovoltaics are the most direct way of collecting solar energy; cost continues to hinder large-scale implementation of photovoltaics, however. Therefore, alternative technologies that will allow the extraction of solar power, while maintaining the overall costs of fabrication, installation, collection, and distribution low, must be explored. This thesis focuses on the fabrication and testing of two types of devices that step up to this challenge: the luminescent solar concentrator (LSC) and all-inorganic nanoparticle solar cells. In these devices I make use of novel materials, semiconducting polymers and inorganic nanoparticles, both of which have lower costs than the crystalline materials used in the fabrication of traditional photovoltaics. Furthermore, the cost of manufacturing LSCs and the nanoparticle solar cells is lower than the manufacturing cost of traditional optics-based concentrators and crystalline solar cells. An LSC is essentially a slab of luminescent material that acts as a planar light pipe. The LSC absorbs incoming photons and channels fluoresced photons toward appropriately located solar cells, which perform the photovoltaic conversion. By covering large areas with relatively inexpensive fluorescing organic dyes or semiconducting polymers, the area of solar cell needed is greatly reduced. Because semiconducting polymers and quantum dots may have small absorption/emission band overlaps, tunable absorption, and longer lifetimes, they are good candidates for LSC fabrication, promising improvement with respect to laser dyes traditionally used to fabricate LSCs. Here the efficiency of LSCs consisting of liquid solutions of semiconducting polymers encased in glass was measured and compared to the

  4. Small Satellite Constellations for Geospace Sciences

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific

  5. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  6. Japanese Next Solar Mission: SOLAR-C

    NASA Astrophysics Data System (ADS)

    Sakao, T.; Solar-C, W. G.

    2008-09-01

    We present introductory overview on the next Japanese solar mission, SOLAR-C, which has been envisaged following the success of Hinode (SOLAR-B) mission. Two plans, Plan A and Plan B, are under extensive study from science objectives as well as engineering point of view. Plan A aims to perform out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to be originated. The baseline orbit for Plan A is a circular orbit of 1 AU distance from the Sun, with its inclination at around, or greater than, 40 degrees. Plan B pursues small-scale plasma processes and structures in the solar atmosphere which attract growing interest, following Hinode discoveries, for understanding fully dynamism and magnetic nature of the atmosphere. With Plan B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. There has been wide and evolving support for the SOLAR-C mission not only from solar physics community but also from related research areas in Japan. We request SOLAR-C to be launched in mid. 2010s. Following the highly-successful achievements of international collaboration for Yohkoh and Hinode, we strongly hope the SOLAR-C mission be realized under extensive collaboration with European and U.S. partners. Japanese SOLAR-C working group was officially approved by ISAS/JAXA in December 2007 for mission studies and promoting international collaboration. It is expected that a single mission plan is to be proposed after one year of investigation on Plan A and Plan B.

  7. Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock

    NASA Astrophysics Data System (ADS)

    Ying, Beili; Feng, Li; Lu, Lei; Zhang, Jie; Magdalenic, Jasmina; Su, Yingna; Su, Yang; Gan, Weiqun

    2018-03-01

    Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have rarely been investigated. We present analyses of a small-scale, short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics, including a very short duration of the main acceleration phase (<2 minutes), a rather high maximal acceleration rate (∼50 km s‑2), and peak velocity (∼1800 km s‑1). The fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of ∼320 MHz of the fundamental band. The type II source is formed at a low height of below 1.1 R ⊙ less than ∼2 minutes after the onset of the main acceleration phase. Through the band-split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1–2.3 R ⊙. We find that the CME (∼4 × 1030 erg) and flare (∼1.6 × 1030 erg) consume similar amounts of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share a similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.

  8. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: The Small Business Administration (SBA) is publishing the Small Business...

  9. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 3: Appendix E - N

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The design of a solar electric power plant for a small community is reported. Topics covered include: (1) control configurations and interface requirements for the baseline power system; (2) annual small power system output; (3) energy requirements for operation of the collectors and control building; (4) life cycle costs and reliability predictions; (5) thermal conductivities and costs of receiver insulation materials; (6) transient thermal modelling for the baseline receiver/thermal transport system under normal and inclement operating conditions; (7) high temperature use of sodium; (8) shading in a field of parabolic collectors; and (9) buffer storage materials.

  10. U.S. Solar-Terrestrial Research Program

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    The Committee on Solar-Terrestrial Research (CSTR) of the National Research Council of the National Academy of Sciences is charged with looking after the health of solar-terrestrial research in the United States. In 1984 the National Academy Press published the CSTR report “National Solar-Terrestrial Research Program.” This program implements the recommendations of the earlier National Research Council study “Solar-Terrestrial Research for the 1980's” (1981). The earlier study, which took over 18 months to complete and involved the participation of more than 150 scientists, specifically identified the principal scientific and management recommendations required for a balanced solar-terrestrial program. The present study was undertaken by CSTR in the fall of 1983 in response to a request from several concerned federal agencies and the Board on Atmospheric Sciences and Climate. Together, the two studies constitute a set that prescribes a broad-gaged solar-terrestrial program.

  11. 'My body is mine': Qualitatively exploring agency among internally displaced women participants in a small-group intervention in Leogane, Haiti.

    PubMed

    Logie, Carmen H; Daniel, CarolAnn

    2016-01-01

    The 2010 earthquake resulted in the breakdown of Haiti's social, economic and health infrastructure. Over one-quarter of a million people remain internally displaced (ID). ID women experience heightened vulnerability to intimate partner violence (IPV) due to increased poverty and reduced community networks. Scant research has examined experiences of IPV among ID women in post-earthquake Haiti. We conducted a qualitative study to explore the impact of participating in Famn an Aksyon Pou Santé Yo (FASY), a small-group HIV prevention intervention, on ID women's agency in Leogane, Haiti. We conducted four focus groups with ID women, FASY participants (n = 40) and in-depth individual interviews with peer health workers (n = 7). Our study was guided by critical ethnography and paid particular attention to power relations. Findings highlighted multiple forms of IPV (e.g., physical, sexual). Participants discussed processes of intrapersonal (confidence), interpersonal (communication), relational (support) and collective (women's rights) agency. Yet structural factors, including patriarchal gender norms and poverty, silenced IPV discussions and constrained women's agency. Findings suggest that agency among ID women is a multi-level, non-linear and incremental process. To effectively address IPV among ID women in Haiti, interventions should address structural contexts of gender inequity and poverty and concurrently facilitate multi-level processes of agency.

  12. Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    He, Wenhan

    Current state-of-the-art organic solar cells (OSCs) adopt the strategy of using conjugated polymers or small molecules as donors and fullerene derivatives as acceptors in their active layers. Regarding to the donors of interest, the conjugated polymers and small molecules coupled with heavy metals have been less explored compared to their counterparts. Among various transition metal complexes applied, Pt(II) complexes are unique because of their intrinsic square planar geometries and ability to serve as building blocks for conjugated systems. Furthermore, the heavy metal Pt facilitates the formation of triplet excitons with longer life times through spin-orbital coupling which are of benefit for the OSCs application. However, in order to obtain low bandgap polymers, people are intended to use chromophores with long conjugated length, nevertheless such design will inevitably dilute the spin-orbital coupling effect and finally influence the formation of triplet excitons. Furthermore, the majority of Pt-containing conjugated systems reported so far shared a common feature-- they all possessed "dumbbell" shaped structures and were amorphous, leading to poor device performance. In addition, there were few examples reporting the capture of the triplet excitons by the fullerene acceptors in the OSCs since there is a mismatch between the triplet energy state (T1) of the Pt-containing compounds and the LUMO level of fullerene acceptors. As a result, these three intrinsic problems will impede the further development of such a field. In order to solve these problems, I originally designed and synthesized three novel compounds with unique proprieties named as Bodipy-Pt, Pt-SM and C60+SDS-. Specifically, Bodipy has the advantages of compact size, easy to synthesis and high fluorescence quantum yield which can effectively solve the problem of long conjugated length. While in terms of second problem, the new Pt-SM possessed a "roller-wheel" structural design with increased

  13. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  14. One Small Flare

    NASA Image and Video Library

    2018-02-15

    The sun's only visible active region sputtered and spurted and eventually unleashed a small (C-class) flare (Feb. 7, 2018). The flare appears as a brief, bright flash about mid-way through the half-day clip. Normally, we do not pay much attention to flares this small, but it was just about the only real solar activity over the past week as the sun is slowly approaching its quiet period of the 11-year solar cycle. These images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22244

  15. Grid-connected distributed solar power systems

    NASA Astrophysics Data System (ADS)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  16. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells.

    PubMed

    Duan, Yu-Ai; Geng, Yun; Li, Hai-Bin; Jin, Jun-Ling; Wu, Yong; Su, Zhong-Min

    2013-07-15

    To seek for high-performance small molecule donor materials used in heterojunction solar cell, six acceptor-donor-acceptor small molecules based on naphtho[2,3-b:6,7-b']dithiophene (NDT) units with different acceptor units were designed and characterized using density functional theory and time-dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 (TDPP  =  thiophene-capped diketopyrrolopyrrole). The open circuit voltage (V(oc)), energetic driving force(ΔE(L-L)), and exciton binding energy (E(b)) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3-7 match well with the acceptor material PC61 BM, and compounds 3-5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1, system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher V(oc), lower E(b), and similar carrier mobility. An in-depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. Copyright © 2013 Wiley Periodicals, Inc.

  17. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  18. KSC-20180405-RV-CSH01_0122-Parker_Solar_Probe_Uncanning_Unbagging-3187876

    NASA Image and Video Library

    2018-04-04

    NASA's Parker Solar Probe arrives for launch processing at the Agency's Kennedy Space Center. The mission will Revolutionize our understanding of the sun, where changing conditions can propagate out into the solar system

  19. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business... Business Administration (SBA) is reopening the comment period for the Small Business Innovation Research...

  20. Amino Acid Chemistry as a Link Between Small Solar System Bodies and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Ehrenfreund, Pascale; Botta, Oliver; Cooper, George; Bada, Jeffrey L.

    2000-01-01

    Establishing chemical links between meteorites and small solar system bodies, such as comets and asteroids, provides a tool for investigating the processes that occurred during the formation of the solar system. Carbonaceous meteorites are of particular interest, since they may have seeded the early Earth with a variety of prebiotic organic compounds including amino acids, purines and pyrimidines, which are thought to be necessary for the origin of life. Here we report the results of high-performance liquid chromatography (HPLC) based amino acid analyses of the acid-hydrolyzed hot water extracts from pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna and the CM meteorites Murchison and Murray. We found that the CI meteorites Orgueil and Ivuna contained high abundances of beta-alanine and glycine, while only traces of other amino acids like alanine, alpha-amino-n-butryic acid (ABA) and alpha-aminoisobutyric acid (AIB) were detected in these meteorites. Carbon isotopic measurements of beta-alanine and glycine in Orgueil by gas chromatography combustion-isotope ratio mass spectrometry clearly indicate an extraterrestrial origin of these amino acids. The amino acid composition of Orgueil and Ivuna was strikingly different from the CM chondrites Murchison and Murray. The most notable difference was the high relative abundance of B-alanine in Orgueil and Ivuna compared to Murchison and Murray. Furthermore, AIB, which is one of the most abundant amino acids found in Murchison and Murray, was present in only trace amounts in Orgueil and Ivuna. Our amino acid data strongly suggest that the CI meteorites Orgueil and Ivuna came from a different type of parent body than the CM meteorites Murchison and Murray, possibly from an extinct comet. It is generally thought that carbonaceous meteorites are fragments of larger asteroidal bodies delivered via near Earth objects (NEO). Orbital and dynamic studies suggest that both fragments of main belt asteroids

  1. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    NASA Astrophysics Data System (ADS)

    Furano, G.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Iannucci, A.; Morselli, A.; Picozza, P.; Reali, E.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, M.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Mazzenga, G.; Ricci, M.; Castellini, G.; Barbiellini, M.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.

    The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000-2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff.

  2. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  3. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  4. Holographic Solar Photon Thrusters

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  5. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, S.; Yi, Y., E-mail: suyeonoh@jnu.ac.kr

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cyclesmore » and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.« less

  6. Experimental investigation of a small solar chimney in the south of Algeria

    NASA Astrophysics Data System (ADS)

    Hadj, Achouri El; Noureddine, Settou; Mabrouk, Drid Momamed; Belkhir, Negrou; Soumia, Rahmouni

    2018-05-01

    The solar chimney power plant (SCPP) is an economical device for the production of solar electricity. Among the parameters influencing the efficiency of the solar chimney are the dimensions, namely: Height and diameter of the chimney and diameter and height of the collector. In order to give our contribution we have established a prototype of a solar chimney which allows us to take a real vision on the influence of the geometrical parameters on the air flow under the collector and next the production efficiency of the solar chimney in the south of Algeria. In this study, we take different values of the height and diameter of the tower and of the height of the collector entrance. The results obtained show the remarkable influence of the geometrical parameters on the flow velocity afterwards on the energy produced.

  7. 48 CFR 5119.1004 - Participating agencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Participating agencies. 5119.1004 Section 5119.1004 Federal Acquisition Regulations System DEPARTMENT OF THE ARMY ACQUISITION REGULATIONS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Small Business Competitiveness...

  8. Connecting the large- and the small-scale magnetic fields of solar-like stars

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.

    2018-05-01

    A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.

  9. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Firdaus, Yuliar; Vandenplas, Erwin; Justo, Yolanda; Gehlhaar, Robert; Cheyns, David; Hens, Zeger; Van der Auweraer, Mark

    2014-09-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  10. Solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Hood, Alan W.; Hughes, David W.

    2011-08-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulations can help to determine the physical processes governing the emergence of sunspots. We discuss the interaction of these emerging fields with the pre-existing coronal field, resulting in a variety of dynamic phenomena.

  11. A Small Particle Solar Receiver for High Temperature Brayton Power Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Fletcher John

    The objective of this project is to design, construct, and test at the Sandia NSTTF a revolutionary high temperature air-cooled solar receiver in the multi-MW range that can be used to drive a gas turbine, to generate low-cost electricity at $.06/kWh when considered as part of an optimized CSP combined cycle system. The receiver being developed in this research uses a dilute suspension of selectively absorbing carbon nano-particles to absorb highly concentrated solar flux. The concept of a volumetric, selective, and continually replenishable absorber is unique in the solar field.

  12. LED Solar Simulator

    NASA Image and Video Library

    2016-11-18

    NASA Glenn's new LED solar simulator was developed by Angstrom Designs and UC Santa Barbara under a Small Business Innovative Research program to test the next generation of high-efficiency space solar cells for future missions. The new simulator contains over 1500 individually adjustable light sources, most of which emit light invisible to the human eye, to cover a 10 x10 foot area.

  13. LED Solar Simulator

    NASA Image and Video Library

    2016-11-16

    NASA Glenn's new LED solar simulator was developed by Angstrom Designs and UC Santa Barbara under a Small Business Innovative Research program to test the next generation of high-efficiency space solar cells for future missions. The new simulator contains over 1500 individually adjustable light sources, most of which emit light invisible to the human eye, to cover a 10 x10 foot area.

  14. The solar energetic particle propagation of solar flare events on 24th solar cycle.

    NASA Astrophysics Data System (ADS)

    Paluk, P.; Khumlumlert, T.; Kanlayaprasit, N.; Aiemsa-ad, N.

    2017-09-01

    Now the Sun is in the 24th solar cycle. The peak of solar cycle correspond to the number of the Sun activities, which one of them is solar flare. The solar flare is the violent explosion at the solar atmosphere and releases the high energy ion from the Sun to the interplanetary medium. Solar energetic particles or solar cosmic ray have important effect on the Earth, such as disrupt radio communication. We analyze the particle transport of the solar flare events on August 9, 2011, January 27, 2012, and November 3, 2013 in 24th solar cycle. The particle data for each solar flare was obtained from SIS instrument on ACE spacecraft. We simulate the particle transport with the equation of Ruffolo 1995, 1998. We solve the transport equation with the numerical technique of finite different. We find the injection duration from the Sun to the Earth by the compared fitting method of piecewise linear function between the simulation results and particle data from spacecraft. The position of these solar flare events are on the west side of the Sun, which are N18W68, N33W85, and S12W16. We found that mean free path is roughly constant for a single event. This implies that the interplanetary scattering is approximately energy independent, but the level of scattering varies with time. The injection duration decreases with increasing energy. We found the resultant variation of the highest energy and lowest energy, because the effect of space environments and the number of the detected data was small. The high mean free path of the high energy particles showed the transport capability of particles along to the variable magnetic field line. The violent explosion of these solar flares didn’t affect on the Earth magnetic field with Kp-index less than 3.

  15. Sixty-Year Career in Solar Physics

    NASA Astrophysics Data System (ADS)

    Fang, C.

    2018-05-01

    This memoir reviews my academic career in solar physics for 60 years, including my research on non-LTE modeling, white-light flares, and small-scale solar activities. Through this narrative, the reader can catch a glimpse of the development of solar physics research in mainland China from scratch. In the end, some prospects for future development are given.

  16. Small Scale Industries.

    ERIC Educational Resources Information Center

    Rural Development Detwork Bulletin, 1977

    1977-01-01

    Innovative programs for the promotion of small-scale enterprise are being conducted by a variety of organizations, including universities, government agencies, international research institutes, and voluntary assistance agencies. Their activities encompass basic extension services, management of cooperatives, community action programs, and…

  17. Solar wind and magnetosphere interactions

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.

    1979-01-01

    The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.

  18. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    An empirical study was performed (1) to evaluate the validity of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces and (2) to determine the variation of solar cell sensitivity to solar radiation over a wide range of atmospheric condition. Evaluation of the insolation data indicates that the isotropic sky model of Liu and Jordan underestimates the amount of solar radiation falling on tilted surfaces by as much as 10%. An anisotropic-clear-sky model proposed by Temps and Coulson was also evaluated and found to be deficient under cloudy conditions. A new model, formulated herein, reduced the deviations between measured and predicted insolation to less than 3%. Evaluation of solar cell sensitivity data indicates small change (2-3%) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells as done by Treble is discussed.

  19. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  20. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  1. Solar Requests for Proposals | State, Local, and Tribal Governments | NREL

    Science.gov Websites

    who have a lot of experience in this area may handle the process on their own while others may decide greatest number of respondents and give the agency the greatest number of options. Solar RFP Elements As to the selection criteria. Sources Solar Powering Your Community: Key Elements of Solar Requests for

  2. K2 & Solar System Science

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  3. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some ofmore » these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.« less

  4. Small-scale dynamo magnetism as the driver for heating the solar atmosphere.

    PubMed

    Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques

    2015-06-11

    The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.

  5. 75 FR 52966 - Notice of Availability of the Final Environmental Impact Statement for the Genesis Solar, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Genesis Solar Energy Project and Proposed California Desert Conservation Area Plan Amendment AGENCY... Solar LLC's Genesis Solar Energy Project (GSEP) and by this notice is announcing its availability. DATES... amendment the CDCA Plan to make the area suitable for solar energy development; a reduced acreage...

  6. 76 FR 73783 - Residential, Business, and Wind and Solar Resource Leases on Indian Land

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... Affairs 25 CFR Part 162 Residential, Business, and Wind and Solar Resource Leases on Indian Land; Proposed...-0001] RIN 1076-AE73 Residential, Business, and Wind and Solar Resource Leases on Indian Land AGENCY... leases, and solar resource development leases on Indian land, and would therefore remove the existing...

  7. Fast Imaging Solar Spectrograph System in New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  8. Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor.

    PubMed

    Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang

    2017-02-01

    A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Big Year for Small Bodies

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; Erickson, K.

    2013-10-01

    2013 is a watershed year for celestial events involving the solar system’s unsung heroes, small bodies. The Cosmic Valentine of Asteroid 2012 DA14 which passed within ~ 3.5 Earth radii of the Earth's surface (February 15, 2013), Comet C/2011 L4 PANSTARRS and the Thanksgiving 2013 pass of Comet ISON, which will pass less than 0.012 AU (1.8 million km) from the solar surface and could be visible during the day. All this in addition to Comet Lemmon and a host of meteor showers makes 2013 a landmark year to deliver the excitement of planetary science to the audiences worldwide. To deliver the excitement and wonder of our solar system’s small bodies to worldwide audiences, NASA’s JPL and GSFC education teams in partnership with NASA EDGE will reach out to the public through multiple venues including broadcast media, social media, science and math focused educational activities, observing challenges, interactive visualization tools like “Eyes on the Solar System” and more culminating in the Thanksgiving Day Comet ISON perihelion passage. This talk will highlight NASA’s focused education effort to engage the public in small bodies science and the role these objects play in our understanding of the formation and evolution of the solar system.

  10. 75 FR 63503 - Notice of Availability of Final Environmental Impact Statement for the Solar Millennium, Amargosa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... for the Solar Millennium, Amargosa Farm Road Solar Power Project, Nye County, NV AGENCY: Bureau of... Amargosa Farm Road Solar Power Project, Nye County, Nevada, and by this notice is announcing its availability. DATES: The BLM will not issue a final decision on the Amargosa Farm Road Solar Power Project for...

  11. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  12. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

    NASA Astrophysics Data System (ADS)

    Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.

    2017-11-01

    Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.

  13. 76 FR 72717 - Draft Environmental Impact Statement for the Proposed KRoad Moapa Solar Generation Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ...) and easements for KRoad to construct, operate and maintain an up-to 350 MW solar photovoltaic... Proposed KRoad Moapa Solar Generation Facility, Clark County, NV AGENCY: Bureau of Indian Affairs, Interior... the proposed KRoad Moapa Solar Generation Facility on the Moapa River Indian Reservation (Reservation...

  14. 77 FR 15794 - Final Environmental Impact Statement for the Proposed KRoad Moapa Solar Generation Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... construct, operate, and maintain an up to 350 MW solar photovoltaic electricity generating [[Page 15795... Proposed KRoad Moapa Solar Generation Facility, Clark County, NV AGENCY: Bureau of Indian Affairs, Interior... KRoad Moapa Solar Generation Facility on the Moapa River Indian Reservation (Reservation) in Clark...

  15. 75 FR 7029 - Notice of Availability of the Final Environmental Assessment for Solar Roof Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... Assessment for Solar Roof Project AGENCY: United States Geological Survey. ACTION: Notice of availability... Final Environmental Assessment for the Solar Roof Project and by this notice is announcing its... Individuals wishing to receive copies of the Environmental Assessment for the Solar Roof Project should...

  16. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  17. MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI

    EPA Science Inventory

    Prior to this project, MRI had carried out work for the Environmental Protection Agency (EPA) on the conceptual design of a solar system for solid waste disposal and a follow-on project to study the feasibility of bench-scale testing of desorption of organics from soil with destr...

  18. Evolution of the solar radius during the solar cycle 24 rise time

    NASA Astrophysics Data System (ADS)

    Meftah, Mustapha

    2015-08-01

    One of the real motivations to observe the solar radius is the suspicion that it might be variable. Possible temporal variations of the solar radius are important as an indicator of internal energy storage and as a mechanism for changes in the total solar irradiance. Measurements of the solar radius are of great interest within the scope of the debate on the role of the Sun in climate change. Solar energy input dominates the surface processes (climate, ocean circulation, wind, etc.) of the Earth. Thus, it appears important to know on what time scales the solar radius and other fundamental solar parameters, like the total solar irradiance, vary in order to better understand and assess the origin and mechanisms of the terrestrial climate changes. The current solar cycle is probably going to be the weakest in 100 years, which is an unprecedented opportunity for studying the variability of the solar radius during this period. This paper presents more than four years of solar radius measurements obtained with a satellite and a ground-based observatory during the solar cycle 24 rise time. Our measurements show the benefit of simultaneous measurements obtained from ground and space observatories. Space observations are a priori most favourable, however, space entails also technical challenges, a harsh environment, and a finite mission lifetime. The evolution of the solar radius during the rising phase of the solar cycle 24 show small variations that are out of phase with solar activity.

  19. Small Business Specialists.

    DTIC Science & Technology

    1997-12-01

    located throughout the United States. Each service and agency has an Office of the Director of Small and Disadvantaged Business Utilization. They also...have small business specialists at each of their procurement and contract management offices to assist small businesses , small disadvantaged businesses ...and women-owned small businesses firms in marketing their products and services with the DoD. These specialists provide information and guidance on (1

  20. Dynamic properties of small-scale solar wind plasma fluctuations.

    PubMed

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. 75 FR 72836 - Notice of Availability of Final Environmental Impact Statement for the Tonopah Solar Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... of the solar field. A heat transfer fluid is heated as it passes through the receiver tower and is... Statement for the Tonopah Solar Energy Crescent Dunes Solar Energy Project, Nye County, NV AGENCY: Bureau of... Statement (EIS) for the Crescent Dunes Solar Energy Project, Nye County, Nevada, and by this notice is...

  2. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells.

    PubMed

    Kageshima, Yosuke; Shinagawa, Tatsuya; Kuwata, Takaaki; Nakata, Josuke; Minegishi, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2016-04-18

    A novel "photovoltaics (PV) + electrolyzer" concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named "SPHELAR." SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm(2) (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm(2)) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  3. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  4. 77 FR 38822 - Notice of Availability: Record of Decision for KRoad Moapa Solar Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ....ER0000 LVRWF1103400] Notice of Availability: Record of Decision for KRoad Moapa Solar Facility AGENCY... Moapa Solar Facility located in Clark County, Nevada. The Secretary of the Interior approved the ROD on... applicant, KRoad Moapa Solar, LLC, (KRoad) filed two right-of-way (ROW) applications to construct a 500 kV...

  5. 48 CFR 19.1004 - Participating agencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Participating agencies. 19.1004 Section 19.1004 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Small Business Competitiveness Demonstration Program 19.1004...

  6. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  7. Solar Sail Propulsion for Interplanetary Cubesats

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Sobey, Alex; Sykes, Kevin

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.

  8. 75 FR 28279 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Hyder Valley Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Valley Solar Energy Project, Maricopa County, AZ AGENCY: Bureau of Land Management, Interior. ACTION... Solar Energy Project by any of the following methods: E-mail: HyderValley_Solar@blm.gov . Mail: Bureau.... Pacific Solar Investments is also considering the use of thermal energy storage. Thermal energy storage...

  9. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  10. Connective power: Solar electrification and social change in Kenya

    NASA Astrophysics Data System (ADS)

    Jacobson, Arne Edward

    Household solar photovoltaic systems have emerged as a key alternative to grid-based rural electrification in many developing countries. This may seem a victory for appropriate technology advocates, but my research indicates that the social significance of solar electrification in Kenya, which is among the largest developing country solar markets per capita, is far removed from the classic "small is beautiful" neo-populist vision of building small-scale alternatives to global capitalism. Instead, solar electrification is more closely connected to neo-liberal goals of market-based service provision and economic integration. In this study I combine quantitative and qualitative methods, including surveys, intra-household energy allocation studies, and historical analysis, to analyze the social significance of solar electrification in Kenya. I find that "connective" applications, including television, radio, and cellphones, are centrally important. Television is especially notable; the expansion of TV broadcasting to rural areas was a key condition for solar market development. Solar electricity is also used for lighting. In Kenya, income and work related uses of solar lighting are modest, while education uses are more significant. However, in many households, especially those with small systems, intra-household dynamics constrain key social uses (e.g. children's studying), as the energy is allocated to other uses. Social use patterns combine with access dynamics in Kenya's unsubsidized market to shape the social significance of solar electrification. Solar ownership is dominated by the rural upper and middle classes. Thus, productivity and education uses make small contributions to differentiation and middle class formation. Additionally, solar electrification's role in supporting rural television and radio use improves business advertisers' ability to expand consumer goods markets. These findings link solar electrification to important processes of rural development

  11. Preparation of brookite TiO2 nanoparticles with small sizes and the improved photovoltaic performance of brookite-based dye-sensitized solar cells.

    PubMed

    Xu, Jinlei; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2016-11-10

    Brookite TiO 2 nanoparticles with small sizes (hereafter denoted as BTP particles) were synthesized through the hydrothermal treatment of TiCl 4 solution with Pb(NO 3 ) 2 as an additive. The obtained BTP particles have a large specific surface area (∼122.2 m 2 g -1 ) and relatively uniform particle sizes (∼10 nm) with the coexistence of a small quantity of nanorods with a length of ∼100 nm. When used as a photoanode material for dye-sensitized solar cells (DSSCs), the BTP particles show a much higher dye-loading content than the brookite TiO 2 quasi nanocubes (denoted as BTN particles) with a mean size of ∼50 nm and a specific surface area of ∼34.2 m 2 g -1 that were prepared through a similar hydrothermal process but without the addition of Pb(NO 3 ) 2 . The fabricated BTP film-based solar cell with an optimized film thickness gives a conversion efficiency up to 6.36% with a 74% improvement when compared to the BTN film-based one (3.65%) under AM 1.5G one sun irradiation, while the corresponding bilayer brookite-based solar cell by using brookite TiO 2 submicrometer particles as an overlayer of the BTP film displays a significantly enhanced efficiency of 7.64%. Both of them exceed the current record (5.97%) for the conversion efficiency of pure brookite-based DSSCs reported in the literature. The present results not only demonstrate a really simple synthesis of brookite TiO 2 nanoparticles with both high phase purity and a large surface area, but also offer an efficient approach to improve the photovoltaic performance of brookite-based solar cells by offsetting brookite's inherent shortages such as lower dye-loading and poor conductivity as compared to anatase.

  12. Solar Diameter Measurements from Eclipses as a Solar Variability Proxy

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell

    2015-08-01

    Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.

  13. A journey of a thousand miles begins with one small step - human agency, hydrological processes and time in socio-hydrology

    NASA Astrophysics Data System (ADS)

    Ertsen, M. W.; Murphy, J. T.; Purdue, L. E.; Zhu, T.

    2014-04-01

    When simulating social action in modeling efforts, as in socio-hydrology, an issue of obvious importance is how to ensure that social action by human agents is well-represented in the analysis and the model. Generally, human decision-making is either modeled on a yearly basis or lumped together as collective social structures. Both responses are problematic, as human decision-making is more complex and organizations are the result of human agency and cannot be used as explanatory forces. A way out of the dilemma of how to include human agency is to go to the largest societal and environmental clustering possible: society itself and climate, with time steps of years or decades. In the paper, another way out is developed: to face human agency squarely, and direct the modeling approach to the agency of individuals and couple this with the lowest appropriate hydrological level and time step. This approach is supported theoretically by the work of Bruno Latour, the French sociologist and philosopher. We discuss irrigation archaeology, as it is in this discipline that the issues of scale and explanatory force are well discussed. The issue is not just what scale to use: it is what scale matters. We argue that understanding the arrangements that permitted the management of irrigation over centuries requires modeling and understanding the small-scale, day-to-day operations and personal interactions upon which they were built. This effort, however, must be informed by the longer-term dynamics, as these provide the context within which human agency is acted out.

  14. A journey of a thousand miles begins with one small step - human agency, hydrological processes and time in socio-hydrology

    NASA Astrophysics Data System (ADS)

    Ertsen, M. W.; Murphy, J. T.; Purdue, L. E.; Zhu, T.

    2013-11-01

    When simulating social action in modeling efforts, as in socio-hydrology, an issue of obvious importance is how to ensure that social action by human agents is well-represented in the analysis and the model. Generally, human decision-making is either modeled on a yearly basis or lumped together as collective social structures. Both responses are problematic, as human decision making is more complex and organizations are the result of human agency and cannot be used as explanatory forces. A way out of the dilemma how to include human agency is to go to the largest societal and environmental clustering possible: society itself and climate, with time steps of years or decades. In the paper, the other way out is developed: to face human agency squarely, and direct the modeling approach to the human agency of individuals and couple this with the lowest appropriate hydrological level and time step. This approach is supported theoretically by the work of Bruno Latour, the French sociologist and philosopher. We discuss irrigation archaeology, as it is in this discipline that the issues of scale and explanatory force are well discussed. The issue is not just what scale to use: it is what scale matters. We argue that understanding the arrangements that permitted the management of irrigation over centuries, requires modeling and understanding the small-scale, day-to-day operations and personal interactions upon which they were built. This effort, however, must be informed by the longer-term dynamics as these provide the context within which human agency, is acted out.

  15. Quiet-time properties of low-energy (less than 10 MeV per nucleon) interplanetary ions during solar maximum and solar minimum

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Reames, D. V.; Wenzel, K.-P.; Rodriguez-Pacheco, J.

    1990-01-01

    The abundances and spectra of 1-10 MeV per nucleon protons, He-3, He-4, C, O, and Fe have been exmained during solar quiet periods from 1978 to 1987 in an effort to investigate the recent suggestion by Wenzel et al. (1990) that the ions may be of solar origin. It is found that the intensities of the ions, other than O, fall by an order of magnitude between solar maximum and solar minimum, and that the greater than 1 MeV per nucleon ions exhibit weak streaming away from the sun. More significantly, the quiet-time ions during solar maximum have He-3-rich and Fe-rich abundances which are established characteristics of small impulsive solar flares. Thus, it is suggested that small unresolved impulsive flares make a substantial contribution to the 'quiet-time' fluxes. He-4 from these flares may also contribute strongly to the ion spectra that were reported for the 35-1600 keV energy range by Wenzel et al.

  16. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    This composite image, made from seven frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  17. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 from Ross Lake, Northern Cascades National Park, Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  18. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 from , Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  19. Heliogyro Solar Sail Research at NASA

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Guerrant, Daniel V.; Lawrence, Dale A.; Gibbs, S. Chad; Dowell, Earl H.; Heaton, Andrew F.; Heaton, Andrew F.; Juang, Jer-Nan; Horta, Lucas G.; hide

    2013-01-01

    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020.

  20. Advanced Solar Panel Designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  1. 76 FR 5680 - Small Business, Small Disadvantaged Business, HUBZone, and Service-Disabled Veteran-Owned...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121, 124, 125, 126, and 134 RIN 3245-AF65 Small Business, Small Disadvantaged Business, HUBZone, and Service-Disabled Veteran-Owned Business Status Protest and Appeal Regulations. AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The U...

  2. 75 FR 71144 - Notice of Availability of Record of Decision for the Solar Millennium, LLC, Amargosa Farm Road...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... 241A; 11-08807; TAS:14X5017] Notice of Availability of Record of Decision for the Solar Millennium, LLC, Amargosa Farm Road Solar Energy Project AGENCY: Bureau of Land Management, Interior. ACTION: Notice of... (ROD) for the Solar Millennium, LLC, Amargosa Farm Road Solar Energy Project Environmental Impact...

  3. 48 CFR 719.271 - Agency program direction and operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Agency program direction and operation. 719.271 Section 719.271 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 719.271 Agency program direction and...

  4. 48 CFR 719.271 - Agency program direction and operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Agency program direction and operation. 719.271 Section 719.271 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 719.271 Agency program direction and...

  5. 75 FR 9129 - Small Business, Small Disadvantaged Business, HUBZone, and Service-Disabled Veteran-Owned Protest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121, 124, 125, 126, and 134 RIN 3245-AF65 Small Business, Small Disadvantaged Business, HUBZone, and Service-Disabled Veteran-Owned Protest and Appeal Regulations AGENCY: U.S. Small Business Administration. ACTION: Proposed rule. SUMMARY: The U.S. Small...

  6. Effects of solar radiation on the orbits of small particles

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  7. Missions to the sun and to the earth. [planning of NASA Solar Terrestrial Program

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.

    1978-01-01

    The program outlined in the present paper represents an optimized plan of solar terrestrial physics. It is constrained only in the sense that it involves not more than one new major mission per year for the Solar Terrestrial Division during the 1980-1985 period. However, the flight activity proposed, if accepted by the Agency and by Congress, would involve a growth in the existing Solar Terrestrial budget by more than a factor of 2. Thus, the program may be considered as somewhat optimistic when viewed in the broader context of the NASA goals and budget. The Agency's integrated FY 1980 Five Year Plan will show how many missions proposed will survive this planning process.

  8. Utilizing Benzotriazole and Indacenodithiophene Units to Construct both Polymeric Donor and Small Molecular Acceptors to Realize Organic Solar Cells with High Open-Circuit Voltages beyond 1.2 V

    NASA Astrophysics Data System (ADS)

    Tang, Ailing; Chen, Fan; Xiao, Bo; Yang, Jing; Li, Jianfeng; Wang, Xiaochen; Zhou, Erjun

    2018-05-01

    Devolopment of organic solar cells with high open-circuit voltage (VOC) and power conversion efficiency (PCE) simutaniously plays a significant role, but there is no guideline how to choose the suitable photovoltaic material combinations. In this study, we adopted a simple and feasible strategy by utilizing the same electron-donating unit and electron-accepting segment to construct both polymeric donor and small molecular acceptors. The p-type polymer of PIDT-DTffBTA is designed by inserting conjugated bridge between indacenodithiophene (IDT) and fluorinated benzotriazole (BTA), while the n-type small molecules of BTAx (x = 1, 2, 3) are obtained by introducing different end-capped groups to BTA-IDT-BTA backbone. PIDT-DTffBTA: BTAx (x = 1-3) based photovolatic devices can realize high VOC of 1.21-1.37 V with the very small voltage loss (0.55-0.60 V), while only the PIDT-DTffBTA: BTA3 based device possesses the enough driving force for efficient hole and electron transfer and yields the optimal PCE of 5.67%, which is among the highest value for organic solar cells with a VOC beyond 1.20 V reported so far. Our results provide a simple and effective method to obtain fullerene-free organic solar cells with a high VOC and PCE.

  9. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  10. 78 FR 58555 - Notice of Segregation of Public Lands for the Proposed Stateline Solar Farm, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Solar Energy right-of-way (ROW) application and provide for the orderly administration of public lands... solar energy project on a portion of its ROW-application area. The BLM is segregating the following...; CACA-048669] Notice of Segregation of Public Lands for the Proposed Stateline Solar Farm, CA AGENCY...

  11. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. Itmore » was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.« less

  12. Change in Minimum Orbit Intersection Distance due to General Relativistic Precession in Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Sekhar, Aswin; Valsecchi, Giovanni B.; Asher, David; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie

    2017-06-01

    One of the greatest successes of Einstein's General Theory of Relativity (GR) was the correct prediction of the perihelion precession of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of argument of pericentre. Numerical integrations were done with the MERCURY package incorporating GR code to test the same effects. A numerical approach showed the same interesting relationship (as shown by analytical theory) between values of argument of pericentre and the peaks or dips in MOID values. There is an overall agreement between both analytical and numerical methods.We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements) when long term impact risk possibilities are considered. Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of small bodies where GR could play an

  13. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    PubMed Central

    Kageshima, Yosuke; Shinagawa, Tatsuya; Kuwata, Takaaki; Nakata, Josuke; Minegishi, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2016-01-01

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs). PMID:27087266

  14. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    NASA Astrophysics Data System (ADS)

    Kageshima, Yosuke; Shinagawa, Tatsuya; Kuwata, Takaaki; Nakata, Josuke; Minegishi, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2016-04-01

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  15. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  16. Effects of Small Polar Molecules (MA+ and H2O) on Degradation Processes of Perovskite Solar Cells.

    PubMed

    Ma, Chunqing; Shen, Dong; Qing, Jian; Thachoth Chandran, Hrisheekesh; Lo, Ming-Fai; Lee, Chun-Sing

    2017-05-03

    Degradation mechanisms of methylammonium lead halide perovskite solar cells (PSCs) have drawn much attention recently. Herein, the bulk and surface degradation processes of the perovskite were differentiated for the first time by employing combinational studies using electrochemical impedance spectroscopy (EIS), capacitance frequency (CF), and X-ray diffraction (XRD) studies with particular attention on the roles of small polar molecules (MA + and H 2 O). CF study shows that short-circuit current density of the PSCs is increased by H 2 O at the beginning of the degradation process coupled with an increased surface capacitance. On the basis of EIS and XRD analysis, we show that the bulk degradation of PSCs involves a lattice expansion process, which facilitates MA + ion diffusion by creating more efficient channels. These results provide a better understanding of the roles of small polar molecules on degradation processes in the bulk and on the surface of the perovskite film.

  17. Localized sources of propagating acoustic waves in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.; Bogdan, Thomas J.; Lites, Bruce W.; Thomas, John H.

    1992-01-01

    A time series of Doppler measurements of the solar photosphere with moderate spatial resolution is described which covers a portion of the solar disk surrounding a small sunspot group. At temporal frequencies above 5.5 mHz, the Doppler field probes the spatial and temporal distribution of regions that emit acoustic energy. In the frequency range between 5.5 and 7.5 mHz, inclusive, a small fraction of the surface area emits a disproportionate amount of acoustic energy. The regions with excess emission are characterized by a patchy structure at spatial scales of a few arcseconds and by association (but not exact co-location) with regions having substantial magnetic field strength. These observations bear on the conjecture that most of the acoustic energy driving solar p-modes is created in localized regions occupying a small fraction of the solar surface area.

  18. Temporal Variations of Different Solar Activity Indices Through the Solar Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Singh, J.; Nutku, F.; Priyal, M.

    2017-12-01

    Here, we compare the sunspot counts and the number of sunspot groups (SGs) with variations of total solar irradiance (TSI), magnetic activity, Ca II K-flux, faculae and plage areas. We applied a time series method for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23. Our results suggest that there is a strong correlation between solar activity indices and the changes in small (A, B, C and H-modified Zurich Classification) and large (D, E and F) SGs. This somewhat unexpected finding suggests that plage regions substantially decreased in spite of the higher number of large SGs in SAC 23 while the Ca II K-flux did not decrease by a large amount nor was it comparable with SAC 22 and relates with C and DEF type SGs. In addition to this, the increase of facular areas which are influenced by large SGs, caused a small percentage decrease in TSI while the decrement of plage areas triggered a higher decrease in the magnetic field flux. Our results thus reveal the potential of such a detailed comparison of the SG analysis with solar activity indices for better understanding and predicting future trends in the SACs.

  19. The Gaia Investigation of the Solar System

    NASA Astrophysics Data System (ADS)

    Delbo, Marco; Tanga, Paolo; Mignard, Francois; Cellino, Alberto; Hestroffer, Daniel

    2015-08-01

    The space mission Gaia of the European Space Agency (ESA) has begun its scientific whole-sky survey of all astrophysical sources with V<=20 in July 2014. The high precision astrometry is the main science driver for the mission, but Gaia will also obtain visible photometry and low-resolution spectroscopy of the observed sources, including solar system small bodies. Preliminary results show a good quality of the data, in general, in line with the expected pre-flight specifications. These data will consist a mine of information for a remote-sensing exploration of the small worlds of our Solar System. Indeed, ~250,000 asteroids will be observed by Gaia throughout its 5-years-long mission. After an update about the status of the mission and the on-going data analysis, including some preliminary results, we are going to present the plans for the data releases, the first foreseen at the end of 2016, and the general data treatment.We will show how Gaia spectroscopy will allow up to map the composition of about 100,000 asteroids throughout the Main Belt, with high signal to noise ratio. Given its advantage position outside the Earth's atmosphere, the blue part of the spectrum (roughly below 0.5 micron) will be observed for an unprecedented number of asteroids.Additionally, precise photometry and astrometry will also be important to reveal the physical nature of these small bodies. In particular, it is estimated that three-dimensional shapes, rotation, period and pole orientation will be derived for 10,000 asteroids. The masses of about 150 of the largest asteroids, will be determined from measurements of the orbital gravitational perturbations that these bodies will exert on small asteroids during mutual close approaches.Moreover, the combination of Gaia data (delivering masses and shapes) with infrared radiometric observations, e.g. from the NASA WISE mission (informing us about the size of the bodies), will allow precise asteroid bulk densities to be determined. The bulk

  20. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  1. The Solar Jobs Book: How to Take Part in the New Movement Toward Energy Self-Sufficiency.

    ERIC Educational Resources Information Center

    Ericson, Katharine

    Solutions to this country's energy problems can be found through a combination of conservation measures and solar technology. Accordingly, this book provides an overview of employment in the solar energy and energy conservation fields, an analysis of related life styles and working situations, a listing of solar energy programs and agencies, and a…

  2. Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.

    PubMed

    Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2017-06-14

    Herein, the open-circuit voltage (V OC ) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of V OC to discuss the difference in the primary loss mechanism of V OC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of V OC in both solar cells are further discussed on the basis of the experimental data.

  3. Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; Desai, M. I.

    2016-10-01

    In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (I) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (II) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (III) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (IV) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.

  4. Method of determining the orbits of the small bodies in the solar system based on an exhaustive search of orbital planes

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.

    2014-05-01

    A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.

  5. Organics and Ices in the Outer Solar System: Connections to the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cruikshank, D. P.

    2017-01-01

    The solar nebula, that aggregate of gas and dust that formed the birthplace of the Sun, planets and plethora of small bodies comprising the Solar System, originated in a molecular cloud that is thought to have spawned numerous additional stars, some with their own planets and attendant small bodies. The question of the chemical and physical reprocessing of the original interstellar materials in the solar nebula has challenged both theory and observations. The acquisition and analysis of samples of comet and asteroid solids, and a growing suite of in-situ and close-up analyses of relatively unaltered small Solar System bodies now adds critical new dimensions to the study of the origin and evolution of the early solar nebula. Better understanding the original composition of the material from which our solar nebula formed, and the processing that material experienced, will aid in formulations of chemistry that might occur in other solar systems. While we seek to understand the compositional history of planetary bodies in our own Solar System, we will inevitably learn more about the materials that comprise exoplanets and their surrounding systems.

  6. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  7. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units.

    PubMed

    Li, Yilin; Li, Zhipeng; Ablekim, Tursunjan; Ren, Tianhui; Dong, Wen-Ji

    2014-12-21

    A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

  8. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  9. 78 FR 32240 - Notice of Inent (NOI) To Prepare an Environmental Impact Statement (EIS) for the Oro Verde Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... additional alternatives. Alternative A includes full-scale project development of a 450 Megawatt solar PV... the Oro Verde Solar Project at Edwards Air Force Base and County of Kern, CA AGENCY: Department of the... with the development of the Oro Verde Solar Project (OVSP) on Edwards AFB. The OVSP is a solar...

  10. 78 FR 50086 - Notice of Competitive Auction for Solar Energy Development on Public Lands in the State of Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Competitive Auction for Solar Energy Development on Public Lands in the State of Colorado AGENCY: Bureau of...) application and a plan of development for solar energy projects on approximately 3,705 acres of public land in... designated Solar Energy Zones (SEZ): Los Mogotes East SEZ and De Tilla Gulch SEZ. Applications for solar...

  11. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  12. Jovian Small Orbiter for Magnetospheric and Auroral Studies

    NASA Astrophysics Data System (ADS)

    Takashima, T.; Kasaba, Y.; Misawa, H.; Kawaguchi, J.

    2005-12-01

    Solar-Sail Project to have been examined by ISAS/JAXA as an engineering mission has a possibility of a small probe into the Jovian orbit. This paper summarizes the basic design of Jovian magnetospheric and auroral studies by this small chance. The large-scale Jovian mission has been a hope since the 1970s when the examinations of planetary exploration were started in Japan. In the one of plans, the largest planet in the solar system would be solved by two main objectives: (1) Structure of a gas planet: the internal & atmospheric structures of a gas planet which could not become a star (following the objectives of Planet-C and BepiColombo). (2) Jovian-type magnetosphere: the process of a pulsar-like magnetosphere with the strongest magnetospheric activities in the solar system (following the objectives of BepiColombo and SCOPE). The small polar-orbit orbiter in Solar-Sail Project aims to establish the feasibility of such future outer planet missions by ISAS/JAXA. It aims the former target in its limited resources.

  13. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  14. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  15. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  16. High-temperature solar receiver integrated with a short-term storage system

    NASA Astrophysics Data System (ADS)

    Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria

    2017-06-01

    Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.

  17. Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status

    NASA Astrophysics Data System (ADS)

    Kato, Takuya

    2017-04-01

    As the largest manufacturer of Cu(In,Ga)(Se,S)2 (CIGS) thin-film photovoltaic modules with more than 1 GW/year production volume, Solar Frontier K.K. has continuously improved module performance and small-area cell efficiencies in the laboratory. Because of our low-cost and environmentally-friendly process, Solar Frontier’s CIGS is a promising technology for the mass production of photovoltaic modules to fill ever-increasing demand. Recently we have achieved certified efficiencies of 22.3 and 22.0% on CdS-buffered and Cd-free buffered small-area cells, respectively, as well as 18.6% on a Cd-free mini-module. In this paper, a review of our CIGS technology and recent progress on the development of the module and the small-area cell is presented.

  18. Deployable Propulsion and Power Systems for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  19. 75 FR 21265 - Small, Rural School Achievement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF EDUCATION Small, Rural School Achievement Program AGENCY: Office of Elementary and... Federal Domestic Assistance (CFDA) Number: 84.358A. SUMMARY: Under the Small, Rural School Achievement... eligible local educational agencies (LEAs) to address the unique needs of rural school districts. In this...

  20. 76 FR 19758 - Small, Rural School Achievement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... DEPARTMENT OF EDUCATION Small, Rural School Achievement Program AGENCY: Office of Elementary and... Federal Domestic Assistance (CFDA) Number: 84.358A. SUMMARY: Under the Small, Rural School Achievement... eligible local educational agencies (LEAs) to address the unique needs of rural school districts. In this...

  1. Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Kim, Myeong Joon; Park, Kyung Sun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Rok Soon; Cho, Kyungsuk; Choi, Kyu-Cheol; Kim, Jaehun

    2017-12-01

    Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker ( 7.4 nT) than that of MCs ( 10.6 nT). Also, the average duration time and expansion speed of SMFRs are 2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of 10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.

  2. Microfilament-Eruption Mechanism for Solar Spicules

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of larger-scale eruptions that occurs at the neutral line from which the large-scale filament erupts. Large-scale eruptions are relatively uncommon (approximately 1 per day) and occur with relatively large-scale erupting filaments (approximately 10 (sup 5) kilometers long). Coronal jets are more common (approximately 100s per day), but occur from erupting minifilaments of smaller size (approximately 10 (sup 4) kilometers long). It is known that solar spicules are much more frequent (many millions per day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of "microfilaments" of length comparable to the width of observed spicules (approximately 300 kilometers). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fitted with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBPs of jets might be weak, pervasive, transient brightenings observed in Hinode/CaII images, and

  3. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  4. Solar Sails: Sneaking up on Interstellar Travel

    NASA Astrophysics Data System (ADS)

    Johnson, L.

    Throughout the world, government agencies, universities and private companies are developing solar sail propulsion systems to more efficiently explore the solar system and to enable science and exploration missions that are simply impossible to accomplish by any other means. Solar sail technology is rapidly advancing to support these demonstrations and missions, and in the process, is incrementally advancing one of the few approaches allowed by physics that may one day take humanity to the stars. Continuous solar pressure provides solar sails with propellantless thrust, potentially enabling them to propel a spacecraft to tremendous speeds ­ theoretically much faster than any present-day propulsion system. The next generation of sails will enable us to take our first real steps beyond the edge of the solar system, sending spacecraft out to distances of 1000 Astronomical Units, or more. In the farther term, the descendants of these first and second generation sails will augment their thrust by using high power lasers and enable travel to nearby stellar systems with flight times less than 500 years ­ a tremendous improvement over what is possible with conventional chemical rockets. By fielding these first solar sail systems, we are sneaking up on a capability to reach the stars.

  5. Capabilities of GRO/OSSE for observing solar flares

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Johnson, W. N.; Share, G. H.; Hulburt, E. O.; Matz, S. M.; Murphy, R. J.

    1989-01-01

    The launch of the Gamma Ray Observatory (GRO) near solar maximum makes solar flare studies early in the mission particularly advantageous. The Oriented Scintillation Spectrometer Experiment (OSSE) on GRO, covering the energy range 0.05 to 150 MeV, has some significant advantages over the previous generation of satellite-borne gamma-ray detectors for solar observations. The OSSE detectors will have about 10 times the effective area of the Gamma-Ray Spectrometer (GRS) on Solar Maximum Mission (SMM) for both photons and high-energy neutrons. The OSSE also has the added capability of distinguishing between high-energy neutrons and photons directly. The OSSE spectral accumulation time (approx. 4s) is four times faster than that of the SMM/GRS; much better time resolution is available in selected energy ranges. These characteristics will allow the investigation of particle acceleration in flares based on the evolution of the continuum and nuclear line components of flare spectra, nuclear emission in small flares, the anisotropy of continuum emission in small flares, and the relative intensities of different nuclear lines. The OSSE observational program will be devoted primarily to non-solar sources. Therefore, solar observations require planning and special configurations. The instrumental and operational characteristics of OSSE are discussed in the context of undertaking solar observations. The opportunities for guest investigators to participate in solar flare studies with OSSE is also presented.

  6. 2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203)

    NASA Image and Video Library

    2017-08-21

    2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203) In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  7. 76 FR 61626 - Small Business Subcontracting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121 and 125 RIN 3245-AG22 Small Business Subcontracting AGENCY: U.S. Small Business Administration. ACTION: Proposed rule. SUMMARY: The U.S. Small Business... Business Jobs Act of 2010, which pertain to small business subcontracting. SBA is proposing to amend its...

  8. A solution-doped small molecule hole transport layer for efficient ITO-free organic solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bormann, Ludwig; Selzer, Franz; Leo, Karl; Mueller-Meskamp, Lars

    2015-10-01

    Indium-tin-oxide-free (ITO-free) organic solar cells are an important, emerging research field because ITO transparent electrodes are a bottleneck for cheap large area devices on flexible substrates. Among highly conductive PEDOT:PSS and metal grids, percolation networks made of silver nanowires (AgNW) with a diameter in the nanoscale show a huge potential due to easy processing (e.g. spray coating), high aspect ratios and excellent electrical and optical properties like 15 Ohm/sq with a transmission of 83.5 % including the substrate. However, the inherent surface roughness of the AgNW film impedes the implementation as bottom electrode in organic devices, especially fully vacuum deposited ones, where often shunts are obtained. Here, we report about the solution processing of a small molecule hole transport layer (s-HTL) comprising N,N'-((Diphenyl-N,N'-bis)9,9,-dimethyl-fluoren-2-yl)-benzidine (BF-DPB, host material) and the proprietary NDP9 (p-dopant) deposited from tetrahydrofuran (THF) as non-halogenated, "green" solvent. We show, that the doping process already takes place in solution and that conductivities, achieved with this process at high doping efficiencies (4 * 10^-4 S/cm at 10 wt% doping concentration), are comparable to thermal co-evaporation of BF-DPB:NDP9 under high vacuum, which is the proven deposition method for doped small molecule films. Applying this s-HTL to AgNW films leads to well smoothened electrodes, ready for application in organic devices. Vacuum-deposited organic p-i-n solar cells with DCV2-5T-Me(3:3):C60 as active layer show a power conversion efficiency of 4.4% and 3.7% on AgNW electrode with 35nm and 90 nm wire diameter, compared to 4.1% on ITO with the s-HTL.

  9. Manufacture of silicon carbide using solar energy

    DOEpatents

    Glatzmaier, Gregory C.

    1992-01-01

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  10. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  11. Photometric studies of two solar type marginal contact binaries in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Shanti Priya, Devarapalli; Rukmini, Jagirdar

    2018-04-01

    Using the Optical Gravitational Lensing Experiment catalogue, two contact binaries were studied using data in the V and I bands. The photometric solutions for the V and I bands are presented for two contact binaries OGLE 003835.24-735413.2 (V1) and OGLE 004619.65-725056.2 (V2) in Small Maglellanic Cloud. The presented light curves are analyzed using the Wilson-Devinney code. The results show that the variables are in good thermal and marginal geometrical contact with features like the O’Connell effect in V1. The absolute dimensions are estimated and its dynamical evolution is inferred. They tend to be solar type marginal contact binaries. The 3.6-m Devasthal Optical Telescope and the 4.0-m International Liquid Mirror Telescope of the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainithal) can facilitate the continuous monitoring of such kind of objects which will help in finding the reasons behind their period changes and their impact on the evolution of the clusters.

  12. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  13. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  14. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  15. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  16. THE SOLAR BATTERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchekin, V.

    1958-01-01

    The maximum output capacity of silicon elements is 10 to 12 milliwatts/ cm/sup 2/ of photosensitive surface area. The efficiency of present-day silicon elements is 11 to 13% compared to 1% with other materials and the maximum efficiency of 22%. The Sputnik'' radio was powered from a solar battery of 5 v and fitted with a miniature TsNK-0.4 storage battery. It is calculated that to supply electricity for lighting a small flat or house at 110 v, 3 amp, a solar battery of 2 x 2 m would be sufficient. (W.D.M.)

  17. 45 CFR 400.55 - Availability of agency policies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... significant number or proportion of the recipient population needs information in a particular language. In regard to refugee language groups that constitute a small number or proportion of the recipient population, the State, or the agency(s) responsible for the provision of RCA, at a minimum, must use an...

  18. 45 CFR 400.55 - Availability of agency policies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... significant number or proportion of the recipient population needs information in a particular language. In regard to refugee language groups that constitute a small number or proportion of the recipient population, the State, or the agency(s) responsible for the provision of RCA, at a minimum, must use an...

  19. 45 CFR 400.55 - Availability of agency policies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... significant number or proportion of the recipient population needs information in a particular language. In regard to refugee language groups that constitute a small number or proportion of the recipient population, the State, or the agency(s) responsible for the provision of RCA, at a minimum, must use an...

  20. 45 CFR 400.55 - Availability of agency policies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... significant number or proportion of the recipient population needs information in a particular language. In regard to refugee language groups that constitute a small number or proportion of the recipient population, the State, or the agency(s) responsible for the provision of RCA, at a minimum, must use an...

  1. 45 CFR 400.55 - Availability of agency policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... significant number or proportion of the recipient population needs information in a particular language. In regard to refugee language groups that constitute a small number or proportion of the recipient population, the State, or the agency(s) responsible for the provision of RCA, at a minimum, must use an...

  2. 77 FR 39736 - Certain Integrated Solar Power Systems and Components Thereof; Notice of Termination of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... certain integrated solar power systems and components thereof by reason of infringement of certain claims... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-811] Certain Integrated Solar Power Systems and Components Thereof; Notice of Termination of the Investigation Based on Settlement AGENCY: U.S...

  3. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    PubMed

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  4. Forecasting of global solar radiation using anfis and armax techniques

    NASA Astrophysics Data System (ADS)

    Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi'u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.

    2018-01-01

    Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.

  5. On Electron-Scale Whistler Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.

    2016-01-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  6. 78 FR 17716 - Notice Seeking Public Interest for Solar Energy Development on Public Lands in the State of Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Public Interest for Solar Energy Development on Public Lands in the State of Colorado AGENCY: Bureau of... State Office is providing an opportunity for parties to express an interest in proposing solar energy... Field Office in Saguache and Conejos counties, Colorado. DATES: Parties interested in proposing a solar...

  7. Solar heating and cooling.

    PubMed

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  8. 48 CFR 19.804-2 - Agency offering.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Agency offering. 19.804-2... PROGRAMS SMALL BUSINESS PROGRAMS Contracting With the Small Business Administration (the 8(a) Program) 19... following information applicable to each prospective contract: (1) A description of the work to be performed...

  9. The Lightweight Integrated Solar Array and Transceiver (LISA-T): Second Generation Advancements and the Future of SmallSat Power Generation

    NASA Technical Reports Server (NTRS)

    Carr, John A.; Boyd, Darren; Martinez, Armando; SanSoucie, Michael; Johnson, Les; Laue, Greg; Farmer, Brandon; Smith, Joseph C.; Robertson, Barrett; Johnson, Mark

    2016-01-01

    This paper describes the second generation advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. LISA-T is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power >250W/kg and a stowed power density >200kW/m(sub 3). Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  10. Excellent Long-Term Stability of Power Conversion Efficiency in Non-Fullerene-Based Polymer Solar Cells Bearing Tricyanovinylene-Functionalized n-Type Small Molecules.

    PubMed

    Ko, Eun Yi; Park, Gi Eun; Lee, Ji Hyung; Kim, Hyung Jong; Lee, Dae Hee; Ahn, Hyungju; Uddin, Mohammad Afsar; Woo, Han Young; Cho, Min Ju; Choi, Dong Hoon

    2017-03-15

    New small molecules having modified acceptor strength and π-conjugation length and containing dicyanovinylene (DCV) and tricyanovinylene (TCV) as a strongly electron-accepting unit with indacenodithiophene, IDT(DCV) 2 , IDT(TCV) 2 , and IDTT(TCV) 2 , were synthesized and studied in terms of their applicability to polymer solar cells with PTB7-Th as an electron-donating polymer. Intriguingly, the blended films containing IDT(TCV) 2 and IDTT(TCV) 2 exhibited superior shelf life stabilities of more than 1000 h without any reduction in the initial power conversion efficiency. The low-lying lowest unoccupied molecular orbital energy levels and robust internal morphologies of small TCV-containing molecules could afford excellent shelf life stability.

  11. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  12. 76 FR 27952 - Small Business Size Standards: Professional, Scientific and Technical Services.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Administration (SBA or Agency) proposed to increase small business size standards for 35 industries and one sub... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG07 Small Business Size Standards: Professional, Scientific and Technical Services. AGENCY: U.S. Small Business Administration. ACTION: Proposed...

  13. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting

    PubMed Central

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-01-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518

  14. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    PubMed

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  15. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  16. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    NASA Astrophysics Data System (ADS)

    Noble, R. J.; Sykes, M. V.

    The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  17. 75 FR 81307 - Notice of Availability of Record of Decision for the Tonopah Solar Energy, LLC, Crescent Dunes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ...-foot central receiver tower, salt tanks, steam generation building and equipment, steam turbine and... Tonopah Solar Energy, LLC, Crescent Dunes Solar Energy Project AGENCY: Bureau of Land Management, Interior... of the Record of Decision [[Page 81308

  18. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  19. Dynamical evolution of small bodies in the Solar System

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2012-05-01

    This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded

  20. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by

  1. Solar Access to Public Capital (SAPC) Working Group: Best Practices in Commercial and Industrial (C&I) Solar Photovoltaic System Installation; Period of Performance: November 28, 2014-September 1, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Chris; Loomans, Len; Truitt, Andrew

    2015-12-29

    This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agenciesmore » should verify compliance.« less

  2. NASA's Small Explorer program

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon; Rasch, Nickolus O.

    1989-01-01

    This paper describes a new component of the NASA's Explorer Program, the Small Explorer program, initiated for the purpose of providing research opportunities characterized by quick and frequent small turn-around space missions. The objective of the Small Explorer program is to launch one to two payloads per year, depending on the mission cost and the availability of funds and launch vehicles. In the order of tentative launch date, the flight missions considered by the Small Explorer program are the Solar, Anomalous, and Magnetospheric Explorer; the Submillimeter Wave Astronomy Satellite; the Fast Auroral Snapshot Explorer; and the Total Ozone Mapping Spectrometer.

  3. 48 CFR 19.804-1 - Agency evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... items or work similar in nature and complexity to that specified in the business plan; (c) Problems... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Contracting With the Small Business Administration (the 8(a... support of the 8(a) Program, the agency should evaluate— (a) Its current and future plans to acquire the...

  4. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  5. Meteoroids: The Smallest Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E. (Compiler); Hardin, B. F. (Compiler); Janches, Diego (Compiler)

    2011-01-01

    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System.

  6. Coating Processes Boost Performance of Solar Cells

    NASA Technical Reports Server (NTRS)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  7. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  8. Miniature personal UV solar dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr.

    1981-01-01

    Small light-powered meter measures accumulated radiation in ultraviolet or other selected regions. Practical advantages are device's low cost, small size, accuracy, and adaptability to specific wave-band measurements. Medical applications include detection of skin cancer, vitamin D production, and jaundice. Dosimeter also measures sunlight for solar energy designs, agriculture and meteorology, and monitors stability of materials and environmental and occupational lighting.

  9. The solar probe and coronal dynamics

    NASA Technical Reports Server (NTRS)

    Belcher, J.; Heinemann, M.; Goodrich, C.

    1978-01-01

    The discovery of coronal holes led to basic changes in ideas about the structure of the low corona and its expansion into the solar wind. The nature of the energy flux is not understood. Current ideas include enhanced thermal conductivities, extended MHD wave heating, and wave momentum transfer, all in rapidly diverging geometries. There is little feel for the relative importance of these processes. The Solar Probe, with its penetration deep into the solar corona, could lead to observational constraints on their relative importance, and thus to an understanding of the origin of the solar wind. Observations from the Solar Probe will also bear on such questions as to whether small scale "intrastream" structure is common close to the Sun in open field-line regions, whether the properties of the wind are pronouncedly different over closed and open field-line regions at five solar radii, and many others. The resolution of these questions requires measurements of the magnetic field and of the proton and electron distribution functions.

  10. 78 FR 59798 - Small Business Subcontracting: Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 125 RIN 3245-AG22 Small Business Subcontracting: Correction AGENCY: U.S. Small Business Administration. ACTION: Correcting amendments. SUMMARY: This document... business subcontracting to implement provisions of the Small Business Jobs Act of 2010. This correction...

  11. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    NASA Astrophysics Data System (ADS)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  12. PHOBOS Exploration using Two Small Solar Electric Propulsion Spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Baker, John D.; Castillo-Rogez, Julie C.; McElrath, Timothy P.; Piacentine, Jamie S.; Snyder, J. Steve

    2012-01-01

    Primitive bodies are exciting targets for exploration as they provide clues to the early Solar system conditions and dynamical evolution. The two moons of Mars are particularly interesting because of their proximity to an astrobiological target. However, after four decades of Mars exploration, their origin and nature remain enigmatic. In addition, when considering the long-term objectives of the flexible path for the potential human exploration to Mars, Phobos and Deimos present exciting intermediate opportunities without the complication and expense of landing and ascending from the surface. As interest in these targets for the next frontier of human exploration grows, characterization missions designed specifically to examine surface properties, landing environments, and surface mapping prior to human exploration are becoming increasingly important. A precursor mission concept of this sort has been developed using two identical spacecraft designed from low cost, flight proven and certified off-the-shelf component and utilizing Solar Electric Propulsion (SEP) to orbit both targets as secondary payloads launched aboard any NASA or GTO launch. This precursor mission has the potential to address both precursor measurements that are strategic knowledge gaps and decadal science, including soil physical properties at the global and local (human) scale and the search for in situ resources.

  13. A Unique test for Hubble's new Solar Arrays

    NASA Astrophysics Data System (ADS)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  14. How the morphology of dusts influences packing density in small solar system bodies

    NASA Astrophysics Data System (ADS)

    Zangmeister, C.; Radney, J. G.; Zachariah, M. R.

    2014-12-01

    Large planetary seedlings, comets, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (Φf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction, a regime that includes small solar system bodies. The Φf of rigid aggregated structures across 6 orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ≈ 17 nm monomeric subunits and aggregates made from uniform monomeric 6 mm spherical subunits at the macroscale. We find Φf = 0.36 ± 0.02 at both the nano- and macroscale. These values are remarkably similar to qf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that Φf is independent of both monomer and aggregate size. These observations suggest thatqf of rigid aggregates is independent of spatial dimension across varied formative conditions ranging from interstellar space to pharmaceutical manufacturing.

  15. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  16. Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules

    NASA Astrophysics Data System (ADS)

    Pundsack, Thomas J.

    To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in <50 fs which could indicate efficient long-range energy transfer. To further study P3HT aggregation, a triblock consisting of two P3HT chains with a coil polymer between them was investigated. By changing solvents, aggregation was induced in a stable and reversible manner allowing for spectroscopic studies of P3HT aggregates in solution. The polarity of the solvent was adjusted, and no change in excited state dynamics was observed implying the excited state has little charge-transfer character. Next, the conduction band density of states for copper zinc tin sulfide nanocrystals (CZTS NCs) was measured using pump-probe spectroscopy and found to be in agreement with theoretical results. The density of states shifted and dilated for smaller NCs indicative of quantum confinement. The excited state lifetime was found to be short (<20 ps) and independent of NC size which could limit the efficiency of CZTS photovoltaic devices. Finally, triplet-triplet annihilation (TTA) was studied in platinum octaethylporphyrin (PtOEP) thin films. By analyzing pump-probe spectra, the product of TTA in PtOEP thin films was assigned to a long

  17. 76 FR 21716 - Record of Decision for Issuance of Loan Guarantees to Solar Partners I, LLC; Solar Partners II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... Generating System Units 1, 2, and 3 AGENCY: Loan Programs Office (LP), U.S. Department of Energy (DOE...-up of Units 1, 2, and 3 of the 370 megawatt (MW) Ivanpah Solar Electric Generating System (ISEGS) on..., in November 2008 for ISEGS Phase 1 and in February 2009 for ISEGS Phases 2 and 3. NEPA Review BLM was...

  18. Simulation Study of Solar Wind Interaction with Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Richer, E.; Modolo, R.; Chanteur, G. M.; Hess, S.; Mancini, M.; Leblanc, F.

    2011-12-01

    The three flybys of Mariner 10, the numerous terrestrial observations of Mercury's exosphere and the recent flybys of MESSENGER [1] have brought important information about the Hermean environment. Mercury's intrinsic magnetic field is principally dipolar and its interaction with the Solar Wind (SW) creates a small and very dynamic magnetosphere. Mercury's exosphere is a highly variable [2] and complex neutral environment made of several species : H, He, O, Na, K, Ca, and Mg have already been detected [3,4]. The small number of in situ observations and the fact that the Hermean magnetospheric activity is not observable from Earth make simulation studies of the Hermean environment a useful tool to understand the global interaction of the SW with Mercury. This study presents simulation results from a 3-dimensional parallel multi-species hybrid model of Mercury's magnetosphere interaction with the SW. The SW in this model is representative of conditions at Mercury's aphelion (0.47AU) and is composed of 95% protons and 5% alpha particles. The simulated IMF is oriented accordingly observations during the first flyby of MESSENGER on January 2008 with a cone angle of ~45°. A neutral corona of atomic hydrogen is included in this model and is partly ionized by solar photons, electron impacts and charge exchange between SW ions and neutral H. Two electron fluids with different temperature are implemented to mimic the SW and ionospheric plasma. This model is an adapted version of the 3D parallel model for the Martian environment. Planetary and SW plasmas are treated separately and the dynamic of each ion species can be investigated separately. Simulations have been performed on a grid of 190×350×350 cells with a spatial resolution of Δx~120km. Acknowledgements The authors are indebted to CNES (French space agency) for the funding of their modeling activity through its program Sun - Heliosphere - Magnetosphere and to ANR (French national agency for research) for supporting

  19. Solar Cycle Variations and Equatorial Oscillations: Modeling Study

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Chan, K. L.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle, It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes referred to as "downward control". Relatively small changes in solar radiative forcing can produce small changes in the period and phase of the QBO, but this in turn can produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D (two-dimensional) version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1 % at the surface to 1 % at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is inconsequential. At 20-km the differences in the modeled wind velocities are as large as 5 m/s. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing (through the Semi-annual Oscillation (SAO)) acts as a strong pacemaker to lockup the

  20. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells.

    PubMed

    Wang, Jin-Liang; Liu, Kai-Kai; Liu, Sha; Liu, Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P

    2017-06-14

    A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC 71 BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.

  1. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  2. The 1.5 meter solar telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.

    2012-11-01

    The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness.

  3. Optimizing Decadal and Precursor Science on Small Solar System Bodies with Spacecraft/Rover Hybrids

    NASA Astrophysics Data System (ADS)

    Pavone, M.; Castillo, J. C.; Hoffman, J. A.; Nesnas, I. A.; Strange, N. J.

    2012-12-01

    In this paper we present a mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies (such as asteroids, comets, and Martian moons). The proposed mission architecture stems from a paradigm-shifting approach whereby small bodies' low gravity is directly exploited in the design process, rather than being faced as a constraint. At a general level, a mother spacecraft (of the type of JPL's NEOSurveyor) would deploy on the surface of a small body one, or several, spacecraft/rover hybrids, which are small (<5Kg, ~10W), multi-faceted robots enclosing three mutually orthogonal flywheels and surrounded by external spikes (in particular, there is no external propulsion). By accelerating/decelerating the flywheels and by exploiting the low gravity environment, the hybrids would be capable of performing both long excursions (by hopping) and short traverses to specific locations (through a sequence of controlled "tumbles"). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and in turn the entire mission architecture affordable. A fundamental aspect of this mission architecture is that the responsibility for primary science would be shared between the mothership and the hybrids, in particular, the mothership would provide broad area coverage, while the hybrid would zoom in on specific areas and conduct in-situ measurements. Specifically, in the first part of the paper we discuss the scientific rationale behind the proposed mission architecture (including traceability matrices for both the mothership and the hybrids for a number of potential targets), we present preliminary models and laboratory experiments for the hybrids, we present first-order estimates for critical subsystems (e.g., communication, power, thermal) and a preliminary study for synergistic mission operations, and

  4. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering

    PubMed Central

    Dykema, John A.; Keith, David W.; Anderson, James G.; Weisenstein, Debra

    2014-01-01

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of ‘unknown unknowns’ exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment—provisionally titled the stratospheric controlled perturbation experiment—is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering. PMID:25404681

  5. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering.

    PubMed

    Dykema, John A; Keith, David W; Anderson, James G; Weisenstein, Debra

    2014-12-28

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of 'unknown unknowns' exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering.

  6. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    PubMed Central

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  7. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  8. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert; /SLAC; Sykes, Mark V.

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less

  9. The Small- and Medium-sized Enterprises Office (SME Office) at the European Medicines Agency.

    PubMed

    Carr, M

    2010-01-01

    On 15 December 2005, the European Medicines Agency (EMEA) launched an "SME Office" to provide financial and administrative assistance to micro-, small- and medium-sized enterprises (SMEs), with the aim of promoting innovation and the development of new human and veterinary medicinal products by SMEs. According to current EU definition of an SME, companies with fewer than 250 employees, and an annual turnover of not more than 50 million euro or an annual balance sheet total of not more than 43 million euro, are eligible for assistance from the SME Office. Incentives available from the EMEA for SMEs, include: Administrative and procedural assistance from SME Office within the Agency; Fee reductions (90%) for scientific advice and inspections; Fee exemptions for certain administrative services (excluding parallel distribution); Deferral of the fee payable for an application for marketing authorisation or related inspection until after the grant of the marketing authorisation; Conditional fee exemption where scientific advice followed and marketing application is unsuccessful; Assistance with translations of the product information documents. At the end of May 2009, more than 380 companies from 21 countries across the European Economic Area (EEA) had SME status assigned by the EMEA. The large majority of companies are developing medicinal products for human use, 16 are veterinary companies, 15 companies are developing products for both human and veterinary use and 38 are regulatory consultants. Since the SME initiative started the Agency has processed more than 130 requests for scientific advice with fee reductions totalling of 6.9 million euro. Regulatory assistance has been provided to more than 170 companies and 12 companies have benefited from the SME translation service. Stakeholders have acknowledged the significant role the SME Office now plays as a service provider. In the period between January 2006 and June 2009, 34 applications for marketing authorization

  10. The virtual enhancements - solar proton event radiation (VESPER) model

    NASA Astrophysics Data System (ADS)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  11. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  12. Small-scale impacts as potential trigger for landslides on small Solar system bodies

    NASA Astrophysics Data System (ADS)

    Hofmann, Marc; Sierks, Holger; Blum, Jürgen

    2017-07-01

    We conducted a set of experiments to investigate whether millimetre-sized impactors impinging on a granular material at several m s-1 are able to trigger avalanches on small, atmosphereless planetary bodies. These experiments were carried out at the Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) drop tower facility in Bremen, Germany to facilitate a reduced gravity environment. Additional data were gathered at Earth gravity levels in the laboratory. As sample materials we used a ground Howardites, Eucrites and Diogenites (HED) meteorite and the Johnson Space Center (JSC) Mars-1 Martian soil simulant. We found that this type of small-scale impact can trigger avalanches with a moderate probability, if the target material is tilted to an angle close to the angle of repose. We additionally simulated a small-scale impact using the discrete element method code esys-particle. These simulations show that energy transfer from impactor to the target material is most efficient at low- and moderate-impactor inclinations and the transferred energy is retained in particles close to the surface due to a rapid dissipation of energy in lower material layers driven by inelastic collisions. Through Monte Carlo simulations we estimate the time-scale on which small-scale impacts with the observed characteristics will trigger avalanches covering all steep slopes on the surface of a small planetary body to be of the order 105 yr.

  13. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  14. Are Solar Activity Variations Amplified by the QBO: A Modeling Study

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle. It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes and is referred to as 'downward control'. Small changes in the solar radiative forcing may produce small changes in the period and phase of the QBO, but these in turn may produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is small. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing acts as a strong pacemaker to lock up the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with a different QBO period

  15. ANALYSIS OF SUNSPOT AREA OVER TWO SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Toma, G.; Chapman, G. A.; Preminger, D. G.

    2013-06-20

    We examine changes in sunspots and faculae and their effect on total solar irradiance during solar cycles 22 and 23 using photometric images from the San Fernando Observatory. We find important differences in the very large spots between the two cycles, both in their number and time of appearance. In particular, there is a noticeable lack of very large spots in cycle 23 with areas larger than 700 millionths of a solar hemisphere which corresponds to a decrease of about 40% relative to cycle 22. We do not find large differences in the frequencies of small to medium spots betweenmore » the two cycles. There is a decrease in the number of pores and very small spots during the maximum phase of cycle 23 which is largely compensated by an increase during other phases of the solar cycle. The decrease of the very large spots, in spite of the fact that they represent only a few percent of all spots in a cycle, is primarily responsible for the observed changes in total sunspot area and total sunspot deficit during cycle 23 maximum. The cumulative effect of the decrease in the very small spots is an order of magnitude smaller than the decrease caused by the lack of large spots. These data demonstrate that the main difference between cycles 22 and 23 was in the frequency of very large spots and not in the very small spots, as previously concluded. Analysis of the USAF/NOAA and Debrecen sunspot areas confirms these findings.« less

  16. 77 FR 72702 - Small Business Size Standards: Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG26 Small Business Size Standards: Information AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small Business Administration (SBA) is increasing the receipts based small business size standards for 15...

  17. $6 Million in Awards to Advance Solar Cell Research

    Science.gov Websites

    five companies for high tech research into non-conventional, photovoltaic technologies for creating can have significant cost advantages over conventional technologies. This non-conventional solar , Newbury Park, $498,000 (small business) Project Title: Non-Vacuum Processing of CIGS Solar Cells Project

  18. Solar Cell Angle of Incidence Corrections

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    The Mars Pathfinder mission has three different solar arrays each of which sees changes in incidence angle during normal operation. When solar array angle of incidence effects was researched little published data was found. The small amount of-published data created a need to obtain and evaluate such data. The donation of the needed data, which was taken in the fall of 1994, was a major factor in the preparation of this paper.

  19. 78 FR 77139 - Agency Information Collection Activities: Small Vessel Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection... Security. ACTION: 30-Day notice and request for comments; Extension of an existing information collection: 1651-0137. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security...

  20. 76 FR 82314 - Agency Information Collection Activities: Small Vessel Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection... Security. ACTION: 30-Day notice and request for comments; Establishment of a new collection of information. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security will be...

  1. Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized solar cells.

    PubMed

    Singh, Surya Prakash; Sharma, G D

    2014-06-01

    Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solar Observations with ALMA

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven

    2018-04-01

    The continuum intensity at millimeter wavelengths can serve as an essentially linear thermometer of the plasma in a thin layer in the atmosphere of the Sun, whereas the polarisation of the received radiation is a measure for the longitudinal magnetic field component in the same layer. The enormous leap in terms of spatial resolution with the Atacama Large Millimeter/submillimeter Array (ALMA) now makes it possible to observe the intricate fine-structure of the solar atmosphere at sufficiently high spatial, temporal, and spectral resolution, thus enabling studies of a wide range of scientific topics in solar physics that had been inaccessible at millimeter wavelengths before. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic layer between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer solar atmosphere. ALMA observations of the solar chromosphere, which are offered as a regular capability since 2016, therefore have the potential to make important contributions towards the solution of fundamental questions in solar physics with implications for our understanding of stars in general. In this presentation, I will give a short description of ALMA's solar observing mode, it challenges and opportunities, and selected science cases in combination with numerical simulations and coordinated observations at other wavelengths. ALMA's scientific potential for studying the dynamic small-scale pattern of the solar chromosphere is illustrated with first results from Cycle 4.

  3. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less

  4. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  5. Assessment of potential for small hydro/solar power integration in a mountainous, data sparse region: the role of hydrological prediction accuracy

    NASA Astrophysics Data System (ADS)

    Borga, Marco; Francois, Baptiste; Creutin, Jean-Dominique; Hingray, Benoit; Zoccatelli, Davide; Tardivo, Gianmarco

    2015-04-01

    In many parts of the world, integration of small hydropower and solar/wind energy sources along river systems is examined as a way to meet pressing renewable energy targets. Depending on the space and time scales considered, hydrometeorological variability may synchronize or desynchronize solar/wind, runoff and the demand opening the possibility to use their complementarity to smooth the intermittency of each individual energy source. Rivers also provide important ecosystem services, including the provision of high quality downstream water supply and the maintenance of in-stream habitats. With future supply and demand of water resources both impacted by environmental change, a good understanding of the potential for the integration among hydropower and solar/wind energy sources in often sparsely gauged catchments is important. In such cases, where complex data-demanding models may be inappropriate, there is a need for simple conceptual modelling approaches that can still capture the main features of runoff generation and artificial regulation processes. In this work we focus on run-of-the-river and solar-power interaction assessment. In order to catch the three key cycles of the load fluctuation - daily, weekly and seasonal, the time step used in the study is the hourly resolution. We examine the performance of a conceptual hydrological model which includes facilities to model dam regulation and diversions and hydrological modules to account for the effect of glaciarised catchments. The model is applied to catchments of the heavily regulated Upper Adige river system (6900 km2), Eastern Italian Alps, which has a long history of hydropower generation. The model is used to characterize and predict the natural flow regime, assess the regulation impacts, and simulate co-fluctuations between run-of- the-river and solar power. The results demonstrates that the simple, conceptual modelling approach developed here can capture the main hydrological and regulation processes

  6. The Slow and Fast Solar Wind Boundary, Corotating Interaction Regions, and Coronal Mass Ejection observations with Solar Probe Plus and Solar Orbiter (Invited)

    NASA Astrophysics Data System (ADS)

    Velli, M. M.

    2013-12-01

    The Solar Probe Plus and Solar Orbiter missions have as part of their goals to understand the source regions of the solar wind and of the heliospheric magnetic field. In the heliosphere, the solar wind is made up of interacting fast and slow solar wind streams as well as a clearly intermittent source of flow and field, arising from coronal mass ejections (CMEs). In this presentation a summary of the questions associated with the distibution of wind speeds and magnetic fields in the inner heliosphere and their origin on the sun will be summarized. Where and how does the sharp gradient in speeds develop close to the Sun? Is the wind source for fast and slow the same, and is there a steady component or is its origin always intermittent in nature? Where does the heliospheric current sheet form and how stable is it close to the Sun? What is the distribution of CME origins and is there a continuum from large CMEs to small blobs of plasma? We will describe our current knowledge and discuss how SPP and SO will contribute to a more comprehensive understanding of the sources of the solar wind and magnetic fields in the heliosphere.

  7. The feasibility of solar reflector production from lunar materials for solar power in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Science Applications International Corporation (SAIC) investigated the feasibility of producing solar reflectors from indigenous lunar materials for solar power production on the moon. First, lunar construction materials and production processes were reviewed, and candidate materials for reflector production were identified. At the same time, lunar environmental conditions were reviewed for their effect on production of concentrators. Next, conceptual designs and fabrication methods were proposed and studied for production of dish concentrators and heliostats. Finally, fabrication testing was performed on small-scale models using earth analogs of lunar materials. Findings from this initial investigation indicate that production of concentrators from lunar materials may be an attractive approach for solar energy production on the moon. Further design and testing are required to determine the best techniques and approaches to optimize this concept. Four materials were identified as having high potential for solar reflector manufacture. These baseline materials were foamed glass, concrete with glass-fiber reinforcement, a glass-fiber/glass-melt composite, and an iron-glass sintered material.

  8. A large-scale solar dynamics observatory image dataset for computer vision applications.

    PubMed

    Kucuk, Ahmet; Banda, Juan M; Angryk, Rafal A

    2017-01-01

    The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.

  9. Farley-Buneman Instability in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.; Voitenko, Y.; Poedts, S.; Goossens, M.

    2009-11-01

    The Farley-Buneman instability (FBI) is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is larger than unity. By applying these results to chromospheric conditions, we show that the FBI cannot be responsible for the quasi-steady heating of the solar chromosphere. However, we do not exclude the instability development locally in the presence of strong cross-field currents and/or strong small-scale magnetic fields. In such cases, FBI should produce locally small-scale, ~0.1-3 m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.

  10. Remote Sensing Measurements of the Corona with the Solar Probe

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Woo, Richard

    1996-01-01

    Remote sensing measurements of the solar corona are indespensible for the exploration of the source and acceleration regions of the solar wind which are inaccessible to in situ plasma, paritcles and field experiments.Furthermore, imaging the solar disk and coronal from the unique vantage point of the trajectory and the proximity of the Solar Probe spacecraft, will provide the first ever opportunity to explore the small scale structures within coronal holes and streamers from viewing angles and with spatial resolutions never attained before.

  11. Effect of organic small-molecule hole injection materials on the performance of inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zheng, Yifan; Zheng, Ding; Yu, Junsheng

    2016-07-01

    In this study, the influence of small-molecule organic hole injection materials on the performance of organic solar cells (OSCs) as the hole transport layer (HTL) with an architecture of ITO/ZnO/P3HT:PC71BM/HTL/Ag has been investigated. A significant enhancement on the performance of OSCs from 1.06% to 2.63% is obtained by using N, N‧-bis(1-naphthalenyl)-N, N‧-bis-phenyl-(1, 1‧-biphenyl)-4, 4‧-diamine (NPB) HTL. Through the resistance simulation and space-charge limited current analysis, we found that NPB HTL cannot merely improve the hole mobility of the device but also form the Ohmic contact between the active layer and anode. Besides, when we apply mix HTL by depositing the NPB on the surface of molybdenum oxide, the power conversion efficiency of OSC are able to be further improved to 2.96%.

  12. Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based Solar Cells with an Inverted Structure.

    PubMed

    Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng

    2015-09-30

    Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.

  13. SPICE-Based Python Packages for ESA Solar System Exploration Mission's Geometry Exploitation

    NASA Astrophysics Data System (ADS)

    Costa, M.; Grass, M.

    2018-04-01

    This contribution outlines three Python packages to provide an enhanced and extended usage of SPICE Toolkit APIS providing higher-level functions and data quick-look capabilities focused on European Space Agency solar system exploration missions.

  14. Heat pumps could inject life into solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.

    1977-07-14

    Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less

  15. NanoSail-D: A Solar Sail Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Whorton, Mark; Heaton, Andy; Pinson, robin; Laue, Greg; Adams, Charles

    2009-01-01

    During the past decade, within the United States, NASA Marshall Space Flight Center (MSFC) was heavily engaged in the development of revolutionary new technologies for in-space propulsion. One of the major in-space propulsion technologies developed was a solar sail propulsion system. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems have been designed for large spacecraft in the tens to hundreds of kilograms mass range. Recently, however, MSFC has been investigating the application of solar sails for small satellite propulsion. Likewise, NASA Ames Research Center (ARC) has been developing small spacecraft missions that have a need for amass-efficient means of satisfying deorbit requirements. Hence, a synergistic collaboration was established between these two NASA field Centers with the objective of conducting a flight demonstration of solar sail technologies for small satellites. The NanoSail-D mission flew onboard the ill-fated Falcon Rocket launched August 2, 2008, and, due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. Both the original sailcraft and the flight spare are hereafter referred to as NanoSail-D. The sailcraft consists of a sail subsystem stowed in a three-element CubeSat. Shortly after deployment of the NanoSail-D, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary technical objectives: (1) to successfully stow and deploy the sail and (2) to demonstrate deorbit functionality. Given a near-term opportunity for launch on Falcon, the project was given the challenge of delivering the flight hardware in 6 mo, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization of the spacecraft

  16. Selection and Manufacturing of Membrane Materials for Solar Sails

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Seaman, Shane T.; Wilkie, W. Keats; Miyaucchi, Masahiko; Working, Dennis C.

    2013-01-01

    Commercial metallized polyimide or polyester films and hand-assembly techniques are acceptable for small solar sail technology demonstrations, although scaling this approach to large sail areas is impractical. Opportunities now exist to use new polymeric materials specifically designed for solar sailing applications, and take advantage of integrated sail manufacturing to enable large-scale solar sail construction. This approach has, in part, been demonstrated on the JAXA IKAROS solar sail demonstrator, and NASA Langley Research Center is now developing capabilities to produce ultrathin membranes for solar sails by integrating resin synthesis with film forming and sail manufacturing processes. This paper will discuss the selection and development of polymer material systems for space, and these new processes for producing ultrathin high-performance solar sail membrane films.

  17. Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.

    2016-12-01

    Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.

  18. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    PubMed

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the <span class="hlt">solar</span> system, and learning about their formation informs us about the interaction of charged particles with <span class="hlt">small</span>-scale magnetic fields throughout the <span class="hlt">solar</span> system and beyond. We find that these compressions occur in an extended region</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395968','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395968"><span>Advanced Cloud Forecasting for <span class="hlt">Solar</span> Energy’s Impact on Grid Modernization</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Werth, D.; Nichols, R.</p> <p></p> <p><span class="hlt">Solar</span> energy production is subject to variability in the <span class="hlt">solar</span> resource – clouds and aerosols will reduce the available <span class="hlt">solar</span> irradiance and inhibit power production. The fact that <span class="hlt">solar</span> irradiance can vary by large amounts at <span class="hlt">small</span> timescales and in an unpredictable way means that power utilities are reluctant to assign to their <span class="hlt">solar</span> plants a large portion of future energy demand – the needed power might be unavailable, forcing the utility to make costly adjustments to its daily portfolio. The availability and predictability of <span class="hlt">solar</span> radiation therefore represent important research topics for increasing the power produced by renewable sources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042356','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042356"><span>Combining Epidemiologic Information Across Space <span class="hlt">Agencies</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Minard, Charles G.; Clark, April L.; Wear, Mary L.; Mason, Sara; Van Baalen, Mary</p> <p>2010-01-01</p> <p>Space flight is a very unique occupational exposure with potential hazards that are not fully understood. A limited number of individuals have experienced the exposures incurred during space flight, and epidemiologic research would benefit from shared information across space <span class="hlt">agencies</span>. However, data sharing can be problematic due to <span class="hlt">agency</span> protection policies for personally identifiable information as well as medical records. Compliance with these protocols in the astronaut population is particularly difficult given the <span class="hlt">small</span>, high-profile population under study. Creativity in combining data is necessary in order to overcome these difficulties and improve statistical power in research. This study presents methods in meta-analysis that may be used to combine non-attributable data across space <span class="hlt">agencies</span> so that meaningful conclusions may be drawn about study interests. Methods for combining epidemiologic data across space <span class="hlt">agencies</span> are presented, and the processes are demonstrated using life-time mortality data in U.S. astronauts and Russian cosmonauts. This proof of concept was found to be an acceptable way of sharing data across <span class="hlt">agencies</span>, and will be used in the future as more relevant research interests are identified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060015640&hterms=Body+Systems&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DBody%2BSystems','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060015640&hterms=Body+Systems&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DBody%2BSystems"><span>STARDUST and HAYABUSA: Sample Return Missions to <span class="hlt">Small</span> Bodies in the <span class="hlt">Solar</span> System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandford, S. A.</p> <p>2005-01-01</p> <p>There are currently two active spacecraft missions designed to return samples to Earth from <span class="hlt">small</span> bodies in our <span class="hlt">Solar</span> System. STARDUST will return samples from the comet Wild 2, and HAYABUSA will return samples from the asteroid Itokawa. On January 3,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. The HAYABUSA spacecraft arrived at the Near Earth Asteroid Itokawa in September 2005 and is currently involved in taking remote sensing data from the asteroid. Several practice landings have been made and a sample collection landing will be made soon. The collected sample will be returned to Earth in June 2007. During my talk I will discuss the scientific goals of the STARDUST and HAYABUSA missions and provide an overview of their designs and flights to date. I will also show some of the exciting data returned by these spacecraft during their encounters with their target objects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.nature.com/articles/s41598-018-23390-7','USGSPUBS'); return false;" href="https://www.nature.com/articles/s41598-018-23390-7"><span>Drivers of <span class="hlt">solar</span> radiation variability in the McMurdo Dry Valleys, Antarctica</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Obryk, Maciej; Fountain, Andrew G.; Doran, Peter; Lyons, Berry; Eastman, Ryan</p> <p>2018-01-01</p> <p>Annually averaged <span class="hlt">solar</span> radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m−2 during the past three decades; however, the drivers of this variability are unknown. Because <span class="hlt">small</span> differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of <span class="hlt">solar</span> variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease <span class="hlt">solar</span> intensity. Because of the polar location of the McMurdo Dry Valleys (77–78°S) and relatively long <span class="hlt">solar</span> ray path through the stratosphere, terrestrial <span class="hlt">solar</span> intensity is sensitive to <span class="hlt">small</span> differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010016270&hterms=images+MODIS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dimages%2BMODIS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010016270&hterms=images+MODIS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dimages%2BMODIS"><span>MODIS <span class="hlt">Solar</span> Diffuser: Modelled and Actual Performance</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)</p> <p>2001-01-01</p> <p>The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's <span class="hlt">solar</span> diffuser is used in its radiometric calibration for the reflective <span class="hlt">solar</span> bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the <span class="hlt">solar</span> diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the <span class="hlt">solar</span> diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces <span class="hlt">small</span>, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180221-MH-SWW01_0001-TESS_Solar_Array_Deploy_H265-3184532.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180221-MH-SWW01_0001-TESS_Solar_Array_Deploy_H265-3184532.html"><span>TESS <span class="hlt">Solar</span> Array Deploy</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-02-21</p> <p>Inside the Payload Hazardous Servicing Facility at the NASA's Kennedy Space Center in Florida, technicians test the <span class="hlt">solar</span> array deploy panels on the <span class="hlt">agency</span>'s Transiting Exoplanet Survey Satellite (TESS). The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our <span class="hlt">solar</span> system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1212428-soiling-building-envelope-surfaces-its-effect-solar-reflectance-part-analysis-roofing-product-databases','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1212428-soiling-building-envelope-surfaces-its-effect-solar-reflectance-part-analysis-roofing-product-databases"><span>Soiling of building envelope surfaces and its effect on <span class="hlt">solar</span> reflectance. Part I: Analysis of roofing product databases</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sleiman, Mohamad; Ban-Weiss, George; Gilbert, Haley E.; ...</p> <p>2011-12-01</p> <p>The use of highly reflective “cool” roofing materials can decrease demand for air conditioning, mitigate the urban heat island effect, and potentially slow global warming. However, initially high roof <span class="hlt">solar</span> reflectance can be degraded by natural soiling and weathering processes. We evaluated <span class="hlt">solar</span> reflectance losses after three years of natural exposure reported in two separate databases: the Rated Products Directory of the US Cool Roof Rating Council (CRRC) and information reported by manufacturers to the US Environmental Protection <span class="hlt">Agency</span> (EPA)’s ENERGY STAR® rating program. Many product ratings were culled because they were duplicative (within a database) or not measured. Amore » second, site-resolved version of the CRRC dataset was created by transcribing from paper records the site-specific measurements of aged <span class="hlt">solar</span> reflectance in Florida, Arizona and Ohio. Products with high initial <span class="hlt">solar</span> reflectance tended to lose reflectance, while those with very low initial <span class="hlt">solar</span> reflectance tended to become more reflective as they aged. Within the site-resolved CRRC database, absolute <span class="hlt">solar</span> reflectance losses for samples of medium-to-high initial <span class="hlt">solar</span> reflectance were 2 - 3 times greater in Florida (hot and humid) than in Arizona (hot and dry); losses in Ohio (temperate but polluted) were intermediate. Disaggregating results by product type, factory-applied coating, field-applied coating, metal, modified bitumen, shingle, singleply membrane and tile, revealed that absolute <span class="hlt">solar</span> reflectance losses were largest for fieldapplied coating, modified bitumen and single-ply membrane products, and smallest for factoryapplied coating and metal products.The 2008 Title 24 provisional aged <span class="hlt">solar</span> reflectance formula overpredicts the measured aged <span class="hlt">solar</span> reflectance of 0% to 30% of each product type in the culled public CRRC database. The rate of overprediction was greatest for field-applied coating and single-ply membrane products and least for factory-applied coating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatMa..16..363B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatMa..16..363B"><span>Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable <span class="hlt">small</span> molecule acceptor ternary <span class="hlt">solar</span> cells</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain</p> <p>2017-03-01</p> <p>Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable <span class="hlt">solar</span> cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing <span class="hlt">small</span> molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 +/- 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to <span class="hlt">solar</span> cells with 11.0 +/- 0.4% efficiency and a high open-circuit voltage of 1.03 +/- 0.01 V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=advertising+AND+benefit&pg=7&id=ED324709','ERIC'); return false;" href="https://eric.ed.gov/?q=advertising+AND+benefit&pg=7&id=ED324709"><span>A Necessary Course for the 1990s: The Student-Run Advertising <span class="hlt">Agency</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Marra, James L.</p> <p></p> <p>Current advertising courses and educational practices reflect advertising education's allegiance to the real world, particularly the real world as defined by large advertising <span class="hlt">agencies</span>. A student-run ad <span class="hlt">agency</span> provides students with a total learning experience on a <span class="hlt">small</span> advertising <span class="hlt">agency</span> scale in line with what they are likely to experience in…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10398E..17S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10398E..17S"><span>Monitoring <span class="hlt">solar</span> irradiance from L2 with Gaia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serpell, E.</p> <p>2017-09-01</p> <p>Gaia is the European Space <span class="hlt">Agency</span>'s cornerstone astrometry mission to measure the positions of a billion stars in the Milky Way with unprecedented accuracy. Since early 2014 Gaia has been operating in a halo orbit around the second Sun-Earth Lagrange point that provides the stable thermal environment, without Earth eclipses, needed for the payload to function accurately. The spacecraft is equipped with a number of thermally isolated, sun-facing thermistors that provide a continuous measurement of the local equilibrium temperature. As a consequence of the spacecraft design and operational conditions these temperature measurements have been used to infer the <span class="hlt">solar</span> output over a broad wavelength range. In this paper we present an analysis of temperature measurements made of the Gaia <span class="hlt">solar</span> panels at frequencies of up to 1 Hz for the first 35 months of routine operations. We show that the Gaia <span class="hlt">solar</span> panel temperature measurements are capable of precisely determining short term changes to the <span class="hlt">solar</span> output at a level of better than 0.04% with time constants of a few minutes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3156D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3156D"><span>Stratospheric O3 changes during 2001-2010: The <span class="hlt">small</span> role of <span class="hlt">solar</span> flux variations in a CTM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dhomse, Sandip; Chipperfield, Martyn; Feng, Wuhu; Ball, William; Unruh, Yvonne; Haigh, Joanna; Krivova, Natalie; Solanki, Sami</p> <p>2013-04-01</p> <p><span class="hlt">Solar</span> spectral fluxes (or irradiance) measured by the <span class="hlt">SOlar</span> Radiation and Climate Experiment (SORCE) shows different variability at ultraviolet (UV) wavelengths compared to other irradiance measurements and models (e.g. NRL, SATIRE-S). Some modelling studies have suggested that stratospheric O3 changes during <span class="hlt">solar</span> cycle 23 (1996-2008) can only be reproduced if SORCE <span class="hlt">solar</span> fluxes are used. We have used a 3-D chemical transport model (CTM), forced by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), to simulate stratospheric O3 using 3 different <span class="hlt">solar</span> flux datasets (SORCE, NRL-SSI and SATIRE-S). Simulated O3 changes are compared with Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. Modelled O3 anomalies using all <span class="hlt">solar</span> flux datasets show good agreement with the observations, despite the different flux variations. A notable feature during this period is a robust positive <span class="hlt">solar</span> signal in the tropical middle stratosphere. The CTM reproduces these changes through dynamical information contained in the analyses. Changes in the upper stratosphere cannot be used to discriminate between <span class="hlt">solar</span> flux datasets due to large uncertainties in the O3 observations. Overall this study suggests that the UV variations detected by SORCE are not necessary to reproduce observed stratospheric O3 changes during 2001-2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004078','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004078"><span><span class="hlt">Small</span> planetary mission plan: Report to Congress</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1992-01-01</p> <p>This document outlines NASA's <span class="hlt">small</span> planetary projects plan within the context of overall <span class="hlt">agency</span> planning. In particular, this plan is consistent with Vision 21: The NASA Strategic Plan, and the Office of Space Science and Applications (OSSA) Strategic Plan. <span class="hlt">Small</span> planetary projects address focused scientific objectives using a limited number of mature instruments, and are designed to require little or no new technology development. <span class="hlt">Small</span> missions can be implemented by university and industry partnerships in coordination with a NASA Center to use the unique services the <span class="hlt">agency</span> provides. The timeframe for <span class="hlt">small</span> missions is consistent with academic degree programs, which makes them an excellent training ground for graduate students and post-doctoral candidates. Because <span class="hlt">small</span> missions can be conducted relatively quickly and inexpensively, they provide greater opportunity for increased access to space. In addition, <span class="hlt">small</span> missions contribute to sustaining a vital scientific community by increasing the available opportunities for direct investigator involvement from just a few projects in a career to many.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=methane&pg=3&id=ED114270','ERIC'); return false;" href="https://eric.ed.gov/?q=methane&pg=3&id=ED114270"><span>Energy Primer: <span class="hlt">Solar</span>, Water, Wind, and Biofuels.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Portola Inst., Inc., Menlo Park, CA.</p> <p></p> <p>This is a comprehensive, fairly technical book about renewable forms of energy--<span class="hlt">solar</span>, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on <span class="hlt">small</span>-scale systems which can be applied to the needs of the individual, <span class="hlt">small</span> group, or community. More than one-fourth…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150016064','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150016064"><span>Lightweight Integrated <span class="hlt">Solar</span> Array and Transceiver. [Improving Electrical Power and Communication Capabilities in <span class="hlt">Small</span> Spacecraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carr, John; Martinez, Andres; Petro, Andrew</p> <p>2015-01-01</p> <p>The Lightweight Integrated <span class="hlt">Solar</span> Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting <span class="hlt">solar</span> energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art <span class="hlt">solar</span> arrays, while simultaneously enabling deployable antenna concepts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......240S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......240S"><span>False Dawn of a <span class="hlt">Solar</span> Age: A History of <span class="hlt">Solar</span> Heating and Power During the Energy Crisis, 1973-1986</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scavo, Jordan Michael</p> <p></p> <p> corporations and utilities. Several of these companies embarked on a concerted public misinformation campaign designed to downplay the potential of <span class="hlt">solar</span> energy, and these actions undermined the development of the nascent <span class="hlt">solar</span> industries. <span class="hlt">Solar</span> heating equipment relied on federal stimulus to compete in the market. Yet, federal support for research and development, commercialization, and market facilitation withered under the Reagan administration. <span class="hlt">Solar</span> occupied a point of convergence for several of Reagan's targets: <span class="hlt">solar</span> represented Carter, represented big government intervention in the market, and represented environmentalism. Reagan's administration reduced <span class="hlt">solar</span> funding, redirected and reorganized <span class="hlt">solar</span> <span class="hlt">agencies</span>, and repressed <span class="hlt">solar</span> information. By the early 1980s, Carter's 20% <span class="hlt">solar</span> goal was dead, and, as a result, the nation's efforts toward developing <span class="hlt">solar</span> energy were set back decades.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SoPh..292..121K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SoPh..292..121K"><span>Contribution to the <span class="hlt">Solar</span> Mean Magnetic Field from Different <span class="hlt">Solar</span> Regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutsenko, A. S.; Abramenko, V. I.; Yurchyshyn, V. B.</p> <p>2017-09-01</p> <p>Seven-year-long seeing-free observations of <span class="hlt">solar</span> magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the <span class="hlt">Solar</span> Dynamics Observatory (SDO) were used to study the sources of the <span class="hlt">solar</span> mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the <span class="hlt">solar</span> disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (BW), intermediate (BI), and strong (BS) fields. The BW component represents areas with magnetic flux densities below the chosen threshold; the BI component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The BS component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that i) when the threshold level of 30 Mx cm-2 is applied, the BI and BS components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2 - 6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx cm-2, the contribution from BI+BS grows to 98%, and the fraction of the occupied area reaches a value of about 40% of the <span class="hlt">solar</span> disk. In summary, we found that regardless of the threshold level, only a <span class="hlt">small</span> part of the <span class="hlt">solar</span> disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the <span class="hlt">solar</span> surface are the source of the SMMF may need to be reconsidered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH23B2449M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH23B2449M"><span>Miniature Extreme Ultraviolet <span class="hlt">Solar</span> Radiometers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.</p> <p>2015-12-01</p> <p>Free-standing zone plates for use in EUV <span class="hlt">solar</span> radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total <span class="hlt">solar</span> irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their <span class="hlt">small</span> size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for <span class="hlt">small</span> CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760044609&hterms=Solar+system+facts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSolar%2Bsystem%2Bfacts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760044609&hterms=Solar+system+facts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSolar%2Bsystem%2Bfacts"><span>Structure and evolutionary history of the <span class="hlt">solar</span> system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alfven, H.; Arrhenius, G.</p> <p>1975-01-01</p> <p>General principles and observational facts concerning the <span class="hlt">solar</span> system are examined, taking into account the orbits of planets and satellites, the <span class="hlt">small</span> bodies, the resonance structure, spin and tides, and postaccretional changes in the <span class="hlt">solar</span> system. A description is given of the accretion of celestial bodies and the plasma phase is considered. Aspects of chemical differentiation and the matrix of the groups of bodies are also discussed, giving attention to chemical compositions in the <span class="hlt">solar</span> system, meteorites and their precursor states, mass distribution and the critical velocity, and the structure of the groups.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910016730&hterms=solar+photovoltaic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Bphotovoltaic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910016730&hterms=solar+photovoltaic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsolar%2Bphotovoltaic"><span>Production of <span class="hlt">solar</span> photovoltaic cells on the Moon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Criswell, David R.; Ignatiev, Alex</p> <p>1991-01-01</p> <p><span class="hlt">Solar</span> energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based <span class="hlt">solar</span> photovoltaic cells. A few additional types are possible. There is a <span class="hlt">small</span> but growing literature on production of lunar derived <span class="hlt">solar</span> cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790047911&hterms=Electricity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DElectricity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790047911&hterms=Electricity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DElectricity"><span>Photovoltaics and <span class="hlt">solar</span> thermal conversion to electricity - Status and prospects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alper, M. E.</p> <p>1979-01-01</p> <p>Photovoltaic power system technology development includes flat-plate silicon <span class="hlt">solar</span> arrays and concentrating <span class="hlt">solar</span> cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include <span class="hlt">small</span> remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and <span class="hlt">small</span> power applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2258279L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2258279L"><span>The Conundrum of the <span class="hlt">Solar</span> Pre-Flare Photospheric State.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leka, KD; Barnes, Graham; Wagner, Eric</p> <p>2015-08-01</p> <p>Knowledge of the state of the <span class="hlt">solar</span> photospheric magnetic field at a single instant in time does not appear sufficient to predict the size and timing of impending <span class="hlt">solar</span> flares. Such knowledge may provide necessary conditions, such as the free magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a <span class="hlt">small</span> amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's <span class="hlt">Solar</span> Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of <span class="hlt">solar</span> active regions - their complexity, magnetic topology and energy - as related to <span class="hlt">solar</span> flare events. We examine both extensive and intensive parameters and their temporal behavior, in the context of both large and <span class="hlt">small</span> flaring episodes. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict <span class="hlt">solar</span> flares is quantified by standard skill scores.This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-06/pdf/2010-24855.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-06/pdf/2010-24855.pdf"><span>75 FR 61597 - <span class="hlt">Small</span> Business Size Standards: Retail Trade</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-06</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AF69 <span class="hlt">Small</span> Business Size Standards: Retail Trade <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration. ACTION: Final rule. SUMMARY: The United States <span class="hlt">Small</span> Business Administration (SBA) is modifying 47 <span class="hlt">small</span> business size standards for industries in North...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930069132&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsoup','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930069132&hterms=soup&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsoup"><span>Asteroseismology - The impact of <span class="hlt">solar</span> space observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, H. S.</p> <p>1993-01-01</p> <p>Observations from space relevant to <span class="hlt">solar</span> global properties (oscillations, magnetic activity, etc.) are helpful both scientifically and technically in preparing for stellar observations. This paper summarizes the results from the main previous experiments (ACRIM, SOUP, and IPHIR), and also gives an initial technical report from the SXT instrument on board Yohkoh, launched in August 1991. The <span class="hlt">solar</span> observations to date demonstrate the existence of several mechanisms for low-level variability: spots, faculae, the photospheric network, granulation, and p-mode oscillations. The observations of oscillations have been particularly helpful in setting limits on <span class="hlt">solar</span> interior rotation. In addition to the <span class="hlt">solar</span> processes, stars of other types may have different mechanisms of variability. These may include the analogs of coronal holes or <span class="hlt">solar</span> flares, modes of oscillation not detected in the sun, collisions with <span class="hlt">small</span> bodies, duplicity, and probably mechanisms not invented yet but related in interesting ways to stellar convection and magnetism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960045596&hterms=new+solar+panel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnew%2Bsolar%2Bpanel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960045596&hterms=new+solar+panel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnew%2Bsolar%2Bpanel"><span>Advanced <span class="hlt">solar</span> panel designs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ralph, E. L.; Linder, E. B.</p> <p>1996-01-01</p> <p><span class="hlt">Solar</span> panel designs that utilize new high-efficiency <span class="hlt">solar</span> cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance <span class="hlt">small</span> satellites (smallsats). Advanced <span class="hlt">solar</span> panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied <span class="hlt">Solar</span>. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge <span class="hlt">solar</span> cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge <span class="hlt">solar</span> cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030106650','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030106650"><span>An Overview Of NASA's <span class="hlt">Solar</span> Sail Propulsion Project</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garbe, Gregory; Montgomery, Edward E., IV</p> <p>2003-01-01</p> <p>Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high <span class="hlt">solar</span> latitudes). The ISP Program technology suite has been prioritized by an <span class="hlt">agency</span> wide study. <span class="hlt">Solar</span> Sail propulsion is one of ISP's three high-priority technology areas. <span class="hlt">Solar</span> sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of <span class="hlt">solar</span> activity and observations at high <span class="hlt">solar</span> latitudes. Near-term work funded by the ISP <span class="hlt">solar</span> sail propulsion project is centered around the quantitative demonstration of scalability of present <span class="hlt">solar</span> sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the <span class="hlt">solar</span> sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28554978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28554978"><span>Asteroid-comet continuum objects in the <span class="hlt">solar</span> system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsieh, Henry H</p> <p>2017-07-13</p> <p>In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of <span class="hlt">small</span> <span class="hlt">solar</span> system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of <span class="hlt">small</span> <span class="hlt">solar</span> system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the <span class="hlt">solar</span> system that would otherwise be inaccessible), while allowing us to study regions of the <span class="hlt">solar</span> system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4122154','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4122154"><span>Skin Cancer, Irradiation, and Sunspots: The <span class="hlt">Solar</span> Cycle Effect</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zurbenko, Igor</p> <p>2014-01-01</p> <p>Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. <span class="hlt">Solar</span> activity, characterized by features such as irradiance and sunspots, undergoes an 11-year <span class="hlt">solar</span> cycle. This fingerprint frequency accounts for relatively <span class="hlt">small</span> variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the <span class="hlt">solar</span> cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these <span class="hlt">small</span> but distinct long term trends in the <span class="hlt">solar</span> cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise. PMID:25126567</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol5/pdf/CFR-2014-title48-vol5-sec719-272.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol5/pdf/CFR-2014-title48-vol5-sec719-272.pdf"><span>48 CFR 719.272 - <span class="hlt">Small</span> disadvantaged business policies.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... business policies. 719.272 Section 719.272 Federal Acquisition Regulations System <span class="hlt">AGENCY</span> FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Policies 719.272 <span class="hlt">Small</span> disadvantaged business... subcontracting with <span class="hlt">small</span> disadvantaged businesses and other disadvantaged enterprises based on provisions of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol5/pdf/CFR-2013-title48-vol5-sec719-272.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol5/pdf/CFR-2013-title48-vol5-sec719-272.pdf"><span>48 CFR 719.272 - <span class="hlt">Small</span> disadvantaged business policies.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... business policies. 719.272 Section 719.272 Federal Acquisition Regulations System <span class="hlt">AGENCY</span> FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Policies 719.272 <span class="hlt">Small</span> disadvantaged business... subcontracting with <span class="hlt">small</span> disadvantaged businesses and other disadvantaged enterprises based on provisions of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol5/pdf/CFR-2010-title48-vol5-sec719-272.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol5/pdf/CFR-2010-title48-vol5-sec719-272.pdf"><span>48 CFR 719.272 - <span class="hlt">Small</span> disadvantaged business policies.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... business policies. 719.272 Section 719.272 Federal Acquisition Regulations System <span class="hlt">AGENCY</span> FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Policies 719.272 <span class="hlt">Small</span> disadvantaged business... subcontracting with <span class="hlt">small</span> disadvantaged businesses and other disadvantaged enterprises based on provisions of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title48-vol5/pdf/CFR-2011-title48-vol5-sec719-272.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title48-vol5/pdf/CFR-2011-title48-vol5-sec719-272.pdf"><span>48 CFR 719.272 - <span class="hlt">Small</span> disadvantaged business policies.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... business policies. 719.272 Section 719.272 Federal Acquisition Regulations System <span class="hlt">AGENCY</span> FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Policies 719.272 <span class="hlt">Small</span> disadvantaged business... subcontracting with <span class="hlt">small</span> disadvantaged businesses and other disadvantaged enterprises based on provisions of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021350&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dorbiting%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021350&hterms=orbiting+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dorbiting%2Bwind"><span>Features of <span class="hlt">solar</span> wind acceleration according to radio occultation data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Efimov, A. I.</p> <p>1995-01-01</p> <p>In addressing one of the fundamental problems in <span class="hlt">solar</span> physics establishing the mechanism(s) responsible for the <span class="hlt">solar</span> wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the <span class="hlt">solar</span> wind properties. Adequate data are available for <span class="hlt">small</span> <span class="hlt">solar</span> distances R less than 4 R(<span class="hlt">solar</span> mass) from coronal white light and EUV observations and at distances R greater than 60 R(<span class="hlt">solar</span> mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the <span class="hlt">solar</span> wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at <span class="hlt">solar</span> offset distances R approximately 6-80 R(<span class="hlt">solar</span> mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(<span class="hlt">solar</span> mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(<span class="hlt">solar</span> mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at <span class="hlt">small</span> R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1312263D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1312263D"><span>Stratospheric O3 changes during 2001-2010: the <span class="hlt">small</span> role of <span class="hlt">solar</span> flux variations in a CTM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dhomse, S. S.; Chipperfield, M. P.; Feng, W.; Ball, W. T.; Unruh, Y. C.; Haigh, J. D.; Krivova, N. A.; Solanki, S. K.; Smith, A. K.</p> <p>2013-05-01</p> <p><span class="hlt">Solar</span> spectral fluxes (or irradiance) measured by the <span class="hlt">SOlar</span> Radiation and Climate Experiment (SORCE) show different variability at ultraviolet (UV) wavelengths compared to other irradiance measurements and models (e.g. NRL-SSI, SATIRE-S). Some modelling studies have suggested that stratospheric/lower mesospheric O3 changes during <span class="hlt">solar</span> cycle 23 (1996-2008) can only be reproduced if SORCE <span class="hlt">solar</span> fluxes are used. We have used a 3-D chemical transport model (CTM), forced by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), to simulate middle atmospheric O3 using three different <span class="hlt">solar</span> flux datasets (SORCE, NRL-SSI and SATIRE-S). Simulated O3 changes are compared with Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. Modelled O3 anomalies from all <span class="hlt">solar</span> flux datasets show good agreement with the observations, despite the different flux variations. The off-line CTM reproduces these changes through dynamical information contained in the analyses. A notable feature during this period is a robust positive <span class="hlt">solar</span> signal in the tropical middle stratosphere due to changes in stratospheric dynamics. Ozone changes in the lower mesosphere cannot be used to discriminate between <span class="hlt">solar</span> flux datasets due to large uncertainties and the short time span of the observations. Overall this study suggests that, in a CTM, the UV variations detected by SORCE are not necessary to reproduce observed stratospheric O3 changes during 2001-2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913260S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913260S"><span>On the properties of energy transfer in <span class="hlt">solar</span> wind turbulence.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina</p> <p>2017-04-01</p> <p>Spacecraft observations have shown that the <span class="hlt">solar</span> wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at <span class="hlt">small</span> scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the <span class="hlt">small</span>-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the <span class="hlt">small</span>-scale plasma processes occurring in the <span class="hlt">solar</span> wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the <span class="hlt">solar</span> wind conditions (speed, type, <span class="hlt">solar</span> activity...) is analysed, and its evolution during <span class="hlt">solar</span> wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-06/pdf/2010-24860.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-06/pdf/2010-24860.pdf"><span>75 FR 61591 - <span class="hlt">Small</span> Business Size Standards; Other Services.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-06</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AF70 <span class="hlt">Small</span> Business Size Standards; Other Services. <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration. ACTION: Final rule. SUMMARY: The United States <span class="hlt">Small</span> Business Administration (SBA) is increasing the <span class="hlt">small</span> business size standards for 18 industries in North...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol2/pdf/CFR-2013-title48-vol2-sec52-219-8.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol2/pdf/CFR-2013-title48-vol2-sec52-219-8.pdf"><span>48 CFR 52.219-8 - Utilization of <span class="hlt">small</span> business concerns.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... United States <span class="hlt">Small</span> Business Administration or the awarding <span class="hlt">agency</span> of the United States as may be... List of Qualified HUBZone <span class="hlt">Small</span> Business Concerns maintained by the <span class="hlt">Small</span> Business Administration... <span class="hlt">small</span> disadvantaged business in the Dynamic <span class="hlt">Small</span> Business Search database maintained by the <span class="hlt">Small</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol2/pdf/CFR-2014-title48-vol2-sec52-219-8.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol2/pdf/CFR-2014-title48-vol2-sec52-219-8.pdf"><span>48 CFR 52.219-8 - Utilization of <span class="hlt">Small</span> Business Concerns.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... United States <span class="hlt">Small</span> Business Administration or the awarding <span class="hlt">agency</span> of the United States as may be... List of Qualified HUBZone <span class="hlt">Small</span> Business Concerns maintained by the <span class="hlt">Small</span> Business Administration... <span class="hlt">small</span> disadvantaged business in the Dynamic <span class="hlt">Small</span> Business Search database maintained by the <span class="hlt">Small</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..APRB12002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..APRB12002B"><span>No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and <span class="hlt">Solar</span> Energy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Branz, Howard M.</p> <p>2015-04-01</p> <p>Key technology challenges in building efficiency and <span class="hlt">solar</span> energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects <span class="hlt">Agency</span> - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. <span class="hlt">Solar</span> technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating <span class="hlt">solar</span> thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable <span class="hlt">solar</span> energy that can be deployed when the sun doesn't shine. The <span class="hlt">solar</span> technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA10689&hterms=Solar+power&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSolar%2Bpower','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA10689&hterms=Solar+power&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSolar%2Bpower"><span><span class="hlt">Solar</span> Power Grid</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2008-01-01</p> <p><p/> Shown here is one of the first images taken by NASA's Phoenix Mars Lander of one of the octagonal <span class="hlt">solar</span> panels, which opened like two handheld, collapsible fans on either side of the spacecraft. Beyond this view is a <span class="hlt">small</span> slice of the north polar terrain of Mars. <p/> The successfully deployed <span class="hlt">solar</span> panels are critical to the success of the 90-day mission, as they are the spacecraft's only means of replenishing its power. Even before these images reached Earth, power readings from the spacecraft indicated to engineers that the <span class="hlt">solar</span> panels were already at work recharging the spacecraft's batteries. <p/> Before deploying the Surface Stereo Imager to take these images, the lander waited about 15 minutes for the dust to settle. <p/> This image was taken by the spacecraft's Surface Stereo Imager on Sol, or Martian day, 0 (May 25, 2008). <p/> The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28567255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28567255"><span>Enhancement of charge transport properties of <span class="hlt">small</span> molecule semiconductors by controlling fluorine substitution and effects on photovoltaic properties of organic <span class="hlt">solar</span> cells and perovskite <span class="hlt">solar</span> cells.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yun, Jae Hoon; Park, Sungmin; Heo, Jin Hyuck; Lee, Hyo-Sang; Yoon, Seongwon; Kang, Jinback; Im, Sang Hyuk; Kim, Hyunjung; Lee, Wonmok; Kim, BongSoo; Ko, Min Jae; Chung, Dae Sung; Son, Hae Jung</p> <p>2016-11-01</p> <p>We prepared a series of <span class="hlt">small</span> molecules based on 7,7'-(4,4-bis(2-ethylhexyl)-4 H -silolo[3,2- b :4,5- b ']dithiophene-2,6-diyl)bis(4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[ c ][1,2,5]thiadiazole) with different fluorine substitution patterns ( 0F-4F ). Depending on symmetricity and numbers of fluorine atoms incorporated in the benzo[ c ][1,2,5]thiadiazole unit, they show very different optical and morphological properties in a film. 2F and 4F , which featured symmetric and even-numbered fluorine substitution patterns, display improved molecular packing structures and higher crystalline properties in a film compared with 1F and 3F and thus, 2F achieved the highest OTFT mobility, which is followed by 4F . In the bulk heterojunction <span class="hlt">solar</span> cell fabricated with PC 71 BM, 2F achieves the highest photovoltaic performance with an 8.14% efficiency and 0F shows the lowest efficiency of 1.28%. Moreover, the planar-type perovskite <span class="hlt">solar</span> cell (PSC) prepared with 2F as a dopant-free hole transport material shows a high power conversion efficiency of 14.5% due to its high charge transporting properties, which were significantly improved compared with the corresponding PSC device obtained from 0F (8.5%). From the studies, it is demonstrated that low variation in the local dipole moment and the narrow distribution of 2F conformers make intermolecular interactions favorable, which may effectively drive crystal formations in the solid state and thus, higher charge transport properties compared with 1F and 3F .</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/resources-small-businesses/small-business-epa-bulletin','PESTICIDES'); return false;" href="https://www.epa.gov/resources-small-businesses/small-business-epa-bulletin"><span><span class="hlt">Small</span> Business at EPA Bulletin</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>A list of monthly bulletins that highlight information on <span class="hlt">Agency</span> activities, rulemakings, and to share information about ongoing initiatives from the State <span class="hlt">Small</span> Business Environmental Assistance Programs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26704621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26704621"><span>Universal Features of Electron Dynamics in <span class="hlt">Solar</span> Cells with TiO2 Contact: From Dye <span class="hlt">Solar</span> Cells to Perovskite <span class="hlt">Solar</span> Cells.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Todinova, Anna; Idígoras, Jesús; Salado, Manuel; Kazim, Samrana; Anta, Juan A</p> <p>2015-10-01</p> <p>The electron dynamics of <span class="hlt">solar</span> cells with mesoporous TiO2 contact is studied by electrochemical <span class="hlt">small</span>-perturbation techniques. The study involved dye <span class="hlt">solar</span> cells (DSC), solid-state perovskite <span class="hlt">solar</span> cells (SSPSC), and devices where the perovskite acts as sensitizer in a liquid-junction device. Using a transport-recombination continuity equation we found that mid-frequency time constants are proper lifetimes that determine the current-voltage curve. This is not the case for the SSPSC, where a lifetime of ∼1 μs, 1 order of magnitude longer, is required to reproduce the current-voltage curve. This mismatch is attributed to the dielectric response on the mid-frequency component. Correcting for this effect, lifetimes lie on a common exponential trend with respect to open-circuit voltage. Electron transport times share a common trend line too. This universal behavior of lifetimes and transport times suggests that the main difference between the cells is the power to populate the mesoporous TiO2 contact with electrons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011702','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011702"><span><span class="hlt">Solar</span> Spectral Irradiance and Climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pilewskie, P.; Woods, T.; Cahalan, R.</p> <p>2012-01-01</p> <p>Spectrally resolved <span class="hlt">solar</span> irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total <span class="hlt">solar</span> irradiance to surface temperature trends - even though the Sun has likely made only a <span class="hlt">small</span> contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct <span class="hlt">solar</span> heating alone. The wavelength and height dependence of <span class="hlt">solar</span> radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the <span class="hlt">solar</span> signal. New observations and models of <span class="hlt">solar</span> spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of <span class="hlt">solar</span> spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved <span class="hlt">solar</span> irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol5/pdf/CFR-2014-title48-vol5-sec970-1907.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol5/pdf/CFR-2014-title48-vol5-sec970-1907.pdf"><span>48 CFR 970.1907 - The <span class="hlt">Small</span> Business Subcontracting Program.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false The <span class="hlt">Small</span> Business... <span class="hlt">AGENCY</span> SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS <span class="hlt">Small</span> Business Programs 970.1907 The <span class="hlt">Small</span> Business Subcontracting Program. ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol5/pdf/CFR-2013-title48-vol5-sec970-1907.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol5/pdf/CFR-2013-title48-vol5-sec970-1907.pdf"><span>48 CFR 970.1907 - The <span class="hlt">Small</span> Business Subcontracting Program.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false The <span class="hlt">Small</span> Business... <span class="hlt">AGENCY</span> SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS <span class="hlt">Small</span> Business Programs 970.1907 The <span class="hlt">Small</span> Business Subcontracting Program. ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title48-vol5/pdf/CFR-2012-title48-vol5-sec970-1907.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title48-vol5/pdf/CFR-2012-title48-vol5-sec970-1907.pdf"><span>48 CFR 970.1907 - The <span class="hlt">Small</span> Business Subcontracting Program.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false The <span class="hlt">Small</span> Business... <span class="hlt">AGENCY</span> SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS <span class="hlt">Small</span> Business Programs 970.1907 The <span class="hlt">Small</span> Business Subcontracting Program. ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title48-vol5/pdf/CFR-2011-title48-vol5-sec970-1907.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title48-vol5/pdf/CFR-2011-title48-vol5-sec970-1907.pdf"><span>48 CFR 970.1907 - The <span class="hlt">Small</span> Business Subcontracting Program.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false The <span class="hlt">Small</span> Business... <span class="hlt">AGENCY</span> SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS <span class="hlt">Small</span> Business Programs 970.1907 The <span class="hlt">Small</span> Business Subcontracting Program. ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol20/pdf/CFR-2012-title40-vol20-sec86-1826-01.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol20/pdf/CFR-2012-title40-vol20-sec86-1826-01.pdf"><span>40 CFR 86.1826-01 - Assigned deterioration factors for <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION <span class="hlt">AGENCY</span> (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol20/pdf/CFR-2013-title40-vol20-sec86-1826-01.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol20/pdf/CFR-2013-title40-vol20-sec86-1826-01.pdf"><span>40 CFR 86.1826-01 - Assigned deterioration factors for <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION <span class="hlt">AGENCY</span> (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol19/pdf/CFR-2011-title40-vol19-sec86-1826-01.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol19/pdf/CFR-2011-title40-vol19-sec86-1826-01.pdf"><span>40 CFR 86.1826-01 - Assigned deterioration factors for <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION <span class="hlt">AGENCY</span> (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol19/pdf/CFR-2010-title40-vol19-sec86-1826-01.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol19/pdf/CFR-2010-title40-vol19-sec86-1826-01.pdf"><span>40 CFR 86.1826-01 - Assigned deterioration factors for <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... durability groups) that is equipped with unproven emission control systems. (v) The manufacturer must... <span class="hlt">small</span> volume manufacturers and <span class="hlt">small</span> volume test groups. 86.1826-01 Section 86.1826-01 Protection of Environment ENVIRONMENTAL PROTECTION <span class="hlt">AGENCY</span> (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790025408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790025408"><span>Phase 1 of the First <span class="hlt">Small</span> Power System Experiment (engineering Experiment No. 1). Volume 4: Commercial System Definition. [development and testing of a <span class="hlt">solar</span> thermal power plant</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holl, R. J.</p> <p>1979-01-01</p> <p>The development and design of a modular <span class="hlt">solar</span> thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, <span class="hlt">small</span> communities, rural areas, and for industrial uses. The operational reliability, the minimum risk of failure, and the maintenance and repair characteristics are determined and the commercial system design is defined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21378239-farley-buneman-instability-solar-chromosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21378239-farley-buneman-instability-solar-chromosphere"><span>FARLEY-BUNEMAN INSTABILITY IN THE <span class="hlt">SOLAR</span> CHROMOSPHERE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gogoberidze, G.; Voitenko, Y.; Poedts, S.</p> <p>2009-11-20</p> <p>The Farley-Buneman instability (FBI) is studied in the partially ionized plasma of the <span class="hlt">solar</span> chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is larger than unity. By applying these results to chromospheric conditions, we show that the FBI cannot be responsible for the quasi-steady heating of the <span class="hlt">solar</span> chromosphere. However,more » we do not exclude the instability development locally in the presence of strong cross-field currents and/or strong <span class="hlt">small</span>-scale magnetic fields. In such cases, FBI should produce locally <span class="hlt">small</span>-scale, approx0.1-3 m, density irregularities in the <span class="hlt">solar</span> chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840020163','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840020163"><span>Advanced <span class="hlt">Solar</span> Receivers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Owen, W. A.</p> <p>1984-01-01</p> <p>Low thermal efficiencies in <span class="hlt">solar</span> receivers are discussed in terms of system design. It is recommended that careful attention be given to the overall thermal systems design, especially to conductive losses about the window and areas of relatively thin insulation. If the cavity design is carefully managed to insure a <span class="hlt">small</span>, minimally reradiating aperture, the goal of a very high efficiency cavity receiver is a realistic one.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012695','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012695"><span>Effects on Spacecraft Radiometric Data at Superior <span class="hlt">Solar</span> Conjunction</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morley, Trevor; Budnik, Frank</p> <p>2007-01-01</p> <p>During 2006, three ESA interplanetary spacecraft, Rosetta, Mars Express (MEX) and Venus Express (VEX), passed through superior <span class="hlt">solar</span> conjunction. For all three spacecraft, the noise in the post-fit range-rate residuals from the orbit determination was analysed. At <span class="hlt">small</span> Sun-Earth-Probe (SEP) angles the level was almost two orders of magnitude higher than normal. The main objective was to characterize the Doppler (rangerate) noise as a function of SEP angle. At least then the range-rate data can be appropriately weighted within the orbit determination so that the solution uncertainties are realistic. For VEX, some intervals of particularly noisy Doppler data could be correlated with unusual <span class="hlt">solar</span> activity. For Rosetta, the biases in the range data residuals were analysed with the aim of improving the model used for calibrating the signal delay due to the <span class="hlt">solar</span> plasma. The model, which originally had fixed coefficients, was adjusted to achieve better fits to the data. Even the relatively <span class="hlt">small</span> Doppler biases were well represented. Using the improved model, the electron density at 20 <span class="hlt">solar</span> radii was compared with earlier results obtained by radio science studies using Voyager 2 and Ulysses radiometric data. There is some evidence for a dependency of the density on the phase within the 11 years <span class="hlt">solar</span> cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol4/pdf/CFR-2014-title48-vol4-sec619-505.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol4/pdf/CFR-2014-title48-vol4-sec619-505.pdf"><span>48 CFR 619.505 - Rejecting <span class="hlt">Small</span> Business Administration recommendations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Rejecting <span class="hlt">Small</span> Business... STATE SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Set-Asides for <span class="hlt">Small</span> Business 619.505 Rejecting <span class="hlt">Small</span> Business Administration recommendations. The Procurement Executive is the <span class="hlt">agency</span> head for the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title48-vol4/pdf/CFR-2012-title48-vol4-sec619-505.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title48-vol4/pdf/CFR-2012-title48-vol4-sec619-505.pdf"><span>48 CFR 619.505 - Rejecting <span class="hlt">Small</span> Business Administration recommendations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Rejecting <span class="hlt">Small</span> Business... STATE SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Set-Asides for <span class="hlt">Small</span> Business 619.505 Rejecting <span class="hlt">Small</span> Business Administration recommendations. The Procurement Executive is the <span class="hlt">agency</span> head for the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol4/pdf/CFR-2013-title48-vol4-sec619-505.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol4/pdf/CFR-2013-title48-vol4-sec619-505.pdf"><span>48 CFR 619.505 - Rejecting <span class="hlt">Small</span> Business Administration recommendations.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Rejecting <span class="hlt">Small</span> Business... STATE SOCIOECONOMIC PROGRAMS <span class="hlt">SMALL</span> BUSINESS PROGRAMS Set-Asides for <span class="hlt">Small</span> Business 619.505 Rejecting <span class="hlt">Small</span> Business Administration recommendations. The Procurement Executive is the <span class="hlt">agency</span> head for the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DDA....4930006Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DDA....4930006Z"><span>Instability timescale for the inclination instability in the <span class="hlt">solar</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob</p> <p>2018-04-01</p> <p>The gravitational influence of <span class="hlt">small</span> bodies is often neglected in the study of <span class="hlt">solar</span> system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the <span class="hlt">solar</span> system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the <span class="hlt">solar</span> system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the <span class="hlt">solar</span> system. We show that ~5 MEarth of <span class="hlt">small</span> icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer <span class="hlt">solar</span> system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OAP....26..294P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OAP....26..294P"><span>Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a <span class="hlt">Solar</span> Activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.</p> <p></p> <p>The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a <span class="hlt">solar</span> activity period: the blood viscosity increases in a period of high <span class="hlt">solar</span> activity in the vessels of <span class="hlt">small</span>, medium and macro diameters, a local decompensate dysfunction of <span class="hlt">small</span> vessels endothelium had been fixed (microcirculation area). In the period of a low <span class="hlt">solar</span> activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high <span class="hlt">solar</span> activity a higher blood viscosity had been fixed, comparing with the period of a low <span class="hlt">solar</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0008.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0008.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>A U.S. Air Force C-5 transport aircraft arrives at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker <span class="hlt">Solar</span> Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0326.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0326.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>NASA's Parker <span class="hlt">Solar</span> Probe, secured in its shipping container, arrives at the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center in Florida. The spacecraft arrived aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0051.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0051.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>A U.S. Air Force C-5 transport aircraft touches down at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker <span class="hlt">Solar</span> Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0195.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0195.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>NASA's Parker <span class="hlt">Solar</span> Probe, secured in its shipping container, is offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0045.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0045.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>A U.S. Air Force C-5 transport aircraft approaches the runway for landing at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker <span class="hlt">Solar</span> Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0260.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0260.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>NASA's Parker <span class="hlt">Solar</span> Probe, secured in its shipping container, has been offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0143.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-20180403-PH_JBS01_0143.html"><span>Parker <span class="hlt">Solar</span> Probe Spacecraft Arrival, Offload and Transport</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-03</p> <p>NASA's Parker <span class="hlt">Solar</span> Probe, secured in its shipping container, arrives aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be offloaded and transported to the Astrotech processing facility near the <span class="hlt">agency</span>'s Kennedy Space Center. The Parker <span class="hlt">Solar</span> Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28520092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28520092"><span>Mushrooms as Efficient <span class="hlt">Solar</span> Steam-Generation Devices.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia</p> <p>2017-07-01</p> <p><span class="hlt">Solar</span> steam generation is emerging as a promising technology, for its potential in harvesting <span class="hlt">solar</span> energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing <span class="hlt">solar</span> absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient <span class="hlt">solar</span> steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high <span class="hlt">solar</span> steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a <span class="hlt">small</span> cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for <span class="hlt">solar</span> steam generation, but also provide inspiration for the future development of high-performance <span class="hlt">solar</span> thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-06/pdf/2012-18119.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-06/pdf/2012-18119.pdf"><span>77 FR 46805 - <span class="hlt">Small</span> Business Innovation Research Program Policy Directive</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-06</p> <p>... <span class="hlt">Small</span> Business Innovation Research Program Policy Directive; <span class="hlt">Small</span> Business Technology Transfer Program Policy Directive; <span class="hlt">Small</span> Business Innovation Research (SBIR) Program and <span class="hlt">Small</span> Business Technology... ADMINISTRATION 13 CFR Chapter I RIN 3245-AF84 <span class="hlt">Small</span> Business Innovation Research Program Policy Directive <span class="hlt">AGENCY</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title48-vol2/pdf/CFR-2011-title48-vol2-sec52-219-8.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title48-vol2/pdf/CFR-2011-title48-vol2-sec52-219-8.pdf"><span>48 CFR 52.219-8 - Utilization of <span class="hlt">small</span> business concerns.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... United States <span class="hlt">Small</span> Business Administration or the awarding <span class="hlt">agency</span> of the United States as may be... List of Qualified HUBZone <span class="hlt">Small</span> Business Concerns maintained by the <span class="hlt">Small</span> Business Administration... <span class="hlt">small</span> disadvantaged business in the CCR Dynamic <span class="hlt">Small</span> Business Search database maintained by the <span class="hlt">Small</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title48-vol2/pdf/CFR-2012-title48-vol2-sec52-219-8.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title48-vol2/pdf/CFR-2012-title48-vol2-sec52-219-8.pdf"><span>48 CFR 52.219-8 - Utilization of <span class="hlt">small</span> business concerns.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... United States <span class="hlt">Small</span> Business Administration or the awarding <span class="hlt">agency</span> of the United States as may be... List of Qualified HUBZone <span class="hlt">Small</span> Business Concerns maintained by the <span class="hlt">Small</span> Business Administration... <span class="hlt">small</span> disadvantaged business in the CCR Dynamic <span class="hlt">Small</span> Business Search database maintained by the <span class="hlt">Small</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol1/pdf/CFR-2010-title48-vol1-sec19-602-3.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title48-vol1/pdf/CFR-2010-title48-vol1-sec19-602-3.pdf"><span>48 CFR 19.602-3 - Resolving differences between the <span class="hlt">agency</span> and the <span class="hlt">Small</span> Business Administration.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... information, the SBA will make a final decision to either issue or deny the COC. (c) Reconsideration of a COC... complete exchange of information and in accordance with <span class="hlt">agency</span> procedures. If agreement cannot be reached... and that an appeal decision may be requested by an authorized official. (3) If the contracting <span class="hlt">agency</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17798199','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17798199"><span><span class="hlt">SOLAR</span> SYSTEM EXPLORATION: NASA Blasted for Rising Costs, Cancellations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lawler, A</p> <p>2000-12-01</p> <p>When NASA cancelled a project last month that would have sent a tiny rover crawling over an asteroid, the community of planetary scientists issued a public tongue lashing of the <span class="hlt">agency</span>. Its letter warned of larger problems in the U.S. program caused by spiraling costs and recommended a sweeping reexamination of the outer <span class="hlt">solar</span> system effort.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-11-08/pdf/2011-28827.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-11-08/pdf/2011-28827.pdf"><span>76 FR 69154 - <span class="hlt">Small</span> Business Size and Status Integrity</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-11-08</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION 13 CFR Parts 121, 124, 125, 126, and 127 RIN 3245-AG23 <span class="hlt">Small</span> Business Size and Status Integrity <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Proposed rule... implement provisions of the <span class="hlt">Small</span> Business Jobs Act of 2010 (Jobs Act) pertaining to <span class="hlt">small</span> business size and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/GPO-UA-2010-12-20/pdf/GPO-UA-2010-12-20-15.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/GPO-UA-2010-12-20/pdf/GPO-UA-2010-12-20-15.pdf"><span>Environmental Protection <span class="hlt">Agency</span> Semiannual Regulatory Agenda</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-20</p> <p>... Protection <span class="hlt">Agency</span> (EPA) publishes the semiannual regulatory agenda online (the e-Agenda) at www.reginfo.gov... agenda'' all refer to the same comprehensive collection of information that until 2007 was published in... significant impact on a substantial number of <span class="hlt">small</span> entities. It continues to be published in the Federal...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050185217','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050185217"><span>Origin of Outer <span class="hlt">Solar</span> System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holman, Matthew J.; Lindstrom, David (Technical Monitor)</p> <p>2005-01-01</p> <p>Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of <span class="hlt">small</span> bodies in the outer <span class="hlt">solar</span> system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer <span class="hlt">solar</span> system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other <span class="hlt">solar</span> system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003899"><span>Recent Progress in Heliogyro <span class="hlt">Solar</span> Sail Structural Dynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale</p> <p>2014-01-01</p> <p>Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro <span class="hlt">solar</span> sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with <span class="hlt">solar</span> radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro <span class="hlt">solar</span> sails, including stability during blade deployment, and results from <span class="hlt">small</span>-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-04-04/pdf/2013-07870.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-04-04/pdf/2013-07870.pdf"><span>78 FR 20316 - Draft <span class="hlt">Small</span> Municipal Separate Storm Sewer System NPDES General Permit-New Hampshire; Extension...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-04-04</p> <p>... ENVIRONMENTAL PROTECTION <span class="hlt">AGENCY</span> [FRL-9799-1] Draft <span class="hlt">Small</span> Municipal Separate Storm Sewer System NPDES General Permit--New Hampshire; Extension of Comment Period <span class="hlt">AGENCY</span>: Environmental Protection <span class="hlt">Agency</span>... draft <span class="hlt">Small</span> Municipal Separate Storm Sewer System (MS4) National Pollutant Discharge Elimination System...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-05-13/pdf/2013-11310.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-05-13/pdf/2013-11310.pdf"><span>78 FR 27964 - Draft <span class="hlt">Small</span> Municipal Separate Storm Sewer System NPDES General Permit-New Hampshire; Extension...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-05-13</p> <p>... ENVIRONMENTAL PROTECTION <span class="hlt">AGENCY</span> [FRL-9812-8] Draft <span class="hlt">Small</span> Municipal Separate Storm Sewer System NPDES General Permit--New Hampshire; Extension of Comment Period <span class="hlt">AGENCY</span>: Environmental Protection <span class="hlt">Agency</span>... draft <span class="hlt">Small</span> Municipal Separate Storm Sewer System (MS4) National Pollutant Discharge Elimination System...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61..593F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61..593F"><span>Preface: MHD wave phenomena in the <span class="hlt">solar</span> interior and atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedun, Viktor; Srivastava, A. K.</p> <p>2018-01-01</p> <p>The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of <span class="hlt">solar</span> atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the <span class="hlt">solar</span> interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the <span class="hlt">small</span> and large-scale <span class="hlt">solar</span> phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, <span class="hlt">Solar</span>-C, <span class="hlt">Solar</span> Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, <span class="hlt">solar</span> physicists are able to explore exclusive wave processes in various <span class="hlt">solar</span> magnetic structures at different spatio-temporal scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525267-small-scale-solar-wind-turbulence-due-nonlinear-alfven-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525267-small-scale-solar-wind-turbulence-due-nonlinear-alfven-waves"><span><span class="hlt">SMALL</span>-SCALE <span class="hlt">SOLAR</span> WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, Sanjay; Moon, Y.-J.; Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr</p> <p></p> <p>We present an evolution of wave localization and magnetic power spectra in <span class="hlt">solar</span> wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results,more » we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in <span class="hlt">solar</span> wind plasma.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900028271&hterms=inheritance&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinheritance','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900028271&hterms=inheritance&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinheritance"><span>The carbon budget in the outer <span class="hlt">solar</span> nebula</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simonelli, Damon P.; Pollack, James B.; Mckay, Christopher P.; Reynolds, Ray T.; Summers, Audrey L.</p> <p>1989-01-01</p> <p>The compositional contrast between the giant-planet satellites and the significantly rockier Pluto/Charon system is indicative of different formation mechanisms; cosmic abundance calculations, in conjunction with an assumption of the Pluto/Charon system's direct formation from <span class="hlt">solar</span> nebula condensates, strongly suggest that most of the carbon in the outer <span class="hlt">solar</span> nebula was in CO form, in keeping with both the inheritance from the dense molecular clouds in the interstellar medium, and/or the Lewis and Prinn (1980) kinetic-inhibition model of <span class="hlt">solar</span> nebula chemistry. Laboratory studies of carbonaceous chondrites and Comet Halley flyby studies suggest that condensed organic material, rather than elemental carbon, is the most likely candidate for the <span class="hlt">small</span> percentage of the carbon-bearing solid in the outer <span class="hlt">solar</span> nebula.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800014290','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800014290"><span>Concept definition study of <span class="hlt">small</span> Brayton cycle engines for dispersed <span class="hlt">solar</span> electric power systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.</p> <p>1980-01-01</p> <p>Three first-generation Brayton cycle engine types were studied for <span class="hlt">solar</span> application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and <span class="hlt">solar</span> receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980taco.work...23.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980taco.work...23."><span>Open Workshop on <span class="hlt">Solar</span> Technologies: Proceedings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1980-07-01</p> <p>The deliberations, conclusions, and recommendations of six panels asked to provide advice to the Department of Energy on the subject of <span class="hlt">solar</span> energy are detailed. Introductory speeches by seven experts, excerpts from the succeeding two half days of discussion, the final reports for the panel chairpersons, and subsequent discussion and questioning are included. Approximately 125 findings and recommendations were developed by the six panels covering a wide variety of topics. Major recurring themes were recommendations for increased funding, federal program improvement, conservation, outreach programs <span class="hlt">small</span> business funding, and <span class="hlt">solar</span> training programs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........59M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........59M"><span>Passive Plasma Contact Mechanisms for <span class="hlt">Small</span>-Scale Spacecraft</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McTernan, Jesse K.</p> <p></p> <p><span class="hlt">Small</span>-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with <span class="hlt">small</span>-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on <span class="hlt">small</span>-scale spacecraft is outer surface area, which is often covered with <span class="hlt">solar</span> panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the <span class="hlt">solar</span> cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of <span class="hlt">solar</span> photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on <span class="hlt">small</span>-scale platforms become feasible with the use of indium tin oxide-coated <span class="hlt">solar</span> panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090033808&hterms=heating+global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dheating%2Bglobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090033808&hterms=heating+global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dheating%2Bglobal"><span>MHD Modeling of the <span class="hlt">Solar</span> Wind with Turbulence Transport and Heating</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldstein, M. L.; Usmanov, A. V.; Matthaeus, W. H.; Breech, B.</p> <p>2009-01-01</p> <p>We have developed a magnetohydrodynamic model that describes the global axisymmetric steady-state structure of the <span class="hlt">solar</span> wind near <span class="hlt">solar</span> minimum with account for transport of <span class="hlt">small</span>-scale turbulence associated heating. The Reynolds-averaged mass, momentum, induction, and energy equations for the large-scale <span class="hlt">solar</span> wind flow are solved simultaneously with the turbulence transport equations in the region from 0.3 to 100 AU. The large-scale equations include subgrid-scale terms due to turbulence and the turbulence (<span class="hlt">small</span>-scale) equations describe the effects of transport and (phenomenologically) dissipation of the MHD turbulence based on a few statistical parameters (turbulence energy, normalized cross-helicity, and correlation scale). The coupled set of equations is integrated numerically for a source dipole field on the Sun by a time-relaxation method in the corotating frame of reference. We present results on the plasma, magnetic field, and turbulence distributions throughout the heliosphere and on the role of the turbulence in the large-scale structure and temperature distribution in the <span class="hlt">solar</span> wind.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050192264','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050192264"><span><span class="hlt">Solar</span> Airplane Concept Developed for Venus Exploration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Landis, Geoffrey A.</p> <p>2004-01-01</p> <p>An airplane is the ideal vehicle for gathering atmospheric data over a wide range of locations and altitudes, while having the freedom to maneuver to regions of scientific interest. <span class="hlt">Solar</span> energy is available in abundance on Venus. Venus has an exoatmospheric <span class="hlt">solar</span> flux of 2600 W/m2, compared with Earth's 1370 W/m2. The <span class="hlt">solar</span> intensity is 20 to 50 percent of the exoatmospheric intensity at the bottom of the cloud layer, and it increases to nearly 95 percent of the exoatmospheric intensity at 65 km. At these altitudes, the temperature of the atmosphere is moderate, in the range of 0 to 100 degrees Celsius, depending on the altitude. A Venus exploration aircraft, sized to fit in a <span class="hlt">small</span> aeroshell for a "Discovery" class scientific mission, has been designed and analyzed at the NASA Glenn Research Center. For an exploratory aircraft to remain continually illuminated by sunlight, it would have to be capable of sustained flight at or above the wind speed, about 95 m/sec at the cloud-top level. The analysis concluded that, at typical flight altitudes above the cloud layer (65 to 75 km above the surface), a <span class="hlt">small</span> aircraft powered by <span class="hlt">solar</span> energy could fly continuously in the atmosphere of Venus. At this altitude, the atmospheric pressure is similar to pressure at terrestrial flight altitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28692764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28692764"><span>Highly Efficient Perovskite-Perovskite Tandem <span class="hlt">Solar</span> Cells Reaching 80% of the Theoretical Limit in Photovoltage.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y</p> <p>2017-09-01</p> <p>Organic-inorganic hybrid perovskite multijunction <span class="hlt">solar</span> cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction <span class="hlt">solar</span> cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in <span class="hlt">small</span>- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem <span class="hlt">solar</span> cells with <span class="hlt">small</span> V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a <span class="hlt">small</span>-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem <span class="hlt">solar</span> cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem <span class="hlt">solar</span> cells, which highlights the prospects of using perovskite-perovskite tandems for <span class="hlt">solar</span>-energy generation. It also unlocks opportunities for <span class="hlt">solar</span> water splitting using hybrid perovskites with <span class="hlt">solar</span>-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title13-vol1/pdf/CFR-2011-title13-vol1-sec127-501.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title13-vol1/pdf/CFR-2011-title13-vol1-sec127-501.pdf"><span>13 CFR 127.501 - How will SBA and the <span class="hlt">agencies</span> determine the industries that are eligible for EDWOSB or WOSB...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... Credit and Assistance <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION WOMEN-OWNED <span class="hlt">SMALL</span> BUSINESS FEDERAL CONTRACT... <span class="hlt">agency</span> must conduct an appropriate analysis of the <span class="hlt">agency</span>'s procurement history and make a determination...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/GPO-UA-2010-04-26/pdf/GPO-UA-2010-04-26-13.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/GPO-UA-2010-04-26/pdf/GPO-UA-2010-04-26-13.pdf"><span>Environmental Protection <span class="hlt">Agency</span> Semiannual Regulatory Agenda</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-04-26</p> <p>... Protection <span class="hlt">Agency</span> (EPA) publishes the semiannual regulatory agenda online (the e-Agenda) at www.reginfo.gov... agenda'' all refer to the same comprehensive collection of information that used to be published in the... impact on a substantial number of <span class="hlt">small</span> entities. This continues to be published in the Federal Register...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-01-10/pdf/2012-205.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-01-10/pdf/2012-205.pdf"><span>77 FR 1547 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-01-10</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-11/pdf/2011-314.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-11/pdf/2011-314.pdf"><span>76 FR 1657 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-11</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-12/pdf/2012-8749.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-12/pdf/2012-8749.pdf"><span>77 FR 22057 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-12</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-01-26/pdf/2010-1447.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-01-26/pdf/2010-1447.pdf"><span>75 FR 4122 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-01-26</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-04-19/pdf/2013-09187.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-04-19/pdf/2013-09187.pdf"><span>78 FR 23622 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-04-19</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-02/pdf/2013-15820.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-02/pdf/2013-15820.pdf"><span>78 FR 39823 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-02</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-12-19/pdf/2013-29875.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-12-19/pdf/2013-29875.pdf"><span>78 FR 76886 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-12-19</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-10-23/pdf/2012-25688.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-10-23/pdf/2012-25688.pdf"><span>77 FR 64836 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-10-23</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-07-13/pdf/2011-17542.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-07-13/pdf/2011-17542.pdf"><span>76 FR 41320 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-07-13</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-04-07/pdf/2010-7798.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-04-07/pdf/2010-7798.pdf"><span>75 FR 17793 - National <span class="hlt">Small</span> Business Development Center Advisory Board</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-04-07</p> <p>... <span class="hlt">SMALL</span> BUSINESS ADMINISTRATION National <span class="hlt">Small</span> Business Development Center Advisory Board <span class="hlt">AGENCY</span>: U.S. <span class="hlt">Small</span> Business Administration (SBA). ACTION: Notice of open Federal Advisory Committee meetings... quarter meetings of the National <span class="hlt">Small</span> Business Development Center (SBDC) Advisory Board. DATES: The...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864882','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864882"><span>Method of making quasi-grain boundary-free polycrystalline <span class="hlt">solar</span> cell structure and <span class="hlt">solar</span> cell structure obtained thereby</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gonzalez, Franklin N.; Neugroschel, Arnost</p> <p>1984-02-14</p> <p>A new <span class="hlt">solar</span> cell structure is provided which will increase the efficiency of polycrystalline <span class="hlt">solar</span> cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having <span class="hlt">small</span> grains, including thin film materials.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>