Science.gov

Sample records for agency spacecraft impacted

  1. NASA's Deep Impact Spacecraft Images Comet ISON

    NASA Video Gallery

    This series of images of comet C/2012 S1 (ISON) was taken by theMedium-Resolution Imager of NASA’s Deep Impact spacecraft over a 36-hourperiod on Jan. 17 and 18, 2013. At the time, the spacecra...

  2. Hazards by meteoroid Impacts onto operational spacecraft

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Jehn, R.; Flury, W.

    Operational spacecraft in Earth orbit or on interplanetary trajectories are exposed to high-velocity particles that can cause damage to sensitive on-board instrumentation. In general there are two types of hazard: direct destruction of functional elements by impacts, and indirect disturbance of instruments by the generated impact plasma. The latter poses a threat especially for high-voltage instrumentation and electronics. While most meteoroids have sizes in the order of a few micrometre, and typical masses of 10-15 kg, the most dangerous population with sizes in the millimetre and masses in the milligramme range exhibits still substantial impact fluxes in the order of 2 × 10-11 m-2 s-1 . This level of activity can by significantly elevated during passages of the spacecraft through cometary trails, which on Earth cause events like the well-known Leonid and Perseid meteor streams. The total mass flux of micrometeoroids onto Earth is about 107 kg yr-1 , which is about one order of magnitude less than the estimated mass flux of large objects like comets and asteroids with individual masses above 105 kg. In order to protect spacecraft from the advert effects of meteoroid impacts, ESA performs safety operations on its spacecraft during meteor streams, supported by real-time measurements of the meteor activity. A summary of past and future activities is given.

  3. Deep Impact observations by OSIRIS onboard the Rosetta spacecraft.

    PubMed

    Keller, Horst Uwe; Jorda, Laurent; Küppers, Michael; Gutierrez, Pedro J; Hviid, Stubbe F; Knollenberg, Jörg; Lara, Luisa-Maria; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rickman, Hans; Rodrigo, Rafael

    2005-10-14

    The OSIRIS cameras (optical, spectroscopic, and infrared remote imaging system) onboard the European Space Agency's Rosetta spacecraft observed comet 9P/Tempel 1 for 17 days continuously around the time of NASA's Deep Impact mission. The cyanide-to-water production ratio was slightly enhanced in the impact cloud, compared with that of normal comet activity. Dust particles were flowing outward in the coma at >160 meters per second, accelerated by the gas. The slope of the brightness increase showed a dip about 200 seconds after the impact. Dust Afrho values before and long after the impact confirm the slight decrease of cometary activity. The dust-to-water mass ratio was much larger than 1.

  4. Dust impact signals on the wind spacecraft

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2016-02-01

    We analyze waveforms recorded by the Time Domain Sampler of the WAVES experiment on Wind which are similar to impulsive waveforms observed by the S/WAVES experiment on STEREO. These have been interpreted as dust impacts by Meyer-Vernet et al. and M. L. Kaiser and K. Goetz and extensively analyzed by Zaslavsky et al. The mechanism for coupling the emission to the antennas to produce an electrical signal is still not well understood, however. One suggested mechanism for coupling of the impact to the antenna is that the spacecraft body changes potential with respect to the surrounding plasma but the antennas do not (the body mechanism). Another class of mechanisms, with several forms, is that the charge of the emitted cloud interacts with the antennas. The Wind data show that both are operating. The time domain shapes of the dust pulses are highly variable but we have little understanding of what provides these shapes. One feature of the STEREO data has been interpreted as impacts from high velocity nanoparticles entrained by the solar wind. We have not found evidence for fast nanodust in the Wind data. An appreciable fraction of the impacts observed on Wind is consistent with interstellar dust. The impact rates do not follow a Poisson distribution, expected for random independent events, and this is interpreted as bunching. We have not succeeded in relating this bunching to known meteor showers, and they do not repeat from 1 year to the next. The data suggest bunching by fields in the heliosphere.

  5. Impact sensor network for detection of hypervelocity impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Frank; Janovsky, Rolf

    2007-11-01

    With regard to hypervelocity impact detection, a sensor network that can be applied on typical spacecraft structures is under development at Fraunhofer EMI (Ernst-Mach-Institut), supported by OHB-System. For impact detection, acoustic transducers are used. The structure types investigated are a 2 mm thick plate from aluminium alloy and a 49 mm thick sandwich panel with aluminium face-sheets and aluminium honeycomb core. One impact test was performed on each of the panels, which were instrumented with 6 ultrasonic transducers. The signals recorded at the various sensor locations varied with regard to peak amplitude and elapse time of the signal. Using this information and combining it with a localization algorithm, the impact location could be successfully determined. A description of the impact sensor network and the mathematical model to determine the impact location is provided. The impact tests on the spacecraft structure, the response of the sensor network and the analysis performed to determine the impact location are described.

  6. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.

  7. Spacecraft

    NASA Technical Reports Server (NTRS)

    Feoktistov, K. P.

    1974-01-01

    The task of building a spacecraft is compared to the construction of an artificial cybernetic system able to acquire and process information. Typical features for future spacecraft are outlined and the assignment of duties in spacecraft control between automatic devices and the crew is analyzed.

  8. Smart sensors in spacecraft - The impact and trends

    NASA Technical Reports Server (NTRS)

    Breckenridge, R. A.; Husson, C.

    1978-01-01

    The paper discusses the characteristics of smart sensors. It addresses the impact that the development of smart sensors will have on future spacecraft. In addition, future technology trends that will contribute to the development of smart sensors are assessed.

  9. Low-Impact Mating System for Docking Spacecraft

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray

    2008-01-01

    A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.

  10. Probability Analysis for Accidental Impact on Mars by the Micro-Spacecraft Procyon

    NASA Astrophysics Data System (ADS)

    Funase, Ryu; Yano, Hajime; Kawakatsu, Yasuhiro; Ozaki, Naoya; Nakajima, Shintaro; Shimizu, Yukio

    This paper analyzes the impact probability on Mars for the 50kg-class micro-spacecraft PROCYON (PRoximate Object Close flYby with Optical Navigation) in 50 years after its launch. PROCYON, which is mainly developed by the University of Tokyo and the Japan Aerospace Exploration Agency (JAXA), has two missions: the first is the technology demonstration of a micro-spacecraft bus system for deep space exploration and the second is proximity operation by Near-Earth asteroids (NEAs) as the closest flyby distance from a target asteroid is aimed around 30 kilometer. The spacecraft is scheduled to be launched together with Japan’s second asteroid sample return spacecraft "Hayabusa-2" at the end of 2014. Initially PROCYON will be inserted into an Earth resonant trajectory that allows the spacecraft to cruise back to the Earth by solar electric propulsion leveraging. The Earth gravity assist, which is scheduled at the end of 2015, will enable the spacecraft to expand a number of candidate NEAs for flyby operations. At the time of the writing, its candidate NEAs include "2000 DP107", "2010 LJ14" and "2002 AJ29". A miniature ion thruster is mounted on the spacecraft to provide 300muN of thrust with specific impulse of 1200 seconds for deep space maneuver before Earth gravity assist. Considering a small amount of its fuel (about 2 kg of Xenon propellant), PROCYON has no possibility to impact directly on Mars without Earth gravity assist. However, if PROCYON successfully obtains large enough delta-V by the Earth gravity assist at the end of 2015, a possibility of accidental impact on Mars cannot be neglected in order to comply the COSPAR planetary protection requirements for forward contamination. In this paper, we calculate the possibility of accidental impact on Mars after the Earth gravity assist. As the result we conclude that the possibility of Mars impact is negligible within 50 years after its launch.

  11. Electromagnetic pulses generated by meteoroid impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Close, S.; Colestock, P.; Cox, L.; Kelley, M.; Lee, N.

    2010-12-01

    Meteoroid impacts on spacecraft are known to cause mechanical damage, but their electrical effect on spacecraft systems are not well characterized. Several reported spacecraft anomalies are suggestive of an electrical failure associated with meteoroid impact. We present a theory to explain plasma production and subsequent electric fields occurring when a meteoroid strikes a spacecraft, ionizing itself and part of the spacecraft. This plasma, with a charge separation commensurate with different specie mobilities, can produce a strong electromagnetic pulse (EMP) at broad frequency spectra, potentially causing catastrophic damage if the impact is relatively near an area with low shielding or an open umbilical. Anomalies such as gyrostability loss can be caused by an EMP without any detectable momentum transfer due to small (<1 μg) particle mass. Subsequent plasma oscillations can also emit significant power and may be responsible for many reported satellite anomalies. The presented theory discusses both a dust-free plasma expansion with coherent electron oscillation and a dusty plasma expansion with macroscopic charge separation.

  12. Laboratory investigation of antenna signals from dust impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  13. Deep Impact Spacecraft Collides With Comet Tempel 1-Video

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. The objects met at 23,000 miles per hour. The heat produced by the impact was at least several thousand degrees Kelvin and at that extreme temperature, just about any material begins to glow. This movie, made up of images taken by the medium resolution camera aboard the spacecraft, from May 1 to July 2, shows the Deep Impact approach to comet Tempel 1. The spacecraft detected 3 outbursts during this time period, on June 14th, June 22nd, and July 2nd. The movie ends during the final outburst. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at Marshall Space Flight Center MSFC) in Huntsville, Alabama, assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  14. Deep Impact Spacecraft Collides With Comet Tempel 1 (Video)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. Comprised of images taken by the targeting sensor aboard the impactor probe, this movie shows the spacecraft approaching the comet up to just seconds before impact. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator for Deep Impact, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  15. Detection of meteoroid hypervelocity impacts on the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Mann, Ingrid; Kero, Johan; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkanen, Timo; Pellinen-Wannberg, Asta

    2016-07-01

    There are several methods to measure the cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical imaging. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on the spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites recorded by the Wide-Band Data (WBD) instrument. We describe the concept of dust impact detection focused on specifics of the Cluster spacecraft and the WBD instrument and their influence on dust impact detection. The detected pulses are compared with theoretical shape based on the model of the recollection of plasma clouds electrons. The estimation of the size and the velocity of the impinging dust grains from the amplitude of the Cluster voltage pulses shown that such impacts can be generated by grains of radius of r = 0.1 μm impacting with the velocity v ˜100 km/s or by grains of radius r = 1 μm impacting with the velocity v ˜10 km/s. We discuss the sensitivity of this method for dust grain detection showing that grains of radius r = 0.01 μm can be detected when impacting with velocity v ˜300 km/s and grains of radius r = 10 μm with velocity v ˜1 km/s if the WBD instrument operates in the high gain level (75 dB).

  16. Giotto-spacecraft charging due to impact generated plasma in the presence of dielectric materials

    NASA Technical Reports Server (NTRS)

    Thiemann, H.; Schunk, R. W.; Singh, N.; Grard, R.

    1987-01-01

    The charging effects of a conducting/dielectric model spacecraft in the impact induced plasma environment are contrasted. The results of dynamic model calculations indicate larger charging times and higher positive spacecraft potentials for a conducting/dielectric spacecraft. The potential and particle distributions around the spacecraft differ quantitatively and qualitatively in both cases.

  17. Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory

    NASA Technical Reports Server (NTRS)

    Weinwurm, G.; Weber, R.

    2005-01-01

    The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.

  18. Fullerenes in an impact crater on the LDEF spacecraft.

    PubMed

    Radicati di Brozolo, F; Bunch, T E; Fleming, R H; Macklin, J

    1994-05-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  19. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  20. Meteoroid and technogenic particle impact on spacecraft solar panels

    NASA Astrophysics Data System (ADS)

    Nadiradze, A. B.; Kalaev, M. P.; Semkin, N. D.

    2016-09-01

    This paper presents calculated models and the results of estimates of meteoroid and technogenic particle impact on spacecraft solar panels. It is shown that optical losses resulting from the formation of microcraters on the surface of protective glasses of semiconductor photoconverters (PC) are negligible (less than 0.01%). Significantly greater losses can occur as a result of shunting the PC p-n junction. In high and medium orbits, these losses are 0.1-0.2%/year for the glass thickness of 150 μm and the area of one PC of 30 cm2. Decreasing the glass thickness up to 100 μm can lead to increasing power losses up to 0.6%/year.

  1. Spacecraft Impacts with Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Oleson, Steven R.

    2000-01-01

    A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.

  2. Spacecraft design impacts on the post-Newtonian parameter estimation

    NASA Astrophysics Data System (ADS)

    Schuster, Anja Katharina; et al.

    2015-08-01

    The ESA mission BepiColombo, reaching out to explore the elusive planet Mercury, features unprecedented tracking techniques. The highly precise orbit determination around Mercury is a compelling opportunity for a modern test of General Relativity (GR). Using the software tool GRETCHEN incorporating the Square Root Information Filter (SRIF), MPO's orbit is simulated and the post-Newtonian parameters (PNP) are estimated. In this work, the influence of a specific constraint of the Mercury Orbiter Radio science Experiment (MORE) on the achievable accuracy of the PNP estimates is investigated. The power system design of the spacecraft requires that ±35° around perihelion the Ka transponder needs to be switched off, thus radiometric data is only gathered via X band. This analysis shows the impact of this constraint on the achievable accuracy of PNP estimates. On a bigger scale, if GR shows some violation at a detectable level it inevitably leads to its invalidation.

  3. Impacts of Center of Mass Shifts on Messenger Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    O'Shaughnessy, D. J.; Vaughan, R. M.; Chouinard, T. L., III; Jaekle, D. E.

    2007-01-01

    The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) has successfully completed its first three years of flight operations following launch on August 3, 2004. As part of NASA s Discovery Program, MESSENGER will observe Mercury during flybys in 2008 and 2009, as well as from orbit beginning in March 2011. This paper discusses the impact that center of mass (CM) location changes have had on many mission activities, particularly angular momentum management and maneuver execution. Momentum trends were altered significantly following the first deep-space maneuver, and these changes were related to a change in the CM. The CM location also impacts maneuver execution, and uncertainties in its location led to the significant direction errors experienced at trajectory correction maneuver 11. Because of the spacecraft sensitivity to CM location, efforts to estimate its position are important to momentum and maneuver prediction. This paper summarizes efforts to estimate the CM from flight data, as well as the operational strategy to handle CM uncertainties and their impact on momentum trends and maneuver execution accuracy.

  4. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  5. A Detailed Impact Risk Assessment of Possible Protection Enhancements to two LEO Spacecraft

    NASA Astrophysics Data System (ADS)

    Stokes, H.; Cougnet, C.; David, M.; Gelhaus, J.; Rothlingshofer, M.

    2013-08-01

    The SHIELD3 impact risk analysis tool has been used to compute the impact-induced probability of no failure (PNF) of two different spacecraft - a radar satellite and an optical satellite - operating in the 2020-2030 low Earth orbit debris environment. Based on this assessment, potential vulnerabilities were identified in the spacecraft designs, and several solutions were proposed for enhancing protection. The effectiveness of each shielding solution was determined by recalculating the spacecraft PNFs. Significant improvements in PNF were achieved, indicating that effective levels of extra protection can be implemented in spacecraft designs within constraints such as cost, mass and volume.

  6. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials

    NASA Astrophysics Data System (ADS)

    Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf

    2013-03-01

    Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather

  7. The composition and plasma signature of a large dust impact on the Giotto spacecraft

    SciTech Connect

    Goldstein, R.; Goldstein, B.E. ); Balsiger, H. ); Coates, A.J. ); Curdt, W.; Keller, H.U. ); Neubauer, F.M. ); Perry, C. Rutherford Appleton Lab., Chilton ); Zarnecki, J. )

    1991-08-01

    At about 14,800 km from the comet Halley nucleus, on the inbound leg, at least six of the sensors onboard the Giotto spacecraft observed an unusual, brief ({approximately}3 to 500 ms) event: The ion mass spectrometer data show a brief flow of energetic (up to several hundred electron volts) plasma consisting of protons, water group, and heavier ions. The Johnstone plasma analyzer data show a short burst of plasma, while the dust impact detector system data show an impact event in four of its detectors The magnetometer signature of the event shows two brief dips in the field. The sudden change in the spacecraft attitude and spin rate observed by the camera at that same time has been interpreted as the result of a large ({ge} 5 mg) dust particle impact on the front bumper shield of the spacecraft. In addition, at about the same time the spacecraft star-tracker suffered damage. Here the authors give the first report combining direct measurements of the composition and dynamics of a dust impact plasma cloud, the dust particle mass and the location of the impact on the spacecraft. Analysis of the data indicate that the impacting particle was water or ice-bearing, possibly loosely compacted, and was composed of one or more of: carbon, nitrogen, and silicon.

  8. The composition and plasma signature of a large dust impact on the Giotto spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Goldstein, B. E.; Balsiger, H.; Coates, A. J.; Curdt, W.

    1991-01-01

    At about 14,800 km from the Comet Halley nucleus, on the inbound leg, at least six of the sensors onboard the Giotto spacecraft observed an unusual, brief (about 30 to 500 ms) event: the ion-mass spectrometer data show a brief flow of energetic (up to several hundred electron volts) plasma consisting of protons, water group, and heavier ions. The Johnstone plasma analyzer data show a short burst of plasma, while the dust impact detector system data show an impact event in four of its detectors. The magnetometer signature of the event shows two brief dips in the field. The sudden change in the spacecraft attitude and spin rate observed by the camera at that same time has been interpreted as the result of a large (5 mg or more) dust-particle impact on the front bumper shield of the spacecraft. In addition, at about the same time the spacecraft star-tracker suffered damage. The report combines direct measurements of the composition and dynamics of a dust-impact plasma cloud, the dust particle mass, and the location of the impact on the spacecraft. Analysis of the data indicate that the impacting particle was water or ice-bearing, possibly loosely compared, and was composed of one or more of: carbon, nitrogen, and silicon.

  9. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  10. Screening Tests for Enhanced Shielding Against Hypervelocity Particle Impacts for Future Unmanned Spacecraft

    NASA Astrophysics Data System (ADS)

    Putzar, Robin; Hupfer, Jan; Aridon, Gwenaelle; Gergonne, Bernard; David, Matthieu; Bourke, Paul; Cougnet, Claude

    2013-08-01

    Protection of components of unmanned spacecraft against particle impacts is typically provided by the spacecraft's structure together with the intrinsic protection capabilities of the components themselves. Thus to increase the survivability of future spacecraft, one option is to enhance the protection already provided using enhanced materials and additional shielding. As part of the EU funded FP7 research project ReVuS ("Reducing the Vulnerability of Space systems"), the configurations of equipment typically found on board unmanned spacecraft were identified. For each of those configurations, potential solutions have been identified which enhance the robustness against particle impacts. The solutions are broken down into a number of shielding components that include e.g. additional protective layers made from aluminum, Kevlar, Nextel, stainless steel mesh and ceramics. To evaluate the characteristics and performances of these shielding components, a number of screening hypervelocity impact tests were performed. During these tests, representative configurations have been subjected to impacts of aluminum spheres of 3 mm and 5 mm diameter at a nominal impact velocity of 7 km/s. This paper describes the targets and presents and compares the results.

  11. Spacecraft wall design for increased protection against penetration by space debris impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Tullos, Randy J.

    1990-01-01

    All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.

  12. Hypervelocity dust impacts on the Wind spacecraft: Correlations between Ulysses and Wind interstellar dust detections

    NASA Astrophysics Data System (ADS)

    Wood, S. R.; Malaspina, David M.; Andersson, Laila; Horanyi, Mihaly

    2015-09-01

    The Wind spacecraft is positioned just sunward of Earth at the first Lagrange point, while the Ulysses spacecraft orbits above and below the ecliptic plane crossing the ecliptic as far from the Sun as the orbit of Jupiter (˜5 AU). While Wind does not carry a dedicated dust detector, we demonstrate the ability of Wind electric field measurements to detect hypervelocity dust impacts through their impact plasma signatures. Interstellar dust (ISD) and interplanetary dust particles are differentiated based on a yearly modulation of the ISD flux. Measurements of ISD flux variation by Wind are found to be in good agreement with ISD flux variation measured by Ulysses. While measurements of the ISD flow direction through the Solar System determined by Wind could not be directly compared to those from Ulysses, strong variation in ISD flow direction was observed during similar time periods by both spacecraft.

  13. Physics of spacecraft-based interplanetary dust collection by impact into low-density media

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, T. J.

    1994-01-01

    A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.

  14. A Whale of a Tale: Creating Spacecraft Telemetry Data Analysis Products for the Deep Impact Mission

    NASA Technical Reports Server (NTRS)

    Sturdevant, Kathryn F.; Wright, Jesse J.; Lighty, Roger A.; Nakamura, Lori L.

    2006-01-01

    This paper describes some of the challenges and lessons learned from the Deep Impact (DI) Mission Ground Data System's (GDS) telemetry data processing and product generation tool, nicknamed 'Whale.' One of the challenges of any mission is to analyze testbed and operational telemetry data. Methods to retrieve this data to date have required spacecraft subsystem members to become experts in the use of a myriad of query and plot tools. As budgets shrink, and the GDS teams grow smaller, more of the burden to understand these tools falls on the users. The user base also varies from novice to expert, and requiring them to become GDS tool experts in addition to spacecraft domain experts is an undue burden. The "Whale" approach is to process all of the data for a given spacecraft test, and provide each subsystem with plots and data products 'automagically.'.

  15. Timing of spacecraft date: Time accuracy requirements and timing facilities of the European Space Agency (ESA)

    NASA Astrophysics Data System (ADS)

    Dworak, H. P.

    1985-04-01

    The time accuracy requirements for various European Space Agency (ESA) missions are analyzed; the requirements are grouped by the type of mission. The evolution of satellite timing techniques since 1968 is shown, and the requirements for future ESA missions (until the late 1980's) are assessed. Timing systems and their configuration at various ESA ground stations and the operations control centers are described. Two studies on future techniques in the field of time dissemination and time synchronization conclude this paper: The LASSO mission (Laser Synchronization from Stationary Orbit) and a low-cost time dissemination technique using METEOSAT, the European meteorological satellites, are briefly outlined.

  16. Unveiling Clues from Spacecraft Missions to Comets and Asteroids through Impact Experiments

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Fane, Michael; Smith, Douglas; Holmes, Jacob; Keller, Lindasy P.; Lindsay, Sean S.; Wooden, Diane H.; Whizin, Akbar; Cintala, Mark J.; Zolensky, Michael

    2016-01-01

    The Deep Impact Spacecraft mission was the first to boldly face the challenge of impacting the surface of a comet, 9P/Tempel 1, to investigate surface and subsurface 'pristine' materials. The Stardust mission to Comet 81P/Wild 2 brought back an exciting surprise: shocked minerals which were likely altered during the comet's lifetime. Signatures of shock in meteorites also suggest that the violent past of the solar system has left our small bodies with signatures of impacts and collisions. These results have led to the question: How have impacts affected the evolutionary path taken by comets and asteroids, and what signatures can be observed? A future planetary mission to a near-Earth asteroid is proposing to take the next steps toward understanding small bodies through impacts. The mission would combine an ESA led AIM (Asteroid Impact Mission) with a JHU/APL led DART (Double Asteroid Redirect Mission) spacecraft to rendezvous with binary near-Earth asteroid 65803 Didymus (1996 G2). DART would impact the smaller asteroid, 'Didymoon' while AIM would characterize the impact and the larger Didymus asteroid. With these missions in mind, a suite of experiments have been conducted at the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center to investigate the effects that collisions may have on comets and asteroids. With the new capability of the vertical gun to cool targets in the chamber through the use of a cold jacket fed by liquid nitrogen, the effects of target temperature have been the focus of recent studies. Mg-rich forsterite and enstatite (orthopyroxene), diopside (monoclinic pyroxene) and magnesite (Mg-rich carbonate) were impacted. Target temperatures ranged from 25 deg to -100 deg, monitored by connecting thermocouples to the target container. Impacted targets were analyzed with a Fourier Transform Infrared Spectrometer (FTIR) and Transmission Electron Microscope (TEM). Here we present the evidence for impact-induced shock in the minerals through

  17. An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use On Board Crewed Spacecraft

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Arnold, William a.

    2006-01-01

    The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids. Interest in using perfluorocarbon fluids as thermal control system working fluids for future crewed space vehicles and outposts is high. Potential hazards associated with perfluorocarbon fluids are discussed with specific attention given to engineering assessment of ECLS system compatibility, compatibility testing results, and spacecraft environmental impact. Considerations for perfluorocarbon fluid use on crewed spacecraft and outposts are summarized.

  18. The Impact of Variable Accelerations on Crystal Growth onboard Spacecraft by the Floating Zone Method

    NASA Astrophysics Data System (ADS)

    Feonychev, A. I.; Kalachinskaya, I. S.

    2001-07-01

    The numerical investigation of the impact of time-dependent accelerations (vibrations) on the flow and heat and mass transfer in the melt is carried out for the case of modeling the crystal growth by the floating zone method under conditions of microgravity that exist onboard spacecraft. The effects of the Archimedean buoyancy force and of vibrations of the free surface of fluid are considered separately. When solving the problem of the effect of the vibrations of the free surface of fluid, the previously obtained data were used. It is shown that vibrations of the free surface have a much stronger effect on the processes under consideration than the buoyancy. Some problems that are related to the newly discovered effects are discussed. The use of vibroprotected systems and a rotating magnetic field can help solve these problems. We plan to continue our investigations in future spacecraft experiments, in particular, at the International Space Station, which is under construction at the moment.

  19. Survivability to Hypervelocity Impacts of Electrodynamic Tape Tethers for Deorbiting Spacecraft in LEO

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Lorenzini, E. C.

    2013-08-01

    This paper reports the results of 16 hypervelocity impact experiments on a composite flat electrodynamic tether for LEO spacecraft end-of-life deorbiting. The system is being developed within the EU FP7 BETs program. Impact tests were carried out at CISAS impact facility, with the aim of deriving failure equations that include the impact angle dependence up to grazing incidence. Experiments were realised with 1.5 and 2.3 mm aluminium spheres, at velocities between 3 and 5 km/s and impact angle from 0° to 90° from the tape normal. After a preliminary post-impact inspection of the target, the damage extension on the tape was evaluated using an automatic image processing technique. Ballistic limit equations were developed in the experimental range using a procedure that allows to estimate the uncertainty in the failure predictions starting from the measurement of the damage area. Experiments showed that the impact damage is very close to the projectile size in case of normal impact, while it increases significantly at highly oblique impact angles.

  20. Unveiling clues from Spacecraft Missions to Comets and Asteroids through Impact Experiments

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Jensen, Elizabeth; Fane, Michael; Smith, Douglas; Holmes, Jacob; Keller, Lindsay P.; Lindsay, Sean S.; Wooden, Diane H.; Whizin, Akbar; Cintala, Mark J.; Zolensky, Michael

    2016-10-01

    The Deep Impact Spacecraft mission was the first to boldly face the challenge of impacting the surface of a comet, 9P/Tempel 1, to investigate surface and subsurface 'pristine' materials. The Stardust mission to Comet 81P/Wild 2 brought back an exciting surprise: shocked minerals which were likely altered during the comet's lifetime. Signatures of shock in meteorites also suggest that the violent past of the solar system has left our small bodies with signatures of impacts and collisions. These results have led to the question: How have impacts affected the evolutionary path taken by comets and asteroids, and what signatures can be observed?A future planetary mission to a near-Earth asteroid is proposing to take the next steps toward understanding small bodies through impacts. The mission would combine an ESA led AIM (Asteroid Impact Mission) with a JHU/APL led DART (Double Asteroid Redirect Mission) spacecraft to rendezvous with binary near-Earth asteroid 65803 Didymus (1996 G2). DART would impact the smaller asteroid, 'Didymoon' while AIM would characterize the impact and the larger Didymus asteroid.With these missions in mind, a suite of experiments have been conducted at the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center to investigate the effects that collisions may have on comets and asteroids. With the new capability of the vertical gun to cool targets in the chamber through the use of a cold jacket fed by liquid nitrogen, the effects of target temperature have been the focus of recent studies. Mg-rich forsterite and enstatite (orthopyroxene), diopside (monoclinic pyroxene) and magnesite (Mg-rich carbonate) were impacted. Target temperatures ranged from 25°C to -100°C, monitored by connecting thermocouples to the target container. Impacted targets were analyzed with a Fourier Transform Infrared Spectrometer (FTIR) and Transmission Electron Microscope (TEM). Here we present the evidence for impact-induced shock in the minerals through

  1. Spacecraft system study: A study to define the impact of laser communication systems on their host spacecraft

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The mutual influence of a laser communication system and its host spacecraft and the degree to which the mutual influence limited acquisition, tracking and pointing processes were investigated. A laser klink between a low earth orbiting (LEO) satellite and a geosynchronous earth orbiting (GEO) satellite was used as a baseline. The laser link between satellites was a generic channel transferring 500 Mbps data from the LEO to GEO using the GaAlAs laser as the laser light source. Major aspects of pointing and tracking with a satelliteborne optical system were evaluated including: (1) orbital aspects such as spacecraft relative motions, point ahead, and Sun snd Moon optical noise; (2) burst errors introduced by the electronic and optical noise levels; (3) servo system design and configurations, and the noise sources such as, sensor noise, base motion disturbances, gimbal friction torque noise; (4) an evaluation of the tracking and beacon link and the type of sensors used; (5) the function of the acquisition procedure and an evaluation of the sensors employed; and (6) an estimate of the size, weight and power needed for the satellite system.

  2. NANOSPACE-1: the Impacts of the First Swedish Nanosatellite on Spacecraft Architecture and Design

    NASA Astrophysics Data System (ADS)

    Bruhn, F.; Köhler, J.; Stenmark, L.

    2002-01-01

    Space Board (SNSB), the European Space Agency (ESA), and the European Commission (EC), the ÅSTC will begin developing nanosatellites to demonstrate the next generation spacecraft. The Nanosatellite program is built around a launch every 2nd year to test, verify and qualify new MST technologies for space. The Nanosatellite effort is a solid and well founded program with a backbone of technology research and Multifunctional Microsystems (MMS) thinking.

  3. GIADA - Grain Impact Analyzer and Dust Accumulator - Onboard Rosetta spacecraft: Extended calibrations

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Sordini, R.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Rotundi, A.; Rietmeijer, F. J. M.; Fulle, M.; Mazzotta-Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Morales, R.; Cosi, M.

    2016-09-01

    Despite a long tradition of dust instruments flown on-board space mission, the largest number of these can be considered unique as they used different detection techniques. GIADA (Grain Impact Analyzer and Dust Accumulator), is one of the dust instruments on-board the Rosetta spacecraft and is devoted to measure the dust dynamical parameters in the coma of comet 67P/Churyumov-Gerasimenko. It couples two different techniques to measure the mass and speed of individual dust particles. We report here the results of an extended calibration activity carried-out, during the hibernation phase of the Rosetta mission, on the GIADA Proto Flight Model (PFM) operative in a clean room in our laboratory. The main aims of an additional calibration campaign are: to verify the algorithms and procedures for data calibration developed before Rosetta launch; to improve the comprehension of GIADA response after the increased knowledge on cometary dust, e.g. the composition of dust particles after Stardust mission. These calibration improvements implied a final step, which consisted in defining transfer functions to correlate the new calibration curves obtained for the GIADA PFM to those to be used for GIADA onboard the Rosetta spacecraft. The extended calibration activity allowed us to analyze GIADA data acquired in the 67P/C-G coma permitting to infer additional information on cometary dust particles, e.g. density and tensile strength.

  4. Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection.

    PubMed

    Moissl-Eichinger, Christine

    2011-02-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments.

  5. 49 CFR Attachment 2 - Areas of Environmental Impact and Federal Agencies and Federal-State Agencies With Jurisdiction...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Attachment 2 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC.... Attachment 2—Areas of Environmental Impact and Federal Agencies and Federal-State Agencies With...

  6. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  7. Technologically-mediated nursing care: the impact on moral agency.

    PubMed

    O'Keefe-McCarthy, Sheila

    2009-11-01

    Technology is pervasive and overwhelming in the intensive care setting. It has the power to inform and direct the nursing care of critically ill patients. Technology changes the moral and social dynamics within nurse-patient encounters. Nurses use technology as the main reference point to interpret and evaluate clinical patient outcomes. This shapes nurses' understanding and the kind of care provided. Technology inserts itself between patients and nurses, thus distancing nurses from patients. This situates nurses into positions of power, granting them epistemic authority, which constrains them as moral agents. Technology serves to categorize and marginalize patients' illness experience. In this article, moral agency is examined within the technologically-mediated context of the intensive care unit. Uncritical use of technology has a negative impact on patient care and nurses' view of patients, thus limiting moral agency. Through examination of technology as it frames cardiac patients, it is demonstrated how technology changes the way nurses understand and conceptualize moral agency. This article offers a new perspective on the ethical discussion of technology and its impact on nurses' moral agency. Employing reflective analysis using the technique of embodied reflection may help to ensure that patients remain at the centre of nurses' moral practice. Embodied reflection invites nurses critically to examine how technology has reshaped conceptualization, understanding, and the underlying motivation governing nurses' moral agency.

  8. Strategic remediation of impacted properties in concert with regulatory agencies

    SciTech Connect

    Nestor, A.S.; Adamowski, S.J.

    1994-12-31

    This paper outlines a successful, innovative remedial strategy that, in conjunction with agency negotiation, afforded the owner minimized financial expenditure and, at the same time, facilitated property clean-up and reuse. The site under on is an approximate 27 acre, residential parcel which was used during the 1950s and 1960 as a dump-site for offal from slaughterhouse operations, household wastes and also general industrial wastes. A strategy is currently being developed with the State Regulatory Agency (SRA) to obtain a ``Covenant Not to Sue`` for the property owner. The strategy also includes the sale of ``clean`` portions of the clean property in order to obtain the finances necessary to remediate the remaining ``impacted`` portion of the property. Based on the above, an arrangement to effect a suitable outcome to the property owner and to the regulatory agency had been developed and implemented. First, a data summary of the property was prepared and submitted to the agency. In addition, a risk assessment is planned to identify potential threats to receptors down gradient of the impacted areas. Samples will be collected at six foot depths and analyzed for metals, volatile and semi-volatile organic compounds (VOCs/SVOCs), polynuclear aromatic hydrocarbons (PNAs), polychlorinated biphenyls (PCBs) and pesticides.

  9. Spacecraft attitude impacts on COLD-SAT non-vacuum jacketed LH2 supply tank thermal performance

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot - Storage, Acquisition and Transfer (COLD-SAT) spacecraft will be launched into low earth orbit to perform fluid management experiments on the behavior of subcritical liquid hydrogen (LH2). For determining the optimum on-orbit attitude for the COLD-SAT satellite, a comparative analytical study was performed to determine the thermal impacts of spacecraft attitude on the performance of the COLD-SAT non-vacuum jacketed LH2 supply tank. Tank thermal performance was quantified by total conductive and radiative heat leakage into the pressure vessel due to the absorbed solar, earth albedo and infra-red on-orbit fluxes, and also by the uniformity of the variation of this leakage on the vessel surface area. Geometric and thermal analysis math models were developed for the spacecraft and the tank as part of this analysis, based on their individual thermal/structural designs. Two quasi-inertial spacecraft attitudes were investigated and their effects on the tank performance compared. The results are one of the criteria by which the spacecraft orientation in orbit was selected for the in-house NASA Lewis Research Center design.

  10. Spacecraft attitude impacts on COLD-SAT non-vacuum jacketed LH2 supply tank thermal performance

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot - Storage, Acquisition and Transfer (COLD-SAT) spacecraft will be launched into low earth orbit to perform fluid management experiments on the behavior of subcritical liquid hydrogen (LH2). For determining the optimum on-orbit attitude for the COLD-SAT satellite, a comparative analytical study was performed to determine the thermal impacts of spacecraft attitude on the performance of the COLD-SAT non-vacuum jacketed LH2 supply tank. Tank thermal performance was quantitied by total conductive and radiative heat leakage into the pressure vessel due to the absorbed solar, earth albedo and infra-red on-orbit fluxes, and also by the uniformity of the variation of this leakage on the vessel surface area. Geometric and thermal analysis math models were developed for the spacecraft and the tank as part of this analysis, based on their individual thermal/structural designs. Two quasi-inertial spacecraft attitudes were investigated and their effects on the tank performance compared. The results are one of the criteria by which the spacecraft orientation in orbit was selected for the in-house NASA Lewis Research Center design.

  11. Numerical simulation of spacecraft charging by impact-induced plasmas during a cometary flyby

    NASA Technical Reports Server (NTRS)

    Thiemann, H.; Singh, N.; Schunk, R. W.; Grard, R.

    1986-01-01

    A numerical model is developed for the interaction of a cometary probe, such as Giotto, with its environment, i.e., dust particles and gas. The spacecraft was set on a course to pass the comet at a velocity of 69 km/sec, so a chance existed that a potential field would form around the spacecraft and block lower energy particles from reaching the spacecraft instruments. The motion of electrons and ions is traced as a function of time to examine the evolution of the electric field, electric potential and the total space charge distributions on the surface of the spacecraft and its environment. Account is taken of the density of the particles and gas molecules at various distances from the comet, the collision energies involved, and the Giotto geometry. A solution is defined for the Poisson equation to describe the evolution of the plasma around Giotto, including the effects of ion collisions with the Al bumper protecting the spacecraft. The simulation predicts formation of an ion wake behind Giotto and the evolution of a positive potential on the order of 10 V around the spacecraft, i.e., sufficient for a positive potential barrier near the surface of the spacecraft.

  12. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  13. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  14. Imaging Comets ISON and Garradd With the Deep Impact Flyby Spacecraft

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Bodewits, D.; Feaga, L. M.; A'Hearn, M. F.; Sunshine, J. M.; Wellnitz, D. D.; Klaasen, K. P.; Himes, T. W.

    2013-10-01

    The Deep Impact flyby spacecraft (DI) is currently operating as a remote observatory, studying bright comets from a different perspective than can be achieved from Earth. Images are obtained with the Medium Resolution Imager (MRI) using a broadband CLEAR filter to capture the continuum, and narrowband filters to capture OH, CN and C2 gas bands (Farnham et al., Icarus 147, 180, 2000). Sequences consist of continuum images sampled every 15 minutes, interspersed with gas-band images that are sampled at least every hour. These sequences continue for up to 6 days, providing a continuous baseline of high-frequency observations. Comet ISON (C/2012 S1) is a dynamically new comet in a sungrazing orbit (perihelion less than 3 solar radii) that was discovered at > 6 AU from the Sun. These circumstances offer a unique opportunity to characterize the physical properties and progression of activity of this comet on its first passage into the solar system, which can be done over a wide range of heliocentric distances up to and including its close approach to the Sun. DI observed ISON in January 2013, when the comet was at a heliocentric distance of 5 AU. A second window of opportunity occurs between July and September 2013, as the comet crosses the ice line from 3 to 2 AU. This window also covers a segment of the orbit where the comet is not easily observable from Earth. Comet Garradd (C/2009 P1) is a long-period comet that was observed by DI between February 20 and April 9 2012, while the comet moved from 1.7 to 2.1 AU from the Sun. Among other results, the DI observations show rotational variability and coma morphology at levels undetected from the Earth (Farnham et al. 2013, in prep). We will present results from the analysis of the ISON and Garradd observations, including cometary variability, coma morphology, and production rates, and will discuss how the analysis fits in to the broader context for understanding the comet's development and evolution.

  15. Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.

    2010-01-01

    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.

  16. Material Damage from Impacts of Lunar Soil Particles Ejected by the Rocket Exhaust of Landing Spacecraft

    NASA Technical Reports Server (NTRS)

    Wittbrodt, Audelia C.; Metzger, Philip T.

    2008-01-01

    This paper details the experimentation of lunar stimulant sandblasting. This was done to understand the damage that landing spacecraft on the moon will have to a permanent lunar outpost. The sandblasting was done with JSC-1A onto glass coupons. Correlations between the velocity and the damage done to the glass were not found. Reasons for this and future analyses are discussed.

  17. Modeling the Vapor and Dust Dynamics Due to the Impact of the LCROSS Spacecraft on the Moon

    NASA Astrophysics Data System (ADS)

    Goldstein, D. B.; Summy, D.; Colaprete, A.; Varghese, P. L.; Trafton, L. M.

    2008-12-01

    The implications of possibly large volatile reservoirs on the Moon are significant for the future of manned activity there and for space science and exploration in general. In autumn of 2008 NASA will launch the LCROSS mission to impact two spacecraft into a permanently shadowed crater-a cold trap-at the south pole of the Moon. The lead spacecraft will excavate its own several meter crater. The process will be observed by the following smaller vehicle and by orbiting and Earth-based instruments in hopes of observing the release of volatiles-predominantly water-from the lunar soil. The following vehicle will then impact as well. We examine the plausible vapor dynamics following the impacts and concentrate on the observability of the gas from Earth or lunar orbit. In the free-molecular computational model of the vapor motion, water and OH molecules move ballistically, have a temperature-dependent surface residence time, and are subject to photo-dissociation and ionization losses. Sunlight shadowing, separation of the vapor from the dust grains, dust thermodynamics and different impact plume models are considered.

  18. Spacecraft Images Comet Target's Jets

    NASA Video Gallery

    The Deep Impact spacecraft's High- and Medium-Resolution Imagers (HRI and MRI) have captured multiple jets turning on and off while the spacecraft is 8 million kilometers (5 million miles) away fro...

  19. Technology for small spacecraft

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.

  20. BUMPERII - DESIGN ANALYSIS CODE FOR OPTIMIZING SPACECRAFT SHIELDING AND WALL CONFIGURATION FOR ORBITAL DEBRIS AND METEOROID IMPACTS

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1994-01-01

    BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability

  1. Spacecraft charging

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1989-01-01

    The effects of spacecraft charging on spacecraft materials are studied. Spacecraft charging interactions seem to couple environment to system performance through materials. Technology is still developing concerning both environment-driven and operating system-driven interactions. The meeting addressed environment but lacked specific mission requirements, as a result system definition are needed to prioritize interactions.

  2. 78 FR 2379 - Agency Information Collection Activities; Comment Request; Impact Evaluation of Math Professional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Agency Information Collection Activities; Comment Request; Impact Evaluation of Math Professional... of Collection: Impact Evaluation of Math Professional Development. OMB Control Number: 1850-NEW. Type..., and teachers for a study of math professional development. The study will provide...

  3. The Evolution of Software and Its Impact on Complex System Design in Robotic Spacecraft Embedded Systems

    NASA Technical Reports Server (NTRS)

    Butler, Roy

    2013-01-01

    The growth in computer hardware performance, coupled with reduced energy requirements, has led to a rapid expansion of the resources available to software systems, driving them towards greater logical abstraction, flexibility, and complexity. This shift in focus from compacting functionality into a limited field towards developing layered, multi-state architectures in a grand field has both driven and been driven by the history of embedded processor design in the robotic spacecraft industry.The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-deterministic interactions, and multifaceted anomalies) in achieving mission success, as illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the formalization of requirements, modular design practices, extensive system simulation, and spacecraft data trend analysis. The growth of hardware capability and software complexity can be expected to continue, with future directions including stackable commodity subsystems, computer-generated algorithms, runtime reconfigurable processors, and greater autonomy.

  4. Auroral-polar cap environment and its impact on spacecraft plasma interactions

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1985-01-01

    The high density of the plasma at shuttle altitude is likely to increase greatly the possibility of arcing and shorting of exposed high voltage surfaces. For military missions over the polar caps and through the auoroal zones, the added hazards of high energy auroral particle fluxes or solar flares will further increase the hazard to shuttle, its crew, and its mission. A review of the role that the auroral and polar cap environment play in causing these interactions was conducted. A simple, though comprehensive attempt at modelling the shuttle environment at 400 km will be described that can be used to evaluate the importance of the interactions. The results of this evaluation are then used to define areas where adequate environmental measurements will be necessary if a true spacecraft interactions technology is to be developed for the shuttle.

  5. Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

    NASA Astrophysics Data System (ADS)

    Newcombe, David A.; La Duc, Myron T.; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2008-10-01

    In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

  6. Probabilities of Ground Impact Conditions of the New Horizons Spacecraft and RTG for Near Launch Pad Accidents

    NASA Astrophysics Data System (ADS)

    McGrath, Brian E.; Frostbutter, Dave A.; Chang, Yale

    2007-01-01

    As part of the Pluto New Horizons mission's safety effort, assessment of accidental ground impacts of the spacecraft (SC) and its components, including the radioisotope thermoelectric generator (RTG), near the launch pad are of particular interest as they determine the severity of the mechanical insult to the hardware. Two configurations are studied: the SC with RTG joined to the third stage STAR™ 48B solid rocket motor [Launch Vehicle (LV) payload], and the RTG joined to the RTG mounting fixture but separated from the SC after an at-altitude destruct action. The objective of the analyses conducted is to determine the probabilities of impact orientation and average impact velocity of these configurations for a near launch pad accident These are of interest because of the possibility that the STAR 48B solid rocket motor could impact on top of the RTG, and because the RTG/RTG mounting fixture impact orientations probabilities and velocities directly affect the mechanical response of the internal GPHS modules. The probabilities of impact orientation and impact velocity of the LV payload as a function of mission elapsed time at thrust termination are determined using a six degree of freedom motion simulation computer program coupled with a Monte Carlo method. The motion simulation accounts for the LV payload aerodynamic properties, mass properties, and the initial flight conditions (αt, γ, V, q and r). Baseline conditions for position, direction, velocity and angular rates, are obtained from the mission timeline information for the Atlas V 551 launch vehicle. The results from this new and unique approach contributed information to safety assessments for the launch approval process. As the environments associated with the RTG/RTG mounting fixture impact orientations probabilities and velocities were less severe than earlier assumptions, this contributed to a reduction in the estimated risk for the Pluto mission.

  7. Assessing the Risk of Disc Heniation Related to Landing Impact Following Long-duration Spacecraft

    NASA Technical Reports Server (NTRS)

    Somers, J. T.; Newby, N..; Wells, J.

    2014-01-01

    Previous research has shown that crewmembers returning on the Space Shuttle have an increased incidence of herniated nucleus pulposus after spaceflight. This increased risk is thought to be related to disc volume expansion due to unloading and prolonged exposure to microgravity. Although there is an increased risk of disc herniation in Space Shuttle astronauts, it is unknown if dynamic landing loads further contribute to the risk of herniation. To determine if dynamic loads increase the risk of incidence, data from crewmembers (excluding cosmonauts) returning on the Soyuz spacecraft will be compared to Space Shuttle astronauts. These data will be obtained from the Lifetime Surveillance of Astronaut Health (LSAH) Project at NASA. Severity and incidence after spaceflight will be mined from the data, and statistical analyses will be used to determine if Soyuz crewmembers have a higher incidence of disc herniation than Space Shuttle crewmembers. The results are expected to show no difference between Space Shuttle and Soyuz crewmembers, indicating that higher dynamic loads on landing and long-duration spaceflight do not significantly increase the risk of disc herniation. If no difference is shown between the two crewmember populations, then disc volume expansion due to microgravity does not significantly increase the risk of injury due to dynamic loads for deconditioned crewmembers. Any risk associated with deconditioning would be primarily due to bone structure changes and resulting bone strength changes. This study is an important first step in determining whether the spinal disc plays a role in injury due to dynamic loads.

  8. The Role of Federal Agencies in Education, Inter-Agency Coordination, and Impact Assessment

    NASA Astrophysics Data System (ADS)

    Feder, M.

    2010-12-01

    Many federal agencies invest in improving the nation’s STEM literacy and preparing the future scientific and technical workforce. These efforts have raised questions about and how federal agencies, which are not primarily focused on education, should support education formal and inforaml education systems. In addition, there is a persistent concern about how federal agency education portfolios are balanced (given the broad mission of the agnecies and their diverse audiences), and whether the programs are reaching their goals. The NRC reviews of NOAA’s education programs and NASA's K-12 education programs deal directly with these issues. Both reports include a detailed analysis of where federal agency education efforts exist within the broader education systems, the need for systematic decisions related to portfolio balance, the information needed to make program management decisions, and the strategies for collecting informative evaluation data at the project and portfolio level. While the conclusions and recommendations of these report are meant to guide NOAA and NASA education, there also is a great deal of information that can be applied to the broader questions related to federal agencies’ involvement in STEM education, and the appropriate use of evaluation to guide decision-making.

  9. Spacecraft 2000

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objective of the Workshop was to focus on the key technology area for 21st century spacecraft and the programs needed to facilitate technology development and validation. Topics addressed include: spacecraft systems; system development; structures and materials; thermal control; electrical power; telemetry, tracking, and control; data management; propulsion; and attitude control.

  10. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  11. 49 CFR Attachment 4 - State and Local Agency Review of Impact Statements

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 4 Attachment 4 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL..., Attach. 4 Attachment 4—State and Local Agency Review of Impact Statements 1. OBM Revised Circular No. A... have been requested, as specified in Attachment 1....

  12. A Whale of a Tale: Creating Spacecraft Telemetry Data Analysis Products for the Deep Impact Mission

    NASA Technical Reports Server (NTRS)

    Sturdevant, Kathryn

    2006-01-01

    A description of the Whale product generation utility and its means of analyzing project data for Deep Impact Missions is presented. The topics include: 1) Whale Definition; 2) Whale Overview; 3) Whale Challenges; 4) Network Configuration; 5) Network Diagram; 6) Whale Data Flow: Design Decisions; 7) Whale Data Flow Diagram; 8) Whale Data Flow; 9) Whale Team and Users; 10) Creeping Requirements; 11) Whale Competition; 12) Statistics: Processing Time; 13) CPU and Disk Usage; 14) The Ripple Effect of More Data; and 15) Data Validation and the Automation Challenge.

  13. Impact of Jovian radiation environmental hazard on spacecraft and mission development design

    NASA Technical Reports Server (NTRS)

    Divita, E.

    1972-01-01

    The environmental impact on the TOPS 12L configuration is discussed. The activities in system environmental design and testing are described, and radiation design restraints based on the upper limit model are given. Range energy cutoffs in aluminum are also presented and the effective shielding thicknesses for electrons and protons of different energies are included. Design integration problems and radiation testing aspects are considered. Data are given for selecting the parts which should be tested in a formal test program, and the piece-part radiation thresholds are tabulated for electrons and protons.

  14. Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.

    2000-01-01

    Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.

  15. 49 CFR Attachment 4 - State and Local Agency Review of Impact Statements

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false State and Local Agency Review of Impact Statements 4 Attachment 4 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURES FOR CONSIDERING ENVIRONMENTAL IMPACTS Procedures Comments on...

  16. Spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1972-01-01

    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  17. Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Research Lab (JPL) workers use a borescope to verify the pressure relief device bellow's integrity on a radioisotope thermoelectric generator (RTG) that has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. The activity is part of the mechanical and electrical verification testing of RTGs during prelaunch processing. RTGs use heat from the natural decay of plutonium to generate electrical power. The three RTGs on Cassini will enable the spacecraft to operate far from the Sun where solar power systems are not feasible. They will provide electrical power to Cassini on it seven year trip to the Saturnian system and during its four year mission at Saturn.

  18. An assessment of the impact of spacecraft glow on the Hubble space telescope. Summary of existing observations and theory

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.

    1985-01-01

    Visible spacecraft glow was first observed on the Atmospheric Explorer spacecraft (AE-E) and studied in some detail with the Visible Airglow Experiment (VAE). The AE-E was a spin-stabilized spacecraft without thrusters at an altitude of 140 to 280 km. The VAE contained six visible wavelength photometers that measured a glow spectrum which: (1) rose steeply in the red, (2) decreased with a cos cubed PH1 dependence from pointing into the ram direction of the spacecraft orbital motion, and (3) decreased in intensity with increasing altitude with the same dependence as the measured atomic oxygen number atmospheric density (O) and not with the measured molecular nitrogen density (N sub 2). It is proposed that the glow is produced by chemical reactions on the spacecraft surface as it sweeps through the atmospheric O, with roughly 5-8 eV per O atom available for excitation from the orbital motion of the spacecraft. This glow may in principal be produced by any of a number of species, including molecular band emission from OH, NO, and NO2. An attempt is made to scale the observed glow to the Hubble space telescope.

  19. Spacecraft architecture

    NASA Technical Reports Server (NTRS)

    Zefeld, V. V.

    1986-01-01

    Three requirements for a spacecraft interior are considered. Adequate motor activity in the anatomical-physiological sense results from attention to the anthropometric characteristics of humans. Analysis of work requirements is a prerequisite for the planning of adequate performance space. The requirements for cognitive activity are also elucidated. The importance of a well-designed interior during a long space flight is discussed.

  20. International funding agencies: potential leaders of impact evaluation in protected areas?

    PubMed

    Craigie, Ian D; Barnes, Megan D; Geldmann, Jonas; Woodley, Stephen

    2015-11-01

    Globally, protected areas are the most commonly used tools to halt biodiversity loss. Yet, some are failing to adequately conserve the biodiversity they contain. There is an urgent need for knowledge on how to make them function more effectively. Impact evaluation methods provide a set of tools that could yield this knowledge. However, rigorous outcome-focused impact evaluation is not yet used as extensively as it could be in protected area management. We examine the role of international protected area funding agencies in facilitating the use of impact evaluation. These agencies are influential stakeholders as they allocate hundreds of millions of dollars annually to support protected areas, creating a unique opportunity to shape how the conservation funds are spent globally. We identify key barriers to the use of impact evaluation, detail how large funders are uniquely placed to overcome many of these, and highlight the potential benefits if impact evaluation is used more extensively.

  1. International funding agencies: potential leaders of impact evaluation in protected areas?

    PubMed

    Craigie, Ian D; Barnes, Megan D; Geldmann, Jonas; Woodley, Stephen

    2015-11-01

    Globally, protected areas are the most commonly used tools to halt biodiversity loss. Yet, some are failing to adequately conserve the biodiversity they contain. There is an urgent need for knowledge on how to make them function more effectively. Impact evaluation methods provide a set of tools that could yield this knowledge. However, rigorous outcome-focused impact evaluation is not yet used as extensively as it could be in protected area management. We examine the role of international protected area funding agencies in facilitating the use of impact evaluation. These agencies are influential stakeholders as they allocate hundreds of millions of dollars annually to support protected areas, creating a unique opportunity to shape how the conservation funds are spent globally. We identify key barriers to the use of impact evaluation, detail how large funders are uniquely placed to overcome many of these, and highlight the potential benefits if impact evaluation is used more extensively. PMID:26460135

  2. Toward a new spacecraft optimal design lifetime? Impact of marginal cost of durability and reduced launch price

    NASA Astrophysics Data System (ADS)

    Snelgrove, Kailah B.; Saleh, Joseph Homer

    2016-10-01

    The average design lifetime of satellites continues to increase, in part due to the expectation that the satellite cost per operational day decreases monotonically with increased design lifetime. In this work, we challenge this expectation by revisiting the durability choice problem for spacecraft in the face of reduced launch price and under various cost of durability models. We first provide a brief overview of the economic thought on durability and highlight its limitations as they pertain to our problem (e.g., the assumption of zero marginal cost of durability). We then investigate the merging influence of spacecraft cost of durability and launch price, and we identify conditions that give rise cost-optimal design lifetimes that are shorter than the longest lifetime technically achievable. For example, we find that high costs of durability favor short design lifetimes, and that under these conditions the optimal choice is relatively robust to reduction in launch prices. By contrast, lower costs of durability favor longer design lifetimes, and the optimal choice is highly sensitive to reduction in launch price. In both cases, reduction in launch prices translates into reduction of the optimal design lifetime. Our results identify a number of situations for which satellite operators would be better served by spacecraft with shorter design lifetimes. Beyond cost issues and repeat purchases, other implications of long design lifetime include the increased risk of technological slowdown given the lower frequency of purchases and technology refresh, and the increased risk for satellite operators that the spacecraft will be technologically obsolete before the end of its life (with the corollary of loss of value and competitive advantage). We conclude with the recommendation that, should pressure to extend spacecraft design lifetime continue, satellite manufacturers should explore opportunities to lease their spacecraft to operators, or to take a stake in the ownership

  3. Transferring Files Between the Deep Impact Spacecrafts and the Ground Data System Using the CCSDS File Delivery Protocol (CFDP): A Case Study

    NASA Technical Reports Server (NTRS)

    Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael

    2006-01-01

    The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.

  4. 78 FR 77442 - Agency Information Collection Activities; Comment Request; The Impact of Professional Development...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... information collection requirements and provide the requested data in the desired format. ED is soliciting... Agency Information Collection Activities; Comment Request; The Impact of Professional Development in... Reduction Act of 1995 (44 U.S.C. chapter 3501 et seq.), ED is proposing a new information collection....

  5. Impact Evaluation from Quality Assurance Agencies' Perspectives: Methodological Approaches, Experiences and Expectations

    ERIC Educational Resources Information Center

    Kajaste, Matti; Prades, Anna; Scheuthle, Harald

    2015-01-01

    Starting from the main objective of external quality assurance (EQA) procedures to assure and improve the quality of higher education institutions and its provisions, the paper examines expected impacts of EQA procedures on institutions from the perspectives of three European quality assurance agencies. First, the paper examines the expected…

  6. 78 FR 57135 - Agency Information Collection Activities; Comment Request; Impact Aid Program Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF EDUCATION Agency Information Collection Activities; Comment Request; Impact Aid Program Application for Section... response to this notice should be submitted electronically through the Federal eRulemaking Portal at...

  7. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  8. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  9. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  10. Microbial contamination of spacecraft.

    PubMed

    Pierson, D L

    2001-06-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human space flight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) space flight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of space flight on biological functions and population dynamics of microorganisms in spacecraft. Equally important is a better understanding of the immune response and of human-microorganism-environment interactions during long-term space habitation.

  11. Microbial contamination of spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human space flight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) space flight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of space flight on biological functions and population dynamics of microorganisms in spacecraft. Equally important is a better understanding of the immune response and of human-microorganism-environment interactions during long-term space habitation.

  12. Microbial contamination of spacecraft.

    PubMed

    Pierson, D L

    2001-06-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human space flight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) space flight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of space flight on biological functions and population dynamics of microorganisms in spacecraft. Equally important is a better understanding of the immune response and of human-microorganism-environment interactions during long-term space habitation. PMID:11865864

  13. Gaia Spacecraft Mechanical Development

    NASA Astrophysics Data System (ADS)

    Lebranchu, C.; Blender, F.; Touzeau, S.; Escolar, D.

    2012-07-01

    Gaia is the European Space Agency's cornerstone mission for global space astrometry. Its goal is to make the largest, most precise three-dimensional map of our Galaxy by surveying an unprecedented number of stars. This paper gives an overview of the mechanical system engineering and verification of the spacecraft. This development includes several technical challenges. First of all, the very high stability performance as required for the mission is a key driver for the design; which incurs a high degree of stability. This is achieved through decoupling between payload and service module, and the use of high-performance engineering tools and of Silicon Carbide (Boostec® SiC) for the Payload. Compliance of spacecraft mass and volume with launcher capability is another key challenge, as well as the development of the 10.3 meter diameter deployable sunshield. The spacecraft mechanical verification follows an innovative approach, with direct testing on the flight model, without dedicated structural model. Gaia mechanical development is the fruit of a successful international cooperation.

  14. NASA Team Captures Hayabusa Spacecraft Reentry

    NASA Video Gallery

    A group of astronomers from NASA, the Japan Aerospace Exploration Agency (JAXA) and other organizations had a front row seat to observe the Hayabusa spacecraft's fiery plunge into Earth's atmospher...

  15. Spacecraft Charging Technology, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.

  16. The Distribution of Interplanetary Dust between 0.96 and 1.04 au as Inferred from Impacts on the STEREO Spacecraft Observed by the Heliospheric Imagers

    NASA Technical Reports Server (NTRS)

    Davis, C. J.; Davis, J. A.; Meyer-Vernet, Nicole; Crothers, S.; Lintott, C.; Smith, A.; Bamford, S.; Baeten, E. M. L.; SaintCyr, O. C.; Campbell-Brown, M.; Skelt, A.; Kaiser, M.

    2012-01-01

    The distribution of dust in the ecliptic plane between 0.96 and 1.04 au has been inferred from impacts on the two Solar Terrestrial Relations Observatory (STEREO) spacecraft through observation of secondary particle trails and unexpected off-points in the heliospheric imager (HI) cameras. This study made use of analysis carried out by members of a distributed webbased citizen science project Solar Stormwatch. A comparison between observations of the brightest particle trails and a survey of fainter trails shows consistent distributions. While there is no obvious correlation between this distribution and the occurrence of individual meteor streams at Earth, there are some broad longitudinal features in these distributions that are also observed in sources of the sporadic meteor population. The different position of the HI instrument on the two STEREO spacecraft leads to each sampling different populations of dust particles. The asymmetry in the number of trails seen by each spacecraft and the fact that there are many more unexpected off-points in the HI-B than in HI-A indicates that the majority of impacts are coming from the apex direction. For impacts causing off-points in the HI-B camera, these dust particles are estimated to have masses in excess of 10 (exp-17) kg with radii exceeding 0.1 µm. For off-points observed in the HI-A images, which can only have been caused by particles travelling from the anti-apex direction, the distribution is consistent with that of secondary 'storm' trails observed by HI-B, providing evidence that these trails also result from impacts with primary particles from an anti-apex source. Investigating the mass distribution for the off-points of both HI-A and HI-B, it is apparent that the differential mass index of particles from the apex direction (causing off-points in HI-B) is consistently above 2. This indicates that the majority of the mass is within the smaller particles of this population. In contrast, the differential mass

  17. Spacecraft -- Capsule Separation (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Spacecraft -- Capsule Separation animation

    This animation shows the return capsule separating from the Stardust spacecraft.

  18. The Impact of NAFTA on Training and Development in Mexico: The Perspective of Mexican Senior Government Agency Officials

    ERIC Educational Resources Information Center

    Ruiz, Carlos Enrique

    2009-01-01

    This study explored the perceptions of Mexican senior government agency officials with regard to the impact of NAFTA on training and development practices in Mexico. This study was conducted using a phenomenological tradition within qualitative research. The major findings of the study indicate that Mexican senior government agency officials…

  19. An Analysis of the Impact of the Federal Budgetary Cycle Upon the NASA Manned Spacecraft Center Research and Development Budget Formulation Process

    NASA Technical Reports Server (NTRS)

    Peterson, Ronald Keith

    1966-01-01

    The subsequent dissertation represents an analysis of the impact of the Federal Budgetary Cycle upon the National Aeronautics and Space Administration (NASA) Manned Spacecraft Center (MSC) Research and Development (R&D) budget formulation process. The author's objectives may therefore be seen as the following: (1) to analyze the Federal Budgetary Cycle; (2) to analyze MSC R&D estimates and growth trends in relation to their implications on the Federal Cycle; (3) to identify relevant problems; and, (4) to-recommend solutions which display promise and feasibility. Any research involving the Federal Budgetary Cycle can well be characterized as of almost infinite scope and enormous complexity. For such reasons one must meticulously delineate all operational parameters and there-afore maintain their integrity. To do otherwise is to invite intellectual dilution and hazard a paltry effort.

  20. The 1975 report on active and planned spacecraft and experiments. [index

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Davis, L. R. (Editor)

    1975-01-01

    Information is presented on current and planned spacecraft activity for various disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, solar physics, and life sciences. For active orbiting spacecraft, the epoch date, orbit type, orbit period, apoasis, periapsis, and inclination are given along with the spacecraft weight, launch date, launch site, launch vehicle, and sponsoring agency. For each planned orbiting spacecraft, the orbit parameters, planned launch date, launch site, launch vehicle, spacecraft weight, and sponsoring agency are given.

  1. Spacecraft radiator systems

    NASA Technical Reports Server (NTRS)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  2. Simulating meteoroid impacts using high-power lasers - a new method to prepare spacecraft for the harsh environment of space

    NASA Astrophysics Data System (ADS)

    Landgraf, Markus; Drolshagen, Gerhard; Sternovsky, Zoltan; Knappmiller, Scott; Horányi, Mihály

    2007-05-01

    Meteoroids are one of the most damaging elements in space: at 20 km/s even one the size of a grain of salt can wreak the same damage as a cannonball fired at 1000 km/h. The solar wings of the Hubble Space Telescope returned from space are peppered with holes and craters from meteoroids and space debris. Satellites must be protected from such impacts through careful design and testing. In laboratory testing, firing a high-power laser at a satellite hull efficiently simulates all aspects of the impact: the cratering, the shock travelling through the material, and the impact cloud that can knock out electronics. It can also be used to calibrate detectors that characterise the meteoroid and debris environment, allowing sensitive instruments to be protected simply by carefully choosing a satellite's orientation.

  3. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language. PMID:11542669

  4. Computer simulation of spacecraft/environment interaction.

    PubMed

    Krupnikov, K K; Makletsov, A A; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-10-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991 1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  5. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    NASA Technical Reports Server (NTRS)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  6. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  7. Spacecraft Charging Technology, 1978

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.

  8. NASA's Orion Spacecraft Undergoes Water Landing Test

    NASA Video Gallery

    On August 25, 2016, the Orion spacecraft underwent a water drop test at the Hydro Impact Basin at NASA's Langley Research Center in Hampton, Virginia. Join host Eric Gillard, of NASA Langley, and g...

  9. Orbital Spacecraft Consumables Resupply System (OSCRS): Monopropellant application to space station and OMV automatic refueling impacts of an ELV launch, volume 4

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.

  10. Job satisfaction and retention of social workers in public agencies, non-profit agencies, and private practice: the impact of workplace conditions and motivators.

    PubMed

    Vinokur-Kaplan, D; Jayaratne, S; Chess, W A

    1994-01-01

    The authors examine a selected array of agency-influenced work and employment conditions and assess their impact upon social workers' job satisfaction, motivation, and intention to seek new employment. The study makes correlations with past empirical studies on job satisfaction and retention, with staff development concerns as stated in social work administration textbooks, and with conditions subject to administrators' influence. Some specified motivational issues included are salary, fringe benefits, job security, physical surroundings, and safety. The analysis demonstrates the contribution of certain contextual and motivational factors to a prediction of job satisfaction or of intent to leave the organization. PMID:10138941

  11. Learning about knowledge management for improving environmental impact assessment in a government agency: the Western Australian experience.

    PubMed

    Sánchez, Luis Enrique; Morrison-Saunders, Angus

    2011-09-01

    How does knowledge management (KM) by a government agency responsible for environmental impact assessment (EIA) potentially contribute to better environmental assessment and management practice? Staff members at government agencies in charge of the EIA process are knowledge workers who perform judgement-oriented tasks highly reliant on individual expertise, but also grounded on the agency's knowledge accumulated over the years. Part of an agency's knowledge can be codified and stored in an organizational memory, but is subject to decay or loss if not properly managed. The EIA agency operating in Western Australia was used as a case study. Its KM initiatives were reviewed, knowledge repositories were identified and staff surveyed to gauge the utilisation and effectiveness of such repositories in enabling them to perform EIA tasks. Key elements of KM are the preparation of substantive guidance and spatial information management. It was found that treatment of cumulative impacts on the environment is very limited and information derived from project follow-up is not properly captured and stored, thus not used to create new knowledge and to improve practice and effectiveness. Other opportunities for improving organizational learning include the use of after-action reviews. The learning about knowledge management in EIA practice gained from Western Australian experience should be of value to agencies worldwide seeking to understand where best to direct their resources for their own knowledge repositories and environmental management practice.

  12. Learning about knowledge management for improving environmental impact assessment in a government agency: the Western Australian experience.

    PubMed

    Sánchez, Luis Enrique; Morrison-Saunders, Angus

    2011-09-01

    How does knowledge management (KM) by a government agency responsible for environmental impact assessment (EIA) potentially contribute to better environmental assessment and management practice? Staff members at government agencies in charge of the EIA process are knowledge workers who perform judgement-oriented tasks highly reliant on individual expertise, but also grounded on the agency's knowledge accumulated over the years. Part of an agency's knowledge can be codified and stored in an organizational memory, but is subject to decay or loss if not properly managed. The EIA agency operating in Western Australia was used as a case study. Its KM initiatives were reviewed, knowledge repositories were identified and staff surveyed to gauge the utilisation and effectiveness of such repositories in enabling them to perform EIA tasks. Key elements of KM are the preparation of substantive guidance and spatial information management. It was found that treatment of cumulative impacts on the environment is very limited and information derived from project follow-up is not properly captured and stored, thus not used to create new knowledge and to improve practice and effectiveness. Other opportunities for improving organizational learning include the use of after-action reviews. The learning about knowledge management in EIA practice gained from Western Australian experience should be of value to agencies worldwide seeking to understand where best to direct their resources for their own knowledge repositories and environmental management practice. PMID:21592648

  13. Microbial Contamination in the Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.

  14. Implicit Spacecraft Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    This paper presents an implicit algorithm for spacecraft onboard instrument calibration, particularly to onboard gyro calibration. This work is an extension of previous work that was done where an explicit gyro calibration algorithm was applied to the AQUA spacecraft gyros. The algorithm presented in this paper was tested using simulated data and real data that were downloaded from the Microwave Anisotropy Probe (MAP) spacecraft. The calibration tests gave very good results. A comparison between the use of the implicit calibration algorithm used here with the explicit algorithm used for AQUA spacecraft indicates that both provide an excellent estimation of the gyro calibration parameters with similar accuracies.

  15. Discussion meeting on Gossamer spacecraft (ultralightweight spacecraft)

    NASA Technical Reports Server (NTRS)

    Brereton, R. G. (Editor)

    1980-01-01

    Concepts, technology, and application of ultralightweight structures in space are examined. Gossamer spacecraft represented a generic class of space vehicles or structures characterized by a low mass per unit area (approximately 50g/m2). Gossamer concepts include the solar sail, the space tether, and various two and three dimensional large lightweight structures that were deployed or assembled in space. The Gossamer Spacecraft had a high potential for use as a transportation device (solar sail), as a science instrument (reflecting or occulting antenna), or as a large structural component for an enclosure, manned platform, or other human habitats. Inflatable structures were one possible building element for large ultralightweight structures in space.

  16. A Participatory Outcome Evaluation on the Impact of BSW Interns on Agencies

    ERIC Educational Resources Information Center

    Mallory, Drew; Cox, Shirley Elizabeth; Panos, Patrick T.

    2012-01-01

    This article reviews the findings of an exploratory study investigating the perceived benefits and costs of BSW interns for host agencies. The qualitative study included surveys from over 100 agency student supervisors, colleagues, and administrative personnel assessing the perceived effects students had on a range of categories. It also included…

  17. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  18. Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,

  19. The electrification of spacecraft

    NASA Technical Reports Server (NTRS)

    Akishin, A. I.; Novikov, L. S.

    1985-01-01

    Physical and applied aspects of the electrification of space vehicles and natural celestial objects are discussed, the factors resulting in electrification of spacecraft are analyzed, and methods of investigating various phenomena associated with this electrification and ways of protecting spacecraft against the influence of static electricity are described. The booklet is intended for the general reader interested in present day questions of space technology.

  20. Miniature Robotic Spacecraft for Inspecting Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer; Lemke, Matthew; Wade, Randall; Wheeler, Scott; Baggerman, Clinton

    2004-01-01

    A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

  1. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  2. Current LISA Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Castellucci, K. E.; Depalo, S. V.; Generie, J. A.; Maghami, P. G.; Peabody, H. L.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission. a space based gravitational wave detector. uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. LISA is unique from a mission design perspective in that the three spacecraft and their associated operations form one distributed science instrument. unlike more conventional missions where an instrument is a component of an individual spacecraft. The design of the LISA spacecraft is also tightly coupled to the design and requirements of the scientific payload; for this reason it is often referred to as a "sciencecraft." Here we describe some of the unique features of the LISA spacecraft design that help create the quiet environment necessary for gravitational wave observations.

  3. Spacecraft exploration of Mars

    NASA Technical Reports Server (NTRS)

    Snyder, Conway W.; Moroz, Vasilii I.

    1992-01-01

    Soviet and American spacecraft exploration of Mars over the past quarter century is reviewed. Data on the earliest Soviet attempts to send spacecraft to observe the planet are presented. Of the series of spacecraft that were announced (designated Mars 1 to Mars 7), none fulfilled all its scientific goals, but some good photographs and other important data were obtained. Of the six spacecraft in the Mariner series, two failed, but Mariner 4 first revealed the cratered surface of Mars, and Mariner 9 discovered all the major geologic features. The Viking mission, with its two Orbiters, two Landers, and its 6-yr duration, surpassed in quantity and variety of data all other missions combined. The Phobos mission ended in two failures, but the second of the two spacecraft acquired significant new data about Mars and Phobos. An appendix listing special issues of journals containing collections of papers about Mars is provided.

  4. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2013-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  5. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2012-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  6. Foam Core Shielding for Spacecraft

    NASA Technical Reports Server (NTRS)

    Adams, Marc

    2007-01-01

    A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.

  7. Spacecraft Docking System

    NASA Technical Reports Server (NTRS)

    Ghofranian, Siamak (Inventor); Chuang, Li-Ping Christopher (Inventor); Motaghedi, Pejmun (Inventor)

    2016-01-01

    A method and apparatus for docking a spacecraft. The apparatus comprises elongate members, movement systems, and force management systems. The elongate members are associated with a docking structure for a spacecraft. The movement systems are configured to move the elongate members axially such that the docking structure for the spacecraft moves. Each of the elongate members is configured to move independently. The force management systems connect the movement systems to the elongate members and are configured to limit a force applied by the each of the elongate members to a desired threshold during movement of the elongate members.

  8. WIND Spacecraft Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An international effort to learn more about the complex interaction between the Earth and Sun took another step forward with the launch of WIND spacecraft from Kennedy Space Center (KSC). WIND spacecraft is studded with eight scientific instruments - six US, one French, and one - the first Russian instrument to fly on a US spacecraft - that collected data about the influence of the solar wind on the Earth and its atmosphere. WIND is part of the Global Geospace Science (GGS) initiative, the US contribution to NASA's International Solar Terrestrial Physics (ISTP) program.

  9. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  10. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    extend the underwater endurance to 2-3 weeks. These propulsion engineering changes also reduce periodic ventilation of the submarine's interior and thus put a greater burden on the various maintenance systems. We note that the spaceflight community has similar issues; their energy production mechanisms are essentially air independent in that they rely almost entirely on photovoltaic arrays for electricity generation, with only emergency back-up power from alcohol fuel cells. In response to prolonged underwater submarine AIP operations, months-long spaceflight operations onboard the ISS and planning for future years-long missions to Mars, there has been an increasing awareness that bio-monitoring is an important factor for assessing the health and awareness states of the crewmembers. SAMAP researchers have been proposing various air and bio-monitoring instruments and methods in response to these needs. One of the most promising new methodologies is the non-invasive monitoring of exhaled breath. So, what do the IABR and SAMAP communities have in common? Inhalation toxicology. We are both concerned with contamination from the environment, either as a direct health threat or as a confounder for diagnostic assessments. For example, the exhaled breath from subjects in a contaminated and enclosed artificial environment (submarine or spacecraft) can serve as a model system and a source of contamination for their peers in a cleaner environment. In a similar way, exhaled anaesthetics can serve as a source of contamination in hospital/clinical settings, or exhalation of occupational exposures to tetrachloroethylene can impact family members at home. Instrumentation development. Both communities have similar needs for better, more specific and more sensitive instruments. Certainly, the analytical instruments to be used onboard submarines and spacecraft have severe restrictions on energy use, physical size and ease of operation. The medical and clinical communities have similar long

  11. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    extend the underwater endurance to 2-3 weeks. These propulsion engineering changes also reduce periodic ventilation of the submarine's interior and thus put a greater burden on the various maintenance systems. We note that the spaceflight community has similar issues; their energy production mechanisms are essentially air independent in that they rely almost entirely on photovoltaic arrays for electricity generation, with only emergency back-up power from alcohol fuel cells. In response to prolonged underwater submarine AIP operations, months-long spaceflight operations onboard the ISS and planning for future years-long missions to Mars, there has been an increasing awareness that bio-monitoring is an important factor for assessing the health and awareness states of the crewmembers. SAMAP researchers have been proposing various air and bio-monitoring instruments and methods in response to these needs. One of the most promising new methodologies is the non-invasive monitoring of exhaled breath. So, what do the IABR and SAMAP communities have in common? Inhalation toxicology. We are both concerned with contamination from the environment, either as a direct health threat or as a confounder for diagnostic assessments. For example, the exhaled breath from subjects in a contaminated and enclosed artificial environment (submarine or spacecraft) can serve as a model system and a source of contamination for their peers in a cleaner environment. In a similar way, exhaled anaesthetics can serve as a source of contamination in hospital/clinical settings, or exhalation of occupational exposures to tetrachloroethylene can impact family members at home. Instrumentation development. Both communities have similar needs for better, more specific and more sensitive instruments. Certainly, the analytical instruments to be used onboard submarines and spacecraft have severe restrictions on energy use, physical size and ease of operation. The medical and clinical communities have similar long

  12. Surviving atmospheric spacecraft breakup.

    PubMed

    Szewczyk, Nathaniel J; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  13. Surviving atmospheric spacecraft breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  14. Spacecraft Fire Safety

    NASA Technical Reports Server (NTRS)

    Margle, Janice M. (Editor)

    1987-01-01

    Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.

  15. Unusual spacecraft materials

    NASA Technical Reports Server (NTRS)

    Post, Jonathan V.

    1990-01-01

    For particularly innovative space exploration missions, unusual requirements are levied on the structural components of the spacecraft. In many cases, the preferred solution is the utilization of unusual materials. This trend is forecast to continue. Several hypothetic examples are discussed.

  16. Mars Global Surveyor Spacecraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) workers in the Payload Hazardous Servicing Facility (PHSF) prepare the Mars Global Surveyor spacecraft for transfer to the launch pad by placing it in a protective canister. The Surveyor spacecraft (upper) is already mated to its solid propellant upper stage booster (lower), which is actually the third stage of the Delta II expendable launch vehicle that will propel the spacecraft on its interplanetary journey to the Red Planet. Once at Launch Pad 17A on Cape Canaveral Air Station, the spacecraft and booster assembly will be stacked atop the Delta vehicle. The Surveyor is slated for liftoff on Nov. 6, 1996 at the beginning of a 20 day launch period.

  17. Quick spacecraft charging primer

    SciTech Connect

    Larsen, Brian Arthur

    2014-03-12

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  18. A review of nuclear electric propulsion spacecraft system concepts

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Nock, K. T.

    1990-01-01

    The last 25-30 years of system concepts and design philosophies for spacecraft employing nuclear-electric propulsion (NEP) are reviewed. NEP spacecraft-system design constraints and criteria are identified, including radiation exposure of humans and electronics, thermal control requirements, effluent contamination of spacecraft surfaces, surface erosion, launch-vehicle integration, operations and safety requirements, attitude control, EM interference, and power control and distribution. The impact on spacecraft design philosophy of these constraints and criteria is explored. Several NEP spacecraft are characterized and discussed with respect to the propulsion system used. The electric propulsion system catagories are electrothermal (arcjet), EM (magnetoplasmadynamic and pulsed-inductive thruster) and electrostatic (ion engine). A brief summary of the mission, nuclear power source, electric propulsion system, and spacecraft configuration are provided for each NEP spacecraft concept.

  19. Internet Access to Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.

  20. Viking lander spacecraft battery

    NASA Technical Reports Server (NTRS)

    Newell, D. R.

    1976-01-01

    The Viking Lander was the first spacecraft to fly a sterilized nickel-cadmium battery on a mission to explore the surface of a planet. The significant results of the battery development program from its inception through the design, manufacture, and test of the flight batteries which were flown on the two Lander spacecraft are documented. The flight performance during the early phase of the mission is also presented.

  1. Mecury Spacecraft Boilerplate

    NASA Technical Reports Server (NTRS)

    1944-01-01

    Boilerplate Mercury spacecraft being manufactured 'in-house' by Langley technicians. The capsules were designed to test spacecraft recovery systems. The escape tower and rocket motors shown on the completed capsule would be removed before shipping and finally assembly for launching at Wallops Island. Design of the Little Joe capsules began at Langley before McDonnell started on the design of the Mercury capsule.

  2. 8th Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Minor, J. L. (Compiler)

    2004-01-01

    The 8th Spacecraft Charging Technology Conference was held in Huntsville, Alabama, October 20-24, 2003. Hosted by NASA s Space Environments and Effects (SEE) Program and co-sponsored by the Air Force Research Laboratory (AFRL) and the European Space Agency (ESA), the 2003 conference saw attendance from eleven countries with over 65 oral papers and 18 poster papers. Presentation topics highlighted the latest in spacecraft charging mitigation techniques and on-orbit investigations, including: Plasma Propulsion and Tethers; Ground Testing Techniques; Interactions of Spacecraft and Systems With the Natural and Induced Plasma Environment; Materials Characterizations; Models and Computer Simulations; Environment Specifications; Current Collection and Plasma Probes in Space Plasmas; On-Orbit Investigations. A round-table discussion of international standards regarding electrostatic discharge (ESD) testing was also held with the promise of continued discussions in the off years and an official continuation at the next conference.

  3. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  4. Evaluating the Impact of Training: A Collection of Federal Agency Evaluation Practices.

    ERIC Educational Resources Information Center

    Salinger, Ruth; Bartlett, Joan

    The purpose of this document is to share various approaches used by federal agencies to assess needs and measure training effectiveness. The emphasis in the descriptions is on the evaluation process rather than on the results. One program was evaluated by employing return-on-investment (ROI) data and using volunteer line personnel who conducted…

  5. Assessing the Impact of Local Agency Traffic Safety Training Using Ethnographic Techniques

    ERIC Educational Resources Information Center

    Colling, Timothy K.

    2010-01-01

    Traffic crashes are a significant source of loss of life, personal injury and financial expense in the United States. In 2008 there were 37,261 people killed and an estimated 2,346,000 people injured nationwide in motor vehicle traffic crashes. State and federal agencies are beginning to focus traffic safety improvement effort on local agency…

  6. The Impact of the European Standards and Guidelines in Agency Evaluations

    ERIC Educational Resources Information Center

    Stensaker, Bjorn; Harvey, Lee; Huisman, Jeroen; Langfeldt, Liv; Westerheijden, Don F.

    2010-01-01

    The emergence of the European Standards and Guidelines (ESG) for Quality Assurance has been seen as an important step towards realising the European Higher Education Area by creating more transparency and accountability in the area of quality assurance. The ESG also include standards as to how quality assurance agencies should be reviewed. In a…

  7. Response of Federal Land Management Agencies to ozone impacts on vegetation

    SciTech Connect

    Musselman, R.C.; Fisher, R.W.

    1999-07-01

    The FLAG (Federal Land Manager's AQRV WorkGroup) Ozone Subgroup was organized to compile information known about response of vegetation to ozone in federally managed parks, forests, and wildlife refuges; to document areas of agreement among federal agencies regarding identification of ozone sensitive Air Quality Related Values (AQRVs); and standardize agency responses to New Source Review (NSR) permit applications. Subgroup members included air resource managers and ozone effects scientists from several agencies that manage federal lands. The subgroup identified sensitive AQRV receptors, determined information needed to evaluate permit applications under the NSR process, determined the form of an ozone parameter to use to relate plant response to ambient ozone, and agreed on specific definitions for vegetation injury and damage from ozone. The subgroup developed specific protocols for federal agencies to follow in response to NSR permit applications. These protocols were based on (1) ambient levels of ozone as measured by the W126 ozone metric and the number of peak ozone concentrations $100 ppb (N100), and (2) the presence or absence of ozone sensitive plant species and ozone-induced damage to vegetation.

  8. Fostering Social Agency in Multimedia Learning: Examining the Impact of an Animated Agent's Voice

    ERIC Educational Resources Information Center

    Atkinson, Robert K.; Mayer, Richard E.; Merrill, Mary Margaret

    2005-01-01

    Consistent with social agency theory, we hypothesized that learners who studied a set of worked-out examples involving proportional reasoning narrated by an animated agent with a human voice would perform better on near and far transfer tests and rate the speaker more positively compared to learners who studied the same set of examples narrated by…

  9. Assessing Cumulative Impact and Risk - Approaches at the U.S. Environmental Protection Agency

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has a mission and regulatory mandate to protect human health and the environment. EPA’s primary role is to implement environmental laws by developing and enforcing national regulation. Cogent to the goals of this workshop, key envi...

  10. Web 2.0 Impact on Business Value at a Federal Government Housing Agency

    ERIC Educational Resources Information Center

    Lavender, Anthony L.

    2013-01-01

    The idea of Open Government is an extension of the Electronic Government Act of 2002 which addresses the accessibility, usability, and preservation of government information. The concept of Open Government has evolved into the open government directive that mandates Executive Departments and Agencies to become more open and transparent while…

  11. Impacts of Psychological Science on National Security Agencies Post-9/11

    ERIC Educational Resources Information Center

    Brandon, Susan E.

    2011-01-01

    Psychologists have been an integral part of national security agencies since World War I, when psychological science helped in personnel selection. A robust infrastructure supporting wider applications of psychology to military and intelligence problems developed further during World War II and the years following, primarily in the areas of…

  12. Spacecraft environments interactions: Protecting against the effects of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Herr, J. L.; Mccollum, M. B.

    1994-01-01

    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer, second in the series, describes the interactions between a spacecraft and the natural space plasma. Under certain environmental/spacecraft conditions, these interactions result in the phenomenon known as spacecraft charging. It is the focus of this publication to describe the phenomenon of spacecraft charging and its possible adverse effects on spacecraft and to present the key elements of a Spacecraft Charging Effects Protection Plan.

  13. 76 FR 68219 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ...; Impact Evaluation of the YouthBuild Program ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Employment and Training Administration (ETA) sponsored proposal for a new information collection titled, ``Impact Evaluation of the YouthBuild Program,'' to the Office of Management and...

  14. Benefits and risks of using electrodynamic tethers to de-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Hanada, Toshiya; Krisko, Paula H.

    2009-03-01

    By using electrodynamic drag to greatly increase the orbital decay rate, an electrodynamic space tether can remove spent or dysfunctional spacecraft from low Earth orbit (LEO) rapidly and safely. Moreover, the low mass requirements of such tether devices make them highly advantageous compared to conventional rocket-based de-orbit systems. However, a tether system is much more vulnerable to space debris impacts than a typical spacecraft and its design must be proved to be safe up to a certain confidence level before being adopted for potential applications. To assess space debris related concerns, in March 2001 a new task (Action Item 19.1) on the "Potential Benefits and Risks of Using Electrodynamic Tethers for End-of-life De-orbit of LEO Spacecraft" was defined by the Inter-Agency Space Debris Coordination Committee (IADC). Two tests were proposed to compute the fatal impact rate of meteoroids and orbital debris on space tethers in circular orbits, at different altitudes and inclinations, as a function of the tether diameter to assess the survival probability of an electrodynamic tether system during typical de-orbiting missions. IADC members from three agencies, the Italian Space Agency (ASI), the Japan Aerospace Exploration Agency (JAXA) and the US National Aeronautics and Space Administration (NASA), participated in the study and different computational approaches were specifically developed within the framework of the IADC task. This paper summarizes the content of the IADC AI 19.1 Final Report. In particular, it introduces the potential benefits and risks of using tethers in space, it describes the assumptions made in the study plan, it compares and discusses the results obtained by ASI, JAXA and NASA for the two tests proposed. Some general conclusions and recommendations are finally extrapolated from this massive and intensive piece of research.

  15. LDEF Materials Results for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F. (Compiler); Gregory, John (Compiler)

    1993-01-01

    These proceedings describe the application of LDEF data to spacecraft and payload design, and emphasize where space environmental effects on materials research and development is needed as defined by LDEF data. The LDEF six years of exposure of materials has proven to be by far the most comprehensive source of information ever obtained on the long-term performance of materials in the space environment. The conference provided a forum for materials scientists and engineers to review and critically assess the LDEF results from the standpoint of their relevance, significance, and impact on spacecraft design practice. The impact of the LDEF findings on materials selection and qualification, and the needs and plans for further study, were addressed from several perspectives. Many timely and needed changes and modifications in external spacecraft materials selection have occurred as a result of LDEF investigations.

  16. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  17. Spacecraft Environment Interactions

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Jun, Insoo

    2011-01-01

    As electronic components have grown smaller in size and power and have increased in complexity, their enhanced sensitivity to the space radiation environment and its effects has become a major source of concern for the spacecraft engineer. As a result, the description of the sources of space radiation, the determination of how that radiation propagates through material, and, ultimately, how radiation affects specific circuit components are primary considerations in the design of modern spacecraft. The objective of this paper will be to address the first 2 aspects of the radiation problem. This will be accomplished by first reviewing the natural and man-made space radiation environments. These environments include both the particulate and, where applicable, the electromagnetic (i.e., photon) environment. As the "ambient" environment is typically only relevant to the outer surface of a space vehicle, it will be necessary to treat the propagation of the external environment through the complex surrounding structures to the point inside the spacecraft where knowledge of the internal radiation environment is required. While it will not be possible to treat in detail all aspects of the problem of the radiation environment within a spacecraft, by dividing the problem into these parts-external environment, propagation, and internal environment-a basis for understanding the practical process of protecting a spacecraft from radiation will be established. The consequences of this environment will be discussed by the other presenters at this seminar.

  18. Thermal balance testing of the MSAT spacecraft

    NASA Technical Reports Server (NTRS)

    Samson, Serge; Choueiry, Elie; Pang, Kenneth

    1994-01-01

    This paper reports on the recently completed thermal balance/thermal vacuum testing of an MSAT satellite, the first satellite to provide mobile communications service for all of continental North America. MSAT is a two-spacecraft program, using a three-axis-stabilized HUGHES HS-601 series bus as the vehicle for the Canadian-designed payload. The thermal tests performed at the Canadian Space Agency's David Florida Laboratory in Ottawa, Canada, lasted approximately 32 days.

  19. Only an integrated approach across academia, enterprise, governments, and global agencies can tackle the public health impact of climate change

    PubMed Central

    Stordalen, Gunhild A.; Rocklöv, Joacim; Nilsson, Maria; Byass, Peter

    2013-01-01

    Background Despite considerable global attention to the issues of climate change, relatively little priority has been given to the likely effects on human health of current and future changes in the global climate. We identify three major societal determinants that influence the impact of climate change on human health, namely the application of scholarship and knowledge; economic and commercial considerations; and actions of governments and global agencies. Discussion The three major areas are each discussed in terms of the ways in which they facilitate and frustrate attempts to protect human health from the effects of climate change. Academia still pays very little attention to the effects of climate on health in poorer countries. Enterprise is starting to recognise that healthy commerce depends on healthy people, and so climate change presents long-term threats if it compromises health. Governments and international agencies are very active, but often face immovable vested interests in other sectors. Overall, there tends to be too little interaction between the three areas, and this means that potential synergies and co-benefits are not always realised. Conclusion More attention from academia, enterprise, and international agencies needs to be given to the potential threats the climate change presents to human health. However, there needs to also be much closer collaboration between all three areas in order to capitalise on possible synergies that can be achieved between them. PMID:23653920

  20. ESA Spacecraft Propulsion Activities

    NASA Astrophysics Data System (ADS)

    Saccoccia, G.

    2004-10-01

    ESA is currently involved in several activities related to spacecraft chemical and electric propulsion, from the basic research and development of conventional and new concepts to the manufacturing, AIV and flight control of the propulsion subsystems of several European satellites. In the commercial application field, the strong competition among satellite manufacturers is a major driver for advancements in the area of propulsion, where increasing better performance together with low prices are required. Furthermore, new scientific and Earth observation missions dictate new challenging requirements for propulsion systems and components based on advanced technologies. For all these reasons, the technology area of spacecraft propulsion is in strong evolution and this paper presents an overview of the current European programmes and initiatives in this technology field. Specific attention is devoted in the paper to the performance and flight experience of spacecraft currently in orbit or ready to be launched.

  1. Degradation of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Banks, Bruce; deGroh, Kim; Miller, Sharon

    2004-01-01

    This chapter includes descriptions of specific space environmental threats to exterior spacecraft materials. The scope will be confined to effects on exterior spacecraft surfaces, and will not, therefore, address environmental effects on interior spacecraft systems, such as electronics. Space exposure studies and laboratory simulations of individual and combined space environemntal threats will be summarized. A significant emphasis is placed on effects of Earth orbit environments, because the majority of space missions have been flown in Earth orbits which have provided a significant amount of data on materials effects. Issues associated with interpreting materials degradation results will be discussed, and deficiencies of ground testing will be identified. Recommendations are provided on reducing or preventing space environmental degradation through appropriate materials selection.

  2. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  3. 49 CFR Attachment 4 to Part 520 - State and Local Agency Review of Impact Statements

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... again on the basis of the draft impact statement is a matter to be left to the discretion of the... statements because the clearinghouses may be unwilling or unable to handle this phase of the process. In...

  4. 49 CFR Attachment 4 to Part 520 - State and Local Agency Review of Impact Statements

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... again on the basis of the draft impact statement is a matter to be left to the discretion of the... statements because the clearinghouses may be unwilling or unable to handle this phase of the process. In...

  5. Multimission modular spacecraft (MMS)

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward, Jr.

    1988-01-01

    This paper discusses the design requirements for the low-cost standard spacecraft development which has come to be known as the Multimission Modular Spacecraft (MMS). The paper presents the wide range of launch configurations of the MMS users, the population of programs using the MMS, and the cost effectiveness of the MMS concept. The paper addresses the in-orbit serviceability of the design as demonstrated by the successful SMM repair, and the recent selection of MMS for the Explorer Platform, which features in-orbit payload exchanges.

  6. Spacecraft Attitude Determination Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    This document is presentation in viewgraph form, which outlines the methods of determining spacecraft attitude. The presentation reviews several parameterizations relating to spacecraft attitude, such as Euler's Theorem, Rodriques parameters, and Euler-Rodriques parameters or Quaternion. Onboard attitude determination is the norm, using either single frame or filtering methods. The presentation reviews several mathematical representations of attitude. The mechanisms for determining attitude on board the Hubble Space Telescope, the Tropical Rainfall and Measuring Mission and the Solar Anomalous and Magnetospheric Particle Explorer are reviewed. Wahba's problem, Procrustes Problem, and some solutions are also summarized.

  7. Revamping Spacecraft Operational Intelligence

    NASA Technical Reports Server (NTRS)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  8. Unmanned spacecraft for research

    NASA Technical Reports Server (NTRS)

    Graves, C. D.

    1972-01-01

    The applications of unmanned spacecraft for research purposes are discussed. Specific applications of the Communication and Navigation satellites and the Earth Observations satellites are described. Diagrams of communications on world-wide basis using synchronous satellites are developed. Photographs of earth resources and geology obtained from space vehicles are included.

  9. Analysis of spacecraft data

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Support was provided for the maintenance and modifications of software for the production and detailed analysis of data from the DE-A spacecraft and new software developed for this end. Software for the analysis of the data from the Spacelab Experimental Particle Accelerator (SEPAC) was also developed.

  10. Comet explorer spacecraft design project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The small, chemically primitive objects of the solar system, comets and asteroids, are one of the most important frontiers remaining for future planetary exploration. So stated the Solar System Exploration Committee of the NASA Advisory Council in its 1986 report 'Planetary Exploration Through the Year 2000.' The Halley's comet flyby missions completed last spring raised more questions than were answered about the nature of comets. The next mission to a comet must be able to explore some of these questions. In the late 1990's, a spacecraft might be built to explore the hazardous area surrounding a comet nucleus. Rigorous pointing requirements for remote sensing instruments will place a considerable burden on their attendant control systems. To meet these requirements we have pursued the initial design and analysis of a multi-bodied comet explorer spacecraft. Sized so as to be built on-orbit after the space station is operational, the spacecraft is comprised of Orbit Replaceable Unit (ORU) subsystems, packaged into two major components: a three-axis controlled instrument platform and a spinning, detached comet dust shield. Such a configuration decouples the dynamics of dust impaction from the stringent pointing out requirements of the imaging experiments. At the same time, it offers an abundance of simple analysis problems that may be carried out by undergraduates. These problems include the following: Selection of subsystem components, sizing trade studies, investigation of three-axis and simple spin dynamics, design of simple control systems, orbit determination, and intercept trajectory generation. Additionally, such topics as proposal writing project management, human interfacing, and costing have been covered. A new approach to design teaching has been taken, whereby students will 'learn by teaching.' They are asked to decompose trade options into a set of 'if-then' rules, which then 'instruct' the Mechanically Intelligent Designer (MIND) expert design system

  11. Assessing the Impact of a Multi-Agency Project on Afghan Basic Education

    ERIC Educational Resources Information Center

    Zhao, Yijie; McNerney, Frank

    2006-01-01

    This study investigates the impact of activities done in the basic education sub-sector by a consortium of four non-government organizations in four provinces in Afghanistan from January 2004 to June 2005. The evaluation uses the project objectives and components as the evaluation framework, and data collected through survey questionnaires,…

  12. 78 FR 15929 - Agency Information Collection Activities: Proposed Collection; Comment Request-Impact of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... measure these effects, through a combination of qualitative and quantitative research consisting of... of SNAP applications. The study includes a quantitative research component involving the use of... for research on the impact of implementation of the Patient Protection and Affordable Care Act...

  13. Interplanetary charged particle models (1974). [and the effects of cosmic exposure upon spacecraft and spacecraft components

    NASA Technical Reports Server (NTRS)

    Divine, N.

    1975-01-01

    The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.

  14. NASA Now: EPOXI Flyby Spacecraft

    NASA Video Gallery

    Close Encounters of the Comet Kind: In this installment of NASA Now, you’ll meet spacecraft pilot and engineer Steven Wissler, who talks about the challenges of flying a spacecraft remotely from ...

  15. Light pollution modelling the UK Highways Agency new environmental policy, inc. astronomical impact of blue-rich LED luminaires.

    NASA Astrophysics Data System (ADS)

    Baddiley, Christopher James

    2015-08-01

    The Highways Agency are replacing their policy of full cut off class G6 road lighting specification on motorways (originally based on the author’s work), and are adopting a categorised environmental impact based point system that can accommodate technical advances, such as LED lighting. The Skyglow component of this will be based on the modelling of skyglow versus cut-off angle, developed for determining the relative light pollution environmental impact of different streetlight designs, by the author. Further modelling has been done concerning the effect of LED lighting, which potentially, has highly directional properties. But increasingly used blue rich colour temperatures may increase skyglow by 5 fold, compared to traditional lighting. This is due to enhanced reflection of vegetation and greatly increased atmospheric molecular Rayleigh scattering; a potential astronomical environmental disaster.Prior to this, the author carried out a dark sky survey of the Malvern Hills area of outstanding natural beauty (AONB), relating it to the same light pollution model. The results confirm the general predictions of the model and also clearly illustrate the relative significance of different designs of light sources at different distances, to the dark sky environment.The paper also briefly describes the results from the same model adapted to study the night-time environmental impact of a proposed very large sea based wind farm project in the English Channel, as a part of the planning process.

  16. Effects of arcing due to spacecraft charging on spacecraft survival

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Sanders, N. L.; Ellen, J. M., Jr.; Inouye, G. T.

    1978-01-01

    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized.

  17. The Impact of Educational Interventions on Organizational Culture at an Urban Federal Agency. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Mckenzie, Janet Myrick

    1994-01-01

    This study on the impact of educational interventions on organizational culture is an evaluation of a major educational initiative undertaken by an urban federal agency, namely the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC). The design of this educational evaluation captures the essence of NASA-LaRC's efforts to continue its distinguished and international stature in the aeronautical research community following the Challenger tragedy. More specifically, this study is an evaluation of the educational initiative designed to ameliorate organizational culture via educational interventions, with emphasis on communications, rewards and recognition, and career development. After completing a review of the related literature, chronicling the educational initiative, interviewing senior managers and employees, and critically examining thousands of free responses on employee perceptions of organizational culture, it is found that previous definitions of organizational culture are more accurately classified as manifestations of organizational culture. This research has endeared to redefine 'organizational culture' by offering a more accurate and diagnostic perspective.

  18. Coordination challenges for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Clement, B. J.; Barrett, A.

    2002-01-01

    While past flight projects involved a single spacecraft in isolation, over forty proposed future missions involve multiple coordinated spacecraft. This paper presents characteristics of such missions in terms of properties of the phenomena being measured as well as the rationale for using multiple spacecraft. We describe the coordination problems associated with operating these missions and identify needed technologies.

  19. Radiation Environment Inside Spacecraft

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick

    2015-01-01

    Dr. Patrick O'Neill, NASA Johnson Space Center, will present a detailed description of the radiation environment inside spacecraft. The free space (outside) solar and galactic cosmic ray and trapped Van Allen belt proton spectra are significantly modified as these ions propagate through various thicknesses of spacecraft structure and shielding material. In addition to energy loss, secondary ions are created as the ions interact with the structure materials. Nuclear interaction codes (FLUKA, GEANT4, HZTRAN, MCNPX, CEM03, and PHITS) transport free space spectra through different thicknesses of various materials. These "inside" energy spectra are then converted to Linear Energy Transfer (LET) spectra and dose rate - that's what's needed by electronics systems designers. Model predictions are compared to radiation measurements made by instruments such as the Intra-Vehicular Charged Particle Directional Spectrometer (IV-CPDS) used inside the Space Station, Orion, and Space Shuttle.

  20. Spacecraft crew escape

    NASA Astrophysics Data System (ADS)

    Miller, B. A.

    Safe crew escape from spacecraft is extremely difficult to engineer and has large cost and vehicle payload penalties. Because of these factors calculated risks have apparently been taken and only the most rudimentary means of crew protecion have been provided for space programs. Although designed for maximum reliability and safety a calculated risk is taken that on-balance it is more acceptable to risk the loss of possibly some or all occupants than introduce the mass, cost and complexity of an escape system. This philosophy was accepted until the Challenger tragedy. It is now clear that the use of this previously acceptable logic is invalid and that provisions must be made for spacecraft crew escape in the event of a catastrophic accident. This paper reviews the funded studies and subsequent proposals undertaken by Martin-Baker for the use of both encapsullated and open ejection seats for the Hermes Spaceplane. The technical difficulties, special innovations and future applications are also discussed.

  1. LEO Spacecraft Charging Guidelines

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, D. C.

    2002-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, has commissioned and funded a design guidelines document intended to capture the current state of understanding. We present here an overview of this document, which is now nearing completion.

  2. Spacecraft transmitter reliability

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A workshop on spacecraft transmitter reliability was held at the NASA Lewis Research Center on September 25 and 26, 1979, to discuss present knowledge and to plan future research areas. Since formal papers were not submitted, this synopsis was derived from audio tapes of the workshop. The following subjects were covered: users' experience with space transmitters; cathodes; power supplies and interfaces; and specifications and quality assurance. A panel discussion ended the workshop.

  3. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  4. Solar array/spacecraft biasing

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1981-01-01

    Biasing techniques and their application to the control of spacecraft potential is discussed. Normally when a spacecraft is operated with ion thrusters, the spacecraft will be 10-20 volts negative of the surrounding plasma. This will affect scientific measurements and will allow ions from the charge-exchange plasma to bombard the spacecraft surfaces with a few tens of volts of energy. This condition may not be tolerable. A proper bias system is described that can bring the spacecraft to or near the potential of the surrounding plasma.

  5. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  6. Proceedings of the Spacecraft Charging Technology Conference

    NASA Technical Reports Server (NTRS)

    Pike, C. P. (Editor); Lovell, R. R. (Editor)

    1977-01-01

    Over 50 papers from the spacecraft charging conference are included on subjects such as: (1) geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, and (5) satellite design and test.

  7. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  8. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  9. Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the UK's Food & Environment Research Agency 2012 experiment.

    PubMed

    Goulson, Dave

    2015-01-01

    The causes of bee declines remain hotly debated, particularly the contribution of neonicotinoid insecticides. In 2013 the UK's Food & Environment Research Agency made public a study of the impacts of exposure of bumblebee colonies to neonicotinoids. The study concluded that there was no clear relationship between colony performance and pesticide exposure, and the study was subsequently cited by the UK government in a policy paper in support of their vote against a proposed moratorium on some uses of neonicotinoids. Here I present a simple re-analysis of this data set. It demonstrates that these data in fact do show a negative relationship between both colony growth and queen production and the levels of neonicotinoids in the food stores collected by the bees. Indeed, this is the first study describing substantial negative impacts of neonicotinoids on colony performance of any bee species with free-flying bees in a field realistic situation where pesticide exposure is provided only as part of normal farming practices. It strongly suggests that wild bumblebee colonies in farmland can be expected to be adversely affected by exposure to neonicotinoids.

  10. Demonstration of Spacecraft Fire Safety Technology

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2012-01-01

    During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.

  11. An Assessment of Environmental Health Needs for Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel V.

    2013-01-01

    Environmental health fundamentally addresses the physical, chemical, and biological risks external to the human body that can impact the health of a person by assessing and controlling these risks in order to generate and maintain a health-supportive environment. Environmental monitoring coupled with other measures including active and passive controls and the implementation of environmental standards (SMACs, SWEGs, microbial and acoustics limits) are used to ensure environmental health in manned spacecraft. NASA scientists and engineers consider environmental monitoring a vital component to an environmental health management strategy for maintaining a healthy crew and achieving mission success. Environmental monitoring data confirms the health of ECLS systems, in addition to contributing to the management of the health of human systems. Crew health risks associated with the environment were reviewed by agency experts with the goal of determining risk-based environmental monitoring needs for future NASA manned missions. Once determined, gaps in knowledge and technology, required to address those risks, were identified for various types of Exploration missions. This agency-wide assessment of environmental health needs will help guide the activities/hardware development efforts to close those gaps and advance the knowledge required to meet NASA manned space exploration objectives. Details of this assessment and findings are presented in this paper.

  12. Evaluating the Impact of the Healthy Beverage Executive Order for City Agencies in Boston, Massachusetts, 2011–2013

    PubMed Central

    Kenney, Erica L.; McHugh, Anne; Conley, Lisa; Mozaffarian, Rebecca S.; Reiner, Jennifer F.; Gortmaker, Steven L.

    2015-01-01

    Introduction Intake of sugar-sweetened beverages (SSBs) is associated with negative health effects. Access to healthy beverages may be promoted by policies such as the Healthy Beverage Executive Order (HBEO) established by former Boston mayor Thomas M. Menino, which directed city departments to eliminate the sale of SSBs on city property. Implementation consisted of “traffic-light signage” and educational materials at point of purchase. This study evaluates the impact of the HBEO on changes in beverage availability. Methods Researchers collected data on price, brand, and size of beverages for sale in spring 2011 (899 beverage slots) and for sale in spring 2013, two years after HBEO implementation (836 beverage slots) at access points (n = 31) at city agency locations in Boston. Nutrient data, including calories and sugar content, from manufacturer websites were used to determine HBEO beverage traffic-light classification category. We used paired t tests to examine change in average calories and sugar content of beverages and the proportion of beverages by traffic-light classification at access points before and after HBEO implementation. Results Average beverage sugar grams and calories at access points decreased (sugar, −13.1 g; calories, −48.6 kcal; p<.001) following the implementation of the HBEO. The average proportion of high-sugar (“red”) beverages available per access point declined (−27.8%, p<.001). Beverage prices did not change over time. City agencies were significantly more likely to sell only low-sugar beverages after the HBEO was implemented (OR = 4.88; 95% CI, 1.49–16.0). Discussion Policies such as the HBEO can promote community-wide changes that make healthier beverage options more accessible on city-owned properties. PMID:26355828

  13. Xenia Spacecraft Study

    NASA Technical Reports Server (NTRS)

    Hopkins, Randy

    2009-01-01

    This slide presentation reviews the proposed design for the Xenia mission spacecraft. The goal of this study is to perform a mission concept study for the mission. Included in this study are: the overall ground rules and assumptions (GR&A), a mission analysis, the configuration, the mass properties, the guidance, Navigation and control, the proposed avionics, the power system, the thermal protection system, the propulsion system, and the proposed structures. Conclusions from the study indicate that the observatory fits within the Falcon 9 mass and volume envelope for launching from Omelek, the pointing, slow slewing, and fast slewing requirements and the thermal requirements are met.

  14. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  15. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  16. Furlable spacecraft antenna development

    NASA Technical Reports Server (NTRS)

    Oliver, R. E.; Wilson, A. H.

    1972-01-01

    The development of large furlable spacecraft antennas using conical main reflectors is described. Two basic antenna configurations which utilize conical main reflectors have been conceived and are under development. In the conical-Gregorian configuration each ray experiences two reflections in traveling from the feed center to the aperture plane. In the Quadreflex (four reflection) configuration, each ray experiences four reflections, one at each of two subreflector surfaces and two at the main conical reflector surface. The RF gain measurements obtained from 6-ft and 30-in. models of the conical-Gregorian and Quadreflex concepts respectively were sufficiently encouraging to warrant further development of the concepts.

  17. Gimballing Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim; Bossard, John

    2010-01-01

    A gimballing spacecraft reaction-control-system thruster was developed that consists of a small hydrogen/oxygen-burning rocket engine integrated with a Canfield joint. (Named after its inventor, a Canfield joint is a special gimbal mount that is strong and stable yet allows a wide range of motion.) One especially notable aspect of the design of this thruster is integration, into both the stationary legs and the moving arms of the Canfield joint, of the passages through which the hydrogen and oxygen flow to the engine. The thruster was assembled and subjected to tests in which the engine was successfully fired both with and without motion in the Canfield joint.

  18. Cluster Inter-Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    2008-01-01

    A document describes a radio communication system being developed for exchanging data and sharing data-processing capabilities among spacecraft flying in formation. The system would establish a high-speed, low-latency, deterministic loop communication path connecting all the spacecraft in a cluster. The system would be a wireless version of a ring bus that complies with the Institute of Electrical and Electronics Engineers (IEEE) standard 1393 (which pertains to a spaceborne fiber-optic data bus enhancement to the IEEE standard developed at NASA's Jet Propulsion Laboratory). Every spacecraft in the cluster would be equipped with a ring-bus radio transceiver. The identity of a spacecraft would be established upon connection into the ring bus, and the spacecraft could be at any location in the ring communication sequence. In the event of failure of a spacecraft, the ring bus would reconfigure itself, bypassing a failed spacecraft. Similarly, the ring bus would reconfigure itself to accommodate a spacecraft newly added to the cluster or newly enabled or re-enabled. Thus, the ring bus would be scalable and robust. Reliability could be increased by launching, into the cluster, spare spacecraft to be activated in the event of failure of other spacecraft.

  19. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    NASA Technical Reports Server (NTRS)

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  20. Space Weather Effects on Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.

  1. NASA's spacecraft data system

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Flanegan, Mark

    1993-01-01

    The NASA Small Explorer Data System (SEDS), a space flight data system developed to support the Small Explorer (SMEX) project, is addressed. The system was flown on the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX) SMEX mission, and with reconfiguration for different requirements will fly on the X-ray Timing Explorer (XTE) and the Tropical Rainfall Measuring Mission (TRMM). SEDS is also foreseen for the Hubble repair mission. Its name was changed to Spacecraft Data System (SDS) in view of expansions. Objectives, SDS hardware, and software are described. Each SDS box contains two computers, data storage memory, uplink (command) reception circuitry, downlink (telemetry) encoding circuitry, Instrument Telemetry Controller (ITC), and spacecraft timing circuitry. The SDS communicates with other subsystems over the MIL-STD-1773 data bus. The SDS software uses a real time Operating System (OS) and the C language. The OS layer, communications and scheduling layer, application task layer, and diagnostic software, are described. Decisions on the use of advanced technologies, such as ASIC's (Application Specific Integrated Circuits) and fiber optics, led to technical improvements, such as lower power and weight, without increasing the risk associated with the data system. The result was a successful SAMPEX development, integration and test, and mission using SEDS, and the upgrading of that system to SDS for TRMM and XTE.

  2. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  3. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  4. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  5. Space power systems - 'Spacecraft 2000'

    NASA Technical Reports Server (NTRS)

    Faymon, K. A.

    1985-01-01

    The program 'Spacecraft 2000' has the objective to identify critical, high-payoff, potential spacecraft technologies, taking into account the formulation, advocation, and the management of the requisite technology development programs. This program represents a joint NASA-industry program. The technology areas addressed by 'Spacecraft 2000' are related to spacecraft power/energy storage, thermal control/thermal management, power management and distribution, autonomous operation-control, on-board system integration, spacecraft environmental interactions, secondary propulsion, communications technologies, a total system response approach, and system-subsystem technology verification. The expected benefits of a development of advanced technologies include decreased spacecraft bus system weights, decreased mission costs, increased reliability/lifetimes, and increased operational flexibility.

  6. NEAR spacecraft flight system performance

    NASA Astrophysics Data System (ADS)

    Santo, Andrew G.

    2002-01-01

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft was built and launched in 29 months. After a 4-year cruise phase the spacecraft was in orbit about the asteroid Eros for 1 year, which enabled the science payload to return unprecedented scientific data. A summary of spacecraft in-flight-performance, including a discussion of the December 1998 aborted orbit insertion burn, is provided. Several minor hardware failures that occurred during the last few years of operations are described. Lessons learned during the cruise phase led to new features being incorporated into several in-flight software uploads. The added innovative features included the capability for the spacecraft to autonomously choose a spacecraft attitude that simultaneously kept the medium-gain antennas pointed at Earth while using solar pressure to control system momentum and a capability to combine a propulsive momentum dump with a trajectory correction maneuver. The spacecraft proved flexible, reliable, and resilient over the 5-year mission.

  7. Impact of Federal Legislation and Policy on VR Services for Consumers Who Are Deaf or Hard of Hearing: Perspectives of Agency Administrators and Program Specialists

    ERIC Educational Resources Information Center

    Anderson, Glenn B.; Boone, Steven E.; Watson, Douglas

    2003-01-01

    The authors report on a national survey of administrators and program specialists at 43 state vocational rehabilitation (VR) agencies concerning the impact of federal employment legislation and rehabilitation policies on the provision of services to consumers who are deaf or hard of hearing. The article focuses on 5 initiatives enacted to enhance…

  8. On the Role of Impact Evaluation of Quality Assurance from the Strategic Perspective of Quality Assurance Agencies in the European Higher Education Area

    ERIC Educational Resources Information Center

    Damian, Radu; Grifoll, Josep; Rigbers, Anke

    2015-01-01

    In this paper the current national legislations, the quality assurance approaches and the activities of impact analysis of three quality assurance agencies from Romania, Spain and Germany are described from a strategic perspective. The analysis shows that the general methodologies (comprising, for example, self-evaluation reports, peer reviews,…

  9. The Impact of Child-Care Subsidies on Child Development: Evidence from Geographic Variation in the Distance to Social Service Agencies

    ERIC Educational Resources Information Center

    Herbst, Chris M.; Tekin, Erdal

    2016-01-01

    In this paper, we examine the impact of U.S. child-care subsidies on the cognitive and behavioral development of children in low-income female-headed families. We identify the effect of subsidy receipt by exploiting geographic variation in the distance that families must travel from home to reach the nearest social service agency that administers…

  10. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  11. Spacecraft telecommunications system mass estimates

    NASA Astrophysics Data System (ADS)

    Yuen, J. H.; Sakamoto, L. L.

    1988-02-01

    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager.

  12. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  13. Measured Spacecraft Dynamic Effects on Atmospheric Science Instruments

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Gell, David A.; Lay, Richard R.

    1997-01-01

    On September 1991, NASA launched the Upper Atmosphere Research Satellite. In addition to its atmospheric science mission, spacecraft dynamic effects on science measurements were analyzed. The investigation included two in-flight experiments to determine how each on-board instrument, subsystem and environmental disturbance contributed to the spacecraft dynamic response and how these disturbances affected science measurements. Three case studies are presented which show the impact of spacecraft dynamic response on science measurements. In the first case, correlation of independent atmospheric meridional wind measurements taken by two instruments with the spacecraft dynamic response demonstrated that excessive vibration (exceeding instrument pointing requirements) resulted in wind measurement disagreement. In the second case, solar array disturbances produced a spacecraft response signature on radiometer measurements. The signature explicitly demonstrated that if an instrument has sufficient spatial and temporal resolution, spacecraft dynamic response could impact measurements. In the final case, correlation of an instrument's fine sun sensor data and CO2 measurements demonstrated the effect of temporal and spatial sampling resolution and active pointing control on science measurements. The sun sensor had a frequency modulated characteristic due to spacecraft vibration and the periodic scanning of another instrument which was not present on the CO2 measurements.

  14. Spacecraft formation flying: Dynamics, control and navigation

    NASA Astrophysics Data System (ADS)

    Alfriend, Kyle Terry; Vadali, Srinivas Rao; Gurfil, Pini; How, Jonathan; Breger, Louis S.

    2009-12-01

    Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects - large unmanned and manned satellites (including the present International Space Station) - can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics.

  15. N° 28-1998: SOHO spacecraft contacted

    NASA Astrophysics Data System (ADS)

    Contact has been re-established with the ESA/NASA Solar and Heliospheric Observatory (SOHO) following six weeks of silence. Signals sent yesterday through the NASA Deep Space Network (DSN) station at Canberra, Australia, were answered at 22:51 GMT in the form of bursts of signal lasting from 2 to 10 seconds. These signals were recorded both by the NASA DSN station and the ESA Perth station. Contact is being maintained through the NASA DSN stations at Goldstone (California), Canberra and Madrid (Spain). Although the signals are intermittent and do not contain any data information, they show that the spacecraft is still capable of receiving and responding to ground commands. The slow process of regaining control of the spacecraft and restoring it to an operational attitude will commence immediately, with attempts to initiate data transmissions in order to perform an initial assessment of the spacecraft on-board conditions. Radio contact with SOHO, a joint mission of the European Space Agency and NASA, was interrupted on 25 June (see ESA press releases N°24,25 and 26-98). More information on SOHO, including mission status reports is available on the Internet at http://sohowww.estec.esa.nl or via the new ESA science website: http://sci.esa.int

  16. Magnetic bearings for spacecraft

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1972-01-01

    Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.

  17. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  18. Spacecraft stability and control

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Today, satellite stability and control has become a higher priority. For a satellite design that is to have a life expectancy of 14 years, appropriate spacecraft flight control systems will be reviewed, stability requirements investigated, and an appropriate flight control system recommended in order to see the design process. Disturbance torques, including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques, will be assessed to quantify the disturbance environment so that the required compensating torques can be determined. The control torques, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, inertia augmentation techniques, three-axis control, and reaction control systems (RCSs), will be considered. Conditions for stability will also be considered.

  19. Spacecraft Attitude Representations

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1999-01-01

    The direction cosine matrix or attitude matrix is the most fundamental representation of the attitude, but it is very inefficient: It has six redundant parameters, it is difficult to enforce the six (orthogonality) constraints. the four-component quaternion representation is very convenient: it has only one redundant parameter, it is easy to enforce the normalization constraint, the attitude matrix is a homogeneous quadratic function of q, quaternion kinematics are bilinear in q and m. Euler angles are extensively used: they often have a physical interpretation, they provide a natural description of some spacecraft motions (COBE, MAP), but kinematics and attitude matrix involve trigonometric functions, "gimbal lock" for certain values of the angles. Other minimum (three-parameter) representations: Gibbs vector is infinite for 180 deg rotations, but useful for analysis, Modified Rodrigues Parameters are nonsingular, no trig functions, Rotation vector phi is nonsingular, but requires trig functions.

  20. Microbiological Contamination of Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Bruce, R. J.; Groves, T. O.; Novikova, N. D.; Viktorov, A. N.

    2000-01-01

    The International Space Station (ISS) Phase1 Program resulted in seven US astronauts residing aboard the Russian Space Station Mir between March 1995 and May 1998. Collaboration between U.S. and Russian scientists consisted of collection and analyses of samples from the crewmembers and the Mir and Shuttle environments before, during, and after missions that lasted from 75 to 209 days in duration. The effects of long-duration space flight on the microbial characteristics of closed life support systems and the interactions of microbes with the spacecraft environment and crewmembers were investigated. Air samples were collected using a Russian or U.S.-supplied sampler (SAS, RCS, or Burkard,) while surface samples were collected using contact slides (Hycon) or swabs. Mir recycled condensate and stored potable water sources were analyzed using the U.S.-supplied Water Experiment Kit. In-flight analysis consisted of enumeration of levels of bacteria and fungi. Amounts of microorganisms seen in the air and on surfaces were mostly within acceptability lin1its; observed temporal fluctuations in levels of microbes probably reflect changes in environmental conditions (e.g., humidity). All Mir galley hot water samples were within the standards set for Mir and the ISS. Microbial isolates were returned to Earth for identification of bacterial and fungal isolates. Crew samples (nose, throat, skin, urine, and feces) were analyzed using methods approved for the medical evaluations of Shuttle flight crews. No significant changes in crew microbiota were found during space flight or upon return relative to preflight results. Dissemination of microbes between the crew and environment was demonstrated by D A fingerprinting. Some biodegradation of spacecraft materials was observed. Accumulation of condensate allowed for the recovery of a wide range of bacteria and fungi as well as some protozoa and dust mites.

  1. Estimating the Reliability of a Crewed Spacecraft

    NASA Astrophysics Data System (ADS)

    Lutomski, M. G.; Garza, J.

    2012-01-01

    Now that the Space Shuttle Program has been retired, the Russian Soyuz Launcher and Soyuz Spacecraft are the only means for crew transportation to and from the International Space Station (ISS). Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? How do you estimate the reliability of such a crewed spacecraft? The recent loss of the 44 Progress resupply flight to the ISS has put these questions front and center. The Soyuz launcher has been in operation for over 40 years. There have been only two Loss of Crew (LOC) incidents and two Loss of Mission (LOM) incidents involving crew missions. Given that the most recent crewed Soyuz launcher incident took place in 1983, how do we determine current reliability of such a system? How do all of the failures of unmanned Soyuz family launchers such as the 44P impact the reliability of the currently operational crewed launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? In addition NASA has begun development of the Orion or Multi-Purpose Crewed Vehicle as well as started an initiative to purchase Commercial Crew services from private firms. The reliability targets are currently several times higher than the last Shuttle reliability estimate. Can these targets be compared to the reliability of the Soyuz arguably the highest reliable crewed spacecraft and launcher in the world to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz launcher/spacecraft system over its mission to give a benchmark for other human spaceflight vehicles and their missions. Specifically this paper will look at estimating the Loss of Mission (LOM) and Loss of Crew (LOC) probability for an ISS crewed Soyuz launcher/spacecraft mission using historical data, reliability growth, and Probabilistic Risk Assessment (PRA) techniques.

  2. The Galeleo spacecraft magnetometer boom

    NASA Technical Reports Server (NTRS)

    Packard, D. T.; Benton, M. D.

    1985-01-01

    The Galileo spacecraft utilizes a deployable lattice boom to position three science instruments at remote distances from the spacecraft body. An improved structure and mechanism to precisely control deployment of the boom, and the unique deployment of an outer protective cover are described.

  3. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  4. Cassini Spacecraft in a JPL Assembly Room

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On October of 1997, a two-story-tall robotic spacecraft will begin a journey of many years to reach and explore the exciting realm of Saturn, the most distant planet that can easily be seen by the unaided human eye. In addition to Saturn's interesting atmosphere and interior, its vast system contains the most spectacular of the four planetary ring systems, numerous icy satellites with a variety of unique surface features. A huge magnetosphere teeming with particles that interact with the rings and moons, and the intriguing moon Titan, which is slightly larger than the planet Mercury, and whose hazy atmosphere is denser than that of Earth, make Saturn a fascinating planet to study.

    The Cassini mission is an international venture involving NASA, the European Space Agency (ESA), the Italian Space Agency (ASI), and several separate European academic and industrial partners. The mission is managed for NASA by JPL. The spacecraft will carry a sophisticated complement of scientific sensors to support 27 different investigations to probe the mysteries of the Saturn system. The large spacecraft will consist of an orbiter and ESA's Huygens Titan probe. The orbiter mass at launch will be nearly 5300 kg, over half of which is propellant for trajectory control. The mass of the Titan probe (2.7 m diameter) is roughly 350 kg.

    The mission is named in honor of the seventeenth-century, French-Italian astronomer Jean Dominique Cassini, who discovered the prominent gap in Saturn's main rings, as well as the icy moons Iapetus, Rhea, Dione, and Tethys. The ESA Titan probe is named in honor of the exceptional Dutch scientist Christiaan Huygens, who discovered Titan in 1655, followed in 1659 by his announcement that the strange Saturn 'moons' seen by Galileo in 1610 were actually a ring system surrounding the planet. Huygens was also famous for his invention of the pendulum clock, the first accurate timekeeping device.

  5. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  6. Fault tolerant control of spacecraft

    NASA Astrophysics Data System (ADS)

    Godard

    Autonomous multiple spacecraft formation flying space missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory of nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

  7. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  8. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  9. Research on advanced spacecraft

    NASA Astrophysics Data System (ADS)

    Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka

    1992-08-01

    Engineering test satellite systems to validate element technologies required for spacecraft composing advanced space infrastructures are studied. Case studies are conducted on element technologies for diversified manned space technology and the outline of the engineering test satellite systems is demonstrated. Debris observing systems, their debris collection and retrieval methods which are being reviewed in many countries are examined. Technical problems are picked up, and the fundamental concept of experiment satellites is determined. Missions deemed to be suitable for micro-satellites and various civil on-ground technologies focusing on electronic technology applicable to them are picked up. Functions of extravehicular operation systems required by the missions, and fundamental concept of the systems and subsystems are made clear. Missions to which artificial gravity experiment satellites that are effective are examined and preparatory review is conducted on artificial gravity generation methods, methods to retrieve experiment equipment and samples, and outline of the satellite systems. Technical problems of engineering test satellites to validate on-orbit cryogenic propellant storage and transportation technologies are picked up and the fundamental concept of the satellites are determined. A review is conducted on electrical propulsion Orbit Transfer Vehicle (OTV) technology satellite to validate fundamental technology for large electrical propulsion engine and electrical propulsion engine OTV operation technology, and to pick up problems on the orbit of electrical propulsion OTV.

  10. Spacecraft Escape Capsule

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Charles, Dingell W.; Bufkin, Ann L.; Rodriggs, Liana M.; Peterson, Wayne; Cuthbert, Peter; Lee, David E.; Westhelle, Carlos

    2006-01-01

    A report discusses the Gumdrop capsule a conceptual spacecraft that would enable the crew to escape safely in the event of a major equipment failure at any time from launch through atmospheric re-entry. The scaleable Gumdrop capsule would comprise a command module (CM), a service module (SM), and a crew escape system (CES). The CM would contain a pressurized crew environment that would include avionic, life-support, thermal control, propulsive attitude control, and recovery systems. The SM would provide the primary propulsion and would also supply electrical power, life-support resources, and active thermal control to the CM. The CES would include a solid rocket motor, embedded within the SM, for pushing the CM away from the SM in the event of a critical thermal-protection-system failure or loss of control. The CM and SM would normally remain integrated with each other from launch through recovery, but could be separated using the CES, if necessary, to enable the safe recovery of the crew in the CM. The crew escape motor could be used, alternatively, as a redundant means of de-orbit propulsion for the CM in the event of a major system failure in the SM.

  11. Analyzing Spacecraft Telecommunication Systems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  12. Hydrazine monitoring in spacecraft

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Beck, S. W.; Limero, T. F.; James, J. T.

    1992-01-01

    Hydrazine (HZ) and monomethyl hydrazine (MMH) are highly toxic compounds used as fuels in the Space Shuttle Orbiter Main Engines and in its maneuvering and reaction control system. Satellite refueling during a mission may also result in release of hydrazines. During extravehicular activities, the potential exists for hydrazines to contaminate the suit and to be brought into the internal atmosphere inadvertantly. Because of the high toxicity of hydrazines, a very sensitive, reliable, interference-free, and real-time method of measurement is required. A portable ion mobility spectrometer (IMS) has exhibited a low ppb detection limit for hydrazines suggesting a promising technology for the detection of hydrazines in spacecraft air. The Hydrazine Monitor is a modified airborne vapor monitor (AVM) with a custom-built datalogger. This off-the-shelf IMS was developed for the detection of chemical warfare agents on the battlefield. After early evaluations of the AVM for hydrazine measurements showed a serious interference from ammonia, the AVM was modified to measure HZ and MMH in the ppb concentration range without interference from ammonia in the low ppm range. A description of the Hydrazine Monitor and how it functions is presented.

  13. Spectra and spacecraft

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  14. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  15. GLAS Spacecraft Pointing Study

    NASA Technical Reports Server (NTRS)

    Born, George H.; Gold, Kenn; Ondrey, Michael; Kubitschek, Dan; Axelrad, Penina; Komjathy, Attila

    1998-01-01

    Science requirements for the GLAS mission demand that the laser altimeter be pointed to within 50 m of the location of the previous repeat ground track. The satellite will be flown in a repeat orbit of 182 days. Operationally, the required pointing information will be determined on the ground using the nominal ground track, to which pointing is desired, and the current propagated orbit of the satellite as inputs to the roll computation algorithm developed by CCAR. The roll profile will be used to generate a set of fit coefficients which can be uploaded on a daily basis and used by the on-board attitude control system. In addition, an algorithm has been developed for computation of the associated command quaternions which will be necessary when pointing at targets of opportunity. It may be desirable in the future to perform the roll calculation in an autonomous real-time mode on-board the spacecraft. GPS can provide near real-time tracking of the satellite, and the nominal ground track can be stored in the on-board computer. It will be necessary to choose the spacing of this nominal ground track to meet storage requirements in the on-board environment. Several methods for generating the roll profile from a sparse reference ground track are presented.

  16. Empirical models for spacecraft damage from orbital debris penetration and effects on spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Williamsen, Joel; Schonberg, William

    1997-01-01

    Semi-empirical models of hole diameter and tip-to-tip crack length for different multi-wall shielding systems currently under development for the International Space Station are presented. These equations were developed using light gas gun test data at impact velocities of 6.5 km/s and inhibited shaped charge test data for an impact velocity of 11.3 km/s. These models are incorporated into a survivability analysis using the manned spacecraft crew survivability computer code to determine whether or not module unzipping or crew incapacitation would occur under a specific set of impact conditions.

  17. Spacecraft power system architecture to mitigate spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Manner, David B. (Inventor)

    1997-01-01

    A power system architecture for a spacecraft and a method of a power supply for a spacecraft are presented which take advantage of the reduced plasma interaction associated with positive ground high voltage photovoltaic arrays and provide a negative ground power supply for electrical loads of the spacecraft. They efficiently convert and regulate power to the load bus and reduce power system mass and complexity. The system and method ground the positive terminal of the solar arrays to the spacecraft hull, and using a power converter to invert the electric sign, permit a negative ground for the electrical distribution bus and electrical components. A number of variations including a load management system and a battery management system having charging and recharging devices are presented.

  18. TTEthernet for Integrated Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  19. The Health Deviation of Post-Breast Cancer Lymphedema: Symptom Assessment and Impact on Self-Care Agency.

    PubMed

    Armer, Jane M; Henggeler, Mary H; Brooks, Constance W; Zagar, Eris A; Homan, Sherri; Stewart, Bob R

    2008-01-01

    Breast cancer is the leading cancer among women world-wide, affecting 1 of 8 women during their lifetimes. In the US alone, some 2 million breast cancer survivors comprise 20% of all cancer survivors. Conservatively, it is estimated that some 20-40% of all breast cancer survivors will develop the health deviation of lymphedema or treatment-related limb swelling over their lifetimes. This chronic accumulation of protein-rich fluid predisposes to infection, leads to difficulties in fitting clothing and carrying out activities of daily living, and impacts self-esteem, self-concept, and quality of life. Lymphedema is associated with self-care deficits (SCD) and negatively impacts self-care agency (SCA) and physiological and psychosocial well-being. Objectives of this report are two-fold: (1) to explore four approaches of assessing and diagnosing breast cancer lymphedema, including self-report of symptoms and the impact of health deviations on SCA; and (2) to propose the development of a clinical research program for lymphedema based on the concepts of Self-Care Deficit Nursing Theory (SCDNT). Anthropometric and symptom data from a National-Institutes-of-Health-funded prospective longitudinal study were examined using survival analysis to compare four definitions of lymphedema over 24 months post-breast cancer surgery among 140 of 300 participants (all who had passed the 24-month measurement). The four definitions included differences of 200 ml, 10% volume, and 2 cm circumference between pre-op baseline and/or contralateral limbs, and symptom self-report of limb heaviness and swelling. Symptoms, SCA, and SCD were assessed by interviews using a validated tool. Estimates of lymphedema occurrence varied by definition and time since surgery. The 2 cm girth change provided the highest estimation of lymphedema (82% at 24 months), followed by 200 ml volume change (57% at 24 months). The 10% limb volume change converged with symptom report of heaviness and swelling at 24 months

  20. The Health Deviation of Post-Breast Cancer Lymphedema: Symptom Assessment and Impact on Self-Care Agency

    PubMed Central

    Armer, Jane M.; Henggeler, Mary H; Brooks, Constance W.; Zagar, Eris A.; Homan, Sherri; Stewart, Bob R.

    2010-01-01

    Breast cancer is the leading cancer among women world-wide, affecting 1 of 8 women during their lifetimes. In the US alone, some 2 million breast cancer survivors comprise 20% of all cancer survivors. Conservatively, it is estimated that some 20-40% of all breast cancer survivors will develop the health deviation of lymphedema or treatment-related limb swelling over their lifetimes. This chronic accumulation of protein-rich fluid predisposes to infection, leads to difficulties in fitting clothing and carrying out activities of daily living, and impacts self-esteem, self-concept, and quality of life. Lymphedema is associated with self-care deficits (SCD) and negatively impacts self-care agency (SCA) and physiological and psychosocial well-being. Objectives of this report are two-fold: (1) to explore four approaches of assessing and diagnosing breast cancer lymphedema, including self-report of symptoms and the impact of health deviations on SCA; and (2) to propose the development of a clinical research program for lymphedema based on the concepts of Self-Care Deficit Nursing Theory (SCDNT). Anthropometric and symptom data from a National-Institutes-of-Health-funded prospective longitudinal study were examined using survival analysis to compare four definitions of lymphedema over 24 months post-breast cancer surgery among 140 of 300 participants (all who had passed the 24-month measurement). The four definitions included differences of 200 ml, 10% volume, and 2 cm circumference between pre-op baseline and/or contralateral limbs, and symptom self-report of limb heaviness and swelling. Symptoms, SCA, and SCD were assessed by interviews using a validated tool. Estimates of lymphedema occurrence varied by definition and time since surgery. The 2 cm girth change provided the highest estimation of lymphedema (82% at 24 months), followed by 200 ml volume change (57% at 24 months). The 10% limb volume change converged with symptom report of heaviness and swelling at 24 months

  1. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  2. Development of electrical test procedures for qualification of spacecraft against EID. Volume 2: Review and specification of test procedures

    NASA Technical Reports Server (NTRS)

    Wilkenfeld, J. M.; Harlacher, B. L.; Mathews, D.

    1982-01-01

    A combined experimental and analytical program to develop system electrical test procedures for the qualification of spacecraft against damage produced by space-electron-induced discharges (EID) occurring on spacecraft dielectric outer surfaces is described. A review and critical evaluation of possible approaches to qualify spacecraft against space electron-induced discharges (EID) is presented. A variety of possible schemes to simulate EID electromagnetic effects produced in spacecraft was studied. These techniques form the principal element of a provisional, recommended set of test procedures for the EID qualification spacecraft. Significant gaps in our knowledge about EID which impact the final specification of an electrical test to qualify spacecraft against EID are also identified.

  3. Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.

  4. Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.

    2000-01-01

    Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.

  5. Navigation of the EPOXI Spacecraft to Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Abrahamson, Matt; Chesley, Steven; Chung, Min-Kun; Halsell, Allen; Haw, Robert; Helfrich, Cliff; Jefferson, David; Kennedy, Brian; McElrath, Tim; Owen, William; Rush, Brian; Smith, Jonathon; Wang, Tseng-Chan; Yen, Chen-Wan

    2011-01-01

    On November 4, 2010, the EPOXI spacecraft flew by the comet Hartley 2, marking the fourth time that a NASA spacecraft successfully captured high resolution images of a cometary nucleus. EPOXI is the extended mission of the Deep Impact mission, which delivered an impactor on comet Tempel-1 on July 4, 2005. EPOXI officially started in September 2007 and eventually took over 3 years of flight time and had 3 Earth gravity assists to achieve the proper encounter conditions. In the process, the mission was redesigned to accommodate a new comet as the target and changes in the trajectory to achieve better imaging conditions at encounter. Challenges in navigation of the spacecraft included precision targeting of several Earth flybys and the comet encounter, uncertainties in determining the ephemeris of the comet relative to the spacecraft, and the high accuracy trajectory knowledge needed to image the comet during the encounter. This paper presents an overview of the navigation process used for the mission.

  6. Flexible Shields for Protecting Spacecraft Against Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Crews, Jeanne Lee

    2004-01-01

    A report presents the concept of Flexshield a class of versatile, lightweight, flexible shields for protecting spacecraft against impacts by small meteors and orbiting debris. The Flexshield concept incorporates elements of, but goes beyond, prior spacecraft-shielding concepts, including those of Whipple shields and, more recently, multi-shock shields and multi-shock blankets. A shield of the Flexshield type includes multiple outer layers (called bumpers in the art) made, variously, of advanced ceramic and/or polymeric fibers spaced apart from each other by a lightweight foam. As in prior such shields, the bumpers serve to shock an impinging hypervelocity particle, causing it to disintegrate vaporize, and spread out over a larger area so that it can be stopped by an innermost layer (back sheet). The flexibility of the fabric layers and compressibility of the foam make it possible to compress and fold the shield for transport, then deploy the shield for use. The shield can be attached to a spacecraft by use of snaps, hook-and-pile patches, or other devices. The shield can also contain multilayer insulation material, so that it provides some thermal protection in addition to mechanical protection.

  7. Simple Systems for Detecting Spacecraft Meteoroid Punctures

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.

    2004-01-01

    A report describes proposed systems to be installed in spacecraft to detect punctures by impinging meteoroids or debris. Relative to other systems that have been used for this purpose, the proposed systems would be simpler and more adaptable, and would demand less of astronauts attention and of spacecraft power and computing resources. The proposed systems would include a thin, hollow, hermetically sealed panel containing an inert fluid at a pressure above the spacecraft cabin pressure. A transducer would monitor the pressure in the panel. It is assumed that an impinging object that punctures the cabin at the location of the panel would also puncture the panel. Because the volume of the panel would be much smaller than that of the cabin, the panel would lose its elevated pressure much faster than the cabin would lose its lower pressure. The transducer would convert the rapid pressure drop to an electrical signal that could trigger an alarm. Hence, the system would provide an immediate indication of the approximate location of a small impact leak, possibly in time to take corrective action before a large loss of cabin pressure could occur.

  8. Science Goal Driven Observing and Spacecraft Autonomy

    NASA Technical Reports Server (NTRS)

    Koratkar, Amuradha; Grosvenor, Sandy; Jones, Jeremy; Wolf, Karl

    2002-01-01

    Spacecraft autonomy will be an integral part of mission operations in the coming decade. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will meet the science goals of a program, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the onboard software can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download a subset of observations at a reduced resolution, the spacecraft's overall efficiency will be dramatically increased. The science goal monitoring (SGM) system is a proof-of-concept effort to address the above challenge. The SGM will have an interface to help capture higher level science goals from the scientists and translate them into a flexible observing strategy that SGM can execute and monitor. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations.

  9. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  10. Spacecraft Environmental Interactions Technology, 1983

    NASA Technical Reports Server (NTRS)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  11. ISS Update: Dream Chaser Spacecraft

    NASA Video Gallery

    NASA Public Affairs Officer Michael Curie talks with Cheryl McPhillips, Commercial Crew Program Partner Manager for the Sierra Nevada Corporation, the company developing the Dream Chaser spacecraft...

  12. Gemini 9 spacecraft recovery operations

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Gemini 9-A spacecraft, with Astronauts Thomas Stafford and Eugene Cernan still inside, in water as the aircraft carrier U.S.S. Wasp, the recovery ship, comes alongside to recover the astronauts and their spaceship.

  13. Spacecraft attitude dynamics and control

    NASA Astrophysics Data System (ADS)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  14. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  15. Gravity Probe B spacecraft description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-11-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.

  16. Spacecraft external molecular contamination analysis

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1990-01-01

    Control of contamination on and around spacecraft is required to avoid adverse effects on the performance of instruments and spacecraft systems. Recent work in this area is reviewed and discussed. Specific issues and limitations to be considered as part of the effort to predict contamination effects using modeling techniques are addressed. Significant results of Space Shuttle missions in the field of molecule/surface interactions as well as their implications for space station design and operation are reviewed.

  17. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  18. PROBA-3, formation flying spacecraft implementing a giant coronagraph

    NASA Astrophysics Data System (ADS)

    Mestreau-Garreau, Agnès; Zender, Joe; Galano, Damien; Zhukov, Andrei; Servaye, Jean-Sébastein; Renotte, Étienne

    2015-04-01

    PROBA-3 is a space technology demonstration mission of the European Space Agency (ESA) devoted to precise formation flying. Precise formation flying will allow the two spacecraft flying with a fixed relative geometry to implement a giant structure-less instrument, in the case of Proba-3 a giant coronagraph. The two satellites will fly at a distance of about 150 meters during apogee of the High- Elliptical orbit with a relative position and attitude accuracy of the order of a few millimeters. The coronagraph, ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), aims to observe the solar corona from 1.08 to 3.0 solar radii in natural and polarized light and in some dedicated narrow passbands. The presentation will describe the mission scenario, give an overview of the two spacecraft implementing the coronagraph, and discuss the target scientific performance parameters.

  19. Software for Autonomous Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Bristow, John; Folta, Dave; Hawkins, Al; Dell, Greg

    2004-01-01

    The AutoCon computer programs facilitate and accelerate the planning and execution of orbital control maneuvers of spacecraft while analyzing and resolving mission constraints. AutoCon-F is executed aboard spacecraft, enabling the spacecraft to plan and execute maneuvers autonomously; AutoCon-G is designed for use on the ground. The AutoCon programs utilize advanced techniques of artificial intelligence, including those of fuzzy logic and natural-language scripting, to resolve multiple conflicting constraints and automatically plan maneuvers. These programs can be used to satisfy requirements for missions that involve orbits around the Earth, the Moon, or any planet, and are especially useful for missions in which there are requirements for frequent maneuvers and for resolution of complex conflicting constraints. During operations, the software targets new trajectories, places and sizes maneuvers, and controls spacecraft burns. AutoCon-G provides a userfriendly graphical interface, and can be used effectively by an analyst with minimal training. AutoCon-F reduces latency and supports multiple-spacecraft and formation-flying missions. The AutoCon architecture supports distributive processing, which can be critical for formation- control missions. AutoCon is completely object-oriented and can easily be enhanced by adding new objects and events. AutoCon-F was flight demonstrated onboard GSFC's EO-1 spacecraft flying in formation with Landsat-7.

  20. Intelligent spacecraft module

    NASA Astrophysics Data System (ADS)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  1. Community context and healthcare quality: the impact of community resources on licensing and accreditation of substance abuse treatment agencies.

    PubMed

    Archibald, Matthew E; Rankin, Caddie Putnam

    2013-10-01

    This study examines variation in healthcare quality among substance abuse treatment agencies. Using an organizations framework, the authors predict that resource advantages benefit certain types of healthcare organizations, especially those located in affluent communities. As a result, levels of licensing and accreditation of substance abuse treatment agencies will differ across United States counties. The authors model these resources at both the organizational and community levels in an effort to understand the variability of licensing and accreditation between agencies and their local contexts. In multivariate models, the findings confirm that organizational characteristics such as private ownership (compared to public ownership), managed care contracts, inpatient and residential programs (compared to outpatient settings), as well as socioeconomic, racial/ethnic, and healthcare system advantage promote higher levels of licensing and accreditation. Public ownership and outpatient settings, as well as socioeconomic, racial/ethnic, and healthcare system disadvantage, are associated with lower levels of licensing and accreditation.

  2. A global spacecraft control network for spacecraft autonomy research

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher A.

    1996-01-01

    The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.

  3. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  4. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  5. Extreme Spacecraft Charging in Polar Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Colson, A.; Minow, J. I.; Parker, L.

    2012-12-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (~10's kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from ~0.6 kV to ~2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  6. Examining the Structures that Impact English Language Learners' Agency in Urban High Schools: Resources and Roadblocks in the Classroom

    ERIC Educational Resources Information Center

    Wassell, Beth A.; Hawrylak, Maria Fernandez; LaVan, Sarah-Kate

    2010-01-01

    This qualitative study focused on the classroom experiences of 14 English Language Learners (ELL) students in urban high schools. The authors argue that specific structures within classrooms and schools affect ELL students' agency, or their ability to access and appropriate resources to meet their learning and social needs. Using a narrative…

  7. The Impact of Welfare State Regimes on Barriers to Participation in Adult Education: A Bounded Agency Model

    ERIC Educational Resources Information Center

    Rubenson, Kjell; Desjardins, Richard

    2009-01-01

    Quantitative and qualitative findings on barriers to participation in adult education are reviewed and some of the defining parameters that may explain observed national differences are considered. A theoretical perspective based on bounded agency is put forth to take account of the interaction between structurally and individually based barriers…

  8. Investigation on Improvements in Lightning Retest Criteria for Spacecraft

    NASA Technical Reports Server (NTRS)

    Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from a direct strike by launch the vehicle and ground structures, but protocols to evaluate the impact of nearby strikes are not consistent. Often spacecraft rely on the launch vehicle constraints to trigger a retest, but launch vehicles can typically evaluate the impact of a strike within minutes while spacecraft evaluation times can be on the order of hours or even days. For launches at the Kennedy Space Center where lightning activity is among the highest in the United States, this evaluation related delay could be costly with the possibility of missing the launch window altogether. This paper evaluated available data from local lightning measurements systems and computer simulations to predict the coupled effect from various nearby strikes onto a typical payload umbilical. Recommendations are provided to reduce the typical trigger criteria and costly delays.

  9. Lean spacecraft avionics trade study

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1994-01-01

    Spacecraft design is generally an exercise in design trade-offs: fuel vs. weight, power vs. solar cell area, radiation exposure vs. shield weight, etc. Proper analysis of these trades is critical in the development of lightweight, efficient, 'lean' satellites. The modification of the launch plans for the Magnetosphere Imager (MI) to a Taurus launcher from the much more powerful Delta has forced a reduction in spacecraft weight availability into the mission orbit from 1300 kg to less than 500 kg. With weight now a driving factor it is imperative that the satellite design be extremely efficient and lean. The accuracy of engineering trades now takes on an added importance. An understanding of spacecraft subsystem interactions is critical in the development of a good spacecraft design, yet it is a challenge to define these interactions while the design is immature. This is currently an issue in the development of the preliminary design of the MI. The interaction and interfaces between this spacecraft and the instruments it carries are currently unclear since the mission instruments are still under development. It is imperative, however, to define these interfaces so that avionics requirements ideally suited to the mission's needs can be determined.

  10. Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold

    2003-01-01

    A report proposes the use of cold hibernated elastic memory (CHEM) foam structures to cushion impacts of small (1 to 50 kg) exploratory spacecraft on remote planets. Airbags, which are used on larger (800 to 1,000 kg) spacecraft have been found to (1) be too complex for smaller spacecraft; (2) provide insufficient thermal insulation between spacecraft and ground; (3) bounce on impact, thereby making it difficult to land spacecraft in precisely designated positions; and (4) be too unstable to serve as platforms for scientific observations. A CHEM foam pad according to the proposal would have a glass-transition temperature (Tg) well above ambient temperature. It would be compacted, at a temperature above Tg, to about a tenth or less of its original volume, then cooled below Tg, then installed on a spacecraft without compacting restraints. Upon entry of the spacecraft into a planetary atmosphere, the temperature would rise above Tg, causing the pad to expand to its original volume and shape. As the spacecraft decelerated and cooled, the temperature would fall below Tg, rigidifying the foam structure. The structure would absorb kinetic energy during ground impact by inelastic crushing, thus protecting the payload from damaging shocks. Thereafter, this pad would serve as a mechanically stable, thermally insulating platform for the landed spacecraft.

  11. Message Mode Operations for Spacecraft: A Proposal for Operating Spacecraft During Cruise and Mitigating the Network Loading Crunch

    NASA Technical Reports Server (NTRS)

    Greenberg, Ed; MacMedan, Marv; Kazz, Greg; Kallemeyn, Pieter

    2000-01-01

    The NASA Deep Space Network (DSN) is a world-class spacecraft tracking facility with stations located in Spain, Australia and USA, servicing Deep Space Missions of many space agencies. The current system of scheduling spacecraft during cruise for multiple 8 hour tracking sessions per week currently leads to an overcommitted DSN. Studies indicate that future projected mission demands upon the Network will only make the loading problem worse. Therefore, a more efficient scheduling of DSN resources is necessary in order to support the additional network loading envisioned in the next few years: The number of missions is projected to increase from 25 in 1998 to 34 by 2001. In fact given the challenge of the NASA administrator, Dan Goldin, of launching 12 spacecraft per year, the DSN would be tracking approximately 90 spacecraft by 2010. Currently a large amount of antenna time and network resources are subscribed by a project in order to have their mission supported during the cruise phase. The recently completed Mars Pathfinder mission was tracked 3 times a week (8 hours/day) during the majority of its cruise to Mars. This paper proposes an innovative approach called Message Mode Operations (MMO) for mitigating the Network loading problem while continuing to meet the tracking, reporting, time management, and scheduling requirements of these missions during Cruise while occupying very short tracking times. MMO satisfies these requirements by providing the following services: Spacecraft Health and Welfare Monitoring Service Command Delivery Service Adaptive Spacecraft Scheduling Service Orbit Determination Service Time Calibration Service Utilizing more efficient engineering telemetry summarization and filtering techniques on-board the spacecraft and collapsing the navigation requirements for Doppler and Range into shorter tracks, we believe spacecraft can be adequately serviced using short 10 to 30 minute tracking sessions. This claim assumes that certain changes would

  12. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  13. Conductive spacecraft materials development program

    NASA Technical Reports Server (NTRS)

    Lehn, W. L.

    1977-01-01

    The objectives of this program are to provide design criteria, techniques, materials, and test methods to ensure control of absolute and differential charging of spacecraft surfaces. The control of absolute and differential charging of spacecraft cannot be effected without the development of new and improved or modified materials or techniques that will provide electrical continuity over the surface of the spacecraft. The materials' photoemission, secondary emission, thermooptical, physical, and electrical properties in the space vacuum environment both in the presence and absence of electrical stress and ultraviolet, electron, and particulate radiation, are important to the achievement of charge control. The materials must be stable or have predictable response to exposure to the space environment for long periods of time. The materials of interest include conductive polymers, paints, transparent films and coatings as well as fabric coating interweaves.

  14. Inner Heliospheric Sentinels Spacecraft Concept

    NASA Astrophysics Data System (ADS)

    Conde, R. F.; Potocki, K. A.; Szabo, A.; Kirby, K. W.; Maldonado, H. M.; Adamsen, P. B.; Bokulic, R. S.; Dakermanji, G.; Dellinger, W. F.; Downing, J. P.; Ercol, C. J.; Folta, D. C.; Fielhauer, K. B.; Kelley, J. S.; Le, B. Q.; Leary, B. A.; Lewis, W. S.; Ling, S. X.; Marr, G.; Malouf, P. M.; Napollilo, D. H.; Persons, D. F.; Troll, J. R.; Wallis, R. E.; Lin, R. P.

    2007-01-01

    The Sentinels mission is a key component of NASA's Living With a Star (LWS) program. The Sentinels Science and Technology Definition Team (STDT) has completed a study to define the science objectives, measurement requirements and observational strategies, and mission design for the Sentinels mission. The Inner Heliospheric Sentinels (IHS) are one of the three flight elements [the others are the Near Earth Sentinel and Far Side Sentinel] that make up the Sentinels mission. The four spin-stabilized IHS spacecraft are in elliptical heliocentric orbit with perihelia at ~0.25 AU and aphelia at ~0.75 AU. This orbit presents unique spacecraft thermal control and power challenges. This study has demonstrated mission feasibility by developing a spacecraft design concept using conventional technologies that satisfies the science and mission requirements defined by the Sentinels STDT.

  15. Fire safety applications for spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Olson, Sandra L.

    1989-01-01

    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.

  16. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  17. Differential spacecraft tracking by interferometry

    NASA Technical Reports Server (NTRS)

    Border, James S.; Folkner, William M.

    1990-01-01

    This study estimates measurement system errors for two space vehicles on the surface of Mars, and for two Mars orbiting spacecraft, which are being tracked by differential interferometry. In these examples, signals from all spacecraft lie within the same beamwidth of an earth-based radio antenna. The measurements of all spacecraft signals are made simultaneously; errors that scale with angular source separation or with temporal separation between measurement epochs are practically removed. It is shown that errors due to system thermal noise and to systematic effects within ground receiver electronics dominate, except for geometries when signals pass close to the sun, when solar plasma becomes the dominant error source. The instantaneous relative position of two orbiters may be measured to within ten meters, leading to 50-meter three-dimensional orbital accuracy.

  18. Artist concept of Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  19. Universal Controller for Spacecraft Mechanisms

    NASA Technical Reports Server (NTRS)

    Levanas, Greg; McCarthy, Thomas; Hunter, Don; Buchanan, Christine; Johnson, Michael; Cozy, Raymond; Morgan, Albert; Tran, Hung

    2006-01-01

    An electronic control unit has been fabricated and tested that can be replicated as a universal interface between the electronic infrastructure of a spacecraft and a brushless-motor (or other electromechanical actuator) driven mechanism that performs a specific mechanical function within the overall spacecraft system. The unit includes interfaces to a variety of spacecraft sensors, power outputs, and has selectable actuator control parameters making the assembly a mechanism controller. Several control topologies are selectable and reconfigurable at any time. This allows the same actuator to perform different functions during the mission life of the spacecraft. The unit includes complementary metal oxide/semiconductor electronic components on a circuit board of a type called rigid flex (signifying flexible printed wiring along with a rigid substrate). The rigid flex board is folded to make the unit fit into a housing on the back of a motor. The assembly has redundant critical interfaces, allowing the controller to perform time-critical operations when no human interface with the hardware is possible. The controller is designed to function over a wide temperature range without the need for thermal control, including withstanding significant thermal cycling, making it usable in nearly all environments that spacecraft or landers will endure. A prototype has withstood 1,500 thermal cycles between 120 and +85 C without significant deterioration of its packaging or electronic function. Because there is no need for thermal control and the unit is addressed through a serial bus interface, the cabling and other system hardware are substantially reduced in quantity and complexity, with corresponding reductions in overall spacecraft mass and cost.

  20. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  1. Human factors in spacecraft design.

    PubMed

    Harrison, A A; Connors, M M

    1990-01-01

    This paper describes some of the salient implications of evolving mission parameters for spacecraft design. Among the requirements for future spacecraft are new, higher standards of living, increased support of human productivity, and greater accommodation of physical and cultural variability. Design issues include volumetric allowances, architecture and layouts, closed life support systems, health maintenance systems, recreational facilities, automation, privacy, and decor. An understanding of behavioral responses to design elements is a precondition for critical design decisions. Human factors research results must be taken into account early in the course of the design process.

  2. Tools Automate Spacecraft Testing, Operation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."

  3. Human factors in spacecraft design

    NASA Technical Reports Server (NTRS)

    Harrison, Albert A.; Connors, Mary M.

    1990-01-01

    This paper describes some of the salient implications of evolving mission parameters for spacecraft design. Among the requirements for future spacecraft are new, higher standards of living, increased support of human productivity, and greater accommodation of physical and cultural variability. Design issues include volumetric allowances, architecture and layouts, closed life support systems, health maintenance systems, recreational facilities, automation, privacy, and decor. An understanding of behavioral responses to design elements is a precondition for critical design decisions. Human factors research results must be taken into account early in the course of the design process.

  4. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus.

  5. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    NASA Technical Reports Server (NTRS)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  6. Multimission Modular Spacecraft (MMS). A serviceable design spacecraft

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward

    1987-01-01

    A standard spacecraft bus compatible with NASA launch vehicles, including STS, for four reference missions (Sun, Earth, stellar pointing from low Earth orbit, Earth pointing from geostationary orbit) was designed. The modular serviceable design stems from its use of passive acme screws for module attachment and scoop proof electrical connectors for electrical interfaces. A flight support system includes command and telemetry links.

  7. The Plume Chaser mission: Two-spacecraft search for organics on the dwarf planet Ceres

    NASA Astrophysics Data System (ADS)

    Nayak, Michael; Mauro, David; Stupl, Jan; Aziz, Jonathan; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Jonsson, Jonas; McKay, Chris; Sears, Derek; Soulage, Michael; Swenson, Jason; Yang, Fan Yang

    2016-03-01

    We present a mission concept designed at NASA Ames Research Center for a two-probe mission to the dwarf planet Ceres, utilizing a set of small low-cost spacecraft. The primary spacecraft will carry both a mass and an infrared spectrometer to characterize water vapor detected to be emanating from Ceres. Shortly after its arrival a second identical spacecraft will impact Ceres to create an ejecta "plume" timed to enable a rendezvous and sampling by the primary spacecraft. This enables additional subsurface chemistry, volatile content and material characterization, and new science complementary to the Dawn spacecraft, the first to arrive at Ceres. Science requirements, candidate instruments, rendezvous trajectories, spacecraft design and comparison with Dawn science are detailed.

  8. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  9. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  10. Spacecraft materials HCl susceptibility assessments

    NASA Astrophysics Data System (ADS)

    Chu, C.-T.; Liu, De-Ling; Kim, Hyun; Alaan, Diana R.

    2014-09-01

    The susceptibility of spacecraft materials to HCl exposure was investigated in light of concerns to potential contamination during evolved expendable launch vehicle (EELV) overflight scenarios. Overflight refers to the circumstance where one spacecraft, resident on a launch pad, may be exposed to HCl generated from an earlier solid rocket launch at an adjacent pad. One aspect of the overflight risk assessments involves spacecraft materials susceptibility to HCl exposure. This study examined a wide range of spacecraft materials after being exposed to HCl vapor in a well-characterized facility. Sample thermal/optical and electrostatic dissipation properties, as well as surface chemical and morphological features, were characterized before and after the HCl exposure. All materials tested, except for indium tin oxide (ITO) coated Kapton film, showed no significant degradation after HCl exposure of up to 4800 ppb-hr. The ITO coated Kapton sample showed slight signs of degradation after being exposed to 500 ppb-hr HCl, as the surface resistance was increased by a factor of 5. However, the potential HCl dose inside the payload fairing (PLF) was estimated to be far below 500 ppb-hr in an EELV overflight event. These results, along with other relevant laboratory test data on the HCl removal efficiency of the filtration media used on the launch sites, provide the technical rationale that properly filtered air as the PLF purge should pose little risk in terms of HCl contamination under EELV overflight scenarios.

  11. Analyzing Dynamics of Cooperating Spacecraft

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.

    2004-01-01

    A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.

  12. Maximizing the Impact of the NASA Innovations in Climate Education (NICE) Project: Building a Community of Project Evaluators, Collaborating Across Agencies & Evaluating a 71-Project Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Chambers, L. H.; Pippin, M. R.; Spruill, K.

    2012-12-01

    and efforts. Further work is underway to coordinate a common evaluation framework across the tri-agency portfolio. The tri-agency partnership has also focused on responding to calls for cross-agency interaction and common evaluation (e.g., the recommendations of the National Science and Technology Council (NSTC) Committee on STEM Education). This integrated, collaborative approach to the project and its evaluation aims to increase the impact of the NICE initiative while also creating pathways to and resources for measuring that impact. In this poster, we will outline the NICE project and its portfolio of funded projects, along with our approach to building collaborations and relationships to build and support a community of practice among climate change educators and evaluators. We will describe how the activities of the NICE team and participation in the tri-agency collaboration contribute to NICE's goals, and will share how we leverage these elements for use in evaluation of the portfolio. This poster will have particular relevance to educators and evaluators on Federally-funded STEM (science, technology, engineering and mathematics) education projects, and will provide insights to the evaluation landscape on the project level at one Federal agency.

  13. A stochastic model for particle impingements on orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Howell, L. W., Jr.

    1986-01-01

    A general methodology for simulating particle impingements on orbiting spacecraft is developed. Major steps in the modeling process are presented as (1) modeling objective, (2) construction of the spacecraft geometrical model, (3) simulation of the particles in the space environment, (4) particle impact and subsequent events of interest, and (5) results of the simulation. A simulation of the expected meteoroid impingements on the Hubble Space Telescope and the resulting angular momentum transfers which can cause telescope pointing disturbances is given to illustrate these methods.

  14. Target Search and Selection for the DI/EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

    2012-01-01

    Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

  15. Target Search & Selection for the DI/EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel J.; Bhaskaran, Shyam; Chesley, Steven R.

    2012-01-01

    Upon completion of the Hartley 2 flyby in November 2010, the Deep Impact (DI) spacecraft resided in a solar orbit without possibility for gravity assist with any large body. Conservative estimates of remaining fuel were enough to provide only an 18 m/s impulse on the spacecraft. We present our method and results of our systematic scan of potential small body encounters for DI, and our criteria to narrow the selection to the asteroid 2002 GT as the target flyby body. The mission profile has two deterministic maneuvers to achieve the encounter, the first of which executed on November 25, 2011.

  16. A Low Cost Spacecraft Architecture for Robotic Lunar Exploration Projects

    NASA Technical Reports Server (NTRS)

    Lemke, Lawrence G.; Gonzales, Andrew A.

    2006-01-01

    A program of frequent, capable, but affordable lunar robotic missions prior to return of humans to the moon can contribute to the Vision for Space Exploration (VSE) NASA is tasked to execute. The Lunar Reconnaissance Orbiter (LRO) and its secondary payload are scheduled to orbit the moon, and impact it, respectively, in 2008. It is expected that the sequence of missions occurring for approximately the decade after 2008 will place an increasing emphasis on soft landed payloads. These missions are requited to explore intrinsic characteristics of the moon, such as hydrogen distribution in the regolith, and levitated dust, to demonstrate the ability to access and process in-situ resources, and to demonstrate functions critical to supporting human presence, such as automated precision navigation and landing. Additional factors governing the design of spacecraft to accomplish this diverse set of objectives are: operating within a relatively modest funding profile, the need tb visit multiple sites (both polar and equatorial) repeatedly, and to use the current generation of launch vehicles. In the US, this implies use of the Evolved Expendable Launch Vehicles, or EELVs, although this design philosophy may be extended to launch vehicles of other nations, as well. Many of these factors are seemingly inconsistent with each other. For example, the cost of a spacecraft usually increases with mass; therefore the desire to fly frequent, modestly priced spacecraft seems to imply small spacecraft (< 1 Mt, injected mass). On the other hand, the smallest of the EELVs will inject approx. 3 Mt. on a Trans Lunar Injection (TLI) trajectory md would therefore be wasteful or launching a single, small spacecraft. Increasing the technical capability of a spacecraft (such as autonomous navigation and soft landing) also usually increases cost. A strategy for spacecraft design that meets these conflicting requirements is presented. Taken together, spacecraft structure and propulsion subsystems

  17. Scheme of rendezvous mission to lunar orbital station by spacecraft launched from Earth

    NASA Astrophysics Data System (ADS)

    Murtazin, R. F.

    2016-05-01

    In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon's surface with the Apollo spacecraft's command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.

  18. Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices

    NASA Technical Reports Server (NTRS)

    Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar

    2011-01-01

    A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.

  19. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  20. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  1. Second Venus spacecraft set for launch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft are covered. Material pertinent to the Venus encounter is included.

  2. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    NASA Technical Reports Server (NTRS)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  3. Deep Space Networking Experiments on the EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  4. SAS-A spacecraft magnetic tests

    NASA Technical Reports Server (NTRS)

    Boyle, J. C.

    1970-01-01

    Magnetic tests were conducted on the spacecraft for: (1) alignment, compensation, calibration, and bias determination for the spacecraft three-axis vector magnetometer; (2) determination of permanent, induced, and stray magnetic moments of the spacecraft and compensation of permanent magnetic moments by permanent magnets; and (3) evaluation of the spin and attitude control system.

  5. Spacecraft and their Boosters. Aerospace Education I.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  6. Spacecraft Tests of General Relativity

    NASA Technical Reports Server (NTRS)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  7. MIDN: a spacecraft microdosimeter mission.

    PubMed

    Pisacane, V L; Ziegler, J F; Nelson, M E; Caylor, M; Flake, D; Heyen, L; Youngborg, E; Rosenfeld, A B; Cucinotta, F; Zaider, M; Dicello, J F

    2006-01-01

    MIDN (MIcroDosimetry iNstrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure microdosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. PMID:16785245

  8. Contingent plan structures for spacecraft

    NASA Technical Reports Server (NTRS)

    Drummond, M.; Currie, K.; Tate, A.

    1987-01-01

    Most current AI planners build partially ordered plan structures which delay decisions on action ordering. Such structures cannot easily represent contingent actions. A representation which can is presented. The representation has some other useful features: it provides a good account of the causal structure of a plan, can be used to describe disjunctive actions, and it offers a planner the opportunity of even less commitment than the classical partial order on actions. The use of this representation is demonstrated in an on-board spacecraft activity sequencing problem. Contingent plan execution in a spacecraft context highlights the requirements for a fully disjunctive representation, since communication delays often prohibit extensive ground-based accounting for remotely sensed information and replanning on execution failure.

  9. Spacecraft materials and coatings experiments

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1992-01-01

    The 5.8-year exposure data from the Long Duration Experiment Facility (LDEF) has demonstrated the benefits of long-term exposure in low Earth orbit (LEO) for understanding the behavior of spacecraft materials and coatings for use in extended space missions. The Space Station Freedom represents the next large area spacecraft available in NASA planned missions for obtaining this long term space exposure data. The advantages of using the Space Station Freedom for these studies are presented. Discrepancies between short-term flight exposure result from Shuttle Orbiter experiments and the long-term LDEF results are shown. The major objectives and benefits of conducting materials and coatings experiments on Space Station Freedom are emphasized.

  10. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  11. Fire extinguishers for manned spacecraft

    NASA Astrophysics Data System (ADS)

    Kopylov, S.; Smirnov, N. V.; Tanklevsky, L. T.

    2015-04-01

    Based on an analysis of fires in the oxygen-enriched atmosphere conditions in spacecraft and other sealed chambers of various purposes, the most dangerous groups of fires are identified. For this purpose, groups were compiled to analyze dependences that describe the increase of fire hazard to a critical value. A criterion for determining timely and effective fire extinguishing was offered. Fire experiments in oxygen-enriched atmosphere conditions were conducted, and an array of experimental data on the mass burning rate of materials and their extinguishing by water mist was obtained. Relationships colligating an array of experimental data were offered. Experimental and analytical studies were taken as a basis for hand fire extinguisher implementation for manned spacecraft.

  12. Spacecraft dynamics and space exploration

    NASA Astrophysics Data System (ADS)

    Tiulin, G. A.

    The papers presented in this volume provide an overview of recent theoretical and experimental research related to spacecraft dynamics and space exploration, with particular attention given to the libration and rotational motion of spacecraft containing a liquid. Topics discussed include resonance phenomena in the rotational motions of artificial and natural celestial bodies, simulation of the dynamics of launch vehicles, the motion of a rigid body whose cavity is partially filled with a liquid, and a rapidly converging variational algorithm in the problem of the natural vibrations of a liquid in a container. Papers are also presented on a study of transient processes in the case of large perturbations of a free liquid surface in a closed compartment, the motion of a rigid body with a liquid whose free surface is covered by a nonlinearly deformed shell, and an experimental study of the stability of the rotational motion of liquid-filled bodies.

  13. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  14. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  15. Spacecraft component heater control system

    NASA Technical Reports Server (NTRS)

    Bachtel, Frederick D. (Inventor); Owen, James W. (Inventor)

    1989-01-01

    A heater control circuit is disclosed as being constructed in a single integrated circuit, with the integrated circuit conveniently mounted proximate to a spacecraft component requiring temperature control. Redundant heater controllers control power applied to strip heaters disposed to provide heat to a component responsive to sensed temperature from temperature sensors. Signals from these sensors are digitized and compared with a dead band temperature and set point temperature stored in memory to generate an error signal if the sensed temperature is outside the parameter stored in the memory. This error signal is utilized by a microprocessor to selectively instruct the heater controllers to apply power to the strip heaters. If necessary, the spacecraft central processor may access or interrogate the microprocessor in order to alter the set point temperature and dead band temperature range to obtain operational data relating to the operation of an integrated circuit for relaying to the ground control, or to switch off faulty components.

  16. Teaching old spacecraft new tricks

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Dunham, David

    1988-01-01

    The technique of sending existing space probes on extended mission by altering their orbital paths with gravity-assist maneuvers and relatively brief rocket firings is examined. The use of the technique to convert the International Sun-Earth Explorer 3 mission into the International Cometary Explorer mission is discussed. Other examples are considered, including the extension of the Giotto mission and the retargeting of the Sakigake spacecraft. The original and altered trajectories of these three missions are illustrated.

  17. Outgassing data for spacecraft materials

    NASA Technical Reports Server (NTRS)

    Campbell, W. A., Jr.; Marriott, R. S.; Park, J. J.

    1980-01-01

    A system for determining the mass loss in vacuum and for collecting the outgassed compounds was developed. Outgassing data, derived from tests at 398 K (125 degrees C) for 24 hours in vacuum as per ASTM E 59577, are compiled for numerous materials for spacecraft use. The data presented are the total mass loss (TML) and the collected volatile condensable materials (CVCM). The various materials are compiled by likely usage and alphabetically.

  18. Radiation effects in spacecraft electronics

    NASA Technical Reports Server (NTRS)

    Raymond, James P.

    1989-01-01

    Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application.

  19. Plasma sources for spacecraft neutralization

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.

    1990-01-01

    The principles of the operation of plasma sources for the neutralization of the surface of a spacecraft traveling in the presence of hot plasma are discussed with special attention given to the hollow-cathode-based plasma contactors. Techiques are developed that allow the calculation of the potentials and particle densities in the near environment of a hollow cathode plasma contactor in both the test tank and the LEO environment. The techniques and codes were validated by comparison of calculated and measured results.

  20. Small Spacecraft Technology Initiative (SSTI)

    NASA Technical Reports Server (NTRS)

    Reppucci, George

    1995-01-01

    This is the second in a series of semi-annual reports that describe the technology areas being advanced under this contract and the progress achieved to date. The last technology report concentrated on the spacecraft. This report places greater emphasis on the payloads. White papers by several of the payload providers are attached. These are HSI, UCB, PRKE, and CAFE. This report covers the period from January 1995 through June 1995.

  1. Energy Storage Flywheels on Spacecraft

    NASA Technical Reports Server (NTRS)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  2. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  3. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space.

  4. The drag coefficient of cylindrical spacecraft in orbit at altitudes greater than 150 km

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.

    1983-01-01

    The spacecraft of the Geopotential Research Mission (GRM) are cylindrical in form and designed to fly with their longitudinal axes parallel to their direction of flight. The ratio of length to diameter of these spacecraft is roughly equal to 5.0. Other spacecraft previously flown had corresponding ratios roughly equal to 1.0, and therefore the drag produced by impacts on the lateral surfaces of those spacecraft was not as large as it will be on the GRM spacecraft. Since the drag coefficient is essentially the drag force divided by the frontal area in flight, lateral impacts, when taken into account make the GRM drag coefficient significantly larger than the coefficients used before for shorter spacecraft. A simple formula is derived for the drag coefficient of a cylindrical body flying with its long axis along the direction of flight, and it is used to estimate the drag for the GRM. The formula shows that the drag due to lateral surface impacts depends on the ratio of length-to-diameter and on a coefficient C sub LS (lateral surface impact coefficient) which can be determined from previous cylindrical spacecraft flown with the same attitude, or can be obtained from laboratory measurements of momentum accommodation coefficients.

  5. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  6. A review of the methods used by the US Environmental Protection Agency to assess the financial impacts of the repository regulations

    SciTech Connect

    Pflum, C.G.; Mattson, S.R.; Matthusen, A.C.

    1994-02-16

    All Federal agencies must consider the financial impacts of their regulations. When costs significantly outweigh benefits, the Office of Management and Budget can recommend that Congress not provide the funds needed to implement the regulation. Without funds, the agency is forced to either revise or retract the regulation. This has happened previously with a regulation on uranium mill tailings proposed by the US Nuclear Regulatory Commission (NRC) and it could happen again with the US Environmental Protection Agency (EPA) regulations that govern the disposal of high-level radioactive waste (HLW). The EPA (1985, 1992) claims that its regulation: ``Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Waste`` (40 CFR Part 191 or standards) does not increase costs above what the US Department of Energy (DOE) would spend anyway or, at most, what the DOE would spend to comply with 10 CFR Part 60: a regulation promulgated by the NRC. This report reviews and disputes the EPA claim. In Chapter 2 a summary of the basis for the EPA claim is presented and in Chapter 3 a critique of the basis of the claim is presented. This critique finds the EPA basis unrealistic, incomplete, and misleading. According to the EPA, a repository at Yucca Mountain would easily meet 40 CFR Part 191 even without the use of special engineered barriers. Because the NRC regulation (10 CFR Part 60) requires engineered barriers, the EPA places the onus for regulatory costs on the NRC. We disagree; the EPA standards drive regulatory costs as much as NRC regulations. The EPA has the higher responsibility for setting the overall standard for safety while the NRC can only implement this standard.

  7. Uncertainty-based Optimization Algorithms in Designing Fractionated Spacecraft

    PubMed Central

    Ning, Xin; Yuan, Jianping; Yue, Xiaokui

    2016-01-01

    A fractionated spacecraft is an innovative application of a distributive space system. To fully understand the impact of various uncertainties on its development, launch and in-orbit operation, we use the stochastic missioncycle cost to comprehensively evaluate the survivability, flexibility, reliability and economy of the ways of dividing the various modules of the different configurations of fractionated spacecraft. We systematically describe its concept and then analyze its evaluation and optimal design method that exists during recent years and propose the stochastic missioncycle cost for comprehensive evaluation. We also establish the models of the costs such as module development, launch and deployment and the impacts of their uncertainties respectively. Finally, we carry out the Monte Carlo simulation of the complete missioncycle costs of various configurations of the fractionated spacecraft under various uncertainties and give and compare the probability density distribution and statistical characteristics of its stochastic missioncycle cost, using the two strategies of timing module replacement and non-timing module replacement. The simulation results verify the effectiveness of the comprehensive evaluation method and show that our evaluation method can comprehensively evaluate the adaptability of the fractionated spacecraft under different technical and mission conditions. PMID:26964755

  8. Uncertainty-based Optimization Algorithms in Designing Fractionated Spacecraft.

    PubMed

    Ning, Xin; Yuan, Jianping; Yue, Xiaokui

    2016-01-01

    A fractionated spacecraft is an innovative application of a distributive space system. To fully understand the impact of various uncertainties on its development, launch and in-orbit operation, we use the stochastic missioncycle cost to comprehensively evaluate the survivability, flexibility, reliability and economy of the ways of dividing the various modules of the different configurations of fractionated spacecraft. We systematically describe its concept and then analyze its evaluation and optimal design method that exists during recent years and propose the stochastic missioncycle cost for comprehensive evaluation. We also establish the models of the costs such as module development, launch and deployment and the impacts of their uncertainties respectively. Finally, we carry out the Monte Carlo simulation of the complete missioncycle costs of various configurations of the fractionated spacecraft under various uncertainties and give and compare the probability density distribution and statistical characteristics of its stochastic missioncycle cost, using the two strategies of timing module replacement and non-timing module replacement. The simulation results verify the effectiveness of the comprehensive evaluation method and show that our evaluation method can comprehensively evaluate the adaptability of the fractionated spacecraft under different technical and mission conditions. PMID:26964755

  9. Spacecraft

    NASA Technical Reports Server (NTRS)

    Clark, John F.; Haggerty, James J.; Woodburn, John H.

    1961-01-01

    In this twentieth century, we are privileged to witness the first steps toward realization of an age-old dream: the exploration of space. Already, in the first few years of the Space Age, man has been able to penetrate the layer of atmosphere which surrounds his planet and to venture briefly into space. Scores of man-made objects have been thrust into space, some of them to roam the solar system forever. Behind each space mission are years of patient research, thousands of man-hours of labor, and large sums of money. Because the sums involved are so enormous, the question is frequently asked, "Is it worth it?" Many people want to know what return this huge investment will bring to mankind. The return on the investment is knowledge. The accumulation of knowledge over the centuries has made possible our advanced way of life. As we unlock more and more of the secrets of the universe through space exploration, we add new volumes to the encyclopedia of man's knowledge. This will be applied to the benefit of mankind. For the practical-minded, there are concrete benefits to our way of life. Although we are still in the Stone Age of space exploration, a number of immediate applications of space technology are already apparent. For instance, imagine the benefits of an absolutely perfect system of predicting the weather. Or, going a step further, even changing the weather. And wouldn't it be fascinating to watch the next Olympic games, telecast from Tokyo, on your TV set? These are just a few of the practical benefits made possible by space technology.

  10. Preventing Spacecraft Failures Due to Tribological Problems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    2001-01-01

    Many mechanical failures that occur on spacecraft are caused by tribological problems. This publication presents a study that was conducted by the author on various preventatives, analyses, controls and tests (PACTs) that could be used to prevent spacecraft mechanical system failure. A matrix is presented in the paper that plots tribology failure modes versus various PACTs that should be performed before a spacecraft is launched in order to insure success. A strawman matrix was constructed by the author and then was sent out to industry and government spacecraft designers, scientists and builders of spacecraft for their input. The final matrix is the result of their input. In addition to the matrix, this publication describes the various PACTs that can be performed and some fundamental knowledge on the correct usage of lubricants for spacecraft applications. Even though the work was done specifically to prevent spacecraft failures the basic methodology can be applied to other mechanical system areas.

  11. Enhancement of the flexible spacecraft dynamics program for open spacecraft

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The modifications and additions made to the Flexible Spacecraft Dynamics (FSD) Program are described. The principal addition to the program was the capability to simulate a single axis gimble platform nadir pointing despin control system. The formulation for the single axis gimble equations of motion is a modification of the formulation. The details of the modifications made to the FSD Program are presented. Modifications to existing subroutines are briefly described and a detailed description of new subroutines is given. In addition, e program variables in new labelled COMMON blocks are described in detail. A description of new input symbols for the FSD Program is given.

  12. Using modified ballistic limit equations in spacecraft risk assessments

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    2016-09-01

    The fundamental components of any meteoroid/orbital debris (MOD) risk assessment calculation are environment models, damage response predictor equations, and failure criteria. In the case of a spacecraft operating in low earth orbit, the response predictor equation typically takes the form of a ballistic limit equation (BLE) that defines the threshold particle sizes that cause failure of a spacecraft wall or component. Spacecraft risk assessments often call for BLEs for spacecraft components that do not exist. In such cases, it is a common procedure to use an existing BLE after first equivalencing the actual materials and/or wall thicknesses to the materials that were used in the development of the existing BLE. The question naturally arises regarding how close are the predictions of such an 'adapted BLE' to the response characteristics of the actual materials/wall configurations under high speed projectile impacts. This paper presents the results of a study that compared the predictions of a commonly used BLE when adapted to the Soyuz OM wall configuration against those of a new BLE that was developed specifically for that Soyuz wall configuration. It was found that the critical projectile diameters predicted by the new Soyuz OM wall BLE can exceed those predicted by the adapted use of the existing BLE by as much as 50% of the existing BLE values. Thus, using the adapted version of the existing BLE in this particular case would contribute to a more conservative value of assessed risk. If the same trends were to hold true for other spacecraft wall configurations, then it is also possible that using existing BLEs, even after they have been adjusted for differences in materials, etc., may result in predictions of smaller critical diameters (i.e., increased assessed risk) than would using BLEs purposely developed for actual spacecraft configurations of interest.

  13. Three spacecraft observe Jupiter's glowing polar regions

    NASA Astrophysics Data System (ADS)

    1996-09-01

    again in 1994, when the fragments of Comet Shoemaker-Levy 9 hit Jupiter in a spectacular series of events. The explosive impacts appeared to repress the auroral activity at the time, suggesting a remarkable effect of comet dust on the charged particles creating the aurorae in Jupiter's atmosphere. The new results on variability due to other causes will help astronomers to assess that effect more confidently. They will also compare the 1994 and 1996 IUE data to see how the atmosphere of Jupiter has recovered from the impacts. In Jupiter's vicinity IUE registered ultraviolet emissions from oxygen and sulphur atoms littering the orbit of Io, and probably released by volcanic emissions from that peculiar moon. This Io Torus is highly variable too. The record of its ultraviolet emissions, both within the 1996 campaign and in comparison with earlier observations, will help the astronomers to understand the reasons for the variations. A remarkable history The close scrutiny of Jupiter and its moons was the final astronomical task of IUE, before the termination of space operations on 30 September 1996. Over the past few months the IUE science team and collaborating astronomers in Europe have fulfilled a wish-list of important observations precluded by the intense demands on their ultraviolet space observatory throughout its life of nearly nineteen years. The observations in the final science programme confirmed and extended IUE's record, as the most reliable and productive astronomical satellite that ever flew. In March of this year the spacecraft was ailing, with only one of its six gyros still functioning, which severely limited the scope of its original mission. By skillful control and spacecraft engineering it went on harvesting new data, including prolonged observations of Comet Hyakutake. The concluding campaigns that began in April targeted the gamma-ray emitting "blazar" Markarian 421, various other active galaxies, and stellar winds, as well as Jupiter. "I am sad but

  14. Vulnerability of manned spacecraft to crew loss from orbital debris penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, J. E.

    1994-01-01

    Orbital debris growth threatens the survival of spacecraft systems from impact-induced failures. Whereas the probability of debris impact and spacecraft penetration may currently be calculated, another parameter of great interest to safety engineers is the probability that debris penetration will cause actual spacecraft or crew loss. Quantifying the likelihood of crew loss following a penetration allows spacecraft designers to identify those design features and crew operational protocols that offer the highest improvement in crew safety for available resources. Within this study, a manned spacecraft crew survivability (MSCSurv) computer model is developed that quantifies the conditional probability of losing one or more crew members, P(sub loss/pen), following the remote likelihood of an orbital debris penetration into an eight module space station. Contributions to P(sub loss/pen) are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury, and 'slow' depressurization. Sensitivity analyses are performed using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected spacecraft design and crew operations parameters. These results are then used to recommend modifications to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.

  15. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1991-01-01

    Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.

  16. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    PubMed

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  17. Coffee-can-sized spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    1988-01-01

    The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.

  18. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  19. Spacecraft transformer and inductor design

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    The conversion process in spacecraft power electronics requires the use of magnetic components which frequently are the heaviest and bulkiest items in the conversion circuit. This handbook pertains to magnetic material selection, transformer and inductor design tradeoffs, transformer design, iron core dc inductor design, toroidal power core inductor design, window utilization factors, regulation, and temperature rise. Relationships are given which simplify and standardize the design of transformers and the analysis of the circuits in which they are used. The interactions of the various design parameters are also presented in simplified form so that tradeoffs and optimizations may easily be made.

  20. Advanced antennas for SAR spacecraft

    NASA Technical Reports Server (NTRS)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  1. Spacecraft platform cost estimating relationships

    NASA Technical Reports Server (NTRS)

    Gruhl, W. M.

    1972-01-01

    The three main cost areas of unmanned satellite development are discussed. The areas are identified as: (1) the spacecraft platform (SCP), (2) the payload or experiments, and (3) the postlaunch ground equipment and operations. The SCP normally accounts for over half of the total project cost and accurate estimates of SCP costs are required early in project planning as a basis for determining total project budget requirements. The development of single formula SCP cost estimating relationships (CER) from readily available data by statistical linear regression analysis is described. The advantages of single formula CER are presented.

  2. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  3. Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the UK’s Food & Environment Research Agency 2012 experiment

    PubMed Central

    2015-01-01

    The causes of bee declines remain hotly debated, particularly the contribution of neonicotinoid insecticides. In 2013 the UK’s Food & Environment Research Agency made public a study of the impacts of exposure of bumblebee colonies to neonicotinoids. The study concluded that there was no clear relationship between colony performance and pesticide exposure, and the study was subsequently cited by the UK government in a policy paper in support of their vote against a proposed moratorium on some uses of neonicotinoids. Here I present a simple re-analysis of this data set. It demonstrates that these data in fact do show a negative relationship between both colony growth and queen production and the levels of neonicotinoids in the food stores collected by the bees. Indeed, this is the first study describing substantial negative impacts of neonicotinoids on colony performance of any bee species with free-flying bees in a field realistic situation where pesticide exposure is provided only as part of normal farming practices. It strongly suggests that wild bumblebee colonies in farmland can be expected to be adversely affected by exposure to neonicotinoids. PMID:25825679

  4. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For

  5. Efficient Reorientation Maneuvers for Spacecraft with Multiple Articulated Payloads

    NASA Technical Reports Server (NTRS)

    Mcclamroch, N. Harris

    1993-01-01

    A final report is provided which describes the research program during the period 3 Mar. 1992 to 3 Jun. 1993. A summary of the technical research questions that were studied and of the main results that were obtained is given. The specific outcomes of the research program, including both educational impacts as well as research publications, are listed. The research is concerned with efficient reorientation maneuvers for spacecraft with multiple articulated payloads.

  6. First Spacecraft Orbit of Mercury

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    After a 7.9-billion-kilometer flight since its launch on 3 August 2004—which included flybys of Earth, Venus, and Mercury—NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered a planned, highly elliptical orbit around the closest planet to our Sun on 17 March. Engineers in the mission operations center at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in Laurel, Md., which manages the mission for NASA, received radiometric signals indicating a successful orbit insertion at 9:10 P.M. local time. "Tonight we will have orbited the fifth planet in the solar system. This is a major accomplishment," Ed Weiler, NASA assistant administrator for the Science Mission Directorate, said at a 17 March public forum at JHU/APL, noting that spacecraft have previously entered orbit around several other planets. "You only go into orbit for the first time around Mercury once in human history, and that is what was accomplished tonight."

  7. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  8. The MESSENGER Spacecraft and Payload

    NASA Astrophysics Data System (ADS)

    Gold, R. E.; Solomon, S. C.; McNutt, R. L., Jr.; Santo, A. G.

    2002-01-01

    The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission will send the first spacecraft to orbit the planet Mercury. A Mercury orbiter mission is challenging from thermal and mass perspectives. MESSENGER overcomes these challenges while avoiding esoteric technologies by using an innovative approach with commonly available materials, minimal moving parts, and maximum heritage. The key concepts are a ceramic-cloth thermal shade, an integrated lightweight structure, a high performance propulsion system, and a solar array incorporating optical solar reflectors. A miniaturized set of seven instruments, along with the spacecraft telecommunications system, satisfy all scientific objectives of the mission. The payload includes a combined wide-angle and narrow-angle imaging system; amma-ray, neutron, and X-ray spectrometers for remote geochemical sensing; a vector magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-infrared spectrometer to detect atmospheric species and map mineralogical absorption features; and an energetic particle and plasma spectrometer to characterize ionized species in the magnetosphere. MESSENGER construction is nearly complete and the integration and test phase is just beginning. Launch is March 2004.

  9. Spacecraft nitrogen generation. [liquid hydrazine

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.; Powell, J. D.; Kacholia, K. K.

    1974-01-01

    Two spacecraft nitrogen (N2) generation systems based on the catalytic dissociation of hydrazine (N2H4) were evaluated. In the first system, liquid N2H4 is catalytically dissociated to yield an N2 and hydrogen (H2) gas mixture. Separation of the N2/H2 gas mixture to yield N2 and a supply of H2 is accomplished using a polymer-electrochemical N2/H2 separator. In the second system, the N2/H2 gas mixture is separated in a two-stage palladium/silver (Pd/Ag) N2/H2 separator. The program culminated in the successful design, fabrication, and testing of a N2H4 catalytic dissociator, a polymer-electrochemical N2/H2 separator, and a two-stage Pd/Ag N2/H2 separator. The hardware developed was sized for an N2 delivery rate of 6.81 kg/d (15lb/day). Experimental results demonstrated that both spacecraft N2 generation systems are capable of producing 6.81 kg/d (15lb/day) of 99.9% pure N2 at a pressure greater than or equal to 1035 kN/m(2) (150 psia).

  10. Automated Spacecraft Conjunction Assessment at Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Berry, David; Guinn, Joseph; Tarzi, Zahi; Demcak, Stuart

    2012-01-01

    Conjunction assessment and collision avoidance are areas of current high interest in space operations. Most current conjunction assessment activity focuses on the Earth orbital environment. Several of the world's space agencies have satellites in orbit at Mars and the Moon, and avoiding collisions there is important too. Smaller number of assets than Earth, and smaller number of organizations involved, but consequences similar to Earth scenarios.This presentation will examine conjunction assessment processes implemented at JPL for spacecraft in orbit at Mars and the Moon.

  11. 40 CFR 1507.3 - Agency procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Agency procedures. 1507.3 Section 1507.3 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY AGENCY COMPLIANCE § 1507.3 Agency... environmental impact statements. (c) Agency procedures may include specific criteria for providing...

  12. 40 CFR 1507.3 - Agency procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Agency procedures. 1507.3 Section 1507.3 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY AGENCY COMPLIANCE § 1507.3 Agency... environmental impact statements. (c) Agency procedures may include specific criteria for providing...

  13. 40 CFR 1507.3 - Agency procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Agency procedures. 1507.3 Section 1507.3 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY AGENCY COMPLIANCE § 1507.3 Agency... environmental impact statements. (c) Agency procedures may include specific criteria for providing...

  14. 40 CFR 1501.5 - Lead agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Lead agencies. 1501.5 Section 1501.5 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY NEPA AND AGENCY PLANNING § 1501.5 Lead agencies. (a) A lead agency shall supervise the preparation of an environmental impact statement if more...

  15. 40 CFR 1501.5 - Lead agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Lead agencies. 1501.5 Section 1501.5 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY NEPA AND AGENCY PLANNING § 1501.5 Lead agencies. (a) A lead agency shall supervise the preparation of an environmental impact statement if more...

  16. 40 CFR 1501.5 - Lead agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Lead agencies. 1501.5 Section 1501.5 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY NEPA AND AGENCY PLANNING § 1501.5 Lead agencies. (a) A lead agency shall supervise the preparation of an environmental impact statement if more...

  17. 40 CFR 1501.5 - Lead agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Lead agencies. 1501.5 Section 1501.5 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY NEPA AND AGENCY PLANNING § 1501.5 Lead agencies. (a) A lead agency shall supervise the preparation of an environmental impact statement if more...

  18. 40 CFR 1501.5 - Lead agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Lead agencies. 1501.5 Section 1501.5 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY NEPA AND AGENCY PLANNING § 1501.5 Lead agencies. (a) A lead agency shall supervise the preparation of an environmental impact statement if more...

  19. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  20. Dynamic performance of an aero-assist spacecraft - AFE

    NASA Technical Reports Server (NTRS)

    Chang, Ho-Pen; French, Raymond A.

    1992-01-01

    Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.

  1. Best Practices for Reliable and Robust Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Murthy, P. L. N.; Patel, Naresh R.; Bonacuse, Peter J.; Elliott, Kenny B.; Gordon, S. A.; Gyekenyesi, J. P.; Daso, E. O.; Aggarwal, P.; Tillman, R. F.

    2007-01-01

    A study was undertaken to capture the best practices for the development of reliable and robust spacecraft structures for NASA s next generation cargo and crewed launch vehicles. In this study, the NASA heritage programs such as Mercury, Gemini, Apollo, and the Space Shuttle program were examined. A series of lessons learned during the NASA and DoD heritage programs are captured. The processes that "make the right structural system" are examined along with the processes to "make the structural system right". The impact of technology advancements in materials and analysis and testing methods on reliability and robustness of spacecraft structures is studied. The best practices and lessons learned are extracted from these studies. Since the first human space flight, the best practices for reliable and robust spacecraft structures appear to be well established, understood, and articulated by each generation of designers and engineers. However, these best practices apparently have not always been followed. When the best practices are ignored or short cuts are taken, risks accumulate, and reliability suffers. Thus program managers need to be vigilant of circumstances and situations that tend to violate best practices. Adherence to the best practices may help develop spacecraft systems with high reliability and robustness against certain anomalies and unforeseen events.

  2. Closed Loop Terminal Guidance Navigation for a Kinetic Impactor Spacecraft

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam; Kennedy, Brian

    2013-01-01

    A kinetic impactor spacecraft is a viable method to deflect an asteroid which poses a threat to the Earth. The technology to perform such a deflection has been demonstrated by the Deep Impact (DI) mission, which successfully collided with comet Tempel 1 in July 2005 using an onboard autonomous navigation system, called AutoNav, for the terminal phase of the mission. In this paper, we evaluate the ability of AutoNav to impact a wide range of scenarios that an deflection mission could encounter, varying parameters such as the approach velocity, phase angle, size of the asteroid, and the determination of spacecraft attitude. Using realistic Monte Carlo simulations, we tabulated the probability of success of the deflection as a function of these parameters, and the highest sensitivity to be due the spacecraft attitude determination mode. In addition, we also specifically analyzed the impact probability for a proposed mission which would send an impactor to the asteroid 1999RQ36. We conclude with some recommendations for future work.

  3. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  4. Fire suppression in human-crew spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Dietrich, Daniel L.

    1991-01-01

    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities.

  5. Neptune aerocapture mission and spacecraft design overview

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora

    2004-01-01

    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  6. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  7. 1997 Spacecraft Contamination and Coatings Workshop

    NASA Technical Reports Server (NTRS)

    Chen, Philip T. (Compiler); Benner, Steve M. (Compiler)

    1997-01-01

    This volume contains the presentation charts of talks given at the "1997 Spacecraft Contamination and Coatings Workshop," held July 9-10, 1997, in Annapolis, Maryland. The workshop was attended by representatives from NASA, Jet Propulsion Laboratory, Department of Defense, industry, and universities concerned with the the spacecraft contamination engineering and thermal control coatings. The workshop provided a forum for exchanging new developments in spacecraft contamination and coatings.

  8. ISIS-B spacecraft magnetic tests

    NASA Technical Reports Server (NTRS)

    Boyle, J. C.

    1972-01-01

    Magnetic tests of the ISIS B spacecraft were conducted to determine the various magnetic moments of the spacecraft, evalute its spin and attitude control systems, and calibrate the six onboard magnetometer probes. Test procedures and equipment are described. Techniques for evaluting the data are discussed, and test results are presented. The spacecraft's magnetic characteristics were found to be satisfactory. Proper threshold values for gating the torquing coils were obtained. The onboard magnetometers were satisfactorily calibrated.

  9. Ion thruster plume effects on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Kuo, Y. S.

    1981-01-01

    A charge-exchange plasma, generated by an ion thruster, is capable of flowing upstream from the ion thruster and therefore represents a source of contamination to a spacecraft. An analytical model of the charge-exchange plasma density around a spacecraft was used to estimate the contamination which various spacecraft materials may be exposed to. Measurements of plasma density around an ion thruster were compared to this model. Results of experimental studied regarding the effects on various spacecraft materials' properties due to exposure to expected mercury contamination levels are presented.

  10. Optimizing Spacecraft Placement for Liaison Constellations

    NASA Technical Reports Server (NTRS)

    Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.

    2011-01-01

    A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.

  11. Formation Flying Spacecraft Concept for Heliophysics Applications

    NASA Astrophysics Data System (ADS)

    Novo-Gradac, Anne-Marie; Davila, Joseph; Yang, Guangning; Lu, Wei; Shah, Neerav; Li, Steven X.

    2016-05-01

    A number of space-based heliophysics instruments would benefit from formation flying spacecraft. An occulter or a focusing optic such as a photon sieve could be mounted on a separate spacecraft rather than at the end of a boom. This would enable science measurements to be made on smaller, less expensive spacecraft. To accomplish this goal, the relative position of the spacecraft must be monitored and controlled to high precision. We describe two separate optical sensing systems that monitor relative position of the spacecraft to the level required for a photon sieve mission concept wherein the photon sieve is mounted on one spacecraft while the imaging detector is mounted on another. The first system employs a novel time of flight measurement of a laser beam that includes imbedded optical data packets. The contents of the returning data packet can be compared to the departing data packet to provide an extremely high resolution distance measurement. Employing three such systems allows measurement of pitch and yaw in addition to longitudinal separation. The second optical system monitors lateral motion. A mildy divergent laser beam is transmitted from one spacecraft to a sensor array on the second spacecraft. Monitoring the position of the brightest portion of the beam on the sensor array provides a direct measurement of lateral relative motion. Employing at least two such systems enables monitoring roll of the spacecraft as well as centration. We will also discuss low force thruster systems required for high precision station keeping.

  12. General Methodology for Designing Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.

    2012-01-01

    A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.

  13. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  14. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  15. Real-Time EDL Navigation Performance Using Spacecraft to Spacecraft Radiometric Data

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Ely, Todd; Duncan, Courtney; Lightsey, Glenn; Campbell, Todd; Mogensen, Andy

    2006-01-01

    A two-year task sponsored by NASA's Mars Technology Program's Advanced Entry, Descent and Landing (EDL) work area includes investigation of improvements to EDL navigation by processing spacecraft-to-spacecraft radiometric data. Spacecraft-to- spacecraft navigation will take advantage of the UHF link between two spacecraft (i.e. to an orbiter from an approaching lander for EDL telemetry relay) to build radiometric data, specifically the velocity between the two spacecraft along the radio beam, that are processed to determine position and velocity in real time. The improved onboard state knowledge provided by spacecraft-to-spacecraft navigation will improve the performance of entry guidance by providing a more accurate state estimate and ultimately reduce the landed position error. Work on the final year of this task is reported here.

  16. Evaluation of Sled Tests for Spacecraft Dynamic Environments using the Small Female and Large Male Hybrid III Anthropomorphic Test Devices

    NASA Technical Reports Server (NTRS)

    Wells, Jessica A.; Somers, Jeffrey T.; Newby, Nathaniel J.; Putnam, Jacob F.; Currie-Gregg, Nancy J.; Lawrence, Charles

    2016-01-01

    Anthropomorphic test devices (ATD) are widely used for military and automotive applications. These ATDs have been correlated to certain types of human injuries largely involving automotive-type energetics and directions of impact. Spacecraft dynamic events involve very different impact characteristics and, in the case of landings, require lower levels of acceptable injury risk due to the certainty of impact occurrence. This test series evaluated the small female and large male Hybrid IIII ATDs for spacecraft dynamic events.

  17. Spacecraft Water Exposure Guidelines (SWEGs)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    As the protection of crew health is a primary focus of the National Aeronautics and Space Administration, the Space and Life Sciences Directorate (SLSD) is vigilant in setting potable water limits for spaceflight that are health protective. Additional it is important that exposure limits not be set so stringently that water purification systems are unnecessarily over designed. With these considerations in mind, NASA has partnered with the National Research Council on Toxicology (NRCCOT) to develop spacecraft water exposure guidelines (SWEGs) for application in spaceflight systems. Based on documented guidance (NRC, 2000) NASA has established 28 SWEGs for chemical components that are particularly relevant to water systems on the International Space Station, the Shuttle and looking forward to Constellation.

  18. PASS spacecraft antenna technology assessment

    NASA Astrophysics Data System (ADS)

    Freeland, R. E.

    1990-09-01

    The purpose was to generate estimates of mechanical performance for the classes of spacecraft antenna under construction for application to the Personal Access Satellite System (PASS). These performance data are needed for the support of trade studies involving antenna system development. The classes of antenna considered included: (1) rigid non-deployable antenna structures; (2) mechanical deployable antenna concepts; (3) inflatable deployable antenna concepts; and (4) mesh deployable antenna concepts. The estimates of mechanical performance are presented in terms of structural weight and cost as a function of the reflector size. Estimates of aperture surface precision are presented for a few discrete antenna sizes. The range of reflector size is 1 to 4 meters for non-deployable structures and 2 to 8 meters for deployable structures. The range of reflector surface precision is lambda/30 to lambda/50 for 20 and 30 GHz, respectively.

  19. Thermal insulating coating for spacecrafts

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor)

    2005-01-01

    To protect spacecraft and their contents from excessive heat thermal protection systems are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100? F. The coating composition includes a phase change material.

  20. Thermal Insulating Coating for Spacecrafts

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor)

    2005-01-01

    To protect spacecraft and their contents from excessive heat thermal protection system are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100 F. The coating composition includes a phase change material.

  1. Transparent ceramics for spacecraft windows

    NASA Astrophysics Data System (ADS)

    Salem, Jonathan A.

    2013-06-01

    The mechanical properties of several transparent ceramics were investigated to determine if their use might lighten next generation spacecraft windows. The measured fracture toughness and slow crack growth parameters were used as inputs to functions describing the required mass for a desired window life. Transparent magnesium aluminate (spinel, MgAlO4) and AlON exhibit superior slow crack resistance relative to fused silica, which is the historical material of choice. For spinel, slow crack growth, strength and fracture toughness are significantly influenced by the grain size, and alumina rich phases and porosity at the grain boundaries lead to intergranular fracture in coarse grain spinel. The results imply that transparent ceramics can lighten window panes from a slow crack growth perspective.

  2. Cosmic dust detection by the Cluster spacecraft: First results

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; De Spiegeleer, Alexandre; Hamrin, Maria; Kero, Johan; Mann, Ingrid; Norberg, Carol; Pellinen-Wannberg, Asta; Pitkänen, Timo

    2016-04-01

    There are several different techniques that are used to measure cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical methods. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites with the Wideband Data Plasma Wave Receiver (WBD). We first describe the concept of dust impact ionization and of the impact detection. Based on these considerations the mass and the velocity of the impinging dust grains can be estimated from the amplitude of the Cluster voltage pulses. In the case of the Cluster instrument an automatic gain control adjusts the dynamic range of the recorded signals. Depending on the gain level the impact signal can both be affected by saturation or be too weak for analysis. We describe how this influences the duty cycle of the impact measurements. We finally discuss the suitability of this method for monitoring dust fluxes near Earth and compare it with other methods.

  3. Spacecraft Electrical Connector Selection and Application Processes

    NASA Technical Reports Server (NTRS)

    Iannello, Chris; Davis, Mitchell I; Kichak, Robert A.; Slenski, George

    2009-01-01

    This assessment was initiated by the NASA Engineering & Safety Center (NESC) after a number of recent "high profile" connector problems, the most visible and publicized of these being the problem with the Space Shuttle's Engine Cut-Off System cryogenic feed-thru connector. The NESC commissioned a review of NASA's connector selection and application processes for space flight applications, including how lessons learned and past problem records are fed back into the processes to avoid recurring issues. Team members were primarily from the various NASA Centers and included connector and electrical parts specialists. The commissioned study was conducted on spacecraft connector selection and application processes at NASA Centers. The team also compared the NASA spacecraft connector selection and application process to the military process, identified recent high profile connector failures, and analyzed problem report data looking for trends and common occurrences. The team characterized NASA's connector problem experience into a list of top connector issues based on anecdotal evidence of a system's impact and commonality between Centers. These top issues are as follows, in no particular rank order: electrically shorted, bent and/or recessed contact pins, contact pin/socket contamination leading to electrically open or intermittencies, connector plating corrosion or corrosion of connector components, low or inadequate contact pin retention forces, contact crimp failures, unmated connectors and mis-wiring due to workmanship errors during installation or maintenance, loose connectors due to manufacturing defects such as wavy washer and worn bayonet retention, damaged connector elastomeric seals and cryogenic connector failure. A survey was also conducted of SAE Connector AE-8C1 committee members regarding their experience relative to the NASA concerns on connectors. The most common responses in order of occurrence were contact retention, plating issues, worn-out or damaged

  4. Space weather conditions during the Galaxy 15 spacecraft anomaly

    NASA Astrophysics Data System (ADS)

    Loto'aniu, T. M.; Singer, H. J.; Rodriguez, J. V.; Green, J.; Denig, W.; Biesecker, D.; Angelopoulos, V.

    2015-08-01

    On 5 April 2010, the Galaxy 15 spacecraft, orbiting at geosynchronous altitudes, experienced an anomaly near local midnight when it stopped responding to any ground commands. The anomaly has been reported as due to a lockup of the field-programmable gate array within the spacecraft baseband communications unit during an onboard electrostatic discharge (ESD). This study evaluates the space weather conditions at the time of the Galaxy 15 anomaly. The study also compares the plasma and geomagnetic environments around the anomaly to space weather observations over the operational lifetime of Galaxy 15 up to the anomaly time. On 5 April, the Galaxy 15 spacecraft encountered severe plasma conditions while it was in eclipse and during the subsequent anomaly interval. These conditions included a massive magnetic field dipolarization that injected energetic particles from the magnetotail during a substorm observed by GOES and Time History of Events and Macroscale Interactions during Substorms satellites. Galaxy 15 was located at a near-optimum position and local time to experience the full impact of the injected energetic particles. During the largest previous storm experienced by Galaxy 15 in December 2006, evidence suggests that it would not have been exposed to the same level of space weather as on 5 April 2010. Hence, while Galaxy 15 was traversing the nightside on 5 April, it likely experienced, for a short period, the most severe local plasma conditions it had encountered since launch. The most likely contributions to the ESD were interactions of the spacecraft with substorm-injected energetic particles facilitating spacecraft surface charging and deep dielectric charging.

  5. Hypervelocity impact physics

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.; Darzi, Kent

    1991-01-01

    All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database.

  6. Optimization of payload placement on arbitrary spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, Melvin J., Jr.; Allen, Cheryl L.

    1991-01-01

    A systematic method for determining the optical placement of instrumentation on an arbitrary spacecraft is described. The method maximizes the resource utilization by minimizing the spacecraft's need for propulsive attitude control. The mathematical program developed with considerations toward reducing the size of the optimization effort is presented.

  7. Wet oxidation of a spacecraft model waste

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T.

    1985-01-01

    Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.

  8. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  9. Microbiological profiles of four Apollo spacecraft

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Oxborrow, G. S.; Fields, N. D.; Herring, C. M.; Smith, L. S.

    1973-01-01

    The levels and types of microorganisms on various components of four Apollo spacecraft were determined and compared. Although the results showed that the majority of microorganisms isolated were those considered to be indigenous to humans, an increase in organisms associated with soil and dust was noted with each successive Apollo spacecraft.

  10. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  11. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose

  12. Evaluation of Improved Spacecraft Models for GLONASS Orbit Determination

    NASA Astrophysics Data System (ADS)

    Weiss, J. P.; Sibthorpe, A.; Harvey, N.; Bar-Sever, Y.; Kuang, D.

    2010-12-01

    High-fidelity spacecraft models become more important as orbit determination strategies achieve greater levels of precision and accuracy. In this presentation, we assess the impacts of new solar radiation pressure and attitude models on precise orbit determination (POD) for GLONASS spacecraft within JPLs GIPSY-OASIS software. A new solar radiation pressure model is developed by empirically fitting a Fourier expansion to solar pressure forces acting on the spacecraft X, Y, Z components using one year of recent orbit data. Compared to a basic “box-wing” solar pressure model, the median 24-hour orbit prediction accuracy for one month of independent test data improves by 43%. We additionally implement an updated yaw attitude model during eclipse periods. We evaluate the impacts of both models on post-processed POD solutions spanning 6-months. We consider a number of metrics such as internal orbit and clock overlaps as well as comparisons to independent solutions. Improved yaw attitude modeling reduces the dependence of these metrics on the “solar elevation” angle. The updated solar pressure model improves orbit overlap statistics by several mm in the median sense and centimeters in the max sense (1D). Orbit differences relative to the IGS combined solution are at or below the 5 cm level (1D RMS).

  13. MarcoPolo-R: Mission and Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the

  14. Spacecraft command and control using expert systems

    NASA Technical Reports Server (NTRS)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  15. Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity

    NASA Technical Reports Server (NTRS)

    Inouye, G. T.

    1981-01-01

    Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.

  16. Geometric programming design of spacecraft protective structures to defeat earth-orbital space debris

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1990-01-01

    A unique methodology providing global optimization of spacecraft protective structures is presented. The Geometric Programming optimization technique, which has a long history of application to structural design problems, is employed to minimize spacecraft weight of protective structural systems exposed to meteoroid and space debris hypervelocity impacts. The space debris and meteoroid environment are defined followed by the formulation of the general weight objective function. The Wilkinson, Burch, and Nysmith hypervelocity impact predictor models are then used in example cases to display Geometric Programming capabilities. Results show that global nonlinear design optimization can be performed for hypervelocity impact models that follow the Geometric Programming form.

  17. Spacecraft Charging Specification Using Model Environments

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Cooke, D. L.

    2003-12-01

    The specification and prediction of spacecraft charging at geosynchronous orbit represents an important goal of space weather research. While significant correlations exist between geomagnetic indices and the occurrence of satellite frame charging, for example with sunlit frame charging of the DSCS III satellite [Krause et al., IEEE Trans. Nucl. Sci., 47(6), 2000], the relationships are inadequate for useful predictions of charging at specific locations. Charged particles drift across the geosynchronous orbital path, and not along it, so spacecraft within less than an hour in local time experience completely different charging conditions. To account for these differences, a simple geosynchronous spacecraft surface charging application is driven using particle environments from the Magnetospheric Specification Model (MSM). Preliminary analysis using the NASCAP spacecraft-plasma interaction code indicated that spacecraft geometry and materials are responsible for the partial suppression of photoelectrons leading to frequent daylight charging of the DSCS III B-7 spacecraft. Analysis of the minimal spacecraft approximation we employ, i.e., a sunlit kapton sphere, also indicates that this so-called bootstrap charging phenomena is active. Surface charging is therefore identified by the net electron current to the kapton spacecraft determined by integrating electron, proton, and oxygen fluxes from the MSM along with secondary and backscatter yields specified as a function of energy. Spacecraft frame charging measurements from the Charge Control System on board the DSCS III satellite are compared with results obtained from the MSM-driven charging model. MSM/charging algorithm simulation output will be characterized at all local times in an effort to evaluate the model's potential effectiveness as a practical spacecraft charging specification tool.

  18. Improving Spacecraft Data Visualization Using Splunk

    NASA Technical Reports Server (NTRS)

    Conte, Matthew

    2012-01-01

    EPOXI, like all spacecraft missions, receives large volumes of telemetry data from its spacecraft, DIF. It is extremely important for this data to be updated quickly and presented in a readable manner so that the flight team can monitor the status of the spacecraft. Existing DMD pages for monitoring spacecraft telemetry, while functional, are limited and do not take advantage of modern search technology. For instance, they only display current data points from instruments on the spacecraft and have limited graphing capabilities, making it difficult to see historical data. The DMD pages have fixed refresh rates so the team must often wait several minutes to see the most recent data, even after it is received on the ground. The pages are also rigid and require an investment of time and money to update. To more easily organize and visualize spacecraft telemetry, the EPOXI team has begun experimenting with Splunk, a commercially-available data mining system. Splunk can take data received from the spacecraft's different data channels, often in different formats, and index all the data into a common format. Splunk allows flight team members to search through the different data formats from a single interface and to filter results by time range and data field to make finding specific spacecraft events quick and easy. Furthermore, Splunk provides functions to create custom interfaces which help team members visualize the data in charts and graphs to show how the health of the spacecraft has changed over time.One of the goals of my internship with my mentor, Victor Hwang, was to develop new Splunk interfaces to replace the DMD pages and give the spacecraft team access to historical data and visualizations that were previously unavailable. The specific requirements of these pages are discussed in the next section.

  19. Intelligent tutoring in the spacecraft command/control environment

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.

    1988-01-01

    The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.

  20. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    NASA Technical Reports Server (NTRS)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  1. Imaging of Titan from the Cassini spacecraft.

    PubMed

    Porco, Carolyn C; Baker, Emily; Barbara, John; Beurle, Kevin; Brahic, Andre; Burns, Joseph A; Charnoz, Sebastien; Cooper, Nick; Dawson, Douglas D; Del Genio, Anthony D; Denk, Tilmann; Dones, Luke; Dyudina, Ulyana; Evans, Michael W; Fussner, Stephanie; Giese, Bernd; Grazier, Kevin; Helfenstein, Paul; Ingersoll, Andrew P; Jacobson, Robert A; Johnson, Torrence V; McEwen, Alfred; Murray, Carl D; Neukum, Gerhard; Owen, William M; Perry, Jason; Roatsch, Thomas; Spitale, Joseph; Squyres, Steven; Thomas, Peter; Tiscareno, Matthew; Turtle, Elizabeth P; Vasavada, Ashwin R; Veverka, Joseph; Wagner, Roland; West, Robert

    2005-03-10

    Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.

  2. Improved Spacecraft Materials for Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  3. NASA Spacecraft Fault Management Workshop Results

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  4. Prevention of Spacecraft Anomalies: The Role of Space Climate and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Space-based systems are developing into critical infrastructure to support the quality of life on Earth. Mission requirements along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. This chapter describes approaches to accommodate space climate and space weather impacts on systems and notes areas where gaps in model development limit our ability to prevent spacecraft anomalies.

  5. Spacecraft capture and docking system

    NASA Technical Reports Server (NTRS)

    Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)

    2001-01-01

    A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.

  6. Micro Sun Sensor for Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobasser, Sohrab; Liebe, Carl; Bae, Youngsam; Schroeder, Jeffrey; Wrigley, Chris

    2004-01-01

    A report describes the development of a compact micro Sun sensor for use as a part of the attitude determination subsystem aboard future miniature spacecraft and planetary robotic vehicles. The prototype unit has a mass of only 9 g, a volume of only 4.2 cm(sup 3), a power consumption of only 30 mW, and a 120 degree field of view. The unit has demonstrated an accuracy of 1 arcminute. The unit consists of a multiple pinhole camera: A micromachined mask containing a rectangular array of microscopic pinholes, machined utilizing the microectromechanical systems (MEMS), is mounted in front of an active-pixel sensor (APS) image detector. The APS consists of a 512 x 512-pixel array, on-chip 10-bit analog to digital converter (ADC), on-chip bias generation, and on-chip timing control for self-sequencing and easy programmability. The digitized output of the APS is processed to compute the centroids of the pinhole Sun images on the APS. The Sun angle, relative to a coordinate system fixed to the sensor unit, is then computed from the positions of the centroids.

  7. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  8. Space Transportation System Cargo projects: inertial stage/spacecraft integration plan. Volume 1: Management plan

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Kennedy Space Center (KSC) Management System for the Inertial Upper Stage (IUS) - spacecraft processing from KSC arrival through launch is described. The roles and responsibilities of the agencies and test team organizations involved in IUS-S/C processing at KSC for non-Department of Defense missions are described. Working relationships are defined with respect to documentation preparation, coordination and approval, schedule development and maintenance, test conduct and control, configuration management, quality control and safety. The policy regarding the use of spacecraft contractor test procedures, IUS contractor detailed operating procedures and KSC operations and maintenance instructions is defined. Review and approval requirements for each documentation system are described.

  9. Protecting Against Faults in JPL Spacecraft

    NASA Technical Reports Server (NTRS)

    Morgan, Paula

    2007-01-01

    A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

  10. Elements of Terrorism Preparedness in Local Police Agencies, 2003-2007: Impact of Vulnerability, Organizational Characteristics, and Contagion in the Post-9/11 Era

    ERIC Educational Resources Information Center

    Roberts, Aki; Roberts, John M., Jr.; Liedka, Raymond V.

    2012-01-01

    Different elements of local police agencies' terrorism preparedness may be associated with different organizational/environmental variables. We use 2003-2007 data (showing considerable adoption and desistance of practices) on medium-to-large-sized local agencies to examine relationships between contingency (vulnerability, organizational…

  11. Galileo spacecraft modeling for orbital operations

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Bruce A.; Nilsen, Erik N.

    1994-01-01

    The Galileo Jupiter orbital mission using the Low Gain Antenna (LGA) requires a higher degree of spacecraft state knowledge than was originally anticipated. Key elements of the revised design include onboard buffering of science and engineering data and extensive processing of data prior to downlink. In order to prevent loss of data resulting from overflow of the buffers and to allow efficient use of the spacecraft resources, ground based models of the spacecraft processes will be implemented. These models will be integral tools in the development of satellite encounter sequences and the cruise/playback sequences where recorded data is retrieved.

  12. The natural space environment: Effects on spacecraft

    NASA Technical Reports Server (NTRS)

    James, Bonnie F.; Norton, O. W. (Compiler); Alexander, Margaret B. (Editor)

    1994-01-01

    The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of the natural space environments and their effect on spacecraft design, development, and operations, and also highlights some of the new developments in science and technology for each space environment. It is hoped that a better understanding of the space environment and its effect on spacecraft will enable program management to more effectively minimize program risks and costs, optimize design quality, and successfully achieve mission objectives.

  13. Embedded spacecraft thermal control using ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Clements, Jared W.

    Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.

  14. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  15. Foot Pedals for Spacecraft Manual Control

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  16. Meteoroid-Induced Anomalies on Spacecraft

    NASA Technical Reports Server (NTRS)

    Cooke, Bill

    2015-01-01

    Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).

  17. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    NASA Technical Reports Server (NTRS)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  18. Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment

    NASA Technical Reports Server (NTRS)

    Bedingfield, Keith, L.; Leach, Richard D.; Alexander, Margaret B. (Editor)

    1996-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. This primer provides a brief overview of the natural space environment - definition, related programmatic issues, and effects on various spacecraft subsystems. The primary focus, however, is to catalog, through representative case histories, spacecraft failures and anomalies attributed to the natural space environment. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  19. Design, construction and testing of the Communications Technology Satellite protection against spacecraft charging

    NASA Technical Reports Server (NTRS)

    Gore, J. V.

    1977-01-01

    Detailed discussions are presented of the measures taken on the Communications Technology Satellite (CTS or Hermes) which provide protection against the effects of spacecraft charging. These measures include: a comprehensive grounding philosophy and implementation; provision of command and data line transmitters and receivers for transient noise immunity; and a fairly restrictive EMI specification. Ground tests were made on materials and the impact of these tests on the CTS spacecraft is described. Hermes, launched on 17 January 1976 on a 2914 Delta vehicle, has successfully completed 10 months of operations. Anomalies observed are being assessed in relation to spacecraft charging, but no definite correlations have yet been established. A list of conclusions with regard to the CTS experience is given and recommendations for future spacecraft are also listed.

  20. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  1. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology. Volume 6: Executive summary. [technological forecasting spacecraft control/attitude (inclination) -classical mechanics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An assessment of the technological impact of modern satellite weather forecasting for the United States is presented. Topics discussed are: (1) television broadcasting of weather; (2) agriculture (crop production); (3) water resources; (4) urban development; (5) recreation; and (6) transportation.

  2. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For

  3. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  4. Making Human Spaceflight Practical and Affordable: Spacecraft Designs and their Degree of Operability

    NASA Technical Reports Server (NTRS)

    Crocker, Alan R.

    2011-01-01

    As we push toward new and diverse space transportation capabilities, reduction in operations cost becomes increasingly important. Achieving affordable and safe human spaceflight capabilities will be the mark of success for new programs and new providers. The ability to perceive the operational implications of design decisions is crucial in developing safe yet cost competitive space transportation systems. Any human spaceflight program - government or commercial - must make countless decisions either to implement spacecraft system capabilities or adopt operational constraints or workarounds to account for the lack of such spacecraft capabilities. These decisions can benefit from the collective experience that NASA has accumulated in building and operating crewed spacecraft over the last five decades. This paper reviews NASA s history in developing and operating human rated spacecraft, reviewing the key aspects of spacecraft design and their resultant impacts on operations phase complexity and cost. Specific examples from current and past programs - including the Space Shuttle and International Space Station - are provided to illustrate design traits that either increase or increase cost and complexity associated with spacecraft operations. These examples address factors such as overall design performance margins, levels of redundancy, degree of automated failure response, type and quantity of command and telemetry interfaces, and the definition of reference scenarios for analysis and test. Each example - from early program requirements, design implementation and resulting real-time operations experience - to tell the end-to-end "story" Based on these experiences, specific techniques are recommended to enable earlier and more effective assessment of operations concerns during the design process. A formal method for the assessment of spacecraft operability is defined and results of such operability assessments for recent spacecraft designs are provided. Recent

  5. (abstract) Vibration Damping of the Cassini Spacecraft Structure

    NASA Technical Reports Server (NTRS)

    Bergen, Thomas F.

    1995-01-01

    Cassini will be protected during launch ascent through the atmosphere by a lightweight aluminum payload fairing (PLF). As a result of the extreme noise levels generated by the powerful Titan IV at liftoff, and the acoustic transparency of the PLF, Cassini is predicted to experience severe acoustic levels. Furthermore, the high acoustic levels, coupled with the size and configuration of the spacecraft, will induce intense random vibration on the structure and critical spacecraft components. Efforts to mitigate the vibroacoustic environment by modifying the spacecraft structure were pursued. Preliminary studies indicated that a structural damping treatment using viscoelastic materials (VEMs) represented a viable technique of reducing vibration with minimum impact on weight, cost, and redesign. Tuned Vibration Absorbers (TVAs) - compact, single degree-of-freedom mechanical oscillators in which a VEM serves as the spring and damping element - will be used also. The operating principles, design, and installation of the TVAs are described, the test program is outlined, and test results are presented which show that significant vibration attenuation was achieved.

  6. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  7. Gravity and Tide Parameters Determined from Satellite and Spacecraft Orbits

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.

    2015-05-01

    As part of our work on the development of the Jovian and Saturnian satellite ephemerides to support the Juno and Cassini missions, we determined a number of planetary system gravity parameters. This work did not take into account tidal forces. In fact, we saw no obvious observational evidence of tidal effects on the satellite or spacecraft orbits. However, Lainey et al. (2009 Nature 459, 957) and Lainey et. al (2012 Astrophys. J. 752, 14) have published investigations of tidal effects in the Jovian and Saturnian systems, respectively. Consequently, we have begun a re-examination of our ephemeris work that includes a model for tides raised on the planet by the satellites as well as tides raised on the satellites by the planet. In this paper we briefly review the observations used in our ephemeris production; they include astrometry from the late 1800s to 2014, mutual events, eclipses, occultatons, and data acquired by the Pioneer, Voyager, Ulysses, Cassini, Galileo, and New Horizons spacecraft. We summarize the gravity parameter values found from our original analyses. Next we discuss our tidal acceleration model and its impact on the gravity parameter determination. We conclude with preliminary results found when the reprocessing of the observations includes tidal forces acting on the satellites and spacecraft.

  8. High Efficiency Synchronous Rectification in Spacecraft

    NASA Technical Reports Server (NTRS)

    Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.

    1993-01-01

    This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.

  9. Voyager spacecraft images of Jupiter and Saturn.

    PubMed

    Birnbaum, M M

    1982-01-15

    The images of Jupiter and Saturn and their satellites taken by the Voyager spacecraft TV cameras are shown and described. The scientific findings of the Voyager mission instruments and experiments are summarized.

  10. A DSN optimal spacecraft scheduling model

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1982-01-01

    A computer model is described which uses mixed-integer linear programming to provide optimal DSN spacecraft schedules given a mission set and specified scheduling requirements. A solution technique is proposed which uses Bender's Method and a heuristic starting algorithm.

  11. Fire behavior and risk analysis in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.

    1988-01-01

    Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.

  12. Cycle life test. [of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Statistical information concerning cell performance characteristics and limitations of secondary spacecraft cells is presented. Weaknesses in cell design as well as battery weaknesses encountered in various satellite programs are reported. Emphasis is placed on improving the reliability of space batteries.

  13. December 2008 CME as Viewed by Spacecraft

    NASA Video Gallery

    Newly reprocessed images from NASA's STEREO-A spacecraft, allow scientists to trace the anatomy of the December 2008 CME as it moves and changes on its journey from the Sun to the Earth, identify t...

  14. Launch of the MR-2 spacecraft

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Launching of the Mercury-Redstone 2 (MR-3) spacecraft from Cape Canaveral on a suborbital mission. Onboard the craft was Ham, a 37-pound chimpanzee. Despite an over-acceleration factor, the flight was considered to be successful.

  15. Effects Of Environmental Electrical Charges On Spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1993-01-01

    Handbook presents information on three kinds of disruptive effects of environmental electrical charges upon operations of electronic circuits and other sensitive equipment in spacecraft. Addresses surface and internal charging and discharging, single-event upsets, and related design issues.

  16. Spacecraft (Mobile Satellite) configuration design study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  17. Aerothermodynamics of the Mars Global Surveyor Spacecraft

    NASA Technical Reports Server (NTRS)

    Shane, Russell W.; Tolson, Robert H.

    1998-01-01

    The aerothermodynamics characteristics of the Mars Global Surveyor spacecraft are investigated and reported. These results have been used by the Mars Global Surveyor mission planners to design the aerobraking phase of the mission. Analytical and Direct Simulation Monte Carlo computer codes were used with a detailed, three dimensional model of the spacecraft to evaluate spacecraft aerobraking characteristics for flight in free molecular and transitional flow regimes. The spacecraft is found to be aerodynamically stable in aerobraking and planned contingency configurations. Aerodynamic forces, moments, and heating are found to be highly dependent on atmospheric density. Accommodation coefficient. is seen to strongly influence drag coefficient. Transitional flow effects are found to reduce overall solar panel heating. Attitude control thruster plumes are shown to interact with the freestream, diminishing the effectiveness of the attitude control system and even leading to thrust reversal. These plume-freestream interaction effects are found to be highly dependent on freestream density.

  18. Scattered Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux scattered impingement can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymer interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion re1ative is compared between the various interior locations and the external surface of a LEO spacecraft.

  19. Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.

  20. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    NASA Technical Reports Server (NTRS)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  1. A stochastic bioburden model for spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Roark, A. L.

    1972-01-01

    Development of a stochastic model of the probability distribution for the random variable representing the number of microorganisms on a surface as a function of time. The first basic principle associated with bioburden estimation is that viable particles are removed from surfaces. The second notion important to the analysis is that microorganisms in environments and on surfaces occur in clumps. The last basic principle relating to bioburden modeling is that viable particles are deposited on a surface. The bioburden on a spacecraft is determined by the amount and kind of control exercised on the spacecraft assembly location, the shedding characteristics of the individuals in the vicinity of the spacecraft, its orientation, the geographical location in which the assembly takes place, and the steps in the assembly procedure. The model presented has many of the features which are desirable for its use in the spacecraft sterilization programs currently being planned by NASA.

  2. Spacecraft exploration of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas C.; Zakharov, Alexander V.; Hoffmann, Harald; Guinness, Edward A.

    2014-11-01

    We review the previous exploration of Phobos and Deimos by spacecraft. The first close-up images of Phobos and Deimos were obtained by the Mariner 9 spacecraft in 1971, followed by much image data from the two Viking orbiters at the end of the 70s, which formed the basis for early Phobos and Deimos shape and dynamic models. The Soviet Phobos 2 spacecraft came within 100 km of landing on Phobos in 1988. Mars Global Surveyor (1996-2006) and Mars Reconnaissance Orbiter (since 2005) made close-up observations of Phobos on several occasions. Mars Express (since 2003) in its highly elliptical orbit is currently the only spacecraft to make regular Phobos encounters and has returned large volumes of science data for this satellite. Landers and rovers on the ground (Viking Landers, Mars Pathfinder, MER rovers, MSL rover) frequently made observations of Phobos, Deimos and their transits across the solar disk.

  3. Last Flight for GRAIL's Twin Spacecraft

    NASA Video Gallery

    This animation shows the final flight path for NASA’s twin GravityRecovery and Interior Laboratory (GRAIL) mission spacecraft, which willimpact the moon on Dec. 17, 2012, around 2:28 p.m. PST. ...

  4. Soyuz TMA-05M Spacecraft Mating

    NASA Video Gallery

    The Soyuz TMA-05M spacecraft and booster are seen at the Integration Facility at the Baikonur Cosmodrome in Kazakhstan July 11, 2012 during the mating of the upper stages of the vehicle to the firs...

  5. Environmental Impact Statement for the Cassini Mission. Supplement 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Final Supplemental Environmental Impact Statement (FSEIS) to the 1995 Cassini mission Environmental Impact Statement (EIS) focuses on information recently made available from updated mission safety analyses. This information is pertinent to the consequence and risk analyses of potential accidents during the launch and cruise phases of the mission that were addressed in the EIS. The type of accidents evaluated are those which could potentially result in a release of plutonium dioxide from the three Radioisotope Thermoelectric Generators (RTGS) and the up to 129 Radioisotope Heater Units (RHUS) onboard the Cassini spacecraft. The RTGs use the heat of decay of plutonium dioxide to generate electric power for the spacecraft and instruments. The RHUs, each of which contains a small amount of plutonium dioxide, provide heat for controlling the thermal environment of the spacecraft and several of its instruments. The planned Cassini mission is an international cooperative effort of the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI) to conduct a 4-year scientific exploration of the planet Saturn, its atmosphere, moons, rings, and magnetosphere.

  6. Expedition Seven Launched Aboard Soyez Spacecraft

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Destined for the International Space Station (ISS), a Soyez TMA-1 spacecraft launches from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. Aboard are Expedition Seven crew members, cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander, and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer. Expedition Six crew members returned to Earth aboard the Russian spacecraft after a 5 and 1/2 month stay aboard the ISS. Photo credit: NASA/Scott Andrews

  7. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  8. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  9. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  10. Planning the Voyager spacecraft's mission to Uranus

    NASA Technical Reports Server (NTRS)

    Plagemann, Stephen H.

    1987-01-01

    The application of the systems engineering process to the planning of the Voyager spacecraft mission is described. The Mission Planning Office prepared guidelines that controlled the use of the project and multimission resources and spacecraft consumables in order to obtain valuable scientific data at an acceptable risk level. Examples of mission planning which are concerned with the design of the Deep Space Network antenna, the uplink window for transmitting computer command subsystem loads, and the contingency and risk assessment functions are presented.

  11. Evaluation program for secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Christy, D. E.; Harkness, J. D.

    1973-01-01

    A life cycle test of secondary electric batteries for spacecraft applications was conducted. A sample number of nickel cadmium batteries were subjected to general performance tests to determine the limit of their actual capabilities. Weaknesses discovered in cell design are reported and aid in research and development efforts toward improving the reliability of spacecraft batteries. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is provided.

  12. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Astrophysics Data System (ADS)

    Bosset, M.

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  13. High voltage spacecraft electrical systems design

    NASA Technical Reports Server (NTRS)

    Stone, R. E.

    1993-01-01

    Factors which must be considered when designing the best and the most cost-effective high-voltage electrical system for a spacecraft are discussed with particular attention given to the EMC considerations, high-voltage power bus, and harnesses. It is emphasized that the use of serial data buses and lines greatly simplify the harness design and weight. Careful attention to the grounding concept and the EMC requirements is necessary for insuring a 'quiet' spacecraft.

  14. Vibration and acoustic testing of spacecraft

    NASA Technical Reports Server (NTRS)

    Scharton, T. D.

    2002-01-01

    Spacecraft are subjected to a variety of dynamics environments, which may include: quasi-static, vibration and acoustic loads at launch: pyrotechnic shocks generated by separation mechanisms; on orbit jitter; and sometimes, planetary landing loads. There is a trend in the aerospace industry to rely more on structural analyses and less on testing to simulate these environments, because dynamics testing of spacecraft is time consuming, risky and expensive.

  15. Power requirements for commercial communications spacecraft

    NASA Technical Reports Server (NTRS)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  16. Neutralization tests on the SERT 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Neutralization test data obtained on the SERT 2 spacecraft are presented. Tests included ion beam neutralization of a thruster by a close (normal design) neutralizer as well as by a distant (1 meter) neutralizer. Parameters affecting neutralization, such as neutralizer bias voltage, neutralizer anode voltage, local spacecraft plasma density, and solar array voltage configuration were varied and changes in plasma potentials were measured. A plasma model is presented as an approximation of observed results.

  17. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  18. Proliferation of spacecraft-associated Acinetobacter on alcohol solvents

    NASA Astrophysics Data System (ADS)

    Mogul, Rakesh; Cepeda, Ivonne; Brasali, Hania; Gornick, Trevor; Jain, Chirag; Kim, Eun Jin; Nguyen, Vinh Bao; Oei, Alex; Rodriguez, Joseph; Walker, Jillian; Savla, Gautam

    The Acinetobacter are the most abundant Gram-negative and non-spore forming bacteria found in the cleanroom facilities for Mars spacecraft. The spacecraft-associated Acinetobacter are extremotolerant towards hydrogen peroxide and have been shown to increase in abundance as a result of the spacecraft assembly process. To better understand the oligotrophic growth in the cleanroom environments, we have measured the growth of several Acinetobacter strains against ethanol and isopropanol, which are cleaning solvents used in the spacecraft assembly process. Our studies show that A. radioresistens 50v1, which was isolated from Mars Odyssey orbiter, optimally proliferates on 300 mM ethanol under minimal conditions at a growth rate that is 2-fold higher than that of the A. radioresistens type strain (strain 43998 (T) ). The impact of transition metals on the growth rates followed the trend of Fe (2+) > Mn (2+) > Zn (2+) , where Zn (2+) was inhibitory. In contrast, no growth on ethanol was observed for the novel species A. phoenicis 2P01AA, which was isolated from the facilities for the Mars Phoenix lander. Alcohol dehydrogenase activities measured in rich and minimal media paralleled these observations with the 50v1 strain possessing higher specific activities than the type strain, and the 2P01AA strain displaying no measurable activity in rich media. Preliminary studies indicate that isopropanol is insufficient as an energy source when in culture. The significance of these results as well as the observed differences between the Odyssey and Phoenix-associated strains will be discussed.

  19. Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Sudermann, James E.; Schlee, Keith L.

    2008-01-01

    Predicting the effect of fuel slosh on the attitude control system of a spacecraft or launch vehicle is a very important and challenging task. Whether the spacecraft is spinning or moving laterally, the dynamic effect of the fuel slosh helps determine whether the spacecraft will remain on its intended trajectory. Three categories of slosh can be caused by launch vehicle or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These are bulk-fluid motion, subsurface wave motion (currents), and free-surface slosh. Each of these slosh types has a periodic component defined by either a spinning or a lateral motion. For spinning spacecraft, all three types of slosh can greatly affect stability. Bulk-fluid motion and free-surface slosh can affect the lateral-slosh characteristics. For either condition, an unpredicted coupled resonance between the spacecraft and its onboard fuel could threaten a mission. This ongoing research effort seeks to improve the accuracy and efficiency of modeling techniques used to predict these types of fluid motions for lateral motion. Particular efforts focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.

  20. Compact, Precise Inertial Rotation Sensors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rosing, David; Oseas, Jeffrey; Korechoff, Robert

    2006-01-01

    A document describes a concept for an inertial sensor for measuring the rotation of an inertially stable spacecraft around its center of gravity to within 100 microarcseconds or possibly even higher precision. Whereas a current proposal for a spacecraft-rotation sensor of this accuracy requires one spacecraft dimension on the order of ten meters, a sensor according to this proposal could fit within a package smaller than 1 meter and would have less than a tenth of the mass. According to the concept, an inertial mass and an apparatus for monitoring the mass would be placed at some known distance from the center of gravity so that any rotation of the spacecraft would cause relative motion between the mass and the spacecraft. The relative motion would be measured and, once the displacement of the mass exceeded a prescribed range, a precisely monitored restoring force would be applied to return the mass to a predetermined position. Measurements of the relative motion and restoring force would provide information on changes in the attitude of the spacecraft. A history of relative motion and restoring-force measurements could be kept, enabling determination of the cumulative change in attitude during the observation time.

  1. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  2. Radiation Effects on Spacecraft Structural Materials

    SciTech Connect

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-07-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  3. DMSP Spacecraft Charging in Auroral Environments

    NASA Technical Reports Server (NTRS)

    Colson, Andrew; Minow, Joseph

    2011-01-01

    The Defense Meteorological Satellite Program (DMSP) spacecraft are a series of low-earth orbit (LEO) satellites whose mission is to observe the space environment using the precipitating energetic particle spectrometer (SSJ/4-5). DMSP satellites fly in a geosynchronous orbit at approx.840 km altitude which passes through Earth s ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. For satellites in LEO, such as DMSP, the plasma density is usually high and the main contributors to the currents to the spacecraft are the precipitating auroral electrons and ions from the magnetosphere as well as the cold plasma that constitutes the ionosphere. It is important to understand how the ionosphere and auroral electrons can accumulate surface charges on satellites because spacecraft charging has been the cause of a number of significant anomalies for on-board instrumentation on high altitude spacecraft. These range from limiting the sensitivity of measurements to instrument malfunction depending on the magnitude of the potential difference over the spacecraft surface. Interactive Data Language (IDL) software was developed to process SSJ/4-5 electron and ion data and to create a spectrogram of the particles number and energy fluxes. The purpose of this study is to identify DMSP spacecraft charging events and to present a preliminary statistical analysis. Nomenclature

  4. Standardizing the information architecture for spacecraft operations

    NASA Technical Reports Server (NTRS)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  5. Spacecraft Charging at Geosynchronous Altitude: Application Development

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Cooke, D. L.

    2002-12-01

    We report on progress made toward the development of a geosynchronous spacecraft surface charging application that combines environmental results from the Magnetospheric Specification Model (MSM) with a minimal spacecraft approximation. Surface charging is identified as a net electron current to the kapton spacecraft determined by integrating electron, proton, and oxygen fluxes along with secondary and backscatter yields specified as a function of energy. A validation study of the MSM, covering 20-50 keV electrons from the Charge Control System (CCS) on a DSCS III B-7 spacecraft, indicated that the MSM consistently tracked the diurnal and seasonal variations of this energetic portion of the surface charging particle population [Hilmer and Ginet, J. Atmos. and Solar-Terr. Phys., 62, 1275, 2000]. Initial comparisons of on-orbit spacecraft frame charging measurements from CCS with results obtained using MSM output indicated that the MSM produced ion and electron fluxes, as well as evolving electron spectral features, well enough to reproduce geosynchronous spacecraft charging current densities in the two largest of three events studied in the geosynchronous environment. [Hilmer et al., Proc. of 7th SCTC, 23-27 April 2001, ESA SP-476, 235, 2001]. We will provide an overview of the updated MSM/charging algorithm simulations performed using a variety of input parameter combinations in order to quantify the potential benefits of integrating MSM environment specification with advanced charging codes such as NASCAP-2K to produce system-specific charging applications.

  6. Real-Time EDL Navigation Performance Using Spacecraft to Spacecraft Radiometric Data

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Ely, Todd; Duncan, Courtney; Lightsey, Glenn; Campbell, Todd; Mogensen, Andy

    2006-01-01

    A two-year task sponsored by NASA's Mars Technology Program's Advanced Entry, Descent and Landing (EDL) work area includes investigation of improvements to EDL navigation by processing spacecraft-to-spacecraft radiometric data. Spacecraft-to-spacecraft navigation will take advantage of the UHF link between two spacecraft (i.e. to an orbiter from an approaching lander for EDL telemetry relay) to build radiometric data, specifically the velocity between the two spacecraft along the radio beam, that are processed to determine position and velocity in real time. The improved onboard state knowledge provided by spacecraft-to-spacecraft navigation will improve the performance of entry guidance by providing a more accurate state estimate and ultimately reduce the landed position error. A previous paper documented the progress of the first year of this task, including the spacecraft definitions, selection and documentation of the required algorithms and analysis results used to define the algorithm set. The final year of this task is reported here. Topics include modifications to the previously selected algorithm set for implementation, and performance of the implemented algorithms in a stand-alone filter, on an emulator of the target processor and finally on a breadboard processing unit.

  7. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  8. Improvements in Modeling Thruster Plume Erosion Damage to Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Olsen, Randy; Steagall, Courtney; Huang, Alvin; Mikatarian, Ron; Myers, Brandon; Koontz, Steven; Worthy, Erica

    2015-01-01

    Spacecraft bipropellant thrusters impact spacecraft surfaces with high speed droplets of unburned and partially burned propellant. These impacts can produce erosion damage to optically sensitive hardware and systems (e.g., windows, camera lenses, solar cells and protective coatings). On the International Space Station (ISS), operational constraints are levied on the position and orientation of the solar arrays to mitigate erosion effects during thruster operations. In 2007, the ISS Program requested evaluation of erosion constraint relief to alleviate operational impacts due to an impaired Solar Alpha Rotary Joint (SARJ). Boeing Space Environments initiated an activity to identify and remove sources of conservatism in the plume induced erosion model to support an expanded range of acceptable solar array positions ? The original plume erosion model over-predicted plume erosion and was adjusted to better correlate with flight experiment results. This paper discusses findings from flight experiments and the methodology employed in modifying the original plume erosion model for better correlation of predictions with flight experiment data. The updated model has been successful employed in reducing conservatism and allowing for enhanced flexibility in ISS solar array operations.

  9. Structural disturbances of the lunar surface caused by spacecraft

    NASA Astrophysics Data System (ADS)

    Kaydash, V. G.; Shkuratov, Yu. G.

    2012-04-01

    From the lunar surface survey performed with a narrow-angle camera of the Lunar Reconnaissance Orbiter (LRO) spacecraft, the distributions of the phase ratios of the Apollo 11 and 12 landing sites and the Ranger 9 impact site were mapped. In the acquired images, the traces of the structural disturbances of the lunar regolith layer caused by the jet flows are seen. In the Ranger 9 impact site, one can see the crater of about 15 m across with a ray system, which is hardly noticeable in the brightness picture, but has a high contract in the phase ratio picture. The character of the photometric anomaly of the rays of this crater shows that they are formed by the ejected stones composing the rugged relief, which induces a strong shadow effect. At the same time, the influence of jet flows from the rocket engines smooths the relief and leads to the photometric anomaly of the opposite sign. The estimate of the maturity degree of the lunar regolith in the Apollo 11 and 12 landing sites obtained from the SELENE spectral survey suggests that the depth of the influence of the rocket engines on the soil is small, and the surface of the impact crater formed by the Ranger 9 spacecraft contains a large amount of the immature soil.

  10. Development of Large-Scale Spacecraft Fire Safety Experiments

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Jomaas, Grunde

    2013-01-01

    The status is presented of a spacecraft fire safety research project that is under development to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be more complex and longer in duration than previous exploration missions outside of low-earth orbit. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this gap in knowledge, a project has been established under the NASA Advanced Exploration Systems Program under the Human Exploration and Operations Mission directorate with the goal of substantially advancing our understanding of the spacecraft fire safety risk. Associated with the project is an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The experiments are under development to be conducted in an Orbital Science Corporation Cygnus vehicle after it has undocked from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer modeling effort will complement the experimental effort. The international topical team is collaborating with the NASA team in the definition of the experiment requirements and performing supporting analysis, experimentation and technology development. The status of the overall experiment and the associated international technology development efforts are summarized.

  11. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  12. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  13. Exploring the Feasibility of Electrostatic Shielding for Spacecrafts

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.

    2005-01-01

    NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.

  14. Rough spacecraft surfaces -a threat to Planetary Protection issues

    NASA Astrophysics Data System (ADS)

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    Inadvertent introduction of terrestrial microorganisms to foreign solar bodies could compromise the integrity of present and future life detection missions. For Planetary Protection purposes space agencies measure the aerobic, mesophilic spore load of a spacecraft as a proxy indicator in order to determine its bioload. Emerging novel hardware in space science implicates novel surface structures and materials that need to be controlled with regard to contaminations. For instance (roughened) carbon fiber reinforced plastic and Vectran fabric for construction of landing platforms and airbags, respectively, have been used in some Mars exploration missions. These materials have different levels of roughness and their potential risk to retain spores for insufficient sampling success has never been in scope of investigation. In this comprehensive study we evaluated ESA's novel nylon flocked swab protocol on stainless steel and other tech-nical surfaces with regard to Bacillus spore recovery. Low recovery efficiencies of the ESA standard wipe assay for large surface sampling were demonstrated with regard to Bacillus at-rophaeus spore detection. Therefore another protocol designed for rough surface sampling was evaluated on Vectran fabric and (roughened) carbon fiber reinforced plastic. Moreover, scan-ning electron micrographs of the technical surfaces studied allowed a more detailed view on their properties. The evaluated sampling protocols and the corresponding results are of high interest for future life detection missions in order to preserve their scientific integrity throughout spacecraft assembly.

  15. Modeling the fundamental characteristics and processes of the spacecraft functioning

    NASA Technical Reports Server (NTRS)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  16. A Novel Spacecraft Charge Monitor for LEO

    NASA Technical Reports Server (NTRS)

    Goembel, Luke

    2004-01-01

    Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.

  17. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  18. Maneuver Design and Calibration for the Genesis Spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, Kenneth E.; Hong, Philip E.; Zietz, Richard P.; Han, Don

    2000-01-01

    . Special calibrations are of particular importance for the return leg of the mission, since the sample canister must be returned to a specific location within the Utah Test and Training Range (UTTR) for mid-air retrieval. An entry angle tolerance of no less than +/- 0.08 deg. is required to achieve this objective. Biasing of the final return maneuvers coupled with a specific maneuver mode to use a series of well-characterized spin changes to effect these maneuvers is part of the current Genesis baseline mission plan. Another important objective of calibrations is to better characterize precession maneuvers. Such maneuvers are part of most propulsive maneuvers, but are also required periodically to maintain sun-pointing for power or daily during solar-wind pointing during collection periods. Although relatively small, such maneuvers will have a significant cumulative impact on orbit determination, particularly in the halo portion of the mission. The current mission design also calls for three stationkeeping maneuvers during each halo orbit of approximately six months duration. These stationkeeping maneuvers may be sufficiently small that single or double 360 deg. precession changes may be required. Because there are no accelerometers on board the spacecraft, calibration can only be performed with the aid of ground-based radiometric tracking. To establish a high degree of accuracy in characterizing the magnitude of burns, the spacecraft spin axis should be along the line of sight to the Earth, providing Doppler measurements with <1 mm/sec accuracy in S-Band. Emission constraints allow such alignment only during certain portions of the mission when the Earth-spacecraft-sun geometry is favorable. The impact of precessions, or burns at times when geometry is not favorable, can be assessed by reconstruction of the spacecraft trajectory using tracking arcs of several days before and after the event.

  19. Spacecraft technology portfolio: Probabilistic modeling and implications for responsiveness and schedule slippage

    NASA Astrophysics Data System (ADS)

    Dubos, Gregory F.; Saleh, Joseph H.

    2011-04-01

    Addressing the challenges of Responsive Space and mitigating the risk of schedule slippage in space programs require a thorough understanding of the various factors driving the development schedule of a space system. The present work contributes theoretical and practical results in this direction. A spacecraft is here conceived of as a technology portfolio. The characteristics of this portfolio are defined as its size (e.g., number of instruments), the technology maturity of each instrument and the resulting Technology Readiness Level ( TRL) heterogeneity, and their effects on the delivery schedule of a spacecraft are investigated. Following a brief overview of the concept of R&D portfolio and its relevance to spacecraft design, a probabilistic model of the Time-to-Delivery of a spacecraft is formulated, which includes the development, Integration and Testing, and Shipping phases. The Mean-Time-To-Delivery ( MTTD) of the spacecraft is quantified based on the portfolio characteristics, and it is shown that the Mean-Time-To-Delivery ( MTTD) of the spacecraft and its schedule risk are significantly impacted by decreasing TRL and increasing portfolio size. Finally, the utility implications of varying the portfolio characteristics are investigated, and "portfolio maps" are provided as guides to help system designers identify appropriate portfolio characteristics when operating in a calendar-based design environment (which is the paradigm shift that space responsiveness introduces).

  20. Automating Trend Analysis for Spacecraft Constellations

    NASA Technical Reports Server (NTRS)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  1. Improvement in the Recovery Accuracy of the Lunar Gravity Field Based on the Future Moon-ILRS Spacecraft Gravity Mission

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Houtse; Zhong, Min; Yun, Meijuan

    2015-07-01

    This study mostly concentrates on the sensitivity analysis regarding the future dedicated Moon-ILRS spacecraft gravity mission. Firstly, the new single and combined analytical error models for the cumulative lunar geoid height impacted by the major error sources comprising the inter-spacecraft range-rate of the interferometric laser ranging system (ILRS), the spacecraft orbital position tracked by the deep space network (DSN) and the non-conservative force of the drag-free control system (DFCS) are developed on the basis of the spacecraft-to-spacecraft tracking in the low-low mode (SST-LL) from the future twin Moon-ILRS spacecraft. Secondly, the correctness of the new single and combined analytical error models is proved according to the compliance of the cumulative lunar geoid height errors among the inter-spacecraft range-rate, orbital position and non-conservative force. Finally, in comparison with the past gravity recovery and interior laboratory (GRAIL) program, the preferred design for the future Moon-ILRS mission is achieved in this paper. We recommend that the future twin Moon-ILRS formation-flying spacecraft had better adopt the new-type space-borne instruments involving the ILRS and DFCS. We demonstrate the compatible accuracy indexes of the key sensors (e.g., 10-9 m/s in the inter-spacecraft range-rate, 1 m in the orbital position and 3 × 10-13 m/s2 in the non-conservative force) and the optimal orbital parameters (e.g., 25-km orbital altitude, 100-km inter-spacecraft range and 1-s sampling interval) in the future Moon-ILRS twin-spacecraft mission.

  2. Sheath ionization model of beam emissions from large spacecraft

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Cohen, H. A.; Bhavnani, K. H.; Tautz, M. E.

    1985-01-01

    An analytical model of the charging of a spacecraft emitting electron and ion beams has been applied to the case of large spacecraft. In this model, ionization occurs in the sheath due to the return current. Charge neutralization of spherical space charge flow is examined by solving analytical equations numerically. Parametric studies of potential large spacecraft are performed. As in the case of small spacecraft, the ions created in the sheath by the returning current play a large role in determining spacecraft potential.

  3. Spacecraft Charging Issues for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Buhler, Janessa L.; Minow, Joseph I.; Trout, Dawn H.

    2014-01-01

    Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle andor payload design and controlling the risk through operational launch constraints to avoid significant charging environments.

  4. Spacecraft Charging Issues for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Burford, Janessa Lynne; Trout, Dawn H.; Minow, Joseph I.

    2014-01-01

    Spacecraft charging is well known threat to successful long term spacecraft operations and instrument reliability in orbits that spend significant time in hot electron environments. In recent years, spacecraft charging has increasingly been recognized as a potentially significant engineering issue for launch vehicles used to deploy spacecraft using (a) low Earth orbit (LEO), high inclination flight trajectories that pass through the auroral zone, (b) geostationary transfer orbits that require exposures to the hot electron environments in the Earths outer radiation belts, and (c) LEO escape trajectories using multiple phasing orbits through the Earths radiation belts while raising apogee towards a final Earth escape geometry. Charging becomes an issue when significant areas of exposed insulating materials or ungrounded conductors are used in the launch vehicle design or the payload is designed for use in a benign charging region beyond the Earths magnetosphere but must survive passage through the strong charging regimes of the Earths radiation belts. This presentation will first outline the charging risks encountered on typical launch trajectories used to deploy spacecraft into Earth orbit and Earth escape trajectories. We then describe the process used by NASAs Launch Services Program to evaluate when surface and internal charging is a potential risk to a NASA mission. Finally, we describe the options for mitigating charging risks including modification of the launch vehicle and/or payload design and controlling the risk through operational launch constraints to avoid significant charging environments

  5. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  6. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  7. Spacecraft design project multipurpose satellite bus MPS

    NASA Technical Reports Server (NTRS)

    Kellman, Lyle; Riley, John; Szostak, Michael; Watkins, Joseph; Willhelm, Joseph; Yale, Gary

    1990-01-01

    The thrust of this project was to design not a single spacecraft, but to design a multimission bus capable of supporting several current payloads and unnamed, unspecified future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a fresh look at the feasibility of a multimission spacecraft bus. The design team chose two very diverse and different payloads, and along with them two vastly different orbits, to show that multimission spacecraft buses are an area where indeed more research and effort needs to be made. Tradeoffs, of course, were made throughout the design, but optimization of subsystem components limited weight and volume penalties, performance degradation, and reliability concerns. Simplicity was chosen over more complex, sophisticated and usually more efficient designs. Cost of individual subsystem components was not a primary concern in the design phase, but every effort was made to chose flight tested and flight proven hardware. Significant cost savings could be realized if a standard spacecraft bus was indeed designed and purchased in finite quantities.

  8. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    PubMed Central

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  9. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens.

    PubMed

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R; Vaishampayan, Parag A

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  10. Common Spacecraft Bus for Earth Science Decadal Survey Missions

    NASA Astrophysics Data System (ADS)

    Cook, T.; Klaus, K.; Elsperman, M. S.

    2010-12-01

    Our study assessed the overall technical and programmatic viability of a Common Spacecraft Bus (CSB) approach that could satify the requirements of multiple Earth Science Decadal Mission programs resulting in cost and schedule savings over individual programs. Our approach developed a Common Payload Interface (CPIF) concept based on assessment of TIER I mission requirements to enable flexibility to the payloads while maintaining maximum commonality in the bus design. Satellite missions in Tier 1 of the Decadal Survey are missions with a launch period beginning in 2014. Four missions are planned and will measure climate change by examining solar and earth radiation, soil moisture and freeze/thaw cycles, ice sheet height differences, surface and ice sheet deformation from natural hazards, and vegetation structure (SMAP, ICESat-2, CLARREO, and DESDynI). Our study goals and objectives were: Develop a Common Spacecraft Bus (CSB) that incorporates the defined CPIF that can be configured to meet the individual Tier I mission specific requirements with minimal impacts or changes; Develop a efficient Assembly, Integration and Test (AI&T) flow and program schedule that can accommodate multiple Observatory level spacecraft processing and provide the flexibility to respond to program changes and other schedule perturbations; Develop a ROM cost for the CSB program approach, based on the reference design and schedules; Evaluate the CSB capability to host payloads of opportunity on the Tier I spacecraft; Evaluate the CSB capability to host the Tier II missions and what changes are required from the Tier I CSB We concluded: CSB approach for Tier I missions is feasible with very good synergy; Program Execution and AI&T approaches can be defined to take maximum advantage of CSB program approach and meet required launch readiness dates; ROM cost analysis indicates that a CSB approach is viable and offers substantial savings over separate procurements The Common Spacecraft Bus

  11. Navigating the MESSENGER Spacecraft through End of Mission

    NASA Astrophysics Data System (ADS)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  12. Tweeting Spacecraft: Communicating Space Science in the Age of Web 2.0

    NASA Astrophysics Data System (ADS)

    Vertesi, J.

    2010-12-01

    Since 2008 NASA spacecraft have been using the microblogging service, Twitter, to communicate science topics and results to a long list of public followers. In its ability to reach hundreds of thousands of individual users, Twitter offers many benefits for the public communication of astronomy. But to use social media services responsibly requires several competing tensions outlined here to be balanced: specifically, with respect to agency and intimacy, and scientific expertise.

  13. Mass streams for spacecraft propulsion and energy generation

    SciTech Connect

    Hammer, J H

    2005-08-31

    A speculative propulsion concept is presented, based on accelerating a spacecraft by impact of a stream of matter in relative motion with respect to the spacecraft. To accelerate the stream to the needed velocity the stream mass is contained in a transit vehicle, launched at low velocity and hence low energy cost, and then sent on a trajectory with near encounters of the planets for gravitational assist. The mass arrives at Earth or wherever the propellant is needed at much higher velocity and kinetic energy, where it is released into an extended stream suitable for propulsion. The stream, moving at a relative velocity in the range of 10 to 30km/s, should be capable of both high thrust and high specific impulse. Means of limiting the transverse expansion of the stream during release and for the {approx}1000 seconds duration of impact are a critical requirement for practicality of the concept. The scheme could potentially lead to a virtually unlimited energy source. One can imagine using a portion of one stream to launch another, larger payload on a similar trajectory. This creates, in effect, an energy amplifier extracting energy from the orbital motions of the planets. The gain of the energy amplifier is only limited by the capacity to prepare mass in transit vehicles.

  14. CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype

    NASA Technical Reports Server (NTRS)

    Lucord, Steve; Martinez, Lindolfo

    2009-01-01

    We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the

  15. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  16. Infrared characterized spacecraft contaminants and related compounds

    NASA Technical Reports Server (NTRS)

    Gross, F. C.

    1977-01-01

    The limits of the infrared region of the electromagnetic spectrum are discussed, together with an explanation of some of the shortcomings of obtaining data in this range. Similarities and differences in the interest taken by the chemist/spectroscopist and the space/spectroscopist in the IR spectrum are discussed. The chemist uses IR spectra to identify materials and contaminants associated with spacecraft fabrication and testing. The space scientist, using IR spectrometry, can determine atmospheric conditions around planets, stars, and galaxies. He could also determine the temperature profile of the Earth's atmosphere at different altitudes, or even the temperature profile of the Sun. The importance of detecting contamination of spacecraft and the possible results of not taking corrective action are explored. All space experiments contain some contaminants, to a lesser or greater degree; the responsible personnel involved must determine the level of toleration. A collection of IR spectra of known spacecraft contaminants is presented as a guide for cognizant scientists and engineers.

  17. Artist concept of Magellan spacecraft orbiting Venus

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft orbits Venus in this artist concept. The continued quest for detailed topographic measurements of Venus will again be undertaken in April 1989 by Magellan, named after the 16th century Portuguese explorer. Magellan will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperature radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.

  18. Spacecraft Charging in Low Temperature Environments

    NASA Technical Reports Server (NTRS)

    Parker, Linda N.

    2007-01-01

    Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.

  19. Pseudo Linear Attitude Determination of Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.; Bar-Itzhack, Itzhack Y.

    2004-01-01

    This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler's equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate.

  20. Developing Sustainable Spacecraft Water Management Systems

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.