Science.gov

Sample records for agency water quality

  1. 76 FR 38384 - Agency Information Collection Activities; Proposed Collection; Comment Request; Water Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Water Quality... this action are all States and certain authorized Indian Tribes that adopt water quality standards...: Water Quality Standards Regulation (Renewal). ICR Number: EPA ICR No. 988.11, OMB Control No....

  2. 40 CFR 35.925-2 - Water quality management plans and agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management plans and... Water Act § 35.925-2 Water quality management plans and agencies. That the project is consistent with any applicable water quality management (WQM) plan approved under section 208 or section 303(e) of...

  3. 40 CFR 35.925-2 - Water quality management plans and agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management plans and... Water Act § 35.925-2 Water quality management plans and agencies. That the project is consistent with any applicable water quality management (WQM) plan approved under section 208 or section 303(e) of...

  4. 40 CFR 35.925-2 - Water quality management plans and agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management plans and... Water Act § 35.925-2 Water quality management plans and agencies. That the project is consistent with any applicable water quality management (WQM) plan approved under section 208 or section 303(e) of...

  5. 40 CFR 35.925-2 - Water quality management plans and agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Water quality management plans and... Water Act § 35.925-2 Water quality management plans and agencies. That the project is consistent with any applicable water quality management (WQM) plan approved under section 208 or section 303(e) of...

  6. 40 CFR 35.925-2 - Water quality management plans and agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management plans and... Water Act § 35.925-2 Water quality management plans and agencies. That the project is consistent with any applicable water quality management (WQM) plan approved under section 208 or section 303(e) of...

  7. Water-Quality Data from Upper Klamath and Agency Lakes, Oregon, 2007-08

    USGS Publications Warehouse

    Kannarr, Kristofor E.; Tanner, Dwight Q.; Lindenberg, Mary K.; Wood, Tamara M.

    2010-01-01

    Significant Findings The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during May-November 2007 and 2008. The results of these measurements and sample analyses are presented in this report for 29 stations on Upper Klamath Lake and 2 stations on Agency Lake, as well as quality-assurance data for the water-quality samples. Some of the significant findings from 2007 and 2008 are listed below. In 2007-08, ammonia concentrations were at or near the detection limit at all stations during the second week in June, after which they began to increase, with peak concentrations occurring from July through November. The concentration of un-ionized ammonia, which can be toxic to aquatic life, first began to increase in mid-June and peaked in July or August at most sites. Concentrations of un-ionized ammonia measured in the Upper Klamath Lake in 2007-08 did not reach concentrations that would have been potentially lethal to suckers. Samples collected for the analysis of dissolved organic carbon (DOC) late in the 2007 season showed no evidence of an increase in DOC subsequent to the breaching of the Williamson River Delta levees on October 30. In 2007-08, the lakewide daily median of dissolved oxygen concentration began to increase in early June, and peaked in mid- to late June. The lakewide daily median pH began to increase from early June and peaked in late June (2007) or early July (2008). Lakewide daily median pH slowly decreased during the rest of both seasons. The 2007 lakewide daily median specific conductance values first peaked on July 1, coincident with a peak in dissolved oxygen concentration and pH, followed by a decrease through mid-July. Specific conductance then remained relatively stable until mid-October when a sharp increase began that continued until the end of the season. Lakewide specific conductance

  8. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    USGS Publications Warehouse

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  9. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow

  10. Report on Pilot Test of State Agency Manpower Planning Methodology, Texas Water Quality Board Construction Grants Section.

    ERIC Educational Resources Information Center

    Texas State Dept. of Water Resources, Austin.

    This report presents the results of a pilot test by the Texas Water Quality Board (TWQB) of a manpower planning methodology developed by the U.S. Environmental Protection Agency (EPA), Office of Water Programs. Project outputs are described and illustrated in sections of the report dealing with work to be done, organizational staffing plan,…

  11. Water-quality data from Upper Klamath and Agency Lakes, Oregon, 2009-10

    USGS Publications Warehouse

    Eldridge, D. Blake; Caldwell Eldridge, Sara L.; Schenk, Liam N.; Tanner, Dwight Q.; Wood, Tamara M.

    2012-01-01

    The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during 2009 and 2010 from May through November each year. The results of these measurements and sample analyses, as well as quality-control data for the water-quality samples, are presented in this report for 14 sites on Upper Klamath Lake and 2 sites on Agency Lake. These 2 years of data demonstrate a contrast in the seasonal bloom of the dominant cyanobacterium, Aphanizomenon flos-aquae, that can be related to differences in the measured water quality and meteorological variables. Some of the significant findings from 2009 and 2010 are listed below. * Both 2009 and 2010 were characterized by two cyanobacteria blooms, but the blooms differed in timing and intensity. The first bloom in 2009 peaked in late June and at higher chlorophyll a concentrations at most sites than the first bloom in 2010, which peaked in mid-July. A major decline in the first 2009 bloom occurred in late July and was followed by a second bloom that peaked at most sites in mid-August and persisted through September. The decline of the weaker first bloom in 2010 occurred in early August and was followed by a more substantial second bloom that peaked between late August and early September at most sites. * Dissolved oxygen minima associated with bloom declines occurred approximately 2 weeks earlier in 2009 (mid-July) than in 2010 (early August). pH maxima associated with rapid bloom growth occurred in late June and again in mid-August in 2009 and in mid-July and late August in 2010. * In both years, the maxima for total phosphorus and total nitrogen concentrations coincided with the chlorophyll a maximum. The maxima for dissolved nutrient concentrations (orthophosphate, ammonia, and nitrite plus nitrate) coincided with the declines of the first blooms. * Total particulate carbon, total

  12. Water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  13. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  14. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  15. Water-Quality Data

    MedlinePlus

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  16. Principles of Water Quality

    SciTech Connect

    Waite, T.D.

    1984-01-01

    CONTENTS: Introduction to Water Quality Concepts. Natural Environmental Processes. Toxic Metals as Factors in Water Quality. Refractory Organic Compounds. Nutrients, Productivity, and Eutrophication. Microbes and Water Quality. Thermal Effects and Water Quality. Air Quality. Water Quality Interactions. Introduction to Water Quality Modeling. Water Quality Standards, and Management Approaches.

  17. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  18. WATER QUALITY

    EPA Science Inventory

    This brochure is part of a series of information packages prepared by the United States Environmental Protection Agency (EPA). Aimed at the international community, the packages focus on key environmental and public health issues being investigated by EPA. The products highlight...

  19. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.

  20. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  1. 76 FR 13172 - Placer County Water Agency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Energy Regulatory Commission Placer County Water Agency Notice of Application Tendered for Filing with... Filed: February 23, 2011 d. Applicant: Placer County Water Agency e. Name of Project: Middle Fork... Manager, Placer County Water Agency, 144 Ferguson Road, Auburn, CA 95603; Telephone: (530) 823-4490....

  2. STOrage and RETrieval and Water Quality eXchange | Water ...

    EPA Pesticide Factsheets

    2016-04-07

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  3. STOrage and RETrieval and Water Quality eXchange | Water ...

    EPA Pesticide Factsheets

    2016-02-17

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  4. STOrage and RETrieval and Water Quality eXchange | Water ...

    EPA Pesticide Factsheets

    2016-03-22

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  5. Primer on Water Quality

    MedlinePlus

    ... fs-027-01.pdf--665KB A Primer on Water Quality What is in the water? Is it safe for drinking? Can fish and ... affect water quality. What do we mean by "water quality"? Water quality can be thought of as ...

  6. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  7. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... AGENCY 2012 Recreational Water Quality Criteria AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of the 2012 Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing...

  8. Water Quality: An Introduction

    ERIC Educational Resources Information Center

    Merritt, LaVere B.

    1977-01-01

    An overview of the various aspects of water quality, including a rationale for multidisciplinary cooperation in water quality management, a list of beneficial water uses, a discussion of the major types of water pollutants, and an explanation of the use of aquatic biota in testing for water quality. (CS)

  9. Effects of Seeding Procedures and Water Quality on Recovery of Cryptosporidium Oocysts from Stream Water by Using U.S. Environmental Protection Agency Method 1623

    PubMed Central

    Francy, Donna S.; Simmons, Otto D.; Ware, Michael W.; Granger, Emma J.; Sobsey, Mark D.; Schaefer, Frank W.

    2004-01-01

    U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures. PMID:15240291

  10. Effects of seeding procedures and water quality on recovery of Cryptosporidium oocysts from stream water by using U.S. Environmental Protection Agency method 1623

    USGS Publications Warehouse

    Francy, D.S.; Simmons, O. D.; Ware, M.W.; Granger, E.J.; Sobsey, M.D.; Schaefer, F. W.

    2004-01-01

    U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures.

  11. Effects of seeding procedures and water quality on recovery of Cryptosporidium oocysts from stream water by using U.S. Environmental Protection Agency Method 1623.

    PubMed

    Francy, Donna S; Simmons, Otto D; Ware, Michael W; Granger, Emma J; Sobsey, Mark D; Schaefer, Frank W

    2004-07-01

    U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures.

  12. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... September 4, 2013 Part II Environmental Protection Agency 40 CFR Part 131 Water Quality Standards Regulatory... Rules#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 131 RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards...

  13. Water Quality Criteria

    EPA Pesticide Factsheets

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  14. Water Quality Standards Handbook

    EPA Pesticide Factsheets

    The Water Quality Standards Handbook is a compilation of the EPA's water quality standards (WQS) program guidance including recommendations for states, authorized tribes, and territories in reviewing, revising, and implementing WQS.

  15. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  16. 77 FR 46298 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... AGENCY 40 CFR Part 131 RIN 2040-AF38 Phosphorus Water Quality Standards for Florida Everglades AGENCY... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is...

  17. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... AGENCY 40 CFR Part 131 Phosphorus Water Quality Standards for Florida Everglades AGENCY: Environmental... provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus... are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing...

  18. Tsunamis: Water Quality

    MedlinePlus

    ... Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  19. Rethinking equal access: agency, quality, and norms.

    PubMed

    Ruger, J P

    2007-01-01

    In 2005 the Global Health Council convened healthcare providers, community organizers, policymakers and researchers at Health Systems: Putting Pieces Together to discuss health from a systems perspective. Its report and others have established healthcare access and quality as two of the most important issues in health policy today. Still, there is little agreement about what equal access and quality mean for health system development. At the philosophical level, few have sought to understand why differences in healthcare quality are morally so troubling. While there has been considerable work in medical ethics on equal access, these efforts have neglected health agency (individuals' ability to work toward health goals they value) and health norms, both of which influence individuals' ability to be healthy. This paper argues for rethinking equal access in terms of an alternative ethical aim: to ensure the social conditions in which all individuals have the capability to be healthy. This perspective requires that we examine injustices not just by the level of healthcare resources, but by the: (1) quality of those resources and their capacity to enable effective health functioning; (2) extent to which society supports health agency so that individuals can convert healthcare resources into health functioning; and (3) nature of health norms, which affect individuals' efforts to achieve functioning.

  20. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  1. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  2. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  3. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  4. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  5. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  6. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management...

  7. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS)...

  8. State Water Agency Practices for Climate Adaptation

    EPA Pesticide Factsheets

    This webpage contains short descriptions of innovative practices that state water agencies are currently implementing to reduce their vulnerability to climate-related impacts and to build resilience to climate change.

  9. Lake Tahoe Water Quality Improvement Programs

    EPA Pesticide Factsheets

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load TMDL), EPA-sponsored projects, list of partner agencies.

  10. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  11. EFFECTS OF SEEDING PROCEDURES AND WATER QUALITY ON RECOVERY OF CRYPTOSPORIDIUM OOCYSTS FROM STREAM WATER BY USING U.S. ENVIRONMENTAL PROTECTION AGENCY METHOD 1623

    EPA Science Inventory

    U.S.EPA Methods 1622 and 1623 are used to detect and quantify Cryptosporidium oocysts in water. The protocol consists of filtration, immunomagnetic separation (IMS), staining with a fluorescent antibody, and microscopic analysis. Microscopic analysis includes detection by fluor...

  12. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  13. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  14. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  15. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  16. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  17. Illinois water quality management plan

    SciTech Connect

    Not Available

    1992-12-01

    The report describes the purpose of the plan to consolidate and streamline portions of approved state and areawide water quality management (WQM) plans in order to facilitate their usage in the operations of all designated WQM agencies. The report identifies both point and nonpoint pollution sources, reviews policies and regulations already in place and makes recommendations for pollution prevention and control. Information on the plan's management structure is also included.

  18. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  19. [Quality management in a public health agency].

    PubMed

    Villalbí, Joan R; Ballestín, Manuela; Casas, Conrad; Subirana, Teresa

    2012-01-01

    This article describes the introduction of quality improvement actions in a public health organization. After ISO 17025 accreditation, which was legally mandated, was granted to the official control laboratory, the management decided to expand a quality policy in 2003, through a series of actions based on process analysis and proposals for improvement, further definition of standard operating procedures, exploration of users' opinions, the creation of improvement groups, and external audits or certification. The organizational response to these initiatives was diverse. External audit or certification of services seems to be the most powerful tool for change. Costing studies showed that up to 75% of the total expenditure of the agency in 2010 was spent on public health services subject to external audit or certification.

  20. The microbiological quality of potable water on board ships docking in the UK and the Channel Islands: an association of Port Health Authorities and Health Protection Agency Study.

    PubMed

    Grenfell, P; Little, C L; Surman-Lee, S; Greenwood, M; Averns, J; Westacott, S; Lane, C; Nichols, G

    2008-06-01

    Providing safe potable water onboard vessels presents particular challenges and contamination can occur directly from source waters as well as during loading, storage and distribution. Between May and October 2005, 950 potable water samples were collected from 342 ships docking at ports. Comparison with Guidelines found 9% of samples contained coliforms, Escherichia coli or enterococci and 2.8% had faecal indicators (E. coli or enterococci). Action levels of aerobic colony count (ACC) bacteria were detected in 20% (22 degrees C) and 21.5% (37 degrees C) of samples. ACC results from one-off sampling are not informative as this does not enable port health authorities to monitor ACC trends. They should be removed as a routine criterion for remedial action and vessels should adopt the WHO Water Safety Plan approach, whilst continuing to monitor water quality with public health-based indicators (e.g. chlorine residual, coliforms, E. coli and enterococci). Logistic regression analyses identified practices associated with water quality. Practices protective against coliforms, E. coli or enterococci in potable supplies were: good hose hygiene, processing water onboard, maintaining free chlorine residual at >or=0.2 mg/L. This emphasizes the importance of good hygiene during potable water loading and maintaining adequate disinfection of supplies onboard.

  1. Water Quality Assessment and Management

    EPA Pesticide Factsheets

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  2. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  3. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  4. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  5. Creating Quality Improvement Culture in Public Health Agencies

    PubMed Central

    Mahanna, Elizabeth; Joly, Brenda; Zelek, Michael; Riley, William; Verma, Pooja; Fisher, Jessica Solomon

    2014-01-01

    Objectives. We conducted case studies of 10 agencies that participated in early quality improvement efforts. Methods. The agencies participated in a project conducted by the National Association of County and City Health Officials (2007–2008). Case study participants included health directors and quality improvement team leaders and members. We implemented multiple qualitative analysis processes, including cross-case analysis and logic modeling. We categorized agencies according to the extent to which they had developed a quality improvement culture. Results. Agencies were conducting informal quality improvement projects (n = 4), conducting formal quality improvement projects (n = 3), or creating a quality improvement culture (n = 4). Agencies conducting formal quality improvement and creating a quality improvement culture had leadership support for quality improvement, participated in national quality improvement initiatives, had a greater number of staff trained in quality improvement and quality improvement teams that met regularly with decision-making authority. Agencies conducting informal quality improvement were likely to report that accreditation is the major driver for quality improvement work. Agencies creating a quality improvement culture were more likely to have a history of evidence-based decision-making and use quality improvement to address emerging issues. Conclusions. Our findings support previous research and add the roles of national public health accreditation and emerging issues as factors in agencies’ ability to create and sustain a quality improvement culture. PMID:24228680

  6. Relation Between Selected Water-Quality Variables, Climatic Factors, and Lake Levels in Upper Klamath and Agency Lakes, Oregon, 1990-2006

    USGS Publications Warehouse

    Morace, Jennifer L.

    2007-01-01

    Growth and decomposition of dense blooms of Aphanizomenon flos-aquae in Upper Klamath Lake frequently cause extreme water-quality conditions that have led to critical fishery concerns for the region, including the listing of two species of endemic suckers as endangered. The Bureau of Reclamation has asked the U.S. Geological Survey (USGS) to examine water-quality data collected by the Klamath Tribes for relations with lake level. This analysis evaluates a 17-year dataset (1990-2006) and updates a previous USGS analysis of a 5-year dataset (1990-94). Both univariate hypothesis testing and multivariable analyses evaluated using an information-theoretic approach revealed the same results-no one overarching factor emerged from the data. No single factor could be relegated from consideration either. The lack of statistically significant, strong correlations between water-quality conditions, lake level, and climatic factors does not necessarily show that these factors do not influence water-quality conditions; it is more likely that these conditions work in conjunction with each other to affect water quality. A few different conclusions could be drawn from the larger dataset than from the smaller dataset examined in 1996, but for the most part, the outcome was the same. Using an observational dataset that may not capture all variation in water-quality conditions (samples were collected on a two-week interval) and that has a limited range of conditions for evaluation (confined to the operation of lake) may have confounded the exploration of explanatory factors. In the end, all years experienced some variation in poor water-quality conditions, either in timing of occurrence of the poor conditions or in their duration. The dataset of 17 years simply provided 17 different patterns of lake level, cumulative degree-days, timing of the bloom onset, and poor water-quality conditions, with no overriding causal factor emerging from the variations. Water-quality conditions were

  7. STOrage and RETrieval and Water Quality eXchange

    EPA Pesticide Factsheets

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  8. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  9. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  10. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  11. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  12. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  13. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  14. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  15. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and...

  16. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  17. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  18. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section...

  19. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality...

  20. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  1. Quality criteria for water, 1986

    SciTech Connect

    Not Available

    1986-05-01

    Section 304(a) (1) of the Clean Water Act 33 U.S.C. 1314(a) (1) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water-quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation that may be expected from the presence of pollutants in any body of water including ground water; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters. In a continuing effort to provide those who use EPA's water-quality and human-health criteria with up-to-date criteria values and associated information, the document was assembled. The document includes summaries of all the contaminants for which EPA has developed criteria recommendations.

  2. National Water Quality Benefits

    EPA Science Inventory

    This project will provide the basis for advancing the goal of producing tools in support of quantifying and valuing changes in water quality for EPA regulations. It will also identify specific data and modeling gaps and Improve benefits estimation for more complete benefit-cost a...

  3. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  4. ASSESSING WATER CLARITY AS A COMPONENT OF WATER QUALITY IN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP) uses water clarity as a water quality indicator for integrated assessments. After the publication of the first National Coastal Condition Report, the national water clarity reference v...

  5. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  6. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  7. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  8. Quality of waters in California

    USGS Publications Warehouse

    ,

    1963-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the nation in conjunction with water usage and its availability. The basic records for the 1963 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering states. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  9. Water Quality Records in California

    USGS Publications Warehouse

    1964-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the Nation in conjunction with water usage and its availability. The basic records for the 1964 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering States. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  10. Handbook for aquaculture water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  11. Hemodialysis and water quality.

    PubMed

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed.

  12. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  13. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  14. Nowcasting recreational water quality

    USGS Publications Warehouse

    Boehm, Alexandria B.; Whitman, Richard L.; Nevers, Meredith; Hou, Deyi; Weisberg, Stephen B.

    2007-01-01

    Advances in molecular techniques may soon provide new opportunities to provide more timely information on whether recreational beaches are free from fecal contamination. However, an alternative approach is the use of predictive models. This chapter presents a summary of these developing efforts. First, we describe documented physical, chemical, and biological factors that have been demonstrated by researchers to affect bacterial concentrations at beaches and thus represent logical parameters for inclusion in a model. Then, we illustrate how various types of models can be applied to predict water quality at freshwater and marine beaches.

  15. Ground water quality protection

    SciTech Connect

    Canter, L.W.; Fairchild, D.; Knox, R.C.

    1986-01-01

    Considered by the EPA to be one of the ''major Environmental Issues of the 1980s'' groundwater supplies a large majority of the water we use. Here is a book that deals with this problem. It is necessary that this problem be studied and action taken to prevent despoliation of the aquifers where this water is now found, because once contaminated an aquifer is difficult to decontaminate. CONTENTS-Groundwater: An Important Resource; Groundwater Hydrology; Groundwater Information Sources; Groundwater Pollution Sources; Pollutant Transport and Fate in the Subsurface Environment: Abiotic and Biotic Processes; Pollutant Transport and Fate in the Subsurface Environment: Hydrodynamic Processes and Flow and Solute Modeling; Pollution Source Evaluation; Empirical Assessment Methods; Groundwater Monitoring Planning; Groundwater Sampling and Analysis; Groundwater Quality Management; Groundwater Clean-up. References. Index.

  16. Quality Assurance of Quality Assurance Agencies from an Asian Perspective: Regulation, Autonomy and Accountability

    ERIC Educational Resources Information Center

    Hou, Angela Yung-Chi; Ince, Martin; Tsai, Sandy; Chiang, Chung Lin

    2015-01-01

    As quality guardians of higher education, quality assurance agencies are required to guarantee the credibility of the review process and to ensure the objectivity and transparency of their decisions and recommendations. These agencies are therefore expected to use a range of internal and external approaches to prove the quality of their review…

  17. 76 FR 67437 - Draft Aquatic Life Ambient Water Quality Criteria for Carbaryl-2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... AGENCY Draft Aquatic Life Ambient Water Quality Criteria for Carbaryl-- 2011 AGENCY: Environmental...) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing the availability of draft national recommended water quality criteria for the protection of aquatic life...

  18. 77 FR 1687 - EPA Workshops on Achieving Water Quality Through Integrated Municipal Stormwater and Wastewater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... AGENCY EPA Workshops on Achieving Water Quality Through Integrated Municipal Stormwater and Wastewater Plans Under the Clean Water Act (CWA) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... water quality objectives of the CWA. The workshops are intended to assist EPA in developing...

  19. 77 FR 30280 - Final National Recommended Ambient Water Quality Criteria for Carbaryl-2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... AGENCY Final National Recommended Ambient Water Quality Criteria for Carbaryl--2012 AGENCY: Environmental...(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing the availability of final national recommended water quality criteria for the protection of aquatic life...

  20. Communicating water quality risk

    SciTech Connect

    Scherer, C.W. )

    1990-01-01

    Technology for detecting and understanding water quality problems and the impacts of activities on long-range groundwater quality has advanced considerably. In the past a technical solution was considered adequate but today one must consider a wide range of both technical and social factors in evaluating technical alternatives that are also acceptable social solutions. Policies developed and implemented with limited local participation generally are resisted and become ineffective if public cooperation is necessary for effective implementation. The public, the experts and the policymakers all must understand and appreciate the different perspectives present in risk policymaking. The typical model used to involve the public in policy decisions is a strategy described as the decide-announce-defend-approach. Much more acceptable to the public, but also more difficult to implement, is a strategy that calls for free flow of information within the community about the problem, policies and potential solutions. Communication about complex issues will be more successful if the communication is substantial; if it takes advantage of existing interpersonal networks and mass media; if it pays particular attention to existing audience knowledge, interest and behaviors; and if it clearly targets messages to various segments of the audience.

  1. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  2. EPA/USDA Water Quality Trading Partnership Agreement

    EPA Pesticide Factsheets

    The document details an agreement between the U. S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and the U. S. Environmental Protection Agency on collaboration efforts to establish viable water quality credit trading markets.

  3. Water availability, water quality water governance: the future ahead

    NASA Astrophysics Data System (ADS)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  4. Microbiological quality of natural waters.

    PubMed

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  5. 78 FR 58985 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for pH AGENCY: Delaware River Basin Commission. ACTION: Proposed... on proposed amendments to the Commission's Water Quality Regulations, Water Code and...

  6. [Drinking water quality and safety].

    PubMed

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified.

  7. A Two-Year Water Quality Monitoring Curriculum.

    ERIC Educational Resources Information Center

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  8. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  9. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  10. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  11. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  12. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  13. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  14. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  15. DEVELOPING A MULTI-AGENCY 305(B) MONITORING PROGRAM FOR THE COASTAL WATERS OF ALABAMA

    EPA Science Inventory

    Proceedings of the National Water Quality Monitoring Conference "Monitoring Critical Foundations to Protect Our Waters," 7-9 July 1998, Reno, NV.

    With the ability of many federal agencies to maintain long-term coastal monitoring in jeopardy due to shrinking budgets, many s...

  16. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  17. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  18. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  19. Communicating Environmental Information to the Public: A New Water Quality Index

    ERIC Educational Resources Information Center

    Schaeffer, David J.; Janardan, Konanur G.

    1977-01-01

    A water quality index developed by the authors and used by the Illinois Environmental Protection Agency is described. It compares biological and chemical assessments of water quality. Sampling procedures and use of the index are described. (BT)

  20. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  1. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  2. Injection-water quality

    SciTech Connect

    Patton, C.C. )

    1990-10-01

    Ideally, injection water should enter the reservoir free of suspended solids or oil. It should also be compatible with the reservoir rock and fluids and would be sterile and nonscaling. This paper discusses how the objective of any water-injection operation is to inject water into the reservoir rock without plugging or permeability reduction from particulates, dispersed oil, scale formation, bacterial growth, or clay swelling. In addition, souring of sweet reservoirs by sulfate-reducing bacteria should be prevented if possible.

  3. 77 FR 74449 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... AGENCY 40 CFR Part 131 RIN 2040-AF41 Water Quality Standards for the State of Florida's Lakes and Flowing... regulation the ``Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Final Rule... Information Does this action apply to me? Citizens concerned with water quality in Florida may be...

  4. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  5. Professionalism, Profession and Quality Assurance Practitioners in External Quality Assurance Agencies in Higher Education

    ERIC Educational Resources Information Center

    Cheung, Jordan C. M.

    2015-01-01

    This article seeks to spark a dialectic discussion on the establishment of a set of professional competencies for quality assurance practitioners who serve in external quality assurance agencies in higher education. Such a need is identified due to the shortage of relevant and sufficient coverage in the quality assurance literature. To…

  6. Safe drinking water: critical components of effective inter-agency relationships.

    PubMed

    Jalba, Daniel I; Cromar, Nancy J; Pollard, Simon J T; Charrois, Jeffrey W; Bradshaw, Roland; Hrudey, Steve E

    2010-01-01

    The paper supports the development of evidence-based emergency management frameworks of cooperation between agencies in the area of drinking water and public health, as part of developing the overall risk management culture within water utilities. We employed a qualitative research design to understand critical gaps in inter-agency relations that aggravated past drinking water and health incidents and from these identified determinants of effective relationships. We identified six critical institutional relationship components that were deficient in past incidents, namely proactivity, communication, training, sharing expertise, trust and regulation. We then analysed how these components are addressed by reputable water utilities and public health departments to develop positive examples of inter-agency cooperation. Control of different risks (e.g. public health, business, and reputation) resulting from drinking water incidents should employ a preventive framework similar to the multiple barrier approach for management of drinking water quality.

  7. Water Resources Data, New Jersey, Water Year 2000. Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Mattes, G.L.; Burns, H.L.; Thomas, A.M.; Gray, B.J.; Doyle, H.A.

    2001-01-01

    Water-resources data for the 2000 water year for New Jersey are presented in three volumes, and consist of records of stage, discharage, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 2000 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 125 continuing-record surface-water stations, 62 miscellaneous surface-water sites, 73 ground-water sites, and records of daily statistics of temperature and other physical measurements from 45 continuous-recording stations. Locations of water-quality stations are shown in figures 18-20. Locations of miscellaneous water-quality sites are shown in figures 11 and 42-49. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  8. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  9. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  10. Water-quality monitoring of Sweetwater Reservoir

    USGS Publications Warehouse

    Majewski, Michael

    2001-01-01

    Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.

  11. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  12. WATER QUALITY MODELING RESEARCH

    EPA Science Inventory

    The multi-year planning science question of what additions to models are most needed for the TMDL process for priority stressors is addressed. Our research provides both the needed process research and the necessary technology (watershed hydrologic, hydrodynamic, and water quali...

  13. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  14. Water Quality Control, Curriculum Guide.

    ERIC Educational Resources Information Center

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  15. Water Resources Data, New Jersey, Water Year 2002--Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Hoppe, H.L.; Heckathorn, H.A.; Gray, B.J.; Riskin, M.L.

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  16. Water Quality Analysis Simulation Program (WASP)

    EPA Pesticide Factsheets

    The Water Quality Analysis Simulation Program (WASP7) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  17. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water...

  18. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water...

  19. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water...

  20. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water...

  1. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water...

  2. 40 CFR 131.8 - Requirements for Indian Tribes to administer a water quality standards program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administer a water quality standards program. 131.8 Section 131.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.8 Requirements for Indian Tribes to administer a water quality standards program. (a) The Regional Administrator,...

  3. 40 CFR 131.8 - Requirements for Indian Tribes to administer a water quality standards program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... administer a water quality standards program. 131.8 Section 131.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.8 Requirements for Indian Tribes to administer a water quality standards program. (a) The Regional Administrator,...

  4. 40 CFR 131.8 - Requirements for Indian Tribes to administer a water quality standards program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... administer a water quality standards program. 131.8 Section 131.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.8 Requirements for Indian Tribes to administer a water quality standards program. (a) The Regional Administrator,...

  5. 40 CFR 131.8 - Requirements for Indian Tribes to administer a water quality standards program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... administer a water quality standards program. 131.8 Section 131.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.8 Requirements for Indian Tribes to administer a water quality standards program. (a) The Regional Administrator,...

  6. 40 CFR 131.8 - Requirements for Indian Tribes to administer a water quality standards program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... administer a water quality standards program. 131.8 Section 131.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.8 Requirements for Indian Tribes to administer a water quality standards program. (a) The Regional Administrator,...

  7. 40 CFR 255.11 - Criteria for identifying agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality management planning agencies designated under section 208 of the Federal Water Pollution Control... State water quality management agencies. (d) Planning objectives will influence agency selection... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Criteria for Identifying Regions and...

  8. 40 CFR 255.11 - Criteria for identifying agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality management planning agencies designated under section 208 of the Federal Water Pollution Control... State water quality management agencies. (d) Planning objectives will influence agency selection... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Criteria for Identifying Regions and...

  9. 40 CFR 255.11 - Criteria for identifying agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality management planning agencies designated under section 208 of the Federal Water Pollution Control... State water quality management agencies. (d) Planning objectives will influence agency selection... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Criteria for Identifying Regions and...

  10. 40 CFR 255.11 - Criteria for identifying agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality management planning agencies designated under section 208 of the Federal Water Pollution Control... State water quality management agencies. (d) Planning objectives will influence agency selection... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Criteria for Identifying Regions and...

  11. 40 CFR 255.11 - Criteria for identifying agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality management planning agencies designated under section 208 of the Federal Water Pollution Control... State water quality management agencies. (d) Planning objectives will influence agency selection... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Criteria for Identifying Regions and...

  12. Water quality data for national-scale aquatic research: The Water Quality Portal

    USGS Publications Warehouse

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  13. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  14. Multi-agency training for quality: reflections and recommendations.

    PubMed

    Sengupta, Soumen; Dobbins, Sharon; Roberts, Judith

    2003-02-01

    Clinical governance within the National Health Service (NHS) and best value across local authorities in England have emphasised the need for decisions and actions being demonstrably evidence based. In an attempt to progress these related initiatives and facilitate a closer working relationship between NHS Trusts and local government departments, a multi-agency and interprofessional training event on evidence-based practice (EBP) was organised across three boroughs within Tyne and Wear. While there are advantages to different agencies learning and working in partnership to develop quality systems for health improvement, the reality of introducing EBP concepts and creating an evaluative culture within and across public sector organisations represents a major challenge. This article has adopted a case study approach to describe the key lessons learnt through critically reflecting on the planning and delivery of this training event, and it is hoped that it will be of value to other attempting similar projects in the future.

  15. Quality Assurance and Quality Control Practices for Rehabilitation of Sewer and Water Mains

    EPA Science Inventory

    As part of the US Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, several areas of research are being pursued, including a review of quality assurance and quality control (QA/QC) practices and acceptance testing during the installation of reha...

  16. Quality Assurance and Quality Control Practices For Rehabilitation of Sewer and Water Mains

    EPA Science Inventory

    As part of the US Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, several areas of research are being pursued including a review of quality assurance and quality control (QA/QC) practices and acceptance testing during the installation of rehab...

  17. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  18. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  19. 48 CFR 846.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Government contract quality assurance. 846.408 Section 846.408 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance 846.408 Single-agency assignments of Government contract quality assurance....

  20. 48 CFR 46.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Government contract quality assurance. 46.408 Section 46.408 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance 46.408 Single-agency assignments of Government contract quality assurance. (a)...

  1. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  2. Water quality . . . potential sources of pollution

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    What is water quality? To most students, water quality may suggest only "clean" water for drinking, swimming, and fishing. But to the farmer or manufacturer, water quality may have an entirely different meaning. One of the most important issues concerning the quality of water is how that water will be used. Water that is perfectly fine for irrigation might not be suitable for drinking or swimming.

  3. Water quality: a factor in Arkansas River development

    USGS Publications Warehouse

    Dover, T.B.

    1957-01-01

    One of the first requisites for intelligent planning of the utilization and control of water and for the administration of laws relating to its use, is data on the quantity, quality, and mode of occurence of water supplies. The collections, evaluation, interpretation, and publication of such data constitute the primary function of the Water Resources Division of the United States Geological Survey. Since 1895 the Congress has made appropriations to this agency for investigations of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with State and local governmental agencies for water-resources investigations. The Geological Survey's Federal-State cooperative program of quality-of-water investigations in Oklahoma was started in 1944 in cooperation with the Oklahoma Planning and Resources Board. Since July of this year the program has been carried on cooperatively with the newly created Oklahoma Water Resources Board.

  4. A sea change ahead for recreational water quality criteria.

    PubMed

    Boehm, Alexandria B; Ashbolt, Nicholas J; Colford, John M; Dunbar, Lee E; Fleming, Lora E; Gold, Mark A; Hansel, Joel A; Hunter, Paul R; Ichida, Audrey M; McGee, Charles D; Soller, Jeffrey A; Weisberg, Stephen B

    2009-03-01

    The United States Environmental Protection Agency is committed to developing new recreational water quality criteria for coastal waters by 2012 to provide increased protection to swimmers. We review the uncertainties and shortcomings of the current recreational water quality criteria, describe critical research needs for the development of new criteria, as well as recommend a path forward for new criteria development. We believe that among the most needed research needs are the completion of epidemiology studies in tropical waters and in waters adversely impacted by urban runoff and animal feces, as well as studies aimed to validate the use of models for indicator and pathogen concentration and health risk predictions.

  5. Statewide water-quality network for Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James

    2001-01-01

    A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the

  6. Water quality in organic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source contamination is a major water quality concern in the upper Midwestern USA, where plant nutrients, especially NO3-N, are susceptible to leaching due to extensive subsurface draining of the highly productive, but poorly drained, soils found in this region. Environmental impacts assoc...

  7. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  8. Pesticide Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred

    This publication describes in nontechnical language the problem of pesticide use and how it affects water quality. It provides information on laws affecting pesticide use and the reasons for them, as well as giving directions for the proper use of pesticides. The booklet is divided into five chapters, each of which concludes with a list of study…

  9. 77 FR 43822 - Proposed Information Collection Request; Comment Request; Valuing Improved Water Quality in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... AGENCY Proposed Information Collection Request; Comment Request; Valuing Improved Water Quality in the... request (ICR), ``Valuing Improved Water Quality in the Chesapeake Bay Using Stated Preference Methods (New... Act (CWA) directs EPA to coordinate Federal and State efforts to improve water quality in...

  10. 78 FR 70905 - Extension of Comment Period for the Water Quality Standards Regulatory Clarifications Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... AGENCY 40 CFR Part 131 Extension of Comment Period for the Water Quality Standards Regulatory... proposed rule ``Water Quality Standards Regulatory Clarifications''. EPA is extending the comment period in... . SUPPLEMENTARY INFORMATION: On September 4, 2013, EPA published the proposed rule ``Water Quality...

  11. 78 FR 58500 - Water Quality Standards Regulatory Clarifications Proposed Rule; Public Meeting and Public Webinars

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... AGENCY 40 CFR Part 131 Water Quality Standards Regulatory Clarifications Proposed Rule; Public Meeting... meeting and two public webinars to be held for the proposed rule ``Water Quality Standards Regulatory... the federal water quality standards (WQS) regulation at 40 CFR Part 131 which helps implement...

  12. Illinois water-quality report, 1988-1989. Final report

    SciTech Connect

    Not Available

    1990-04-01

    The State of Illinois report, prepared by the Illinois Environmental Protection Agency, addresses the water quality assessment efforts for 1988 and 1989 (the seventh in a series of biennial reports). The report follows USEPA guidance for reporting water quality conditions in terms of degree of use support or attainment. In addition to stream and lake water quality conditions, discussions of the State's wetland resources and groundwater protection programs are provided. Also included are the lake classification and lake information required by Section 314 and nonpoint source assessments required by Section 319.

  13. Defense Logistics Agency Can Improve Its Product Quality Deficiency Report Processing

    DTIC Science & Technology

    2015-07-01

    in a series of audits on DLA processing product quality deficiency reports. Finding DLA Aviation quality assurance personnel conducted adequate...4 Finding. Defense Logistics Agency Aviation Did Not Adequately Process Product Quality...Deficiency Reports _________________________________________________________________5 Defense Logistics Agency Aviation Product Quality Deficiency

  14. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  15. Improving Water Quality Assessments through a HierarchicalBayesian Analysis of Variability

    EPA Science Inventory

    Water quality measurement error and variability, while well-documented in laboratory-scale studies, is rarely acknowledged or explicitly resolved in most water body assessments, including those conducted in compliance with the United States Environmental Protection Agency (USEPA)...

  16. EPA Awards $4 Million in Grants to Research the Impact of Drought on Water Quality

    EPA Pesticide Factsheets

    Washington -Today, the U.S. Environmental Protection Agency (EPA) announced $4 million to four institutions to conduct research to combat the effects of drought and extreme events on water quality in watersheds and at drinking water utilities.

  17. 7TH JAPAN - U.S. CONFERENCE ON DRINKING WATER QUALITY MANAGEMENT AND WASTEWATER CONTROL

    EPA Science Inventory

    Update on U.S. Drinking Water and Water Quality Research

    The U.S. Environmental Protection Agency's (U.S. EPA) Office of Research and development continues to conduct drinking water and water quality related research to address high priority environmental problems. Curr...

  18. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  19. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  20. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  1. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  2. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  3. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  4. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  5. 48 CFR 246.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Government contract quality assurance. 246.408 Section 246.408 Federal Acquisition Regulations... ASSURANCE Government Contract Quality Assurance 246.408 Single-agency assignments of Government contract quality assurance....

  6. 48 CFR 46.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Department of Commerce. (b) Agencies requiring quality assurance support for acquiring these... of Government contract quality assurance. 46.408 Section 46.408 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract...

  7. 48 CFR 46.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Department of Commerce. (b) Agencies requiring quality assurance support for acquiring these... of Government contract quality assurance. 46.408 Section 46.408 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract...

  8. 48 CFR 46.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Department of Commerce. (b) Agencies requiring quality assurance support for acquiring these... of Government contract quality assurance. 46.408 Section 46.408 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract...

  9. 48 CFR 46.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Department of Commerce. (b) Agencies requiring quality assurance support for acquiring these... of Government contract quality assurance. 46.408 Section 46.408 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract...

  10. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  11. Water Efficiency Improvements At Various Environmental Protection Agency Sites

    SciTech Connect

    2011-03-24

    The U.S. Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. The projects highlighted in this case study demonstrate EPA’s ability to reduce water use in laboratory and medical equipment by implementing vacuum pump and steam sterilizer replacements and retrofits. Due to the success of the initial vacuum pump and steam sterilizer projects described here, EPA is implementing similar projects at several laboratories throughout the nation.

  12. 77 FR 33808 - Agency Information Collection; Activity Under OMB Review: Airline Service Quality Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review: Airline Service Quality Performance--Part 234 AGENCY: Research & Innovative Technology Administration..., DC, on May 31, 2012. Patricia Hu, Director, Bureau of Transportation Statistics, Research...

  13. 75 FR 41920 - Agency Information Collection; Activity Under OMB Review; Airline Service Quality Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Airline Service Quality Performance--Part 234 AGENCY: Research & Innovative Technology...

  14. 77 FR 18306 - Agency Information Collection; Activity Under OMB Review; Airline Service Quality Performance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Airline Service Quality Performance AGENCY: Research & Innovative Technology Administration (RITA), Bureau... 20, 2012. Patricia Hu Director, Bureau of Transportation Statistics, Research and...

  15. Water Resources Data, Georgia, 2001, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2001

    USGS Publications Warehouse

    McCallum, Brian E.; Kerestes, John F.; Hickey, Andrew C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  16. Water Quality Trading Toolkit for Permit Writers

    EPA Pesticide Factsheets

    The Water Quality Trading Toolkit for Permit Writers is EPA’s first “how-to” manual on designing and implementing water quality trading programs. It helps NPDES permitting authorities incorporate trading provisions into permits.

  17. SF Bay Water Quality Improvement Fund

    EPA Pesticide Factsheets

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  18. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  19. HAWQS (Hydrologic and Water Quality System)

    EPA Pesticide Factsheets

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  20. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  1. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  2. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  3. Spatial assessment of water quality parameters in Jhelum city (Pakistan).

    PubMed

    Javed, Sadaf; Ali, Asad; Ullah, Saleem

    2017-03-01

    In this study, we assess the drinking water quality of Jhelum city. Two hundred and ninety-two drinking water samples were randomly collected in the study area. These samples were chemically analyzed for three key toxic (in excess) elements such as pH, total dissolved solids (TDS), and calcium. Geostatistical techniques such as variogram and kriging were used to investigate the spatial variations of these minerals across the city. The spatial structure for each element was found to be anisotropic, and thus, anisotropic variograms were used. The kriging predictions revealed significant concentrations of the above-stated elements at some locations in the study area. While comparing with the World Health Organization, United States Environmental Protection Agency, and Pakistan Environmental Protection Agency standards, the water samples were found to be unsatisfactory for drinking. We conclude that the drinking water in this region is of poor quality and needs proper treatment to make it palatable.

  4. For-profit medicare home health agencies' costs appear higher and quality appears lower compared to nonprofit agencies.

    PubMed

    Cabin, William; Himmelstein, David U; Siman, Michael L; Woolhandler, Steffie

    2014-08-01

    For-profit, or proprietary, home health agencies were banned from Medicare until 1980 but now account for a majority of the agencies that provide such services. Medicare home health costs have grown rapidly since the implementation of a risk-based prospective payment system in 2000. We analyzed recent national cost and case-mix-adjusted quality outcomes to assess the performance of for-profit and nonprofit home health agencies. For-profit agencies scored slightly but significantly worse on overall quality indicators compared to nonprofits (77.18 percent and 78.71 percent, respectively). Notably, for-profit agencies scored lower than nonprofits on the clinically important outcome "avoidance of hospitalization" (71.64 percent versus 73.53 percent). Scores on quality measures were lowest in the South, where for-profits predominate. Compared to nonprofits, proprietary agencies also had higher costs per patient ($4,827 versus $4,075), were more profitable, and had higher administrative costs. Our findings raise concerns about whether for-profit agencies should continue to be eligible for Medicare payments and about the efficiency of Medicare's market-oriented, risk-based home care payment system.

  5. The Water Quality Portal: a single point of access for water quality data

    NASA Astrophysics Data System (ADS)

    Kreft, J.

    2015-12-01

    The Water Quality Portal (WQP) is a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (EPA) overseen by the National Water Quality Monitoring Council (NWQMC). It was launched in April of 2012 as a single point of access for discrete water quality samples stored in the USGS NWIS and EPA STORET systems. Since launch thousands of users have visited the Water Quality Portal to download billions of results that are pertinent to their interests. Numerous tools have also been developed that use WQP web services as a source of data for further analysis. Since the launch of the Portal, the WQP development team at the USGS Center for Integrated Data Analytics has worked with USGS and EPA stakeholders as well as the wider user community to add significant new features to the WQP. WQP users can now directly plot sites of interest on a web map based on any of the 164 WQP query parameters, and then download data of interest directly from that map. In addition, the WQP has expanded beyond just serving out NWIS and STORET data, and provides data from the US Department of Agriculture's Agricultural Research Service STEWARDS system, the USGS BioData system and is working with others to bring in additional data. Finally, the WQP is linked to another NWQMC-supported project, the National Environmental Methods Index (NEMI), so WQP users can easily find the method behind the data that they are using. Future work is focused on incorporating additional biological data from the USGS BioData system, broadening the scope of discrete water quality sample types from STORET, and developing approaches to make the data in the WQP more visible and usable. The WQP team is also exploring ways to further integrate with other systems, such as those operated the U.S. Department of Agriculture Forest Service and other federal agencies to facilitate the overarching goal of improving access to water quality data for all users.

  6. Uses and biases of volunteer water quality data

    USGS Publications Warehouse

    Loperfido, J.V.; Beyer, P.; Just, C.L.; Schnoor, J.L.

    2010-01-01

    State water quality monitoring has been augmented by volunteer monitoring programs throughout the United States. Although a significant effort has been put forth by volunteers, questions remain as to whether volunteer data are accurate and can be used by regulators. In this study, typical volunteer water quality measurements from laboratory and environmental samples in Iowa were analyzed for error and bias. Volunteer measurements of nitrate+nitrite were significantly lower (about 2-fold) than concentrations determined via standard methods in both laboratory-prepared and environmental samples. Total reactive phosphorus concentrations analyzed by volunteers were similar to measurements determined via standard methods in laboratory-prepared samples and environmental samples, but were statistically lower than the actual concentration in four of the five laboratory-prepared samples. Volunteer water quality measurements were successful in identifying and classifying most of the waters which violate United States Environmental Protection Agency recommended water quality criteria for total nitrogen (66%) and for total phosphorus (52%) with the accuracy improving when accounting for error and biases in the volunteer data. An understanding of the error and bias in volunteer water quality measurements can allow regulators to incorporate volunteer water quality data into total maximum daily load planning or state water quality reporting. ?? 2010 American Chemical Society.

  7. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  8. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  9. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  10. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  11. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  12. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  13. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  14. 40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Implementation Procedures F Appendix F to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to... water quality, preclude attainment of WQS; or f. Controls more stringent than those required by...

  15. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  16. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  17. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  18. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  19. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  20. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  1. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. (a) General....

  2. 76 FR 79176 - Notice of Availability of Draft Recreational Water Quality Criteria and Request for Scientific Views

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... AGENCY Notice of Availability of Draft Recreational Water Quality Criteria and Request for Scientific... availability of the draft document Recreational Water Quality Criteria (RWQC). The document contains the EPA's draft ambient water quality criteria recommendations for protecting human health in ambient waters...

  3. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  4. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  5. EPA awards $467,000 brownfields grant to Solano County Water Agency

    EPA Pesticide Factsheets

    SAN FRANCISCO - The U.S. Environmental Protection Agency announced today that the Solano County Water Agency, in collaboration with the Westside Sacramento Integrated Water Management Group, will receive $467,378 in federal grant funds to assess con

  6. Management of water quality for beef cattle.

    PubMed

    Wright, Cody L

    2007-03-01

    Drinking water is the primary source of water for most cattle. Unfortunately, water frequently contains various solutes and suspended particulate matter that can influence its appearance, odor, taste, and physical and chemical properties. Animals often react to such water impurities by decreasing water intake, and therefore feed intake, which diminishes animal performance. Thus, water quality can have a profound impact on animal health and performance. Routine monitoring of water sources and appropriate intervention can provide beef producers with a desirable return on investment. Careful thought should be incorporated into any capital improvements. This article discusses some of the most common factors that impact water quality for beef cattle and the methods of monitoring water quality, and proposes management solutions to address water quality concerns.

  7. First External Evaluations of Quality Assurance Agencies--Lessons Learned. ENQA Workshop Report 10

    ERIC Educational Resources Information Center

    Costes, Nathalie; Curvale, Bruno; Kraft, Michael G.; Llavori, Rafael; Malan, Thierry; Szanto, Tibor

    2010-01-01

    This report is a product of an ENQA (European Association for Quality Assurance in Higher Education) seminar on the first external evaluations of quality assurance agencies, held in Paris in July 2008. The seminar took stock of the achieved reviews of agencies to learn lessons from these first outcomes and, hence, provided a platform for…

  8. A Critical Analysis of the INQAAHE Guidelines of Good Practice for Higher Education Quality Assurance Agencies

    ERIC Educational Resources Information Center

    Blackmur, Douglas

    2008-01-01

    The International Network of Quality Assurance Agencies in Higher Education's Guidelines of Good Practice by higher education quality assurance agencies need substantial revision before they can be considered adequate by stakeholders in any national higher education system. Various revisions are proposed in this article. But the International…

  9. 38 CFR 17.508 - Access to quality assurance records and documents within the agency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Access to quality assurance records and documents within the agency. 17.508 Section 17.508 Pensions, Bonuses, and Veterans... Records § 17.508 Access to quality assurance records and documents within the agency. (a) Access...

  10. 38 CFR 17.508 - Access to quality assurance records and documents within the agency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Access to quality assurance records and documents within the agency. 17.508 Section 17.508 Pensions, Bonuses, and Veterans... Records § 17.508 Access to quality assurance records and documents within the agency. (a) Access...

  11. 38 CFR 17.508 - Access to quality assurance records and documents within the agency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Access to quality assurance records and documents within the agency. 17.508 Section 17.508 Pensions, Bonuses, and Veterans... Records § 17.508 Access to quality assurance records and documents within the agency. (a) Access...

  12. 38 CFR 17.508 - Access to quality assurance records and documents within the agency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Access to quality assurance records and documents within the agency. 17.508 Section 17.508 Pensions, Bonuses, and Veterans... Records § 17.508 Access to quality assurance records and documents within the agency. (a) Access...

  13. 38 CFR 17.508 - Access to quality assurance records and documents within the agency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Access to quality assurance records and documents within the agency. 17.508 Section 17.508 Pensions, Bonuses, and Veterans... Records § 17.508 Access to quality assurance records and documents within the agency. (a) Access...

  14. Landsat change detection can aid in water quality monitoring

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  15. EVALUATING THE WATER QUALITY EFFECTIVENESS OF WATERSHED-SCALE SOURCE WATER PROTECTION PROGRAMS

    EPA Science Inventory

    The US EPA Office of Research and Development, the Ohio River Valley Water Sanitation Commission (ORSANCO) and the Upper Big Walnut Creek Quality Partnership created a collaborative team of eleven agencies and universities to develop a methodology for evaluating the effectiveness...

  16. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  17. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  18. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  19. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  20. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  1. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  2. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  3. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  4. EPA Applauds SCDHEC, Farmers and Landowners for Improving Water Quality in the Enoree River Watershed

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) commends the efforts of the South Carolina Department of Health and Environmental Control (SCDHEC), farmers, and landowners for improving water quality in the Enoree River watershed. Two out o

  5. EPA acknowledges federal, state and local partners for Improving Water Quality in the Bear Creek Watershed

    EPA Pesticide Factsheets

    ATLANTA - The U.S. Environmental Protection Agency (EPA) commends the efforts of the Alabama Department of Environmental Management (ADEM) along with other federal, state and local partners for improving water quality in the Bear Creek Watershed.

  6. Protecting water quality in the watershed

    SciTech Connect

    James, C.R.; Johnson, K.E. ); Stewart, E.H. )

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships to each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.

  7. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  8. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  9. Sources and summaries of water-quality information for the Rapid Creek basin, western South Dakota

    USGS Publications Warehouse

    Zogorski, John S.; Zogorski, E.M.; McKallip, T.E.

    1990-01-01

    This report provides a compilation of water quality information for the Rapid Creek basin in western South Dakota. Two types of information are included: First, past and current water quality monitoring data collected by the South Dakota Department of Water and Natural Resources, U.S. Forest Service, U.S. Geological Survey, and others are described. Second, a summary is included for all past water quality reports, publications, and theses that could be located during this study. A total of 62 documents were abstracted and included journal articles, abstracts, Federal agency reports and publications, university and State agency reports, local agency reports, and graduate theses. The report should be valuable to water resources managers, regulators, and others contemplating water quality research, monitoring, and regulatory programs in the Rapid Creek basin. (USGS)

  10. Bibliography of Water Quality Research Reports.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Research and Development.

    Prepared for the Environmental Protection Agency (EPA), this bibliography of published reports covers information concerning the advancement of water pollution control technology and knowledge. The reports provide a central source of information on the research, development, and demonstration activities in the water research program of the EPA,…

  11. ORD Studies of Water Quality in Hospitals

    EPA Science Inventory

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  12. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  13. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  14. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  15. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  16. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  17. 41 CFR 102-80.25 - What are Federal agencies' responsibilities concerning the management of indoor air quality?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agencies' responsibilities concerning the management of indoor air quality? 102-80.25 Section 102-80.25... Environmental Management Indoor Air Quality § 102-80.25 What are Federal agencies' responsibilities concerning the management of indoor air quality? Federal agencies must assess indoor air quality of buildings...

  18. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  19. 60 FR 56561 - Jump Creek Water Quality Planning Project Owyhee County

    Federal Register 2010, 2011, 2012, 2013, 2014

    1995-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Jump Creek Water Quality Planning Project Owyhee County AGENCY... impact statement is not being prepared for the Jump Creek Water Quality Planning Project, Owyhee...

  20. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  1. Parents' perceptions of water safety and quality.

    PubMed

    Merkel, Lori; Bicking, Cara; Sekhar, Deepa

    2012-02-01

    Every day parents make choices about the source of water their families consume. There are many contributing factors which could affect decisions about water consumption including taste, smell, color, safety, cost, and convenience. However, few studies have investigated what parents with young children think about water quality and safety in the US and how this affects the choices they are making. This study aimed to describe the perceptions of parents with regard to water quality and safety and to compare bottled water and tap water use, as well as to examine motivation for water choices. We conducted an online questionnaire to survey parents living in Pennsylvania about water quality and safety, and preference for bottled versus tap water. Parents were recruited through child care centers, and 143 surveys were returned. The survey results showed high overall scores for perception of tap water quality and safety, and a preference for tap water over bottled water. We found that parents were concerned for the environmental impact that buying bottled water may have but were also concerned about potential contamination of tap water by natural gas drilling processes and nuclear power plants. These findings regarding parental concerns are critical to inform pediatric health care providers, water sellers, and suppliers in order that they may provide parents with the necessary information to make educated choices for their families.

  2. Great Lakes Water Quality Agreement (GLWQA)

    EPA Pesticide Factsheets

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  3. Monitoring eastern Oklahoma lake water quality using Landsat

    NASA Astrophysics Data System (ADS)

    Barrett, Clay

    The monitoring of public waters for recreational, industrial, agricultural, and drinking purposes is a difficult task assigned to many state water agencies. The Oklahoma Water Resources Board (OWRB) is only physically monitoring a quarter of the lakes it is charged with monitoring in any given year. The minimal sample scheme adopted by the OWRB is utilized to determine long-term trends and basic impairment but is insufficient to monitor the water quality shifts that occur following influx from rains or to detect algal blooms, which may be highly localized and temporally brief. Recent work in remote sensing calibrates reflectance coefficients between extant water quality data and Landsat imagery reflectance to estimate water quality parameters on a regional basis. Remotely-sensed water quality monitoring benefits include reduced cost, more frequent sampling, inclusion of all lakes visible each satellite pass, and better spatial resolution results. The study area for this research is the Ozark foothills region in eastern Oklahoma including the many lakes impacted by phosphorus flowing in from the Arkansas border region. The result of this research was a moderate r2 regression value for turbidity during winter (0.52) and summer (0.65), which indicates that there is a seasonal bias to turbidity estimation using this methodology and the potential to further develop an estimation equation for this water quality parameter. Refinements that improve this methodology could provide state-wide estimations of turbidity allowing more frequent observation of water quality and allow better response times by the OWRB to developing water impairments.

  4. Water quality evaluation of Al-Gharraf river by two water quality indices

    NASA Astrophysics Data System (ADS)

    Ewaid, Salam Hussein

    2016-12-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  5. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  6. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  7. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  8. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  9. 40 CFR 141.210 - Notice by primacy agency on behalf of the public water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the public water system. 141.210 Section 141.210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.210 Notice by primacy agency on behalf of the public...

  10. Impact Evaluation from Quality Assurance Agencies' Perspectives: Methodological Approaches, Experiences and Expectations

    ERIC Educational Resources Information Center

    Kajaste, Matti; Prades, Anna; Scheuthle, Harald

    2015-01-01

    Starting from the main objective of external quality assurance (EQA) procedures to assure and improve the quality of higher education institutions and its provisions, the paper examines expected impacts of EQA procedures on institutions from the perspectives of three European quality assurance agencies. First, the paper examines the expected…

  11. 42 CFR 456.6 - Review by State medical agency of appropriateness and quality of services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and quality of services. 456.6 Section 456.6 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Provisions § 456.6 Review by State medical agency of appropriateness and quality of services. (a) The... professional health personnel of the appropriateness and quality of Medicaid services. (b) The purpose of...

  12. Computer programs for modeling flow and water quality of surface water systems

    USGS Publications Warehouse

    Lorens, J.A.

    1982-01-01

    A selection of available computer programs for modeling flow and water quality in surface water systems is described. The models include programs developed as part of the U.S. Geological Survey Water Resources Division hydrologic research activities and others developed by other agencies, universities, and consulting firms. Each model description includes a statement of program use; data requirements; computer costs; availability of documentation and reference material; and a contact person for additional information. The report is intended to assist the researcher by presenting a very brief description of the surface-water models which are readily available for project use. (USGS)

  13. Natural ground-water quality in Michigan, 1974-87

    USGS Publications Warehouse

    Cummings, T. Ray

    1989-01-01

    Wide variations occur in the chemical and physical characteristics of natural groundwaters in Michigan. Dissolved-solids concentrations range from 20 to 76,000 mg/L. Waters having low dissolved-solids concentrations are calcium bicarbonate-type waters. Sodium, sulfate, and chloride increase as mineralization increases. Iron, aluminum, and titanium concentrations are higher at some locations than is common in most natural waters. Lead concentrations exceed U.S. Environmental Protection Agency 's primary drinking-water regulations at some locations in the northern part of the lower Peninsula. Generalized areal patterns of water-quality variability indicate that geology is a primary cause of differences across the State. Examples of chemical associations in water indicate that chemical analyses may be valuable in tracing and identifying mineral deposits.

  14. Santa Margarita Lagoon Water Quality Monitoring Data

    DTIC Science & Technology

    2012-08-01

    potential eutrophication impairment. In particular, the Investigative Order directed the Santa Margarita Lagoon Stakeholder Group composed of Marine Corps...provide a long-term water quality dataset that can be used for calibrating a hydrodynamic and eutrophication numeric model of the lagoon. A secondary...objective of this project, to provide a long-term water quality dataset of sufficient quality for calibrating a hydrodynamic and eutrophication

  15. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  16. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  17. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods.

  18. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    PubMed

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  19. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    PubMed Central

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-01-01

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety. PMID:26950135

  20. 78 FR 52192 - Final Aquatic Life Ambient Water Quality Criteria For Ammonia-Freshwater 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... AGENCY Final Aquatic Life Ambient Water Quality Criteria For Ammonia-- Freshwater 2013 AGENCY... from effects of ammonia in freshwater (EPA 822-R-13-001). The final criteria incorporate the latest scientific knowledge on the toxicity of ammonia to freshwater aquatic life. On December 30, 2009,...

  1. 75 FR 31450 - Agency for Healthcare Research and Quality; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... HUMAN SERVICES Agency for Healthcare Research and Quality; Notice of Meeting In accordance with section... experts in fields related to health care research who are invited by the Agency for Healthcare Research...: Optimizing Prevention and Healthcare Management for Complex Patients (R21) applications are to be...

  2. 76 FR 76405 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Request; Water Quality Standards Regulations (Renewal) AGENCY: Environmental Protection Agency (EPA... docket, go to http://www.regulations.gov . Title: Water Quality Standards Regulation (Renewal). ICR.... Abstract: Water quality standards are provisions of State, Tribal, and Federal law that consist...

  3. 75 FR 44930 - Stakeholder Input; Revisions to Water Quality Standards Regulation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ...-9182-1] Stakeholder Input; Revisions to Water Quality Standards Regulation AGENCY: Environmental... announcing its plans to initiate national rulemaking to make a limited set of targeted changes to EPA's water... Headquarters, Office of Water, Office of Science and Technology, at 202-566-0386 or e-mail:...

  4. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  5. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  6. Correlation study among water quality parameters an approach to water quality management.

    PubMed

    Sinha, D K; Rastogi, G K; Kumar, R; Kumar, N

    2009-04-01

    To find out an approach to water quality management through correlation studies between various water quality parameters, the statistical regression analysis for six data points of underground drinking water of different hand pumps at J. P. Nagar was carried out. The comparison of estimated values with W.H.O drinking water standards revealed that water of the study area is polluted with reference to a number of physico-chemical parameters studied. Regression analysis suggests that conductivity of underground water is found to be significantly correlated with eight out of twelve water quality parameters studied. It may be suggested that the underground drinking water quality at J. P. Nagar can be checked very effectively by controlling the conductivity of water. The present study may be treated one step forward towards the water quality management.

  7. Quality Control Review of the Defense Commissary Agency Internal Audit Function

    DTIC Science & Technology

    2012-09-10

    Mark Center Drive Alexandria, VA 22350-1500 Acronyms and Abbreviations DeCA Defense Commissary Agency DeCAM Defense...We have reviewed the Defense Commissary Agency ( DeCA ) Office of Internal Audit system of quality control in effect for the period ended July 31...GAGAS). The DeCA Office of Internal Audit is responsible for designing a system of quality control and complying with its system to provide DeCA

  8. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  9. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  10. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  11. Water shortages and implied water quality: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Genius, Margarita; Tsagarakis, Konstantinos P.

    2006-12-01

    This paper analyses the extent to which households in an urban area are willing to pay to ensure a fully reliable water supply when the latter induces changes in drinking water quality. The water supply system in the city of Heraklion, Greece, is characterized by periodic water rationing, which is more pronounced in the summer months. The generalized use of cisterns and even water tanks helps residents cope with quantity shortages but has a negative effect on the quality of the water reaching their taps. The results of our contingent valuation show that respondents not affected by shortages and already drinking tap water have a smaller willingness to pay, while positive perceptions on quality have a positive effect.

  12. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  13. A water quality monitoring system for HAWC

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Tinoco, S.; Iriarte, A.

    2012-09-01

    HAWC (High Altitude Water Cherenkov), is a gamma ray (γ) large aperture observatory with high sensitivity that will be able to continuously monitor the sky for transient sources of photons with energies between 100 GeV and 100 TeV. HAWC is under construction in Sierra Negra, Puebla, Mexico, which is located at a high altitude of 4100m. HAWC will be an array of 300 Cherenkov detectors each one with 200,000 liters of highly pure water. The sensitivity of the instrument depends strongly on the water quality. We present the design and construction of the HAWC water quality monitoring system. We seek monitor the transparency in violet-blue range to achieve and maintain the required water transparency quality in each detector. The system is robust and user friendly. The measurements are reproducible. Also we present some results from the monitoring the water from the VAMOS detector tanks and of the filtering system.

  14. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  15. Options for complying with water quality-based metal limitations

    SciTech Connect

    Thibodeau, J.

    1996-12-31

    During the past six years, most states have promulgated water quality regulations which contain numerical aquatic life standards for heavy metals. In addition, the Environmental Protection Agency (EPA) promulgated national water quality standards in 1992 which also include numerical aquatic life criteria for heavy metals. Numerous wastewater discharge permits have been issued by the states and EPA to industrial facilities which include low microgram per liter heavy metal limitations. In many instances, the limitations are below detection limits or treatability limits using state-of-the-art analytical methods or treatment technologies. This paper will discuss options for conducting studies, including the use of water-effect ratios, metal partitioning coefficients, and recalculation procedures to develop site-specific metals criteria and higher permit limitations. The installation of expensive metal treatment systems to remove trace metals may be avoided if higher permit limits are indicated by the site-specific studies. 11 refs.

  16. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  17. Evaluation of water-effect ratio methodology for establishing site-specific water quality criteria

    SciTech Connect

    Welsh, P.G.; Lipton, J.; Chapman, G.A.

    2000-06-01

    One approach outlined by the US Environmental Protection Agency (US EPA) for derivation of site-specific water quality criteria for metals in natural surface waters involves the development of water-effect ratios (WERs). This approach entails multiplying national water quality criteria by an experimentally derived WER, where the WER is defined as the ratio of the toxicity of the metal in the site water to the toxicity of the same metal in standard laboratory water. The authors discuss technical issues associated with test methods described in the US EPA WER guidance documents that may lead to inappropriate WERs. Critical issues include accounting for differences in calcium and magnesium concentrations (Ca:Mg ratios), alkalinity, and pH between site and laboratory waters; ensuring appropriate fish acclimation; and accounting for interspecies variability, multiple metals interactions, end-point variability, and temporal and spatial variability in the derivation of the WER. Failure to address these issues may have the unintended effect of deriving site-specific water quality criteria that are underprotective of aquatic life. The authors recommend that WER testing and future regulatory guidance for derivation of site-specific water quality criteria incorporate consideration of these potential confounding variables so that site-specific criteria can be established with greater confidence.

  18. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... the flexibility for the State to use site- specific inputs to the Vollenweider equation for these two... AGENCY 40 CFR Part 131 RIN 2040-AF11 Water Quality Standards for the State of Florida's Lakes and Flowing... protect aquatic life in lakes and flowing waters within the State of Florida. In the January 2010...

  19. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality standards. 130.3...

  20. GKI water quality studies. Progress report

    SciTech Connect

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  1. Nonpoint Source: National Water Quality Initiative

    EPA Pesticide Factsheets

    National Water Quality Initiative (NWQI) is a collaborative between EPA and Natural Resource Conservation Service ( NRCS) that began in 2012. NWQI provides a means to accelerate voluntary, private lands conservation practices

  2. Quality management as knowledge sharing: experiences of the Napa County Health and Human Services Agency.

    PubMed

    Harrison, Lindsay

    2012-01-01

    Lacking a coordinated effort in utilizing data and tracking program outcomes, one agency developed a Quality Management (QM) division to facilitate and manage more effective data use. To support this process, the agency sought to develop a collective, agency-wide understanding and investment in improving and measuring client outcomes. Similarly, the agency also focused efforts on creating a culture of transparency and accountability, with goals of improving service, increasing agency integrity, meeting regulatory compliance, and engaging in effective risk management. Operationalizing the QM initiative involved developing procedures, systems, and guidelines that would facilitate the generation of reliable and accurate data that could be used to inform program change and decision-making. This case study describes this agency's experience in successfully creating and implementing a QM initiative aimed at engaging in greater knowledge sharing.

  3. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  4. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  5. [Achieving quality goals for bodies of water].

    PubMed

    Cencetti, Corrado; Guidi, Massimo; Martinelli, Angiolo; Patrizi, Giuseppe

    2005-01-01

    Target of this paper is to draw the relationship between environmental factors and some impacts due to human activity, in order to outline environmental quality restoring strategies for water bodies, which include among result indicators also biological parameters expected for Italian regulation and European directives. Morphologic equilibrium and correct knowledge of processes regulating fluvial dynamic, as basic factor of ecosystem functionality condition, are highlighted. Statistic evaluation processes of water quality data and implementation and validation of mathematical models are described.

  6. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  7. ADDRESSING EMERGING ISSUES IN WATER QUALITY ...

    EPA Pesticide Factsheets

    Public concern over cleanliness and safety of source and recreational waters has prompted researchers to look for indicators of water quality. Giving public water authorities multiple tools to measure and monitor levels of chemical contaminants, as well as chemical markers of contamination, simply and rapidly would enhance public protection. The goals of water quality are outlined in the Water Quality Multi-year Plan [http://intranet.epa.gov/ospintra/Planning/wq.pdf] and the research in this task falls under GPRA Goal 2, 2.3.2, Long Term Goals 1, 2, and 4. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG

  8. Engaging International Students: An Analysis of the Australian Universities Quality Agency (AUQA) Reports

    ERIC Educational Resources Information Center

    Burdett, Jane; Crossman, Joanna

    2012-01-01

    Purpose: Australia has enjoyed two decades of growth in international student enrolments. This phenomenon, combined with the evolution of quality assurance policy frameworks, has stimulated interest in the social and academic experiences of international students and their educational outcomes. The Australian Universities Quality Agency's (AUQA)…

  9. METRO-APEX Volume 6.1: Environmental Quality Agency's Manual. Revised.

    ERIC Educational Resources Information Center

    University of Southern California, Los Angeles. COMEX Research Project.

    The Environmental Quality Agency's Manual is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an expansion of APEX--Air…

  10. 48 CFR 846.408 - Single-agency assignments of Government contract quality assurance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Single-agency assignments of Government contract quality assurance. 846.408 Section 846.408 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract...

  11. WATER QUALITY MONITORING OF PHARMACEUTICALS ...

    EPA Pesticide Factsheets

    The demand on freshwater to sustain the needs of the growing population is of worldwide concern. Often this water is used, treated, and released for reuse by other communities. The anthropogenic contaminants present in this water may include complex mixtures of pesticides, prescription and nonprescription drugs, personal care and common consumer products, industrial and domestic-use materials and degradation products of these compounds. Although, the fate of these pharmaceuticals and personal care products (PPCPs) in wastewater treatment facilities is largely unknown, the limited data that does exist suggests that many of these chemicals survive treatment and some others are returned to their biologically active form via deconjugation of metabolites.Traditional water sampling methods (i.e., grab or composite samples) often require the concentration of large amounts of water to detect trace levels of PPCPs. A passive sampler, the polar organic chemical integrative sampler (POCIS), has been developed to integratively concentrate the trace levels of these chemicals, determine the time-weighted average water concentrations, and provide a method of estimating the potential exposure of aquatic organisms to these complex mixtures of waterborne contaminants. The POCIS (U.S. Patent number 6,478,961) consists of a hydrophilic microporous membrane, acting as a semipermeable barrier, enveloping various solid-phase sorbents that retain the sampled chemicals. Sampling rates f

  12. Mapping water quality and substrate cover in optically complex coastal and reef waters: an integrated approach.

    PubMed

    Phinn, S R; Dekker, A G; Brando, V E; Roelfsema, C M

    2005-01-01

    Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs.

  13. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  14. Quality of water in Luxapallia Creek at Columbus, Mississippi

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    1982-01-01

    The results of a water quality study of a short reach of Luxapallila Creek at Columbus, Mississippi, during September 9-12, 1979, indicate that the water is colored (60 units) and has a low dissolved solids content (44 mg/L). The dissolved oxygen concentration, temperature, and pH of the water in Luxapallila Creek changed a slightly downstream through the study reach. The mean specific conductance almost doubled and the five-day biochemical oxygen demand load increased over four times through the study reach. The fecal coliform to fecal streptococcus ration of 3 to 5 samples collected at the downstream site was greater than 4.0, strongly suggesting the presence of human waste. The concentrations of iron and manganese at the downstream site exceeded the U.S. Environmental Protection Agency 's criteria for domestic water supplies. High concentrations of iron, manganese, and lead also were present in a bottom material sample at the downstream site. (USGS)

  15. Simulation of water quality for Salt Creek in northeastern Illinois

    USGS Publications Warehouse

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  16. Interpreting and Reporting Radiological Water-Quality Data

    USGS Publications Warehouse

    McCurdy, David E.; Garbarino, John R.; Mullin, Ann H.

    2008-01-01

    This document provides information to U.S. Geological Survey (USGS) Water Science Centers on interpreting and reporting radiological results for samples of environmental matrices, most notably water. The information provided is intended to be broadly useful throughout the United States, but it is recommended that scientists who work at sites containing radioactive hazardous wastes need to consult additional sources for more detailed information. The document is largely based on recognized national standards and guidance documents for radioanalytical sample processing, most notably the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), and on documents published by the U.S. Environmental Protection Agency and the American National Standards Institute. It does not include discussion of standard USGS practices including field quality-control sample analysis, interpretive report policies, and related issues, all of which shall always be included in any effort by the Water Science Centers. The use of 'shall' in this report signifies a policy requirement of the USGS Office of Water Quality.

  17. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  18. Drinking water quality monitoring using trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  19. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users.

  20. Source-Water Protection and Water-Quality Investigations in the Cambridge, Massachusetts, Drinking-Water Supply System

    USGS Publications Warehouse

    Waldron, Marcus C.; Norton, Chip; MacDonald, Timothy W.D.

    1998-01-01

    Introduction The Cambridge Water Department (CWD) supplies about 15 million gallons of water each day to more than 95,000 customers in the City of Cambridge, Massachusetts. Most of this water is obtained from a system of reservoirs located in Cambridge and in parts of five other suburban-Boston communities. The drainage basin that contributes water to these reservoirs includes several potential sources of drinking-water contaminants, including major highways, secondary roads, areas of commercial and industrial development, and suburban residential tracts. The CWD is implementing a comprehensive Source-Water Protection Plan to ensure that the highest quality water is delivered to the treatment plant. A key element of this plan is a program that combines systematic monitoring of the drainage basin with detailed investigations of the effects of nonpoint-source contaminants, such as highway-deicing chemicals, nutrients, oxygen-demanding organic compounds, bacteria, and trace metals arising from stormwater runoff. The U.S. Geological Survey (USGS) is working with the CWD and the Massachusetts Highway Department (MassHighway) to develop a better understanding of the sources, transport, and fate of many of these contaminants. This Fact Sheet describes source-water protection and water-quality investigations currently underway in the Cambridge drinking-water supply system. The investigations are designed to complement a national effort by the USGS to provide water suppliers and regulatory agencies with information on the vulnerability of water supplies and the movement and fate of source-water contaminants.

  1. Urban Water and Riverine Quality: Participatory Science in Singapore

    NASA Astrophysics Data System (ADS)

    Higgitt, D. L.

    2011-12-01

    Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.

  2. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be...

  3. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%.

  4. Development of reclaimed potable water quality criteria

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Weir, F. W.

    1979-01-01

    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.

  5. Streamflow, groundwater, and water-quality monitoring by USGS Nevada Water Science Center

    USGS Publications Warehouse

    Gipson, Marsha L.; Schmidt, Kurtiss

    2013-01-01

    The U.S. Geological Survey (USGS) has monitored and assessed the quantity and quality of our Nation's streams and aquifers since its inception in 1879. Today, the USGS provides hydrologic information to aid in the evaluation of the availability and suitability of water for public and domestic supply, agriculture, aquatic ecosystems, mining, and energy development. Although the USGS has no responsibility for the regulation of water resources, the USGS hydrologic data complement much of the data collected by state, county, and municipal agencies, tribal nations, U.S. District Court Water Masters, and other federal agencies such as the Environmental Protection Agency, which focuses on monitoring for regulatory compliance. The USGS continues its mission to provide timely and relevant water-resources data and information that are available to water-resource managers, non-profit organizations, industry, academia, and the public. Data collected by the USGS provide the science needed for informed decision-making related to resource management and restoration, assessment of flood and drought hazards, ecosystem health, and effects on water resources from land-use changes.

  6. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  7. Water-quality reconnaissance of Harding Creek, Lawrence County, Arkansas

    USGS Publications Warehouse

    Petersen, James C.

    1981-01-01

    A study of Harding Creek conducted between April and October 1980 to assess the water quality of the creek indicates no serious water-quality problems. Eight water samples were collected during periods of low to moderate streamflow (less than 19 cubic feet per second). The water was hard to very hard (100 to 220 milligrams per liter as calcium carbonate) and dissolved-solids concentrations ranged from 112 to 244 milligrams per liter. Suspended-sediment concentrations were low (generally less than 5 milligrams per liter). Total phosphorus concentrations did not exceed 50 micrograms per liter, and total nitrogen concentrations were less than 1.9 milligrams per liter. Concentrations of most metals were less than 5 micrograms per liter, the exceptions being iron (110 to 210 micrograms per liter), manganese (20 to 80 micrograms per liter), and zinc (0 to 30 micrograms per liter). Fecal-coliform bacteria were present in some samples in large enough numbers (as many as 710 colonies per 100 milliliters) to indicate that the U.S. Environmental Protection Agency criterion and Arkansas water-quality standards may be exceeded at times. (USGS)

  8. Drainage water management effects on tile dicharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage water management (DWM) has received considerable attention as a potential best management practice for improving water quality in tile drained landscapes. However, only a limited number of studies have documented the effectiveness of DWM in mitigating nitrogen (N) and phosphorus (P) loads. ...

  9. Water quality assessment in Ecuador

    SciTech Connect

    Chudy, J.P.; Arniella, E.; Gil, E.

    1993-02-01

    The El Tor cholera pandemic arrived in Ecuador in March 1991, and through the course of the year caused 46,320 cases, of which 692 resulted in death. Most of the cases were confined to cities along Ecuador's coast. The Water and Sanitation for Health Project (WASH), which was asked to participate in the review of this request, suggested that a more comprehensive approach should be taken to cholera control and prevention. The approach was accepted, and a multidisciplinary team consisting of a sanitary engineer, a hygiene education specialist, and an institutional specialist was scheduled to carry out the assessment in late 1992 following the national elections.

  10. 75 FR 30013 - South Feather Water and Power Agency; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Energy Regulatory Commission South Feather Water and Power Agency; Notice of Availability of...), Commission staff has prepared an environmental assessment (EA) regarding South Feather Water and Power Agency... Creek development of the South Feather Power Project (FERC No. 2088). Sly Creek is located on Sly...

  11. Water-quality assessment of Cache Creek, Yolo, Lake, and Colusa counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Elliott, Ann L.

    1981-01-01

    Cache Creek and its tributaries from Clear Lake to Yolo Bypass have been the subject of quality and quantity of water studies by several governmental agencies since the early 1900's. Water-quality data from these studies showed that water in the basin is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Concentrations of dissolved constituents are substantially higher in the water in the two largest tributaries than in Cache Creek. Seasonal variations in dissolved constituents are also greater in the tributaries than in Cache Creek. Clear Lake has a major effect on water quality, resulting in little seasonal fluctuation in water quality in Cache Creek. Excessive voron and suspended-sediment concentrations are the greatest water-quality problems, according to existing data. Both of these problems are from natural sources. Water-quality monitoring is presently being conducted monthly at four sites by the California Department of Water Resurces and at several other sites by other agencies. Modifications in current monitoring are proposed to gain further information on diel dissolved-oxygen cycles, pesticides, and biological constituents that may adversely affect beneficial uses. (USGS)

  12. Quality comparison of tap water vs. bottled water in the industrial city of Yanbu (Saudi Arabia).

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2009-12-01

    This study was conducted to compare the quality of bottled water with potabilized desalinated tap water. Fourteen brands of local and imported bottled water samples were collected from the local market and analyzed for physicochemical parameters in the Royal Commission Environmental Laboratory. Results were compared with 5-year continuous monitoring data of tap water from different locations in Madinat Yanbu Al-Sinaiyah (MYAS) including storage tanks of desalination plant. Results show that there was no significant difference in the quality of tap water and bottled water. Bacteriological test was never found positive in the 5-year data in tap water. Similarly, physicochemical analysis shows the persistent quality of tap water. Based on hardness analysis, bottled and tap water are categorized as soft water. Trihalomethanes (THMs) study also indicates that traces of disinfection by products (DBPs) are present in both tap and bottled water and are much less than the World Health Organization and Environmental Protection Agency maximum permissible limits. It is also important to note that the tap water distribution network in MAYS is a high-pressure recirculation network and there is no chance to grow bacteria in stagnant water in pipe lines or houses. Recently, the Royal Commission has replaced the whole drinking water network, which was made of asbestos-cemented pipes with glass-reinforced plastic (GRP) pipes, to avoid any asbestos contaminations. Based on these results, it is concluded that drinking water distributed in the city is of very good and persistent quality, comparable with bottled water. Continuous monitoring also guarantees the safe drinking water to the community. Hence, it is the responsibility of the Royal Commission to encourage the peoples in the city to drink tap water as it is as good as bottled water even better than some of the brands and is monitored regularly. It is also much cheaper compared to bottled water and is available round the clock

  13. Private drinking water quality in rural Wisconsin.

    PubMed

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  14. Evaluation of Microbial Water Quality Indicators in a Forested and Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Environmental Protection Agency (EPA) and European Union (EU) are engaged in an extensive effort to assess and improve surface water quality, including decreasing risks to public health from water-borne pathogens. In the absence of data for specific pathogens, indicators of fecal contamina...

  15. INTERNATIONAL PERSPECTIVE: U.S. EPA'S APPROACH TO SURVEILLANCE AND MANAGEMENT OF WATER QUALITY

    EPA Science Inventory

    For the past 35 years, the Environmental Protection Agency (EPA) has been establishing health-based standards for more than 80 contaminants and developing water quality methods and tools to monitor, assess, and report on the health of America's water resources. The Safe Drinking ...

  16. EPA awards $2.5 million to Arizona to improve surface water quality

    EPA Pesticide Factsheets

    SAN FRANCISCO - The Environmental Protection Agency awarded $2.5 million to the State of Arizona for projects to help restore water quality in the state's polluted water bodies. With an additional $1.6 million leveraged by the state for these activi

  17. Improved water quality retrieval by identifying optically unique water classes

    NASA Astrophysics Data System (ADS)

    Nazeer, Majid; Nichol, Janet E.

    2016-10-01

    Accurate remote sensing retrieval of water quality parameters in complex coastal environments is challenging due to variability of the coastal environment. For example, in the coastal waters of Hong Kong water quality varies from east to west. The currently existing water zones, defined by the Hong Kong Environmental Protection Department (EPD) are based on ease of access to sampling locations rather than on water quality alone. In this study an archive of fifty-seven Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and HJ-1 A/B Charged Couple Device (CCD) images over a 13-year period (January 2000-December 2012) was used to define optically distinct water classes by Fuzzy c-Means (FCM) clustering. The clustering was applied by combining the Surface Reflectance (SR) derived from the first four bands of Landsat and HJ-1 scenes with 240 insitu samples of Chlorophyll-a (Chl-a) and Suspended Solid (SS) concentrations collected within 2 h of image acquisition. The FCM clustering suggested the existence of five optically different water classes in the region. The significance of the defined water classes was tested in terms of the water SR behaviour in each band. The SR for Classes 1 and 2 in bands 1-3 was lower than in other classes, and band 4 showed the lowest reflectance, indicating that these classes represent a clearer type of water. Class 3 showed intermediate reflectance in all bands, while Classes 4 and 5 showed overall higher reflectance indicating high sediment contribution from the Pearl River Delta. Application of water quality retrievals within individual classes showed much greater confidence with Root Mean Square Error (RMSE) of 1.32 μg/l (1.21 mg/l) for Chl-a (SS) concentrations, compared with 5.97 μg/l (2.98 mg/l) when applied to the whole spectrum of different water types across the region.

  18. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  19. Water quality of bottled water in the kingdom of Saudi Arabia: A comparative study with Riyadh municipal and Zamzam water.

    PubMed

    Alfadul, Sulaiman M; Khan, Mujahid A

    2011-01-01

    Nine domestic and three imported bottled water brands were analyzed in Saudi Arabia for various physicochemical water quality parameters. The results of the analysis were compared with the drinking water standards set by different regulatory agencies. The levels of different physicochemical parameters like pH, total dissolved solids (TDS), Ca, Mg, Na, K, NO(3), Cl, and SO(4) of all local and imported bottled water brands met the standards set by different regulatory agencies. Fifteen (15) trace metals viz. Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sr, Pb, and Zn were also analyzed in all the samples. Comparison of analyzed results with the reported label values showed considerable variation for different parameters. Variation was also recorded for the analyzed parameters for 3 bottles of the same bottled water brand, both for local and imported bottled waters. Zamzam water was also collected from Makkah Al Mukarrama from different locations and analyzed for various physical and chemical parameters. Bottled waters were also compared with the city municipal water supply and Zamzam water.

  20. Water quality in sugar catchments of Queensland.

    PubMed

    Rayment, G E

    2003-01-01

    Water quality condition and trend are important indicators of the impact of land use on the environment, as degraded water quality causes unwelcome changes to ecosystem composition and health. These concerns extend to the sea, where discharges of nutrients, sediments and toxicants above natural levels are unwelcome, particularly when they drain to the Great Barrier Reef World Heritage Area and other coastal waters of Queensland. Sugarcane is grown in 26 major river catchments in Queensland, most in environmentally sensitive areas. This puts pressure on the Queensland Sugar Industry to manage the land in ways that have minimum adverse off-site impacts. Sugar researchers including CRC Sugar have been associated with water quality studies in North Queensland. These include investigations and reviews to assess the role of groundwater as a pathway for nitrate loss from canelands in the Herbert Catchment, to find causes of oxygen depletion in water (including irrigation runoff) from Ingham to Mackay, to use residues of superseded pesticides as indicators of sediment loss to the sea, and to assemble information on water quality pressure and status in sugar catchments. Key findings, plus information on input pressures are described in this paper, and areas of concern and opportunities discussed.

  1. Assessment of water quality conditions Ohio River main stem 1980-81

    SciTech Connect

    Not Available

    1981-01-01

    This report, prepared by the Ohio River Valley Water Sanitation Commission (ORSANCO), is an assessment of the water quality of the Ohio River and lower reaches of its major tributaries together with information on Commission water pollution control programs for the years 1980 and 1981. The Commission is an interstate agency formed in 1948 by eight states signatory to a compact to abate existing and control future water pollution in the Ohio River Valley.

  2. Development and sensitivity analysis of a global drinking water quality index.

    PubMed

    Rickwood, C J; Carr, G M

    2009-09-01

    The UNEP GEMS/Water Programme is the leading international agency responsible for the development of water quality indicators and maintains the only global database of water quality for inland waters (GEMStat). The protection of source water quality for domestic use (drinking water, abstraction etc) was identified by GEMS/Water as a priority for assessment. A composite index was developed to assess source water quality across a range of inland water types, globally, and over time. The approach for development was three-fold: (1) Select guidelines from the World Health Organisation that are appropriate in assessing global water quality for human health, (2) Select variables from GEMStat that have an appropriate guideline and reasonable global coverage, and (3) determine, on an annual basis, an overall index rating for each station using the water quality index equation endorsed by the Canadian Council of Ministers of the Environment. The index allowed measurements of the frequency and extent to which variables exceeded their respective WHO guidelines, at each individual monitoring station included within GEMStat, allowing both spatial and temporal assessment of global water quality. Development of the index was followed by preliminary sensitivity analysis and verification of the index against real water quality data.

  3. Quality Assurance of Joint Degree Programs from the Perspective of Quality Assurance Agencies: Experience in East Asia

    ERIC Educational Resources Information Center

    Hou, Yung-Chi; Ince, Martin; Tsai, Sandy; Wang, Wayne; Hung, Vicky; Lin Jiang, Chung; Chen, Karen Hui-Jung

    2016-01-01

    Joint degree programs have gained popularity in East Asia, due to the growth of transnational higher education in the region since 2000. However, the external quality assurance (QA) and accreditation of joint degree programs is a challenge for QA agencies, as it normally involves the engagement of several institutions and multiple national…

  4. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    EPA Science Inventory

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  5. Observations on a Montana water quality proposal.

    SciTech Connect

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

  6. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    PubMed

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended.

  7. Water Quality and Sustainable Environmental Health

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  8. Water Resources Data, Georgia, 2002--Volume 2: Continuous ground-water-level data, and periodic surface-water- and ground-water-quality data, Calendar Year 2002

    USGS Publications Warehouse

    Coffin, Robert; Grams, Susan C.; Leeth, David C.; Peck, Michael F.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  9. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  10. A national look at water quality

    USGS Publications Warehouse

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  11. Algal toxins in Upper Klamath Lake, Oregon: Linking water quality to juvenile sucker health

    USGS Publications Warehouse

    VanderKooi, S.P.; Burdick, S.M.; Echols, K.R.; Ottinger, C.A.; Rosen, B.H.; Wood, T.M.

    2010-01-01

    As the lead science agency for the Department of Interior, the U.S. Geological Survey is actively involved in resource issues in the Klamath River basin. Activities include research projects on endangered Lost River and shortnose suckers, threatened coho salmon, groundwater resources, seasonal runoff forecasting, water quality in Upper Klamath Lake and the Klamath River, nutrient cycling in wetlands, and assessment of land idling programs to reduce water consumption. Many of these studies are collaborations with various partners including Department of Interior agencies, Indian Tribes, and State agencies.

  12. Map showing general chemical quality of ground water in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Price, Don

    1972-01-01

    The general chemical quality of water was determined from quality-of-water data collected by the U.S. Geological Survey and cooperating State, local, and Federal agencies. Sources of data include springs, and wells that tap aquifers at depths of less than 1,000 feet. In areas where quality-of-water data are inadequate or lacking, the limits of dissolved solids are inferred from geologic data. More exact determination of the chemical quality of ground water in any given part of the map area can be made only on the basis of special investigations. More detailed information on the chemical quality of ground water in specific areas is obtainable from the district office of the Water Resources Division, U.S. Geological Survey, Salt Lake City, Utah.

  13. QSARs in Netherlands water quality management policies.

    PubMed

    van der Gaag, M A

    1991-12-01

    QSARs are a useful tool for predicting the potential toxic effects of compounds for which no data are available. Within strictly defined limits, QSARs can be applied to assess the potential impact of a spill, to evaluate ecotoxicological effects and environmental fate of organics in waste water and to set priorities for water quality criteria. For a wider application, there is a need for 'worst case' SARs providing a 'safer' estimate of toxicity than QSARs with an optimum fit, which might underestimate toxicity.

  14. The Effect of Publicized Quality Information on Home Health Agency Choice.

    PubMed

    Jung, Jeah Kyoungrae; Wu, Bingxiao; Kim, Hyunjee; Polsky, Daniel

    2016-12-01

    We examine consumers' use of publicized quality information in Medicare home health care markets, where consumer cost sharing and travel costs are absent. We report two findings. First, agencies with high quality scores are more likely to be preferred by consumers after the introduction of a public reporting program than before. Second, consumers' use of publicized quality information differs by patient group. Community-based patients have slightly larger responses to public reporting than hospital-discharged patients. Patients with functional limitations at the start of their care, at least among hospital-discharged patients, have a larger response to the reported functional outcome measure than those without functional limitations. In all cases of significant marginal effects, magnitudes are small. We conclude that the current public reporting approach is unlikely to have critical impacts on home health agency choice. Identifying and releasing quality information that is meaningful to consumers may help increase consumers' use of public reports.

  15. Analysis of Water-Quality Trends for Selected Streams in the Water Chemistry Monitoring Program, Michigan, 1998-2005

    USGS Publications Warehouse

    Hoard, C.J.; Fuller, Lori M.; Fogarty, Lisa R.

    2009-01-01

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began a long-term monitoring program to evaluate the water quality of most watersheds in Michigan. Major goals of this Water-Chemistry Monitoring Program were to identify streams exceeding or not meeting State or Federal water-quality standards and to assess if constituent concentrations reflecting water quality in these streams were increasing or decreasing over time. As part of this program, water-quality data collected from 1998 to 2005 were analyzed to identify potential trends. Sixteen water-quality constituents were analyzed at 31 sites across Michigan, 28 of which had sufficient data to analyze for trends. Trend analysis on the various water-quality data was done using the uncensored Seasonal Kendall test within the computer program ESTREND. The most prevalent trend detected throughout the state was for chloride. Chloride trends were detected at 8 of the 28 sites; trends at 7 sites were increasing and the trend at 1 site was decreasing. Although no trends were detected for various nitrogen species or phosphorus, these constituents were detected at levels greater than the U.S. Environmental Protection Agency recommendations for nutrients in water. The results of the trend analysis will help to establish a baseline to evaluate future changes in water quality in Michigan streams.

  16. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  17. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  18. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  19. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  20. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  1. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  2. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  3. Estuarine water-quality and sediment data, and surface-water and ground-water-quality data, Naval Submarine Base Kings Bay, Camden County, Georgia, January 1999

    USGS Publications Warehouse

    Leeth, David C.; Holloway, Owen G.

    2000-01-01

    In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).

  4. Water quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14

    USGS Publications Warehouse

    Moorman, Michelle C.; Fitzgerald, Sharon A.; Gurley, Laura N.; Rhoni-Aref, Ahmed; Loftin, Keith A.

    2017-01-23

    , 12 metals in surficial bed sediments were detected at levels above a published sediment-quality threshold. These metals included chromium, mercury, copper, lead, arsenic, nickel, and cadmium. Sites with several metal concentrations above the respective thresholds had relatively high concentrations of organic carbon or fine sediment (silt plus clay), or both and were predominantly located in the western and northwestern parts of the Albemarle Sound.Results from the second phase were generally similar to those of the first in that relatively few constituents exceeded a water-quality threshold, both pH and chlorophyll a were detected above the respective water-quality thresholds, and many of these elevated concentrations occurred in the northern embayments and in Currituck Sound. In contrast to the results from phase one, the cyanotoxin, microcystin was detected at more than 10 times the water-quality threshold during a phytoplankton bloom on the Chowan River at Mount Gould, North Carolina in August of 2013. This was the only cyanotoxin concentration measured during the entire study that exceeded a respective water-quality threshold.The information presented in this report can be used to improve understanding of water-quality conditions in the Albemarle Sound, particularly when evaluating causal and response variables that are indicators of eutrophication. In particular, this information can be used by State agencies to help develop water-quality criteria for nutrients, and to understand factors like cyanotoxins that may affect fisheries and recreation in the Albemarle Sound region.

  5. Water-resources of the Antelope Valley-East Kern Water Agency area, California

    USGS Publications Warehouse

    Bloyd, R.M.

    1967-01-01

    The Antelope Valley-East Kern Water Agency (AVEK) area, most of which is within the Mojave Desert region of southern California, lacks adequate water resources to sustain the existing rate of ground-water pumpage for irrigation, industrial, and domestic use. However, by 1972 the California Aqueduct, a part of the California Water Plan, will be completed and will begin to convey water from northern California into the area. The chief economic pursuits in the area are irrigated agriculture and poultry production. At present, the major industries are related to national defense and mining. In the future, industry will increase and probably become the major economic activity. The Mojave Desert region, part of which lies within the AVEK area, is characterized by fault-block mountains and fault-block basins. The Tehachapi and San Gabriel Mountains are the major bordering fault blocks. The adjacent lowland areas of Antelope and Fremont Valleys have been depressed by movements along major faults. There are two major ground-water basins in the AVEK area: Antelope Valley and Fremont Valley basins. Each large basin is divided by faults or bodies of consolidated rock into several groundwater subunits.

  6. Quality of surface water in Missouri, water year 2012

    USGS Publications Warehouse

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. Quality of surface water in Missouri, water year 2013

    USGS Publications Warehouse

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  8. U.S. Geological Survey; North Carolina's water resources; a partnership with State, Federal and local agencies

    USGS Publications Warehouse

    Winner, M.D.

    1993-01-01

    For more than 80 years, the Federal-State Cooperative Program in North Carolina has been an effective partnership that provides timely water information for all levels of government. The cooperative program has raised awareness of State and local water problems and issues and has enhanced transfer and exchange of scientific information. The U.S. Geological Survey (USGS) conducts statewide water-resources investigations in North Carolina that include hydrologic data collection, applied research studies, and other interpretive studies. These programs are funded through cooperative agreements with the North Carolina Departments of Environment, Health, and Natural Resources; Human Resources; and Transportation, as well as more than a dozen city and county governmental agencies. The USGS also conducts special studies and data-collection programs for Federal agencies, including the Department of Defense, the U.S. Soil Conservation Service, the Tennessee Valley Authority, and the U.S. Environmental Protection Agency that contribute to North Carolina's water information data base. Highlights of selected programs are presented to show the scope of USGS activities in North Carolina and their usefulness in addressing water-resource problems. The reviewed programs include the statewide data-collection program, estuarine studies, the National Water-Quality Assessment program, military installation restoration program, and groundwater flow model-development program in the Coastal Plain and Piedmont provinces.

  9. [Quality of health care, accreditation, and health technology assessment in Croatia: role of agency for quality and accreditation in health].

    PubMed

    Mittermayer, Renato; Huić, Mirjana; Mestrović, Josipa

    2010-12-01

    Avedis Donabedian defined the quality of care as the kind of care, which is expected to maximize an inclusive measure of patient welfare, after taking into account the balance of expected gains and losses associated with the process of care in all its segments. According to the World Medical Assembly, physicians and health care institutions have an ethical and professional obligation to strive for continuous quality improvement of services and patient safety with the ultimate goal to improve both individual patient outcomes as well as population health. Health technology assessment (HTA) is a multidisciplinary process that summarizes information about the medical, social, economic and ethical issues related to the use of a health technology in a systematic, transparent, unbiased, robust manner, with the aim to formulate safe and effective health policies that are patient focused and seek to achieve the highest value. The Agency for Quality and Accreditation in Health was established in 2007 as a legal, public, independent, nonprofit institution under the Act on Quality of Health Care. The Agency has three departments: Department of Quality and Education, Department of Accreditation, and Department of Development, Research, and Health Technology Assessment. According to the Act, the Agency should provide the procedure of granting, renewal and cancellation of accreditation of healthcare providers; proposing to the Minister, in cooperation with professional associations, the plan and program for healthcare quality assurance, improvement, promotion and monitoring; proposing the healthcare quality standards as well as the accreditation standards to the Minister; keeping a register of accreditations and providing a database related to accreditation, healthcare quality improvement, and education; providing education in the field of healthcare quality assurance, improvement and promotion; providing the HTA procedure and HTA database, supervising the healthcare insurance

  10. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  11. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  12. Compost improves urban soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  13. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY

    EPA Science Inventory

    Scientists from ten countries presented papers at the Fifth International Symposium on Fish Physiology, Toxicology, and Water Quality, which was held on the campus of the city University of Hong Kong on November 10-13, 1998. These Proceedings include 23 papers presented in sessi...

  14. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY:

    EPA Science Inventory

    Twenty-one participants from Europe, North America and China convened in Chongqing, China, October 12-14, 2005, for the Eighth International Symposium in Fish Physiology, Toxicology and Water Quality. The subject of the meeting was "Hypoxia in vertebrates: Comparisons of terrestr...

  15. Examining issues with water quality model configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex watershed–scale, water quality models require a considerable amount of data in order to be properly configured, especially in view of the scarcity of data in many regions due to temporal and economic constraints. In this study, we examined two different input issues incurred while building ...

  16. NONPOINT SOURCES AND WATER QUALITY TRADING

    EPA Science Inventory

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  17. Water quality issues and energy assessments

    SciTech Connect

    Davis, M.J.; Chiu, S.

    1980-11-01

    This report identifies and evaluates the significant water quality issues related to regional and national energy development. In addition, it recommends improvements in the Office assessment capability. Handbook-style formating, which includes a system of cross-references and prioritization, is designed to help the reader use the material.

  18. Water Quality Considerations and Related Dishwashing Problems.

    ERIC Educational Resources Information Center

    McClelland, Nina I.

    A number of the chemical and physical factors which cause dishwashing problems are presented in a series of charts. Water quality considerations are vital, but the importance of good housekeeping and proper operating practices cannot and must not be minimized. Topics discussed include--(1) dissolved minerals, (2) dissolved gases, (3) detergents,…

  19. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  20. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper

  1. Modeling and Managing Water Resource Systems for Water Quality.

    DTIC Science & Technology

    1987-02-01

    results are very encouraging. Applications are in progress on the Umpqua River in Oregon for analysis of a proposed reservoir system and the Columbia...industrial, irrigation, water supply, fish habitat) and water quality requirements. The HEC-5Q program was first applied to the Sacramento River system...in California and a report was published in July 1985 [8]. Two other applications are in progress, the Kanawha and Monongahela River systems have

  2. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  3. Analysis of ground-water-quality data of the Upper Colorado River basin, water years 1972-92

    USGS Publications Warehouse

    Apodaca, L.E.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment program, an analysis of the existing ground-water-quality data in the Upper Colorado River Basin study unit is necessary to provide information on the historic water-quality conditions. Analysis of the historical data provides information on the availability or lack of data and water-quality issues. The information gathered from the historical data will be used in the design of ground-water-quality studies in the basin. This report includes an analysis of the ground-water data (well and spring data) available for the Upper Colorado River Basin study unit from water years 1972 to 1992 for major cations and anions, metals and selected trace elements, and nutrients. The data used in the analysis of the ground-water quality in the Upper Colorado River Basin study unit were predominantly from the U.S. Geological Survey National Water Information System and the Colorado Department of Public Health and Environment data bases. A total of 212 sites representing alluvial aquifers and 187 sites representing bedrock aquifers were used in the analysis. The available data were not ideal for conducting a comprehensive basinwide water-quality assessment because of lack of sufficient geographical coverage.Evaluation of the ground-water data in the Upper Colorado River Basin study unit was based on the regional environmental setting, which describes the natural and human factors that can affect the water quality. In this report, the ground-water-quality information is evaluated on the basis of aquifers or potential aquifers (alluvial, Green River Formation, Mesaverde Group, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Leadville Limestone, and Precambrian) and land-use classifications for alluvial aquifers.Most of the ground-water-quality data in the study unit were for major cations and anions and dissolved-solids concentrations. The aquifer with the highest median concentrations of

  4. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  5. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  6. Predicting synoptic water quality indicators of wadeable streams in the U.S. using national soil database - Shirazi

    EPA Science Inventory

    Nationwide assessment of water quality is a goal of the United States Environmental Protection Agency (USEPA), and the EPA’s Wadeable Stream Assessment (WSA) was developed in response to that goal. The observed chemical, physical, and biological water quality indicators (WQI) fro...

  7. Predicting synoptic water quality indicators of wadeable streams in the U.S. using National Soil Database

    EPA Science Inventory

    Nationwide assessment of water quality is a goal of the United States Environmental Protection Agency (USEPA), and the EPA’s Wadeable Stream Assessment (WSA) was developed in response to that goal. The observed chemical, physical, and biological water quality indicators (WQI) fro...

  8. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect

    Quinn, Nigel W.T.

    2007-01-20

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  9. Numerical methods for assessing water quality in lakes and reservoirs

    SciTech Connect

    Mahamah, D.S.

    1984-01-01

    Water quality models are used as tools for predicting both short-term and long-term trends in water quality. They are generally classified into two groups based on the degree of empiricism. The two groups consists of the purely empirical types known as black-box models and the theoretical types called ecosystem models. This dissertation deals with both types of water quality models. The first part deals with empirical phosphorus models. The theory behind this class of models is discussed, leading to the development of an empirical phosphorus model using data from 79 western US lakes. A new approach to trophic state classification is introduced. The data used for the model was obtained from the Environmental Protection Agency National Eutrophication Study (EPA-NES) of western US lakes. The second portion of the dissertation discusses the development of an ecosystem model for culturally eutrophic Liberty Lake situated in eastern Washington State. The model is capable of simulating chlorophyll-a, phosphorus, and nitrogen levels in the lake on a weekly basis. For computing sediment release rates of phosphorus and nitrogen, equations based on laboratory bench-top studies using sediment samples from Liberty Lake are used. The model is used to simulate certain hypothetical nutrient control techniques such as phosphorus flushing, precipitation, and diversion.

  10. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  11. Drainage water management effects on tile discharge and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  12. Ground-water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia; analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Hamilton, P.A.; Shedlock, Robert J.; Phillips, P.J.

    1989-01-01

    Regional water quality conditions were analyzed on the basis of available data for the Delmarva Peninsula. A summary of 3 Federal, 5 State, and 14 local agencies, as well as various nonprofit organizations and universities, serving as repositories for water quality data is presented. Also included is information describing the range of chemical constituents, the ease of retrieving the data, and general characteristics of the data for use in a regional groundwater quality assessment. Certain characteristics of the available data limit their usefulness for a regional assessment of groundwater. These include a (1) lack of information on quality control; (2) inconsistent sampling; preservation, and analytical techniques used among and within agencies; (3) the clustering of sampling wells around known or suspected areas of contamination, which can impose a bias on water quality assessments; and (4) lack of information on sampling locations, well depths, well construction, and aquifer characteristics. Despite these limitations, the analysis provides a foundation for more detailed regional assessments of water resources on the Delmarva Peninsula and highlights areas where pertinent data are needed. Results of the analysis indicate that data on trace element and organic compound concentrations in groundwater in the Delmarva Peninsula are scarce, whereas data for nitrate, iron, and manganese concentrations are relatively abundant. The data indicate that elevated concentrations of nitrate, iron, and manganese are prevalent in water throughout the surficial aquifer--an aquifer that not only is important in recharging the underlying confined aquifer system, but in supplying drinking water to the majority of Delmarva Peninsula residents. (USGS)

  13. 78 FR 77167 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Collection; Comments Requested: Supplemental Information on Water Quality Considerations ACTION: 60-day... Form/Collection: Supplemental Information on Water Quality Considerations. (3) Agency form number,...

  14. 76 FR 50496 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Collection; Comments Requested; Supplemental Information on Water Quality Considerations ACTION: 60-Day...) Title of the Form/Collection: Supplemental Information on Water Quality Considerations. (3) Agency...

  15. A New Age Dawning? Australia's New Tertiary Education Quality and Standards Agency Moves towards "Third Stage" Internationalisation

    ERIC Educational Resources Information Center

    Observatory on Borderless Higher Education, 2010

    2010-01-01

    Australia's Minister for Education, Employment and Workplace Relations recently launched a new agency whose primary focus is the protection of the country's tertiary education system. The government is developing the new AUD$57 million (approximately US$51 million) agency, the Tertiary Education Quality and Standards Agency (TEQSA), in response to…

  16. Chesapeake Bay Program Water Quality Database

    EPA Pesticide Factsheets

    The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

  17. 78 FR 48845 - Hydrofluorosilicic Acid in Drinking Water; TSCA Section 21 Petition; Reasons for Agency Response

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... AGENCY 40 CFR Chapter I Hydrofluorosilicic Acid in Drinking Water; TSCA Section 21 Petition; Reasons for... to prohibit the use of hydrofluorosilicic acid (HFSA) as a water fluoridation agent. After careful... Regarding the Hydrofluorosilicic Acid (HFSA) in Drinking Water.'' May 9, 2013. 2. Hirzy, J.W.; Carton,...

  18. Water Quality in the Delmarva Peninsula, Delaware, Maryland, and Virginia, 1999-2001

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.; Debrewer, Linda M.; Ferrari, Matthew J.; Barbaro, Jeffrey R.; Hancock, Tracy C.; Brayton, Michael J.; Nardi, Mark R.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality in the Delmarva Peninsula. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from local ground-water flow paths to regional ground-water networks and in surface water?and is discussed in terms of local, State, and regional issues. Conditions in the Delmarva Peninsula are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Delmarva Peninsula are available. Detailed technical information, data and analyses, methodology, models, graphs, and maps that support the findings presented in this report can be accessed from http://md.water.usgs.gov/delmarva. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  19. Selected water-quality data for the Minidoka Irrigation District, south-central Idaho, June 1987

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; O'Dell, I.

    1987-01-01

    This map report presents June 1987 water-quality data, principally dissolved nitrite plus nitrate (as nitrogen), and depth-to-water measurements for 67 wells in the Minidoka Irrigation District, south-central Idaho. Nitrogen concentrations ranged from 0.2 to 76 milligrams per liter; the median concentrations was 6.6 milligrams per liter. Nitrogen concentrations in 9 samples exceeded the U. S. Environmental Protection Agency public drinking-water limit of 10 milligrams per liter. (USGS)

  20. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  1. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  2. 77 FR 47058 - Middle Fork American River Hydroelectric Project Placer County Water Agency; Notice of Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Energy Regulatory Commission Middle Fork American River Hydroelectric Project Placer County Water Agency... comments on the draft environmental impact statement for the Middle Fork American River Project No. 2079... project. This meeting is posted on the Commission's calendar located at...

  3. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2007

    USGS Publications Warehouse

    Wisconsin Water Science Center Lake-Studies Team: Rose, W. J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, D.M.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2007 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2007 is called 'water year 2007.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake?s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2007.'

  4. Water-quality and lake-stage data for Wisconsin lakes, water year 1997

    USGS Publications Warehouse

    Robertson, D.M.; Elder, J.F.; Garn, H.S.; Goodard, G.L.; Marsh, S.B.; Olson, D.L.; Rose, W.J.

    1998-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The location of water-quality and lake-stage stations in Wisconsin for water year 1997 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 1996 through September 30, 1997 is called 'water year 1997'. The purpose of this report is to provide information about the physical and chemical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of lake stage and in-lake water quality. Graphs of Secchi depths, surface total-phosphorus and chlorophyll-a concentrations versus time are usually included for lakes with two or more years of data. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 1997'.

  5. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to... quality data and problems identified in the 305(b) report, States develop water quality management (WQM... the 305(b) report should be analyzed through water quality management planning leading to...

  6. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality monitoring. 130.4 Section... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1.../quality control guidance. (b) The State's water monitoring program shall include collection and...

  7. Water quality of North Carolina streams

    USGS Publications Warehouse

    Harned, Douglas; Meyer, Dann

    1983-01-01

    Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing

  8. The strategy for improving water-quality monitoring in the United States; final report of the Intergovernmental Task Force on Monitoring Water Quality; technical appendices

    USGS Publications Warehouse

    ,

    1995-01-01

    The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as

  9. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  10. Monitoring surface-water quality in Arizona: the fixed-station network

    USGS Publications Warehouse

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  11. Water quality improvement plan for Greater Vancouver

    SciTech Connect

    Foellmi, S.N. . Environmental Div.); Neden, D.G. ); Dawson, R.N. )

    1993-10-01

    The Greater Vancouver Regional District commissioned an 18-month planning and predesign study to define the components in a comprehensive water and predesign study to define the components in a comprehensive water quality improvement plan for its 2,500-ML/d (660-mgd) system. The study included three primary tasks: (1) predesign of disinfection and corrosion control facilities, (2) a 12-month pilot testing program using parallel pilot plants at the Seymour and Capilano water supply reservoirs, and (3) planning for future filtration plants. The results of the study identified chlorine, ammonia, sulfur dioxide, soda ash, and carbon dioxide in a two-stage treatment approach as the recommended disinfection and corrosion control scheme for the low-pH, low-alkalinity water supplies. The pilot-plant studies confirmed that direct filtration using deep-bed monomedium filters operating at a loading rate of 22.5 m/h provided excellent treatment performance and productivity over a wide range of raw-water quality. Ozonation was studied extensively and found not to be beneficial in the overall treatment performance. The phased improvement plan for the disinfection, corrosion control, and filtration facilities has an estimated capital cost of about Can$459 million.

  12. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... solid waste and water quality management planning agencies, and all areawide agencies and the state... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  13. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid waste and water quality management planning agencies, and all areawide agencies and the state... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  14. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solid waste and water quality management planning agencies, and all areawide agencies and the state... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  15. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... solid waste and water quality management planning agencies, and all areawide agencies and the state... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  16. 40 CFR 255.23 - Joint identification of agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid waste and water quality management planning agencies, and all areawide agencies and the state... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Procedures for Identifying Regions and...

  17. Overview of water quality and water resource research in the Water Quality and Ecology Research Unit, Oxford, MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Quality and Ecology Research Unit (WQERU) is part of the United States Department of Agriculture - Agricultural Research Service (USDA-ARS) National Sedimentation Laboratory located in Oxford, Mississippi. The stated research mission of the WQERU is to “address issues of water quality/quan...

  18. Water quality in Illinois, 1990-1991. Biennial report

    SciTech Connect

    Northrop, C.

    1993-01-01

    The report is a summary of the 305(b) Illinois Water Quality Report. It highlights the 1990 - 1991 water quality conditions of Illinois rivers, streams, inland lakes, Lake Michigan, and groundwater. The report also outlines current water quality issues and the IEPA's water pollution control programs.

  19. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  20. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  1. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  2. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  3. REGIONAL GROUND-WATER-QUALITY NETWORK DESIGN.

    USGS Publications Warehouse

    Templin, William E.; ,

    1985-01-01

    This paper describes the approach used in designing a regional network to monitor the complex ground-water-quality conditions in the San Joaquin Valley, California. The actual network approximates the ideal network with the constraint of primarily using wells that are already being monitored by someone for some purpose. Further inventories of monitoring networks and installation of some specialized monitoring wells will be needed. Use of statistical network analysis techniques is also needed to make network improvements. Following these actions, the actual network will more closely approximate the ideal network in providing information on ground-water-quality trends, contaminant sources, prevention of future sources of contamination, monitoring well distributions, sampling frequencies, and constituents to be monitored.

  4. Quality of surface water in Missouri, water year 2010

    USGS Publications Warehouse

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  5. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  6. Quality of surface water in Missouri, water year 2011

    USGS Publications Warehouse

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. Quality of surface water in Missouri, water year 2014

    USGS Publications Warehouse

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  8. Quality of surface water in Missouri, water year 2015

    USGS Publications Warehouse

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  9. Modeling Water Quality of Reservoir Tailwaters

    DTIC Science & Technology

    1992-05-01

    ammonium (NH4+) to nitrate (N03-) where the overall reaction is described as follows (Wetzel 1975) NH* + 202 -> NO3 + HO + 2H* (19) thus requiring... ammonium nitrogen to nitrate nitrogen. d. Oxidation of reduced manganese sorbed onto the bed. jt. Oxidation of reduced (i.e., dissolved) iron...Water quality constituents modeled during each application were DO, CBOD, ammonium nitrogen, organic nitrogen, nitrate nitro- gen, dissolved iron

  10. Water-quality and lake-stage data for Wisconsin lakes, water years 2008−2011

    USGS Publications Warehouse

    Manteufel, S. Bridgett; Olson, Daniel L.; Robertson, Dale M.; Goddard, Gerald L.

    2016-09-30

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series.The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes during water years 2008–2011. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2007 through September 30, 2008 is called "water year 2008." Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are presented in this report for water years from 2008–2011. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are available via the "USGS Annual Water Data Report" Web site: http://wdr.water.usgs.gov/.

  11. Water-quality and hydrogeologic data used to evaluate the effects of farming systems on ground-water quality at the Management Systems Evaluation Area near Princeton,Minnesota, 1991-95

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.

    1997-01-01

    The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.

  12. Quality assessment of Romanian bottled mineral water and tap water.

    PubMed

    M Carstea, Elfrida; Levei, Erika A; Hoaghia, Maria-Alexandra; Savastru, Roxana

    2016-09-01

    This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses.

  13. 76 FR 6727 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive... and locations for public hearings on proposed amendments to its Water Quality Regulations, Water Code... amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan relating to...

  14. Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Mastin, Mark C.

    2016-01-01

    This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure high-quality data, analyses, reviews, and reports for cooperating agencies and the public.

  15. Water-quality and Llake-stage data for Wisconsin Lakes, Water Year 2004

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, D.M.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2004 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2003 through September 30, 2004 is called 'water year 2004.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2004.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  16. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2006

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, D.M.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2006 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2006 is called 'water year 2006.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2006.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available through the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  17. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    PubMed

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  18. Weakly electric fish for biomonitoring water quality.

    PubMed

    Clausen, Juergen; van Wijk, Roeland; Albrecht, Henning

    2012-06-01

    Environmental pollution is a major issue that calls for suitable monitoring systems. The number of possible pollutants of municipal and industrial water grows annually as new chemicals are developed. Technical devices for pollutant detection are constructed in a way to detect a specific and known array of pollutants. Biological systems react to lethal or non-lethal environmental changes without pre-adjustment, and a wide variety have been employed as broad-range monitors for water quality. Weakly electric fish have proven particularly useful for the purpose of biomonitoring municipal and industrial waters. The frequency of their electric organ discharges directly correlates with the quality of the surrounding water and, in this way, concentrations of toxicants down to the nanomolar range have been successfully detected by these organisms. We have reviewed the literature on biomonitoring studies to date, comparing advantages and disadvantages of this test system and summarizing the lowest concentrations of various toxicants tested. Eighteen publications were identified investigating 35 different chemical substances and using six different species of weakly electric fish.

  19. Canadian water quality guidelines. Appendix 22: Interim marine and estuarine water quality guidelines for general variables

    SciTech Connect

    1996-12-31

    This document has been prepared in response to the need for marine water quality guidelines for general water quality variables. It presents interim guidelines, summaries of existing guidelines if any, the rationale for the guidelines, and variable-specific background information, and notes gaps in data, for the following variables: Debris, including floating or submerged litter, and settleable matter; dissolved oxygen; pH; salinity; temperature; and suspended solids and turbidity. For the purpose of this document, the marine environment includes shorelines, estuaries up to the freshwater limit, and nearshore and offshore waters.

  20. Critical Comparison of Information Models used by US Water Data Collection Agencies and Projects

    NASA Astrophysics Data System (ADS)

    Valentine, D. W.; Zaslavsky, I.; Whitenack, T.

    2009-12-01

    The CUAHSI Hydrologic Information System (HIS) project has been working to simply access to repositories of hydrologic information by developing information models, and data exchange standards. We are presently working with international community through the Open GIS Consortium to create standard that uses hydrologic semantics to communicate time series. As part of the process to create a water data exchange language, we reviewed the information structures that are presently being used by several agencies to define the requirements of the data model. In the US, federal agencies, the USGS and US EPA, collect and distribute information that is utilized by scientists in the hydrologic sciences. We determined that there are two orthogonal information sets utilized; observation data, such as stream gauge and temperature data, and water quality data, such as analytical chemistry analyses. While the data values can be represented in a time series in a common manner, the process used to collect and manage the information represent separate information sets. For continuous observations an organization manages information single point location, are managed as a set of data streams from instruments that produce a set of observations that are processed into a set of public data. For analytical data, and organization collects information as part of a project, which has a set of collection locations; at each location, a set of methods is used to collect samples, which are analyzed to produce water quality information. While the details of the observations between the two information sets differ, a common set of information can be conveyed as a time series. The CUAHSI Observations Data Model (ODM), a core set of information can be represented as “data value”: variable, location, date & time, value, units, quality control level (QCL), source, and method. The ODM also included optional attributes that are associated with a data value such as qualifier, accuracy, sample medium

  1. Water Quality Standards for Coral Reef Protection | Science ...

    EPA Pesticide Factsheets

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality standards have not been effectively applied to coral reefs. The Environmental Protection Agency is promoting biocriteria and other water quality standards through collaborative development of bioassessment procedures, indicators and monitoring strategies. To support regulatory action, bioassessment indicators must be biologically meaningful, relevant to management, responsive to human disturbance, and relatively immune to natural variability. A rapid bioassessment protocol for reef-building stony corals was developed and tested for regulatory applicability. Preliminary testing in the Florida Keys found indicators had sufficient precision and provided information relevant to coral reef management. Sensitivity to human disturbance was demonstrated in the U.S. Virgin Islands for five of eight indicators tested. Once established, monitoring programs using these indicators can provide valuable, long-term records of coral condition and regulatory compliance. Development of a rapid bioassement protocol for reef-building stony corals was tested for regulatory applicability.

  2. Water quality problems in Nogales, Sonora.

    PubMed Central

    Sanchez, R A

    1995-01-01

    This article presents the results of a transboundary water quality monitoring program at the two Nogales area in the Arizona-Sonora border region. The program was carried out jointly in 1990 by U.S. and Mexican institutions. The results show pollution problems due to deficiencies in Nogales, Sonora municipal sewerage system, causing not only sewage spills in several parts of the city but also creating occasional transboundary problems. The results also showed potential illegal dumping of industrial hazardous waste (VOCs) into Nogales' municipal sewerage system. All of the organic compounds found in the sewage samples are solvents frequently used by the border industry. Occasional brakes of pipes spill the pollutants into the Nogales Wash, a water stream that runs parallel to Nogales' main sewerage line. Samples of the municipal water system showed no traces of pollutants. However, two rounds of samples detected concentrations of VOCs in wells used to supply water by trucks to low income neighborhoods in Nogales, Sonora. Ironically, the pollution detected in these wells has a greater impact in low income groups of the city that pay three to four times more per liter of water they consume, than the rest of the inhabitants with clean water from the municipal system. PMID:7621811

  3. Lessons learned using water quality models to develop numeric nutrient criteria for a Gulf coast estuary

    EPA Science Inventory

    Pensacola Bay is a shallow, mesotrophic estuary located in the north-central coast of the Gulf of Mexico, US. In November 2012, the US Environmental Protection Agency (US EPA) proposed numeric total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (chl-a) water quality cr...

  4. Action for Environmental Quality. Standards and Enforcement for Air and Water Pollution Control.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The U.S. Environmental Protection Agency (EPA) is responsible for setting and enforcing environmental quality standards for the nation. With the Clean Air Act of 1970 (P.L. 91-604) and the Water Pollution Control Act of 1972 (P.L. 92-500), the first truly nationwide control programs were established. This booklet is designed to inform the public…

  5. U.S. Geological Survey Federal-State Program (water quality)

    USGS Publications Warehouse

    Buchanan, T.J.; Gilbert, B.K.

    1982-01-01

    The program is a partnership between the Geological Survey and State and local agencies for the collection of the hydrologic information needed for the continuing determination and evaluation of the quantity, quality, and use of the nation's water resources. A number of typical examples of projects within the program are presented. -from ASCE Publications Abstracts

  6. Hydrogeologic and water-quality characteristics of the Prairie du Chien-Jordan aquifer, Southeast Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.; Wolf, R.J.; Adolphson, D.G.

    1983-01-01

    This report is one of a series on the hydrogeology and water quality of the 14 principal aquifers in Minnesota prepared by the U. S. Geological Survey. The U. S. Environmental Protection Agency requested these studies because of the need for information to develop its Underground Injection Control Program.

  7. SIMPLE EMPIRICAL RISK RELATIONSHIPS BETWEEN FISH ASSEMBLAGES, HABITAT AND WATER QUALITY IN OHIO

    EPA Science Inventory

    To assess the condition of its streams, fish, habitat and water quality data were collected from 1980 to 1998 by the Ohio Environmental Protection Agency. These data were sorted into 190 time/locations by basin, river mile and year. Eighteen fish community variables and 24 habi...

  8. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    SciTech Connect

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  9. ORD Water Quality Research Program Mid-Cycle Review - June 2009

    EPA Pesticide Factsheets

    The Board of Scientific Counselors (BOSC) completed a mid-cycle review of the Office of Research and Development’s (ORD) Water Quality Research Program (WQRP), focusing on Agency efforts to enhance the program following the 2006 BOSC program review.

  10. Oversight Review: Quality Control Review of Army Audit Agency’s Special Access Program Audits

    DTIC Science & Technology

    2005-08-25

    external peer review at least once every three years by reviewers independent of the audit organization being reviewed. As the organization that has audit...policy and oversight responsibilities for audits in the DoD, we conducted this external peer review of the AAA SAP audits in conjunction with the Air...Force Audit Agency (AFAA) external peer review of AAA non-SAP audits. An audit organization’s quality control policies and procedures should be

  11. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  12. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  13. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  14. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  15. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by...

  16. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  17. Water Quality on the Island of Oahu, Hawaii, 1999-2001

    USGS Publications Warehouse

    Anthony, Stephen S.; Hunt, Charles D.; Brasher, Anne M.D.; Miller, Lisa D.; Tomlinson, Michael S.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality on the island of Oahu, Hawaii. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions on Oahu summarized in this report are discussed in detail in other reports that can be accessed from (http://hi.water.usgs.gov/nawqa). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  18. Water Quality in the Cook Inlet Basin Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Brabets, Timothy P.; Frenzel, Steven A.; Whitman, Matthew S.; Ourso, Robert T.

    2004-01-01

    This report contains the major findings of a 1998?2001 assessment of water quality in the Cook Inlet Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Cook Inlet Basin summarized in this report are discussed in detail in other reports that can be accessed at http://ak.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  19. Water quality in the Yellowstone River Basin, Wyoming, Montana, and North Dakota, 1999-2001

    USGS Publications Warehouse

    Peterson, David A.; Bartos, Timothy T.; Clark, Melanie L.; Miller, Kirk A.; Porter, Stephen D.; Quinn, Thomas L.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Yellowstone River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Yellowstone River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://wy.water.usgs.gov/YELL/index.htm. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  20. Water quality in the Northern Rockies Intermontane basins, Idaho, Montana, and Washington, 1999-2001

    USGS Publications Warehouse

    Clark, Gregory M.; Caldwell, Rodney R.; Maret, Terry R.; Bowers, Craig L.; Dutton, DeAnn M.; Becksmith, Michael A.

    2003-01-01

    This report contains the major findings of a 1999–2001 assessment of water quality in the Northern Rockies Intermontane Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Northern Rockies Intermontane Basins summarized in this report are discussed in detail in other reports that can be accessed from (http://id.water.usgs.gov/nrok/index.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  1. Water quality in the Great and Little Miami River Basins, Ohio and Indiana, 1999-2001

    USGS Publications Warehouse

    Rowe, Gary L.; Reutter, David C.; Runkle, Donna L.; Hambrook, Julie A.; Janosy, Stephanie D.; Hwang, Lee H.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Great and Little Miami River Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Great and Little Miami River Basins summarized in this report are discussed in detail in other reports that can be accessed from (http://oh.water.usgs.gov/miam/intro.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  2. Water Quality in the Upper Illinois River Basin Illinois, Indiana, and Wisconsin, 1999-2001

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Harris, Mitchell A.; Dupre, David H.; Fitzpatrick, Faith A.; Scudder, Barbara C.; Morrow, William S.; Terrio, Paul J.; Warner, Kelly L.; Murphy, Elizabeth A.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the upper Illinois River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public-interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the upper Illinois River Basin summarized in this report are discussed in detail in other reports that can be accessed from (http://il.water.usgs.gov/nawqa/uirb). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site at (http://water.usgs.gov/nawqa).

  3. Water quality in the Mobile River Basin, Alabama, Georgia, and Mississippi, and Tennessee, 1999-2001

    USGS Publications Warehouse

    Atkins, J. Brian; Zappia, Humbert; Robinson, James L.; McPherson, Ann K.; Moreland, Richard S.; Harned, Douglas A.; Johnston, Brett F.; Harvill, John S.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Mobile River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Mobile River Basin summarized in this report are discussed in detail in other reports that can be accessed from the Mobile River Basin Web site (http://al.water.usgs.gov/pubs/mobl/mobl.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  4. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  5. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  6. MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS

    EPA Science Inventory

    EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...

  7. Barriers to adopting satellite remote sensing for water quality management

    EPA Science Inventory

    Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...

  8. Developing Water Quality Criteria for Suspended and Bedded Sediments (SABs)

    EPA Pesticide Factsheets

    This paper provides an introduction to SABS and water quality criteria and discusses the types and status of water quality criteria that have been or are currently being used by the States, Canada and elsewhere.

  9. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  10. 75 FR 43160 - Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This...

  11. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  12. Ground-water availability and water quality, Farmington, Connecticut

    USGS Publications Warehouse

    Mazzaferro, David L.

    1980-01-01

    The strataified-drift aquifer in Farmington, Conn., is capable of yielding large amounts of water to individual wells. About 14 square miles of Farmington is underlain by stratified-drift deposits which, in places, are more than 450 feet thick. The most productive deposits are found in the Farmington River valley, from Unionville to River Glen, and along Scott Swamp Brook. In these areas, saturated, coarse-grained, stratified-drift deosits exceed 80 feet in thickness and estimated yields to individual wells ranged from 250 to 1,000 gallons per minute. Results of mathematical model analysis of three of the most favorable ground-water areas indicate that long-term yields range from 1.2 to 2.5 million gallons per day. Water in the Framington and Pequabuck Rivers meets the Connecticut Drinking Water Standards, assuming complete conventional treatment, for coliform orgaisms, color, trubidity, chloride, copper, and nitrate. Coliform bacteria concentrations in the Pequabuck river (12-month geometric mean of about 6,800 colonies per 100 milliliters of water) indicate a potential problem. Water in the stratified-drift aquifer is of good quality with the exception of manganese; 10 of 11 wells sampled had maganese concentrations above 0.05 milligram per liter. (USGS)

  13. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  14. The Spokane aquifer, Washington: its geologic origin and water-bearing and water-quality characteristics

    USGS Publications Warehouse

    Molenaar, Dee

    1988-01-01

    The Spokane aquifer is an unconfined aquifer consisting of coarse sand, gravel, cobbles, and boulders deposited during several catastrophic glacial outburst floods--known as the Spokane Floods---of Pleistocene time. The aquifer is one of the most productive in the United States, and, as the only significant source of good-quality water supply in the Spokane Valley, it has been designated as a 'Sole Source Aquifer' by the U.S. Environmental Protection Agency. The Spokane aquifer underlies an area of about 135 square miles in the Spokane Valley and varies in saturated thickness from a few feet to 500 feet or more. The aquifer is recharged by ground-water underflow from the Rathdrum Prairie aquifer in Idaho on the east, by ground-water underflow and surface-water seepage from small drainage areas along the Spokane Valley margins, and by percolation from various sources--from rainfall and snowmelt, from some reaches of the Spokane and Little Spokane Rivers, and from septic-tank drain fields, cesspools, and irrigation water. Discharge from the aquifer occurs by ground-water underflow from the lowermost end of the valley, by leakage to the Spokane and the Little Spokane Rivers, by evapotranspiration, and by ground-water withdrawal by pumping. The transmissivity of the aquifer ranges from less than 0.05 to 70 feet squared per second, and its specific yield ranges from less than 5 to 20 percent of the aquifer volume. Seasonal water-level fluctuations in wells tapping the aquifer are generally less than 10 feet. The annual pumpage from the aquifer in 1977 was about 164,000 acre-feet, of which about 70 percent was for municipal supplies, which included some industrial and commercial supplies. Land use over the aquifer includes predominantly agricultural activities in the eastern one-third of the valley and urban and residential developments in most of the remaining area. Potential sources of contamination of the aquifer include percolation from cesspools, septic-tank drain

  15. Reading Water Quality Variables with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules; Minkman, Ellen

    2015-04-01

    Many relevant water quality variables can be measured cost-effectively with standard indicator strips. These are local measurements, although usually done within a larger water network. Only if these measurements can be made available in a central database, the entire network can benefit from the extra data point. This requires an analog data source to be converted to a digital data point. A tool that is equipped to do that and also communicate the value to a central system, is a smartphone. A water quality monitoring method is introduced that requires standard indicator strips attached to a reference card and an app with which a picture can be taken from this card. The color or other indication is automatically read with dedicated pattern recognition algorithms and, by using the gps-localization of the smartphone, is stored in the right location in the central database. The method is low-cost and very user-friendly, which makes it suitable for crowd sourcing.

  16. Ground-water-quality assessment of the Carson River basin, Nevada and California; analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Welch, A.H.; Plume, R.W.; Frick, E.A.; Hughes, J.L.

    1989-01-01

    Data on groundwater quality, hydrogeology, and land and water use for the Carson River basin, Nevada and California were analyzed as part of the U. S. Geological Survey National Water-Quality Assessment program. The basin consists of six hydrographic areas--a mountainous headwaters area and five downstream areas interconnected by the Carson River. Each valley contains one or more basin-fill aquifers. The data on groundwater quality came from several agencies and were screened to verify site location and to avoid analyses of treated water. The screened data are stored in the U. S. Geological Survey National Water Information System data base. Differences in sample-collection and preservation procedures among some of the data-collection agencies restrict use of the data to a descriptive analysis. Drinking water standards were employed as the basis for evaluating reported concentrations. Frequencies with which primary or secondary standards are exceeded increase from upstream parts of the basin to downstream parts. Primary standards commonly exceeded are fluoride in upstream areas and arsenic and fluoride in downstream areas. Secondary standards commonly exceeded are iron and manganese in upstream areas and chloride, dissolved solids, iron, manganese, and sulfate in downstream areas. The poorer-quality groundwater generally is a result of natural geochemical reactions, rather than the introduction of chemicals by man. Limited data indicate, however , that manmade organic compounds are present, mostly at or near urban land. (USGS)

  17. Participation in Performance-Evaluation Studies by U.S. Geological Survey National Water Quality Laboratory

    USGS Publications Warehouse

    Glodt, Stephen R.; Pirkey, Kimberly D.

    1998-01-01

    Performance-evaluation studies provide customers of the U.S. Geological Survey National Water Quality Laboratory (NWQL) with data needed to evaluate performance and to compare of select laboratories for analytical work. The NWQL participates in national and international performance-evaluation (PE) studies that consist of samples of water, sediment, and aquatic biological materials for the analysis of inorganic constituents, organic compounds, and radionuclides. This Fact Sheet provides a summary of PE study results from January 1993 through April 1997. It should be of particular interest to USGS customers and potential customers of the NWQL, water-quality specialists, cooperators, and agencies of the Federal Government.

  18. A Water Quality Monitoring Programme for Schools and Communities

    ERIC Educational Resources Information Center

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  19. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  20. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management...

  1. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management...

  2. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management...

  3. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  4. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  5. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator...

  6. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  7. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  8. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  9. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan...

  10. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to:...

  11. Hydrogeologic and Ground-Water-Quality Data for Belvidere, Illinois, and Vicinity, 2001-02

    USGS Publications Warehouse

    Mills, P.C.; Kay, R.T.

    2003-01-01

    This report presents miscellaneous geologic, hydrologic, and ground-water-quality data collected in and near Belvidere, Ill. during May 2001-November 2002. The data were collected for two studies conducted by the U.S. Geological Survey during 1990-2002, but subsequent to publication of the final interpretive reports for the studies. The cooperative studies with the U.S. Environmental Protection Agency and Illinois Environmental Protection Agency evaluated the hydrogeology, ground-water-flow system, and distribution of contaminants in the glacial drift and bedrock (primarily Galena-Platteville) aquifers underlying the vicinity of Belvidere, including the Parson?s Casket Hardware Superfund site. Data presented in the report include lithologic descriptions, geophysical logs, water levels, hydraulic characteristics, field-measured characteristics of water quality, and laboratory analyses of volatile organic compounds, major ions, trace elements, nutrients, and herbicides.

  12. Bathymetric mapping, sediment quality, and water quality of Lake Delhi, Iowa, 2001-02

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; McVay, Jason C.; Barnes, Kymm K.; Becher, Kent D.

    2003-01-01

    Water-quality sampling results indicate areas affected by elevated nutrient and bacteria concentrations in the lake and tributary streams. The tributary streams had the highest median nitrate concentrations (12.1 milligrams per liter) when compared to median nitrate concentrations in the lake (8.7 milligrams per liter) or the Maquoketa River (10.5 milligrams per liter). The maximum nitrate concentrations detected for Maquoketa River, lake, and tributary sites were 13.5, 13.5, and 18.6 milligrams per liter, respectively. Nitrate concentrations in the late summer decreased from 2 Bathymetric Mapping, Sediment Quality, and Water Quality of Lake Delhi, Iowa, 2001–02 the upstream (7.8 milligrams per liter) to the downstream (5.0 milligrams per liter) one-third of Lake Delhi and most likely were the result of uptake of nitrate by algae and aquatic biota in the lake. Median concentrations of total coliform and E. coli bacteria for the lake sites were 450 and 17 colonies per 100 milliliters of sample, respectively. The U.S. Environmental Protection Agency criteria for full body contact (swimming or bathing) are 200 colonies per 100 milliliters for fecal bacteria and 126 colonies per 100 milliliters for E. coli bacteria. The highest bacteria concentrations in the lake occurred after a rain and were 25,000 colonies per 100 milliliters total coliform and 1,900 colonies per 100 milliliters E. coli.

  13. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  14. Lake water quality mapping from Landsat

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    In the project described remote sensing was used to check the quality of lake waters. The lakes of three Landsat scenes were mapped with the Bendix MDAS multispectral analysis system. From the MDAS color coded maps, the lake with the worst algae problem was easily located. The lake was closely checked, and the presence of 100 cows in the springs which fed the lake could be identified as the pollution source. The laboratory and field work involved in the lake classification project is described.

  15. Pennypack Creek-Water Quality Study.

    DTIC Science & Technology

    1979-11-01

    8 Light Industry 9 Heavy Industry 10 Transportation 11 Comunication and Utility 12 Comercial, high value 13 Comercial, low value 14 Community Services...would be used to simulate water quality in the stream network . That is, the land surface runoff from the runoff module would be input to the receiving...high value 15 Comunity Services, low value 16 Military 17 Recreation and Cultural 12 upIM 4 ww 9LL z 00 p9. a IL) U) MOU) w -it~ laa Ic- z a- IL- 1

  16. Recreational water quality in the Caspian Sea.

    PubMed

    Pond, Katherine R; Cronin, Aidan A; Pedley, Steve

    2005-06-01

    Health-based monitoring of the Caspian Sea in Turkmenistan and Iran suggests that bathers are intermittently subject to increased levels of faecal pollution which may lead to gastrointestinal illness. This is the first co-ordinated monitoring programme of recreational waters in the Caspian region and highlights the need to extend such a programme to all countries bordering the Caspian Sea. The novel approach of monitoring that combines risk assessment (water quality monitoring plus a sanitary survey) and risk management, as applied here, allows the identification of possible sources of pollution and the levels of microbiological risk that bathers are subject to. Hence, this allows suitable management interventions to be identified and implemented in the long-term.

  17. Water quality management library. 2. edition

    SciTech Connect

    Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.

    1998-12-31

    A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes for the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.

  18. Chemical quality of ground water on Cape Cod, Massachusetts

    USGS Publications Warehouse

    Frimpter, M.H.; Gay, F.B.

    1979-01-01

    Cape Cod is a 440 square mile hook-shaped peninsula which extends 40 miles into the Atlantic. Freshwater in Pleistocene sand and gravel deposits is the source of supply for nearly 100 municipal and thousands of private domestic wells. Most ground water on Cape Cod is of good chemical quality for drinking and other uses. It is characteristically low in dissolved solids and is soft. In 90 percent of the samples analyzed, dissolved solids were less than 100 mg/l (milligrams per liter) and pH was less than 7.0. Highway deicing salt, sea-water flooding due to storms , and saltwater intrusion due to ground-water withdrawal are sources of sodium chloride contamination. Chloride concentrations have increased from 20 to 140 mg/l, owing to saltwater intrusion at Provincetown 's wells in Truro. In Yarmouth, contaminated ground water near a salt-storage area contained as much as 1,800 mg/l chloride. Heavy metals, insecticides, and herbicides were not found at concentrations above the U.S. Environmental Protection Agency 's recommended limits for public drinking-water supplies, but iron and manganese in some samples exceeded those limits. Ninety percent of 84 samples analyzed for nitrate reported as nitrogen contained less than 1.3 mg/l and 80 percent contained 0.5 mg/l or less of nitrate as nitrogen. Water containing nitrogen in excess of 0.5 mg/l has probably been affected by municipal or domestic sewage or fertilizer, and water with less than this amount may have been affected by them. (Woodard-USGS)

  19. Water quality in drinking water reservoirs of a megacity, istanbul.

    PubMed

    Baykal, B B; Tanik, A; Gonenc, I E

    2000-12-01

    Providing clean water at relevant quality and quantity is a challenge that regulatory authorities have to face in metropolitan cities that seem to develop at their limits of sustainability. Istanbul strives to face such a challenge for its population of over 10 million, through six surface water resources. Two approaches of classification for the reservoirs are presented, one based on current regulations and an alternative based on a more detailed classification. The results have shown that nutrient control is the primary issue, and one of the reservoirs has already exceeded the limits of being eutrophic, one is at mesotrophic conditions, and the remaining four are at the limit of being eutrophic, indicating the significance of making the correct decision and taking pertinent measures for management and control. It has been observed that the only mesotrophic resource, which also has the best general quality class, has no industry and a very low population density, whereas the one that is already eutrophic is also the one with the lowest quality class, has the highest population density, and has the greatest percentage of urban land use within its watershed.

  20. Health-based screening levels to evaluate U.S. Geological Survey ground water quality data

    USGS Publications Warehouse

    Toccalino, P.L.; Norman, J.E.

    2006-01-01

    Federal and state drinking-water standards and guidelines do not exist for many contaminants analyzed by the U.S. Geological Survey's National Water-Quality Assessment Program, limiting the ability to evaluate the potential human-health relevance of water-quality findings. Health-based screening levels (HBSLs) were developed collaboratively to supplement existing drinking-water standards and guidelines as part of a six-year, multi-agency pilot study. The pilot study focused on ground water samples collected prior to treatment or blending in areas of New Jersey where groundwater is the principal source of drinking water. This article describes how HBSLs were developed and demonstrates the use of HBSLs as a tool for evaluating water-quality data in a human-health context. HBSLs were calculated using standard U.S. Environmental Protection Agency (USEPA) methodologies and toxicity information. New HBSLs were calculated for 12 of 32 contaminants without existing USEPA drinking-water standards or guidelines, increasing the number of unregulated contaminants (those without maximum contaminant levels (MCLs)) with human-health benchmarks. Concentrations of 70 of the 78 detected contaminants with human-health benchmarks were less than MCLs or HBSLs, including all 12 contaminants with new HBSLs, suggesting that most contaminant concentrations were not of potential human-health concern. HBSLs were applied to a state-scale groundwater data set in this study, but HBSLs also may be applied to regional and national evaluations of water-quality data. HBSLs fulfill a critical need for federal, state, and local agencies, water utilities, and others who seek tools for evaluating the occurrence of contaminants without drinking-water standards or guidelines. ?? 2006 Society for Risk Analysis.