Sample records for agent based classification

  1. Patterns of Use of an Agent-Based Model and a System Dynamics Model: The Application of Patterns of Use and the Impacts on Learning Outcomes

    ERIC Educational Resources Information Center

    Thompson, Kate; Reimann, Peter

    2010-01-01

    A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…

  2. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  3. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  4. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223

  5. Multi-Agent Information Classification Using Dynamic Acquaintance Lists.

    ERIC Educational Resources Information Center

    Mukhopadhyay, Snehasis; Peng, Shengquan; Raje, Rajeev; Palakal, Mathew; Mostafa, Javed

    2003-01-01

    Discussion of automated information services focuses on information classification and collaborative agents, i.e. intelligent computer programs. Highlights include multi-agent systems; distributed artificial intelligence; thesauri; document representation and classification; agent modeling; acquaintances, or remote agents discovered through…

  6. Agent Persuasion Mechanism of Acquaintance

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    Agent persuasion can improve negotiation efficiency in dynamic environment based on its initiative and autonomy, and etc., which is being affected much more by acquaintance. Classification of acquaintance on agent persuasion is illustrated, and the agent persuasion model of acquaintance is also illustrated. Then the concept of agent persuasion degree of acquaintance is given. Finally, relative interactive mechanism is elaborated.

  7. Argumentation Based Joint Learning: A Novel Ensemble Learning Approach

    PubMed Central

    Xu, Junyi; Yao, Li; Li, Le

    2015-01-01

    Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359

  8. Using an object-based grid system to evaluate a newly developed EP approach to formulate SVMs as applied to the classification of organophosphate nerve agents

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun

    2004-04-01

    This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.

  9. Intelligent Interoperable Agent Toolkit (I2AT)

    DTIC Science & Technology

    2005-02-01

    Agents, Agent Infrastructure, Intelligent Agents 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY ...CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED 20. LIMITATION OF ABSTRACT UL NSN 7540-01...those that occur while the submarine is submerged. Using CoABS Grid/Jini service discovery events backed up with a small amount of internal bookkeeping

  10. 75 FR 7548 - Amendments to the Select Agents Controls in Export Control Classification Number (ECCN) 1C360 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ...-91434-01] RIN 0694-AE67 Amendments to the Select Agents Controls in Export Control Classification Number... controls on certain select agents identified in Export Control Classification Number (ECCN) 1C360 on the...) list of select agents and toxins. The changes made by APHIS were part of a biennial review and...

  11. A Multiagent-based Intrusion Detection System with the Support of Multi-Class Supervised Classification

    NASA Astrophysics Data System (ADS)

    Shyu, Mei-Ling; Sainani, Varsha

    The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.

  12. Adenosine monophosphate-activated protein kinase-based classification of diabetes pharmacotherapy

    PubMed Central

    Dutta, D; Kalra, S; Sharma, M

    2017-01-01

    The current classification of both diabetes and antidiabetes medication is complex, preventing a treating physician from choosing the most appropriate treatment for an individual patient, sometimes resulting in patient-drug mismatch. We propose a novel, simple systematic classification of drugs, based on their effect on adenosine monophosphate-activated protein kinase (AMPK). AMPK is the master regular of energy metabolism, an energy sensor, activated when cellular energy levels are low, resulting in activation of catabolic process, and inactivation of anabolic process, having a beneficial effect on glycemia in diabetes. This listing of drugs makes it easier for students and practitioners to analyze drug profiles and match them with patient requirements. It also facilitates choice of rational combinations, with complementary modes of action. Drugs are classified as stimulators, inhibitors, mixed action, possible action, and no action on AMPK activity. Metformin and glitazones are pure stimulators of AMPK. Incretin-based therapies have a mixed action on AMPK. Sulfonylureas either inhibit AMPK or have no effect on AMPK. Glycemic efficacy of alpha-glucosidase inhibitors, sodium glucose co-transporter-2 inhibitor, colesevelam, and bromocriptine may also involve AMPK activation, which warrants further evaluation. Berberine, salicylates, and resveratrol are newer promising agents in the management of diabetes, having well-documented evidence of AMPK stimulation medicated glycemic efficacy. Hence, AMPK-based classification of antidiabetes medications provides a holistic unifying understanding of pharmacotherapy in diabetes. This classification is flexible with a scope for inclusion of promising agents of future. PMID:27652986

  13. MURI: Optimal Quantum Dynamic Discrimination of Chemical and Biological Agents

    DTIC Science & Technology

    2008-06-12

    multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve statistics to laser-based mass...Adaptive reshaping of objects in (multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve...Doctoral Associate Muhannad Zamari, Graduate Student Ilya Greenberg , Computer Consultant Getahun Menkir, Graduate Student Lalinda Palliyaguru, Graduate

  14. [Research on the marketing status of antimicrobial products and the use of antimicrobial agents indicated on product labels from 1991 through 2005].

    PubMed

    Nakashima, Harunobu; Miyano, Naoko; Matsunaga, Ichiro; Nakashima, Naomi; Kaniwa, Masa-aki

    2007-05-01

    To clarify the marketing status of antimicrobial products, descriptions on the labels of commercially available antimicrobial products were investigated from 1991 through 2005, and the results were analyzed using a database system on antimicrobial deodorant agents. A classification table of household antimicrobial products was prepared and revised, based on which target products were reviewed for any changes in the product type. The number of antimicrobial products markedly increased over 3 years starting from 1996, among which there were many products apparently not requiring antimicrobial processing. More recently, in the 2002 and 2004 surveys, while sales of kitchenware and daily necessities decreased, chemical products, baby articles, and articles for pets increased; this poses new problems. To clarify the use of antimicrobial agents in the target products, a 3-step (large, intermediate, small) classification table of antimicrobial agents was also prepared, based on which antimicrobial agents indicated on the product labels were checked. The rate of identifying the agents increased. However, this is because of the increase of chemical products and baby articles, both of which more frequently indicated the ingredient agents on the labels, and the decrease of kitchenware and daily necessities, which less frequently indicated them on the labels. Therefore there has been little change in the actual identification rate. The agents used are characterized by product types: quaternary ammonium salts, metal salts, and organic antimicrobials are commonly used in textiles, plastics, and chemical products, respectively. Since the use of natural organic agents has recently increased, the safety of these agents should be evaluated.

  15. Micro-bias and macro-performance.

    PubMed

    Seaver, S M D; Moreira, A A; Sales-Pardo, M; Malmgren, R D; Diermeier, D; Amaral, L A N

    2009-02-01

    We use agent-based modeling to investigate the effect of conservatism and partisanship on the efficiency with which large populations solve the density classification task - a paradigmatic problem for information aggregation and consensus building. We find that conservative agents enhance the populations' ability to efficiently solve the density classification task despite large levels of noise in the system. In contrast, we find that the presence of even a small fraction of partisans holding the minority position will result in deadlock or a consensus on an incorrect answer. Our results provide a possible explanation for the emergence of conservatism and suggest that even low levels of partisanship can lead to significant social costs.

  16. Towards Cooperative Predictive Data Mining in Competitive Environments

    NASA Astrophysics Data System (ADS)

    Lisý, Viliam; Jakob, Michal; Benda, Petr; Urban, Štěpán; Pěchouček, Michal

    We study the problem of predictive data mining in a competitive multi-agent setting, in which each agent is assumed to have some partial knowledge required for correctly classifying a set of unlabelled examples. The agents are self-interested and therefore need to reason about the trade-offs between increasing their classification accuracy by collaborating with other agents and disclosing their private classification knowledge to other agents through such collaboration. We analyze the problem and propose a set of components which can enable cooperation in this otherwise competitive task. These components include measures for quantifying private knowledge disclosure, data-mining models suitable for multi-agent predictive data mining, and a set of strategies by which agents can improve their classification accuracy through collaboration. The overall framework and its individual components are validated on a synthetic experimental domain.

  17. Functional Information: Towards Synthesis of Biosemiotics and Cybernetics

    PubMed Central

    Sharov, Alexei A.

    2012-01-01

    Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt). PMID:22368439

  18. Functional Information: Towards Synthesis of Biosemiotics and Cybernetics.

    PubMed

    Sharov, Alexei A

    2010-04-27

    Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt).

  19. Material quality assessment of silk nanofibers based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.

  20. Towards a framework for agent-based image analysis of remote-sensing data

    PubMed Central

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-01-01

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916

  1. Towards a framework for agent-based image analysis of remote-sensing data.

    PubMed

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  2. Is it time for brushless scrubbing with an alcohol-based agent?

    PubMed

    Gruendemann, B J; Bjerke, N B

    2001-12-01

    The practice of surgical scrubbing in perioperative settings is changing rapidly. This article presents information about eliminating the traditional scrub brush technique and using an alcohol formulation for surgical hand scrubs. Also covered are antimicrobial agents, relevant US Food and Drug Administration classifications, skin and fingernail care, and implementation of changes. The article challenges surgical team members to evaluate a new and different approach to surgical hand scrubbing.

  3. Integration of multi-array sensors and support vector machines for the detection and classification of organophosphate nerve agents

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Sadik, Omowunmi A.; Embrechts, Mark J.; Leibensperger, Dale; Wong, Lut; Wanekaya, Adam; Uematsu, Michiko

    2003-08-01

    Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. Furthermore, recent events have highlighted awareness that chemical and biological agents (CBAs) may become the preferred, cheap alternative WMD, because these agents can effectively attack large populations while leaving infrastructures intact. Despite the availability of numerous sensing devices, intelligent hybrid sensors that can detect and degrade CBAs are virtually nonexistent. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using parathion and dichlorvos as model stimulants compounds. SVMs were used for the design and evaluation of new and more accurate data extraction, preprocessing and classification. Experimental results for the paradigms developed using Structural Risk Minimization, show a significant increase in classification accuracy when compared to the existing AromaScan baseline system. Specifically, the results of this research has demonstrated that, for the Parathion versus Dichlorvos pair, when compared to the AromaScan baseline system: (1) a 23% improvement in the overall ROC Az index using the S2000 kernel, with similar improvements with the Gaussian and polynomial (of degree 2) kernels, (2) a significant 173% improvement in specificity with the S2000 kernel. This means that the number of false negative errors were reduced by 173%, while making no false positive errors, when compared to the AromaScan base line performance. (3) The Gaussian and polynomial kernels demonstrated similar specificity at 100% sensitivity. All SVM classifiers provided essentially perfect classification performance for the Dichlorvos versus Trichlorfon pair. For the most difficult classification task, the Parathion versus Paraoxon pair, the following results were achieved (using the three SVM kernels: (1) ROC Az indices from approximately 93% to greater than 99%, (2) partial Az values from ~79% to 93%, (3) specificities from 76% to ~84% at 100 and 98% sensitivity, and (4) PPVs from 73% to ~84% at 100% and 98% sensitivities. These are excellent results, considering only one atom differentiates these nerve agents.

  4. Online Learning for Classification of Alzheimer Disease based on Cortical Thickness and Hippocampal Shape Analysis.

    PubMed

    Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung

    2014-01-01

    Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.

  5. Method and apparatus for enhanced detection of toxic agents

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong

    2013-10-01

    A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.

  6. Intelligent agent-based intrusion detection system using enhanced multiclass SVM.

    PubMed

    Ganapathy, S; Yogesh, P; Kannan, A

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.

  7. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    PubMed Central

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  8. Summary of the NICHD-BPCA Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System (PBCS) Working Group

    PubMed Central

    Abdel-Rahman, Susan; Amidon, Gordon L.; Kaul, Ajay; Lukacova, Viera; Vinks, Alexander A.; Knipp, Gregory

    2012-01-01

    The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community as an enabling guide for the rational selection of compounds, formulation for clinical advancement and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) working group was convened to consider the possibility of developing an analogous pediatric based classification system. Since there are distinct developmental differences that can alter intestinal contents, volumes, permeability and potentially biorelevant solubilities at the different ages, the PBCS working group focused on identifying age specific issues that would need to be considered in establishing a flexible, yet rigorous PBCS. Objective To summarize the findings of the PBCS working group and provide insights into considerations required for the development of a pediatric based biopharmaceutics classification system. Methods Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development (NICHD)-US Pediatric Formulation Initiative (PFI) workshop (November 2011) and via teleconferences, the PBCS working group considered several high level questions that were raised to frame the classification system. In addition, the PBCS working group identified a number of knowledge gaps that would need to be addressed in order to develop a rigorous PBCS. Results It was determined that for a PBCS to be truly meaningful, it would need to be broken down into several different age groups that would account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal transit. Several critical knowledge gaps where identified including: 1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the gastrointestinal (GI) tract, in the liver and in the kidney; 2) an incomplete understanding of age-based changes in the GI, liver and kidney physiology; 3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; 4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and 5) a lack of literature published in age-based pediatric pharmacokinetics in order to build Physiologically- and Population-Based Pharmacokinetic (PBPK) databases. Conclusions To begin the process of establishing a PBPK model, ten pediatric therapeutic agents were selected (based on their adult BCS classifications). Those agents should be targeted for additional research in the future. The PBCS working group also identified several areas where a greater emphasis on research is needed to enable the development of a PBCS. PMID:23149009

  9. Assessing the Effectiveness of Cumulative Sum Normal- and Poisson-Based Tests for Detecting Rare Diseases

    DTIC Science & Technology

    2010-12-01

    The Francisella tularensis is one of these and is the causal agent of the tularemia disease. Tularemia is used as the motivating problem to evaluate...PAGES 79 14. SUBJECT TERMS Biosurveillance, Rare Disease, Tularemia , Cumulative Sum, CUSUM 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...is one of these, and is the causal agent of the tularemia disease. Tularemia is used as the motivating problem to evaluate and compare the

  10. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  11. Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture.

    PubMed

    Kloepper, Jennifer Elisabeth; Sugawara, Koji; Al-Nuaimi, Yusur; Gáspár, Erzsébet; van Beek, Nina; Paus, Ralf

    2010-03-01

    The organ culture of human scalp hair follicles (HFs) is the best currently available assay for hair research in the human system. In order to determine the hair growth-modulatory effects of agents in this assay, one critical read-out parameter is the assessment of whether the test agent has prolonged anagen duration or induced catagen in vitro. However, objective criteria to distinguish between anagen VI HFs and early catagen in human HF organ culture, two hair cycle stages with a deceptively similar morphology, remain to be established. Here, we develop, document and test an objective classification system that allows to distinguish between anagen VI and early catagen in organ-cultured human HFs, using both qualitative and quantitative parameters that can be generated by light microscopy or immunofluorescence. Seven qualitative classification criteria are defined that are based on assessing the morphology of the hair matrix, the dermal papilla and the distribution of pigmentary markers (melanin, gp100). These are complemented by ten quantitative parameters. We have tested this classification system by employing the clinically used topical hair growth inhibitor, eflornithine, and show that eflornithine indeed produces the expected premature catagen induction, as identified by the novel classification criteria reported here. Therefore, this classification system offers a standardized, objective and reproducible new experimental method to reliably distinguish between human anagen VI and early catagen HFs in organ culture.

  12. Evaluation of new antiemetic agents and definition of antineoplastic agent emetogenicity--an update.

    PubMed

    Grunberg, Steven M; Osoba, David; Hesketh, Paul J; Gralla, Richard J; Borjeson, Sussanne; Rapoport, Bernardo L; du Bois, Andreas; Tonato, Maurizio

    2005-02-01

    Development of effective antiemetic therapy depends upon an understanding of both the antiemetic agents and the emetogenic challenges these agents are designed to address. New potential antiemetic agents should be studied in an orderly manner, proceeding from phase I to phase II open-label trials and then to randomized double-blind phase III trials comparing new agents and regimens to best standard therapy. Use of placebos in place of antiemetic therapy against highly or moderately emetogenic chemotherapy is unacceptable. Nausea and vomiting should be evaluated separately and for both the acute and delayed periods. Defining the emetogenicity of new antineoplastic agents is a challenge, since such data are often not reliably recorded during early drug development. A four-level classification system is proposed for emetogenicity of intravenous antineoplastic agents. A separate four-level classification system for emetogenicity of oral antineoplastic agents, which are often given over an extended period of time, is also proposed.

  13. Hazard Classification of Household Chemical Products in Korea according to the Globally Harmonized System of Classification and labeling of Chemicals.

    PubMed

    Kim, Kyung-Hee; Song, Dae-Jong; Yu, Myeong-Hyun; Park, Yuon-Shin; Noh, Hye-Ran; Kim, Hae-Joon; Choi, Jae-Wook

    2013-07-16

    This study was conducted to review the validity of the need for the application of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) to household chemical products in Korea. The study also aimed to assess the severity of health and environmental hazards of household chemical products using the GHS. 135 products were classified as 'cleaning agents and polishing agents' and 98 products were classified as 'bleaches, disinfectants, and germicides.' The current status of carcinogenic classification of GHS and carcinogenicity was examined for 272 chemical substances contained in household chemical products by selecting the top 11 products for each of the product categories. In addition, the degree of toxicity was assessed through analysis of whether the standard of the Republic of Korea's regulations on household chemical products had been exceeded or not. According to GHS health and environmental hazards, "acute toxicity (oral)" was found to be the highest for two product groups, 'cleaning agents and polishing agents', and 'bleaches, disinfectants, and germicides' (result of classification of 233 household chemical products) at 37.8% and 52.0% respectively. In an analysis of carcinogenicity assuming a threshold of IARC 2B for the substances in household chemical products, we found 'cleaning agents and polishing agents' to contain 12 chemical substances and 'bleaches, disinfectants, and germicides' 11 chemical substances. Some of the household chemical products were found to have a high hazard level including acute toxicity and germ cell mutagenicity, carcinogenicity, and reproductive toxicity. Establishing a hazard information delivery system including the application of GHS to household chemical products in Korea is urgent as well.

  14. Searching for Order Within Chaos: Complexity Theorys Implications to Intelligence Support During Joint Operational Planning

    DTIC Science & Technology

    2017-06-09

    structures constantly arise in firefights and skirmishes on the battlefield. Source: Andrew Ilachinski, Artificial War: Multiagent- Based Simulation of...Alternative Methods of Analysis and Innovative Organizational Structures .” Conference, Rome, Italy March 31-April 2. ...Intelligence Analysis, Joint Operational Planning, Cellular Automata, Agent- Based Modeling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  15. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for Children Act Pediatric Formulation Initiatives Workshop-Pediatric Biopharmaceutics Classification System Working Group.

    PubMed

    Abdel-Rahman, Susan M; Amidon, Gordon L; Kaul, Ajay; Lukacova, Viera; Vinks, Alexander A; Knipp, Gregory T

    2012-11-01

    The Biopharmaceutics Classification System (BCS) allows compounds to be classified based on their in vitro solubility and intestinal permeability. The BCS has found widespread use in the pharmaceutical community to be an enabling guide for the rational selection of compounds, formulation for clinical advancement, and generic biowaivers. The Pediatric Biopharmaceutics Classification System (PBCS) Working Group was convened to consider the possibility of developing an analogous pediatric-based classification system. Because there are distinct developmental differences that can alter intestinal contents, volumes, permeability, and potentially biorelevant solubilities at different ages, the PBCS Working Group focused on identifying age-specific issues that need to be considered in establishing a flexible, yet rigorous PBCS. We summarized the findings of the PBCS Working Group and provided insights into considerations required for the development of a PBCS. Through several meetings conducted both at The Eunice Kennedy Shriver National Institute of Child Health, Human Development-US Pediatric Formulation Initiative Workshop (November 2011) and via teleconferences, the PBCS Working Group considered several high-level questions that were raised to frame the classification system. In addition, the PBCS Working Group identified a number of knowledge gaps that need to be addressed to develop a rigorous PBCS. It was determined that for a PBCS to be truly meaningful, it needs to be broken down into several different age groups that account for developmental changes in intestinal permeability, luminal contents, and gastrointestinal (GI) transit. Several critical knowledge gaps were identified, including (1) a lack of fully understanding the ontogeny of drug metabolizing enzymes and transporters along the GI tract, in the liver, and in the kidney; (2) an incomplete understanding of age-based changes in the GI, liver, and kidney physiology; (3) a clear need to better understand age-based intestinal permeability and fraction absorbed required to develop the PBCS; (4) a clear need for the development and organization of pediatric tissue biobanks to serve as a source for ontogenic research; and (5) a lack of literature published in age-based pediatric pharmacokinetics to build physiologically- and population-based pharmacokinetic (PBPK) databases. To begin the process of establishing a PBPK model, 10 pediatric therapeutic agents were selected (based on their adult BCS classifications). These agents should be targeted for additional research in the future. The PBCS Working Group also identified several areas where greater emphasis on research was needed to enable the development of a PBCS. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  16. Classification of antibiotics by neural network analysis of optical resonance data of whispering gallery modes in dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas

    2012-04-01

    A novel emerging technique for the label-free analysis of nanoparticles and biomolecules in liquid fluids using optical micro cavity resonance of whispering-gallery-type modes is being developed.A scheme based on polymer microspheres fixed by adhesive on the evanescence wave coupling element has been used. We demonstrated that the only spectral shift can't be used for identification of biological agents by developed approach. So neural network classifier for biological agents and micro/nano particles classification has been developed. The developed technique is the following. While tuning the laser wavelength images were recorded as avi-file. All sequences were broken into single frames and the location of the resonance was allocated in each frame. The image was filtered for noise reduction and integrated over two coordinates for evaluation of integrated energy of a measured signal. As input data normalized resonance shift of whispering-gallery modes and the relative efficiency of whispering-gallery modes excitation were used. Other parameters such as polarization of excited light, "center of gravity" of a resonance spectra etc. are also tested as input data for probabilistic neural network. After network designing and training we estimated the accuracy of classification. The classification of antibiotics such as penicillin and cephasolin have been performed with the accuracy of not less 97 %. Developed techniques can be used for lab-on-chip sensor based diagnostic tools as for identification of different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells and for dynamics of a delivery of medicines to bodies.

  17. A Critical Review of Mode of Action (MOA) Assignment ...

    EPA Pesticide Factsheets

    There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human health toxicology. With increasing calls to assess thousands of chemicals, some of which have little available information other than structure, clear understanding how each of these MOA schemes was devised, what information they are based on, and the limitations of each approach is critical. Several groups are developing low-tier methods to more easily classify or assess chemicals, using approaches such as the ecological threshold of concern (eco-TTC) and chemical-activity. Evaluation of these approaches and determination of their domain of applicability is partly dependent on the MOA classification that is used. The most commonly used MOA classification schemes for ecotoxicology include Verhaar and Russom (included in ASTER), both of which are used to predict acute aquatic toxicity MOA. Verhaar is a QSAR-based system that classifies chemicals into one of 4 classes, with a 5th class specified for those chemicals that are not classified in the other 4. ASTER/Russom includes 8 classifications: narcotics (3 groups), oxidative phosphorylation uncouplers, respiratory inhibitors, electrophiles/proelectrophiles, AChE inhibitors, or CNS seizure agents. Other methodologies include TEST (Toxicity Estimation Software Tool), a computational chemistry-based application that allows prediction to one of 5 broad MOA

  18. 7 CFR 28.909 - Costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... services provide under this section when billing is made to voluntary agents. Classification ..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.909 Costs... the service. After classification the samples shall become the property of the Government. The...

  19. Introduction to the Management Process (NS 222): Competency-Based Course Syllabus.

    ERIC Educational Resources Information Center

    Brady, Marilyn H.

    "Introduction to the Management Process" (NS 222) is an associate degree nursing course offered at Chattanooga State Technical Community College to introduce students to basic management concepts, methods of nursing care delivery, patient classification systems, and methods of enacting change and working as a change agent. Upon completion of the…

  20. Cheese Classification, Characterization, and Categorization: A Global Perspective.

    PubMed

    Almena-Aliste, Montserrat; Mietton, Bernard

    2014-02-01

    Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.

  1. A proposal for the classification of biological weapons sensu lato.

    PubMed

    Rozsa, Lajos

    2014-12-01

    Due to historical and legislation reasons, the category of bioweapons is rather poorly defined. Authors often disagree on involving or excluding agents like hormones, psychochemicals, certain plants and animals (such as weeds or pests) or synthetic organisms. Applying a wide definition apparently threatens by eroding the regime of international legislation, while narrow definitions abandon several important issues. Therefore, I propose a category of 'biological weapons sensu lato' (BWsl) that is defined here as any tool of human aggression whose acting principle is based on disciplines of biology including particularly microbiology, epidemiology, medical biology, physiology, psychology, pharmacology and ecology, but excluding those based on inorganic agents. Synthetically produced equivalents (not necessarily exact copies) and mock weapons are also included. This definition does not involve any claim to subject all these weapons to international legislation but serves a purely scholarly purpose. BWsl may be properly categorized on the base of the magnitude of the human population potentially targeted (4 levels: individuals, towns, countries, global) and the biological nature of the weapons' intended effects (4 levels: agricultural-ecological agents, and non-pathogenic, pathogenic, or lethal agents against humans).

  2. Semiotics and agents for integrating and navigating through multimedia representations of concepts

    NASA Astrophysics Data System (ADS)

    Joyce, Dan W.; Lewis, Paul H.; Tansley, Robert H.; Dobie, Mark R.; Hall, Wendy

    1999-12-01

    The purpose of this paper is two-fold. We begin by exploring the emerging trend to view multimedia information in terms of low-level and high-level components; the former being feature-based and the latter the 'semantics' intrinsic to what is portrayed by the media object. Traditionally, this has been viewed by employing analogies with generative linguistics. Recently, a new perceptive based on the semiotic tradition has been alluded to in several papers. We believe this to be a more appropriate approach. From this, we propose an approach for tackling this problem which uses an associative data structure expressing authored information together with intelligent agents acting autonomously over this structure. We then show how neural networks can be used to implement such agents. The agents act as 'vehicles' for bridging the gap between multimedia semantics and concrete expressions of high-level knowledge, but we suggest that traditional neural network techniques for classification are not architecturally adequate.

  3. In Vivo Testing of Chemopreventive Agents Using the Dog Model of Spontaneous Prostate Carcinogenesis

    DTIC Science & Technology

    2001-03-01

    SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT...retarded tate Cancer Research Program (PC-970492, awarded to population. J Gerontol 1969;24:395-411. 19. Hayflick LH. How and why we age. Exp Gerontol

  4. Evolving effective behaviours to interact with tag-based populations

    NASA Astrophysics Data System (ADS)

    Yucel, Osman; Crawford, Chad; Sen, Sandip

    2015-07-01

    Tags and other characteristics, externally perceptible features that are consistent among groups of animals or humans, can be used by others to determine appropriate response strategies in societies. This usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive effort spent on appropriate strategy choice and behaviour selection by reusing strategies for interacting with new partners based on their tags. Strategy selection mechanisms developed based on this idea have successfully evolved stable cooperation in games such as the Prisoner's Dilemma game but relies upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal is to develop a general classification and behaviour selection approach based on the tag framework. We propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to select appropriate behaviour against any population member of an existing, stable society. Our proposed approach allows agents to evolve both the optimal tag for the environment as well as appropriate strategies for existing agent groups. We show that these mechanisms will allow for robust selection of optimal strategies by agents entering a stable society and analyse the various environments where this approach is effective.

  5. Suppression on plant-parasitic nematodes using a soil fumigation strategy based on ammonium bicarbonate and its effects on the nematode community

    PubMed Central

    Su, Lanxi; Ruan, Yunze; Yang, Xiujuan; Wang, Kang; Li, Rong; Shen, Qirong

    2015-01-01

    Banana production is severely hindered by plant-parasitic nematodes in acidic, sandy soil. This study investigated the possibility of applying a novel fumigation agent based on ammonium bicarbonate as a strategy for controlling plant-parasitic nematodes under sealed conditions. Moreover, its effects on the nematode community in pot and field experiments were also measured using morphology and feeding-habit based classification and the PCR-DGGE method. Results showed that a mixture (LAB) of lime (L) and ammonium bicarbonate (AB) in suitable additive amounts (0.857 g kg−1 of L and 0.428 g kg−1 of AB) showed stronger nematicidal ability than did the use of AB alone or the use of ammonium hydroxide (AH) and calcium cyanamide (CC) with an equal nitrogen amount. The nematode community was altered by the different fumigants, and LAB showed an excellent plant-parasitic nematicidal ability, especially for Meloidogyne and Rotylenchulus, as revealed by morphology and feeding-habit based classification, and for Meloidogyne, as revealed by the PCR-DGGE method. Fungivores and omnivore-predators were more sensitive to the direct effects of the chemicals than bacterivores. This study explored a novel fumigation agent for controlling plant-parasitic nematodes based on LAB and provides a potential strategy to ensure the worldwide development of the banana industry. PMID:26621630

  6. Preventable Exposures Associated With Human Cancers

    PubMed Central

    Baan, Robert; Straif, Kurt; Grosse, Yann; Lauby-Secretan, Béatrice; El Ghissassi, Fatiha; Bouvard, Véronique; Benbrahim-Tallaa, Lamia; Guha, Neela; Freeman, Crystal; Galichet, Laurent; Wild, Christopher P.

    2011-01-01

    Information on the causes of cancer at specific sites is important to cancer control planners, cancer researchers, cancer patients, and the general public. The International Agency for Research on Cancer (IARC) Monograph series, which has classified human carcinogens for more than 40 years, recently completed a review to provide up-to-date information on the cancer sites associated with more than 100 carcinogenic agents. Based on IARC’s review, we listed the cancer sites associated with each agent and then rearranged this information to list the known and suspected causes of cancer at each site. We also summarized the rationale for classifications that were based on mechanistic data. This information, based on the forthcoming IARC Monographs Volume 100, offers insights into the current state-of-the-science of carcinogen identification. Use of mechanistic data to identify carcinogens is increasing, and epidemiological research is identifying additional carcinogens and cancer sites or confirming carcinogenic potential under conditions of lower exposure. Nevertheless, some common human cancers still have few (or no) identified causal agents. PMID:22158127

  7. Hybrid Multiagent System for Automatic Object Learning Classification

    NASA Astrophysics Data System (ADS)

    Gil, Ana; de La Prieta, Fernando; López, Vivian F.

    The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of learning object metadata, which provides learners in a web-based educational system with ubiquitous access to multiple distributed repositories. This article presents a hybrid agent-based architecture that enables the recovery of learning objects tagged in Learning Object Metadata (LOM) and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives.

  8. Multirobot autonomous landmine detection using distributed multisensor information aggregation

    NASA Astrophysics Data System (ADS)

    Jumadinova, Janyl; Dasgupta, Prithviraj

    2012-06-01

    We consider the problem of distributed sensor information fusion by multiple autonomous robots within the context of landmine detection. We assume that different landmines can be composed of different types of material and robots are equipped with different types of sensors, while each robot has only one type of landmine detection sensor on it. We introduce a novel technique that uses a market-based information aggregation mechanism called a prediction market. Each robot is provided with a software agent that uses sensory input of the robot and performs calculations of the prediction market technique. The result of the agent's calculations is a 'belief' representing the confidence of the agent in identifying the object as a landmine. The beliefs from different robots are aggregated by the market mechanism and passed on to a decision maker agent. The decision maker agent uses this aggregate belief information about a potential landmine and makes decisions about which other robots should be deployed to its location, so that the landmine can be confirmed rapidly and accurately. Our experimental results show that, for identical data distributions and settings, using our prediction market-based information aggregation technique increases the accuracy of object classification favorably as compared to two other commonly used techniques.

  9. A cognitive information processing framework for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Feiyi; Qi, Hairong

    2004-09-01

    In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.

  10. [Implementation of cytology images classification--the Bethesda 2001 System--in a group of screened women from Podlaskie region--effect evaluation].

    PubMed

    Zbroch, Tomasz; Knapp, Paweł Grzegorz; Knapp, Piotr Andrzej

    2007-09-01

    Increasing knowledge concerning carcinogenesis within cervical epithelium has forced us to make continues modifications of cytology classification of the cervical smears. Eventually, new descriptions of the submicroscopic cytomorphological abnormalities have enabled the implementation of Bethesda System which was meant to take place of the former Papanicolaou classification although temporarily both are sometimes used simultaneously. The aim of this study was to compare results of these two classification systems in the aspect of diagnostic accuracy verified by further tests of the diagnostic algorithm for the cervical lesion evaluation. The study was conducted in the group of women selected from general population, the criteria being the place of living and cervical cancer age risk group, in the consecutive periods of mass screening in Podlaski region. The performed diagnostic tests have been based on the commonly used algorithm, as well as identical laboratory and methodological conditions. Performed assessment revealed comparable diagnostic accuracy of both analyzing classifications, verified by histological examination, although with marked higher specificity for dysplastic lesions with decreased number of HSIL results and increased diagnosis of LSILs. Higher number of performed colposcopies and biopsies were an additional consequence of TBS classification. Results based on Bethesda System made it possible to find the sources and reasons of abnormalities with much greater precision, which enabled causing agent treatment. Two evaluated cytology classification systems, although not much different, depicted higher potential of TBS and better, more effective communication between cytology laboratory and gynecologist, making reasonable implementation of The Bethesda System in the daily cytology screening work.

  11. Collective Machine Learning: Team Learning and Classification in Multi-Agent Systems

    ERIC Educational Resources Information Center

    Gifford, Christopher M.

    2009-01-01

    This dissertation focuses on the collaboration of multiple heterogeneous, intelligent agents (hardware or software) which collaborate to learn a task and are capable of sharing knowledge. The concept of collaborative learning in multi-agent and multi-robot systems is largely under studied, and represents an area where further research is needed to…

  12. Development of and Selected Performance Characteristics of CANJEM, a General Population Job-Exposure Matrix Based on Past Expert Assessments of Exposure.

    PubMed

    Sauvé, Jean-François; Siemiatycki, Jack; Labrèche, France; Richardson, Lesley; Pintos, Javier; Sylvestre, Marie-Pierre; Gérin, Michel; Bégin, Denis; Lacourt, Aude; Kirkham, Tracy L; Rémen, Thomas; Pasquet, Romain; Goldberg, Mark S; Rousseau, Marie-Claude; Parent, Marie-Élise; Lavoué, Jérôme

    2018-06-12

    We developed a job-exposure matrix called CANJEM using data generated in population-based case-control studies of cancer. This article describes some of the decisions in developing CANJEM, and some of its performance characteristics. CANJEM is built from exposure information from 31673 jobs held by study subjects included in our past case-control studies. For each job, experts had evaluated the intensity, frequency, and likelihood of exposure to a predefined list of agents based on jobs histories and descriptions of tasks and workplaces. The creation of CANJEM involved a host of decisions regarding the structure of CANJEM, and operational decisions regarding which parameters to present. The goal was to produce an instrument that would provide great flexibility to the user. In addition to describing these decisions, we conducted analyses to assess how well CANJEM covered the range of occupations found in Canada. Even at quite a high level of resolution of the occupation classifications and time periods, over 90% of the recent Canadian working population would be covered by CANJEM. Prevalence of exposure of specific agents in specific occupations ranges from 0% to nearly 100%, thereby providing the user with basic information to discriminate exposed from unexposed workers. Furthermore, among exposed workers there is information that can be used to discriminate those with high exposure from those with low exposure. CANJEM provides good coverage of the Canadian working population and possibly that of several other countries. Available in several occupation classification systems and including 258 agents, CANJEM can be used to support exposure assessment efforts in epidemiology and prevention of occupational diseases.

  13. 49 CFR 1245.5 - Classification of job titles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Computer Programmer, Computer Analyst, Market Analyst, Pricing Analyst, Employment Supervisor, Research..., Traveling Auditors or Accountants Title is descriptive Traveling Auditor, Accounting Specialist Auditors... 21; adds new titles. 207 Supervising and Chief Claim Agents Title is descriptive Chief Claim Agent...

  14. 49 CFR 1245.5 - Classification of job titles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Computer Programmer, Computer Analyst, Market Analyst, Pricing Analyst, Employment Supervisor, Research..., Traveling Auditors or Accountants Title is descriptive Traveling Auditor, Accounting Specialist Auditors... 21; adds new titles. 207 Supervising and Chief Claim Agents Title is descriptive Chief Claim Agent...

  15. 49 CFR 1245.5 - Classification of job titles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Computer Programmer, Computer Analyst, Market Analyst, Pricing Analyst, Employment Supervisor, Research..., Traveling Auditors or Accountants Title is descriptive Traveling Auditor, Accounting Specialist Auditors... 21; adds new titles. 207 Supervising and Chief Claim Agents Title is descriptive Chief Claim Agent...

  16. 49 CFR 1245.5 - Classification of job titles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Computer Programmer, Computer Analyst, Market Analyst, Pricing Analyst, Employment Supervisor, Research..., Traveling Auditors or Accountants Title is descriptive Traveling Auditor, Accounting Specialist Auditors... 21; adds new titles. 207 Supervising and Chief Claim Agents Title is descriptive Chief Claim Agent...

  17. 49 CFR 1245.5 - Classification of job titles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Computer Programmer, Computer Analyst, Market Analyst, Pricing Analyst, Employment Supervisor, Research..., Traveling Auditors or Accountants Title is descriptive Traveling Auditor, Accounting Specialist Auditors... 21; adds new titles. 207 Supervising and Chief Claim Agents Title is descriptive Chief Claim Agent...

  18. The ITE Land classification: Providing an environmental stratification of Great Britain.

    PubMed

    Bunce, R G; Barr, C J; Gillespie, M K; Howard, D C

    1996-01-01

    The surface of Great Britain (GB) varies continuously in land cover from one area to another. The objective of any environmentally based land classification is to produce classes that match the patterns that are present by helping to define clear boundaries. The more appropriate the analysis and data used, the better the classes will fit the natural patterns. The observation of inter-correlations between ecological factors is the basis for interpreting ecological patterns in the field, and the Institute of Terrestrial Ecology (ITE) Land Classification formalises such subjective ideas. The data inevitably comprise a large number of factors in order to describe the environment adequately. Single factors, such as altitude, would only be useful on a national basis if they were the only dominant causative agent of ecological variation.The ITE Land Classification has defined 32 environmental categories called 'land classes', initially based on a sample of 1-km squares in Great Britain but subsequently extended to all 240 000 1-km squares. The original classification was produced using multivariate analysis of 75 environmental variables. The extension to all squares in GB was performed using a combination of logistic discrimination and discriminant functions. The classes have provided a stratification for successive ecological surveys, the results of which have characterised the classes in terms of botanical, zoological and landscape features.The classification has also been applied to integrate diverse datasets including satellite imagery, soils and socio-economic information. A variety of models have used the structure of the classification, for example to show potential land use change under different economic conditions. The principal data sets relevant for planning purposes have been incorporated into a user-friendly computer package, called the 'Countryside Information System'.

  19. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.

    PubMed

    Randhawa, Vinay; Kumar Singh, Anil; Acharya, Vishal

    2015-12-01

    Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.

  20. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.

    PubMed

    Rutkowski, Tomasz M

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.

  1. Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms

    PubMed Central

    Rutkowski, Tomasz M.

    2016-01-01

    The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538

  2. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    PubMed

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  3. Innovations in Clinical Trial Design in the Era of Molecular Profiling.

    PubMed

    Wulfkuhle, Julia D; Spira, Alexander; Edmiston, Kirsten H; Petricoin, Emanuel F

    2017-01-01

    Historically, cancer has been studied, and therapeutic agents have been evaluated based on organ site, clinical staging, and histology. The science of molecular profiling has expanded our knowledge of cancer at the cellular and molecular level such that numerous subtypes are being described based on biomarker expression and genetic mutations rather than traditional classifications of the disease. Drug development has experienced a concomitant revolution in response to this knowledge with many new targeted therapeutic agents becoming available, and this has necessitated an evolution in clinical trial design. The traditional, large phase II and phase III adjuvant trial models need to be replaced with smaller, shorter, and more focused trials. These trials need to be more efficient and adaptive in order to quickly assess the efficacy of new agents and develop new companion diagnostics. We are now seeing a substantial shift from the traditional multiphase trial model to an increase in phase II adjuvant and neoadjuvant trials in earlier-stage disease incorporating surrogate endpoints for long-term survival to assess efficacy of therapeutic agents in shorter time frames. New trial designs have emerged with capabilities to assess more efficiently multiple disease types, multiple molecular subtypes, and multiple agents simultaneously, and regulatory agencies have responded by outlining new pathways for accelerated drug approval that can help bring effective targeted therapeutic agents to the clinic more quickly for patients in need.

  4. Vehicle Maneuver Detection with Accelerometer-Based Classification.

    PubMed

    Cervantes-Villanueva, Javier; Carrillo-Zapata, Daniel; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2016-09-29

    In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  5. Management of Low-Flow Vascular Malformations: Clinical Presentation, Classification, Patient Selection, Imaging and Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCafferty, Ian, E-mail: ian.mccafferty@uhb.nhs.uk

    This review article aims to give an overview of the current state of imaging, patient selection, agents and techniques used in the management of low-flow vascular malformations. The review includes the current classifications for low-flow vascular malformations including the 2014 updates. Clinical presentation and assessment is covered with a detailed section on the common sclerosant agents used to treat low-flow vascular malformations, including dosing and common complications. Imaging is described with a guide to a simple stratification of the use of imaging for diagnosis and interventional techniques.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfl, Sibylle; Stampfl, Ulrike; Bellemann, Nadine

    The objective of this study was to evaluate inflammatory response and recanalization after embolization with a new spherical embolic agent based on a core and shell design with a hydrogel core of polymethylmethacrylate (PMMA) and a Polyzene-F nanoscale coating in a porcine kidney model. Thirty-six minipigs were enrolled for superselective renal embolization. Polyzene-F-coated PMMA particles and uncoated PMMA particles with a diameter of 300-600 {mu}m were used. Either 4 or 12 weeks post-embolization, arteriography of the embolized kidneys was performed and then compared with pre- and immediate post-embolization arteriograms using a specific recanalization score to determine the extent of recanalization.more » Using a microscopic inflammation score (Banff classification), the embolized organs were examined for local inflammatory effects which occurred in response to the embolic agent. In Polyzene-F-coated particles, the Banff classification showed an average inflammation score of 0.26 {+-} 0.58 at 4 weeks and of 0.08 {+-} 0.28 at 12 weeks. In uncoated particles, the Banff score measured 0.37 {+-} 0.6 at 4 weeks, which was higher, but without a statistically significant difference. According to the recanalization score used in this study, mild angiographic recanalization was evident in all groups, without statistically significant differences (3.0 {+-} 0.71 in coated particles, 3.09 {+-} 0.81 in uncoated particles; p = 0.74). We conclude that both uncoated hydrogel particles and Polyzene-F-coated embolic agents triggered virtually no inflammatory response and effectively occluded target arteries. This study demonstrates good biocompatibility of the new embolic material. As in other spherical embolic agents, recanalization can occur to some degree.« less

  7. An ontology-based exploration of the concepts and relationships in the activities and participation component of the international classification of functioning, disability and health.

    PubMed

    Della Mea, Vincenzo; Simoncello, Andrea

    2012-02-28

    The International Classification of Functioning, Disability and Health (ICF) is a classification of health and health-related issues, aimed at describing and measuring health and disability at both individual and population levels. Here we discuss a preliminary qualitative and quantitative analysis of the relationships used in the Activities and Participation component of ICF, and a preliminary mapping to SUMO (Suggested Upper Merged Ontology) concepts. The aim of the analysis is to identify potential logical problems within this component of ICF, and to understand whether activities and participation might be defined more formally than in the current version of ICF. In the relationship analysis, we used four predicates among those available in SUMO for processes (Patient, Instrument, Agent, and subProcess). While at the top level subsumption was used in most cases (90%), at the lower levels the percentage of other relationships rose to 41%. Chapters were heterogeneous in the relationships used and some of the leaves of the tree seemed to represent properties or parts of the parent concept rather than subclasses. Mapping of ICF to SUMO proved partially feasible, with the activity concepts being mapped mostly (but not totally) under the IntentionalProcess concept in SUMO. On the other hand, the participation concept has not been mapped to any upper level concept. Our analysis of the relationships within ICF revealed issues related to confusion between classes and their properties, incorrect classifications, and overemphasis on subsumption, confirming what already observed by other researchers. However, it also suggested some properties for Activities that could be included in a more formal model: number of agents involved, the instrument used to carry out the activity, the object of the activity, complexity of the task, and an enumeration of relevant subtasks.

  8. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  9. Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals

    NASA Astrophysics Data System (ADS)

    Syan, Chanan S.; Harnarinesingh, Randy E. S.; Beharry, Rishi

    2014-07-01

    Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing.

  10. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136-11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0-16), compared with patients with OA caused by HMW agents (0.87, range 0-72), (p = 0.024). OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents.

  11. Application of online measures to monitor and evaluate multiplatform fusion performance

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kowalski, Charlene; Klamer, Dale M.

    1999-07-01

    A primary concern of multiplatform data fusion is assessing the quality and utility of data shared among platforms. Constraints such as platform and sensor capability and task load necessitate development of an on-line system that computes a metric to determine which other platform can provide the best data for processing. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. To determine data quality, we are implementing an approach based on entropy coupled with intelligent agents. Entropy measures quality of processed information such as localization, classification, and ambiguity in measurement-to-track association. Lower entropy scores imply less uncertainty about a particular target. When new information is provided, we compuete the level of improvement a particular track obtains from one measurement to another. The measure permits us to evaluate the utility of the new information. We couple entropy with intelligent agents that provide two main data gathering functions: estimation of another platform's performance and evaluation of the new measurement data's quality. Both functions result from the entropy metric. The intelligent agent on a platform makes an estimate of another platform's measurement and provides it to its own fusion system, which can then incorporate it, for a particular target. A resulting entropy measure is then calculated and returned to its own agent. From this metric, the agent determines a perceived value of the offboard platform's measurement. If the value is satisfactory, the agent requests the measurement from the other platform, usually by interacting with the other platform's agent. Once the actual measurement is received, again entropy is computed and the agent assesses its estimation process and refines it accordingly.

  12. Taxanes: vesicants, irritants, or just irritating?

    PubMed

    Barbee, Meagan S; Owonikoko, Taofeek K; Harvey, R Donald

    2014-01-01

    Several classes of antineoplastic agents are universally referred to as vesicants with ample supporting literature. However, the literature surrounding the taxanes is controversial. While the American Society of Clinical Oncology and Oncology Nursing Society Chemotherapy Administration Safety Standards and the Chemotherapy and Biotherapy Guidelines and Recommendations for Practice identify the risks of extravasation and the parameters surrounding the infusion of known vesicants, recommend administration sites for known agents, and recommend antidotes for particular extravasation cases, they fail to provide specific recommendations for the administration of individual taxanes, or a classification system for antineoplastic agents as vesicants, irritants, or inert compounds. There is also a lack of prescribing information regarding such recommendations. The lack of a formal classification system further complicates the accurate delineation of vesicant antineoplastic agents and subsequent appropriate intravenous administration and extravasation management. There are several factors that make the classification of taxanes as vesicants or irritants challenging. Comprehensive preclinical data describing potential mechanisms of tissue damage or vesicant-like properties are lacking. Furthermore, most case reports of taxane extravasation fail to include the parameters surrounding administration, such as the concentration of medication and duration of infusion, making it difficult to set parameters for vesicant potential. Subsequently, many practitioners default to central venous administration of taxanes without evidence that such administration minimizes the risk of extravasation or improves outcomes thereof. Here, we review briefly the data surrounding taxane extravasation and potential vesicant or irritant properties, classify the taxanes, and propose a spectrum for antineoplastic agent potential to cause tissue injury that warrants clinical intervention if extravasation occurs.

  13. Clay Stabilization Using the Ash of Mount Sinabung in Terms of the Value of California Bearing Ratio (CBR)

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto, R.; Napitupulu, S. M. A.

    2018-02-01

    Most areas in Indonesia consist of clay soils with high plasticity so that to meet technical requirements the soil needs improvement, which is known as soil stabilization.There are three ways of soil stabilization process, i.e. mechanical, physical and chemical. In this study, chemical stabilization was performed, that was by adding stabilizing agents to the soil. The stabilizing agent used was the ash of Mount Sinabung. Since 2010 until now, Sinabung Mountain is still experiencing eruption that produces a lot of volcanic ash and it inconveniences the environment. So, it is expected that this research will be able to optimize the utilization of Sinabung ash. The purpose of this study was to investigate the effect of the addition of Mount Sinabung ash to CBR (California Bearing Ratio) value, to determine the effect of the curing time of one day and fourteen days mixture on the CBR value, and to find the mixed content with effective curing time to produce the largest CBR value. Based on this study, the soil type CL (Clay - Low Plasticity) was obtained, based on the classification of USCS (Unified Soil Classification System) and categorized as A-6 (6) based on the classification of AASHTO (American Association of State Highway and Transportation officials) with the most effective mixed stabilizer material which was the variation of 10% Mount Sinabung ash with fourteen days of curing time. The CBR value resulted from the mixture of 10% Sinabung ash that was cured within fourteen days was 8.95%. By the increase of the content of the Sinabung ash, the CBR value always improved to the level of 10%, Sinabung ash then decreased and became constant at the mixture of higher volcanic ash mixture but remained above the CBR value of the original soil.

  14. Using classification tree analysis to predict oak wilt distribution in Minnesota and Texas

    Treesearch

    Marla c. Downing; Vernon L. Thomas; Jennifer Juzwik; David N. Appel; Robin M. Reich; Kim Camilli

    2008-01-01

    We developed a methodology and compared results for predicting the potential distribution of Ceratocystis fagacearum (causal agent of oak wilt), in both Anoka County, MN, and Fort Hood, TX. The Potential Distribution of Oak Wilt (PDOW) utilizes a binary classification tree statistical technique that incorporates: geographical information systems (GIS...

  15. 9 CFR 145.23 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Terminology and classification; flocks and products. 145.23 Section 145.23 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... year; Provided, That an Authorized Testing Agent must blood test up to 300 birds per flock, as...

  16. 9 CFR 145.23 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Terminology and classification; flocks and products. 145.23 Section 145.23 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... year; Provided, That an Authorized Testing Agent must blood test up to 300 birds per flock, as...

  17. Development of a rapid method for the automatic classification of biological agents' fluorescence spectral signatures

    NASA Astrophysics Data System (ADS)

    Carestia, Mariachiara; Pizzoferrato, Roberto; Gelfusa, Michela; Cenciarelli, Orlando; Ludovici, Gian Marco; Gabriele, Jessica; Malizia, Andrea; Murari, Andrea; Vega, Jesus; Gaudio, Pasquale

    2015-11-01

    Biosecurity and biosafety are key concerns of modern society. Although nanomaterials are improving the capacities of point detectors, standoff detection still appears to be an open issue. Laser-induced fluorescence of biological agents (BAs) has proved to be one of the most promising optical techniques to achieve early standoff detection, but its strengths and weaknesses are still to be fully investigated. In particular, different BAs tend to have similar fluorescence spectra due to the ubiquity of biological endogenous fluorophores producing a signal in the UV range, making data analysis extremely challenging. The Universal Multi Event Locator (UMEL), a general method based on support vector regression, is commonly used to identify characteristic structures in arrays of data. In the first part of this work, we investigate fluorescence emission spectra of different simulants of BAs and apply UMEL for their automatic classification. In the second part of this work, we elaborate a strategy for the application of UMEL to the discrimination of different BAs' simulants spectra. Through this strategy, it has been possible to discriminate between these BAs' simulants despite the high similarity of their fluorescence spectra. These preliminary results support the use of SVR methods to classify BAs' spectral signatures.

  18. Hazard Classification of Household Chemical Products in Korea according to the Globally Harmonized System of Classification and labeling of Chemicals

    PubMed Central

    2013-01-01

    Objectives This study was conducted to review the validity of the need for the application of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) to household chemical products in Korea. The study also aimed to assess the severity of health and environmental hazards of household chemical products using the GHS. Methods 135 products were classified as ‘cleaning agents and polishing agents’ and 98 products were classified as ‘bleaches, disinfectants, and germicides.’ The current status of carcinogenic classification of GHS and carcinogenicity was examined for 272 chemical substances contained in household chemical products by selecting the top 11 products for each of the product categories. In addition, the degree of toxicity was assessed through analysis of whether the standard of the Republic of Korea’s regulations on household chemical products had been exceeded or not. Results According to GHS health and environmental hazards, “acute toxicity (oral)” was found to be the highest for two product groups, ‘cleaning agents and polishing agents’, and ‘bleaches, disinfectants, and germicides’ (result of classification of 233 household chemical products) at 37.8% and 52.0% respectively. In an analysis of carcinogenicity assuming a threshold of IARC 2B for the substances in household chemical products, we found ‘cleaning agents and polishing agents’ to contain 12 chemical substances and ‘bleaches, disinfectants, and germicides’ 11 chemical substances. Conclusion Some of the household chemical products were found to have a high hazard level including acute toxicity and germ cell mutagenicity, carcinogenicity, and reproductive toxicity. Establishing a hazard information delivery system including the application of GHS to household chemical products in Korea is urgent as well. PMID:24472347

  19. Dental cements for definitive luting: a review and practical clinical considerations.

    PubMed

    Hill, Edward E

    2007-07-01

    Dental cement used to attach an indirect restoration to a prepared tooth is called a luting agent. A clinically relevant discussion of conventional and contemporary definitive luting agents is presented in this article. Physical properties are listed in table form to assist in comparison and decision-making. Additional subtopics include luting agent requirements, classifications, retention and bonding, cement considerations for implant-supported teeth, and fatigue failure.

  20. Prioritization of reproductive toxicants in unconventional oil and gas operations using a multi-country regulatory data-driven hazard assessment.

    PubMed

    Inayat-Hussain, Salmaan H; Fukumura, Masao; Muiz Aziz, A; Jin, Chai Meng; Jin, Low Wei; Garcia-Milian, Rolando; Vasiliou, Vasilis; Deziel, Nicole C

    2018-08-01

    Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases. GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects. We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide. Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enhanced risk management by an emerging multi-agent architecture

    NASA Astrophysics Data System (ADS)

    Lin, Sin-Jin; Hsu, Ming-Fu

    2014-07-01

    Classification in imbalanced datasets has attracted much attention from researchers in the field of machine learning. Most existing techniques tend not to perform well on minority class instances when the dataset is highly skewed because they focus on minimising the forecasting error without considering the relative distribution of each class. This investigation proposes an emerging multi-agent architecture, grounded on cooperative learning, to solve the class-imbalanced classification problem. Additionally, this study deals further with the obscure nature of the multi-agent architecture and expresses comprehensive rules for auditors. The results from this study indicate that the presented model performs satisfactorily in risk management and is able to tackle a highly class-imbalanced dataset comparatively well. Furthermore, the knowledge visualised process, supported by real examples, can assist both internal and external auditors who must allocate limited detecting resources; they can take the rules as roadmaps to modify the auditing programme.

  2. 77 FR 71720 - Fisheries of the Northeastern United States; Atlantic Mackerel, Squid, and Butterfish Fisheries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... individual credentialed as an Accredited Marine Surveyor with a fishing specialty by the Society of... completed by employees or agents of a classification society approved by the Coast Guard pursuant to 46 U.S... members of a classification society such as NAMS or SAMS. They noted that independent surveyors have...

  3. 9 CFR 145.43 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Terminology and classification; flocks and products. 145.43 Section 145.43 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... Authorized Testing Agent must blood test up to 300 birds per flock, as described in § 145.14, if the Official...

  4. 9 CFR 145.43 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Terminology and classification; flocks and products. 145.43 Section 145.43 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... Authorized Testing Agent must blood test up to 300 birds per flock, as described in § 145.14, if the Official...

  5. 9 CFR 145.43 - Terminology and classification; flocks and products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Terminology and classification; flocks and products. 145.43 Section 145.43 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... Authorized Testing Agent must blood test up to 300 birds per flock, as described in § 145.14, if the Official...

  6. Conservation studies on ornamental and building stones of north-eastern Sicily. Geomineralogical and porosimetric investigations.

    PubMed

    Cardiano, P; Sergi, S; Triscari, M; Piraino, P

    2001-01-01

    The effectiveness, as preserving agents, of a series of chemical compounds (silanes, siloxanes, epoxides, perfluoropolyethers, acrylates, acrylsilicones) has been tested on lithic materials mainly used in artistic stoneworks of north-eastern Sicily. The selection and classification of the stone types, based on geomineralogical criteria follows a brief excursus about their use as artistic materials. The results of the porosimetric investigations, before and after conservation treatments, are reported. In addition, polarizing mineralogical microscope photos of the studied lithoid materials are presented.

  7. Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers

    DTIC Science & Technology

    2005-05-01

    AD_ Award Number: DAMD17-03-1-0353 TITLE: Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers...30 Apr 2005 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable ... biodegradable fiber 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES a. REPORT b. ABSTRACT c

  8. For whom will the Bayesian agents vote?

    NASA Astrophysics Data System (ADS)

    Caticha, Nestor; Cesar, Jonatas; Vicente, Renato

    2015-04-01

    Within an agent-based model where moral classifications are socially learned, we ask if a population of agents behaves in a way that may be compared with conservative or liberal positions in the real political spectrum. We assume that agents first experience a formative period, in which they adjust their learning style acting as supervised Bayesian adaptive learners. The formative phase is followed by a period of social influence by reinforcement learning. By comparing data generated by the agents with data from a sample of 15000 Moral Foundation questionnaires we found the following. 1. The number of information exchanges in the formative phase correlates positively with statistics identifying liberals in the social influence phase. This is consistent with recent evidence that connects the dopamine receptor D4-7R gene, political orientation and early age social clique size. 2. The learning algorithms that result from the formative phase vary in the way they treat novelty and corroborative information with more conservative-like agents treating it more equally than liberal-like agents. This is consistent with the correlation between political affiliation and the Openness personality trait reported in the literature. 3. Under the increase of a model parameter interpreted as an external pressure, the statistics of liberal agents resemble more those of conservative agents, consistent with reports on the consequences of external threats on measures of conservatism. We also show that in the social influence phase liberal-like agents readapt much faster than conservative-like agents when subjected to changes on the relevant set of moral issues. This suggests a verifiable dynamical criterium for attaching liberal or conservative labels to groups.

  9. Comparison of Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to the Nerve Agents Cyclosarin and Tabun in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Comparison of extracellular striatal acetylcholine and brain seizure activity following...lethality; nerve agents; organophosphorus compounds; seizure activity ; tabun 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...acetylcholine and brain seizure activity following acute exposure to the nerve agents cyclosarin and tabun in freely moving guinea pigs John C

  10. Evaluation of military field-water quality: Volume 6, Infectious organisms of military concern associated with nonconsumptive exposure: Assessment of health risks and recommendations for establishing related standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, R.C.; Olivieri, A.W.; Danielson, R.E.

    1986-02-01

    This study is an assessment of the risk of illness due to exposure to water-related (i.e., water-based, water-washed) infectious organisms. The organisms under consideration are Aeromonas spp., Leptospira spp., Pseudomonas spp., Staphylococcus spp., non-cholerae Vibrio spp., Acanthamoeba spp., Balantidium coli, Naegleria spp., Ascaris lumbricoides, Dracunculus medinesis, Schistosoma spp., and the agents responsible for cercarial dermatitis (i.e., Trichobilharzia, Gigantobilharzia, and Austrobilharzia). Evaluation of the risk to disease associated with the above pathogens requires information in specific areas such as dose response, concentration of agents in the environment, and environmental persistence. The existing body of knowledge concerning these agents ranges from speculationmore » to established fact. Unfortunately, areas of information critical to risk assessment are frequently unavailable. Because of this lack of data, the risk assessment presented is semiquantitative and limited to the presentation of an environmental classification scheme. 14 refs., 2 figs., 57 tabs.« less

  11. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative ofmore » specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.« less

  12. Mid Infrared Polarized Light Scattering; Applications for the Remote Detection of Chemical and Biological Contaminations

    DTIC Science & Technology

    1992-01-01

    CLASSIFICATION 11. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTI rnEHUC AGE OF ABSTRACTUNCLSIFIED UNCLASSIFIED UL NSN... ag . ;nst liquid chemical agent simulants SF96, DIMP, and DMMP on a soil surface. The crosshatched wavelengthi-angle domains are areas where the...WHITE ag WRIUT pE/pmv" I MAKE LINE DASHED "fl WRlE,(*WML1r LINE COLOR WHITE al2 ELSE 3 WIUrTE(*,jEJ/MVO MAKE LINE SOUD 244 CALL INThPr(ICOL.COL) I NEER

  13. An incremental approach to genetic-algorithms-based classification.

    PubMed

    Guan, Sheng-Uei; Zhu, Fangming

    2005-04-01

    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multiagent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an "integration" operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed.

  14. Categorization in the wild.

    PubMed

    Glushko, Robert J; Maglio, Paul P; Matlock, Teenie; Barsalou, Lawrence W

    2008-04-01

    In studying categorization, cognitive science has focused primarily on cultural categorization, ignoring individual and institutional categorization. Because recent technological developments have made individual and institutional classification systems much more available and powerful, our understanding of the cognitive and social mechanisms that produce these systems is increasingly important. Furthermore, key aspects of categorization that have received little previous attention emerge from considering diverse types of categorization together, such as the social factors that create stability in classification systems, and the interoperability that shared conceptual systems establish between agents. Finally, the profound impact of recent technological developments on classification systems indicates that basic categorization mechanisms are highly adaptive, producing new classification systems as the situations in which they operate change.

  15. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships.

    PubMed

    Wilkerson, Richard C; Linton, Yvonne-Marie; Fonseca, Dina M; Schultz, Ted R; Price, Dana C; Strickman, Daniel A

    2015-01-01

    The tribe Aedini (Family Culicidae) contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K). Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the "number and nature of the characters that support the branches" subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K's generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1) restore a classification system that is useful for the operational community; 2) enhance the ability of taxonomists to accurately place new species into genera; 3) maintain the progress toward a natural classification based on monophyletic groups of species; and 4) correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new data become available.

  16. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships

    PubMed Central

    Wilkerson, Richard C.; Linton, Yvonne-Marie; Fonseca, Dina M.; Schultz, Ted R.; Price, Dana C.; Strickman, Daniel A.

    2015-01-01

    The tribe Aedini (Family Culicidae) contains approximately one-quarter of the known species of mosquitoes, including vectors of deadly or debilitating disease agents. This tribe contains the genus Aedes, which is one of the three most familiar genera of mosquitoes. During the past decade, Aedini has been the focus of a series of extensive morphology-based phylogenetic studies published by Reinert, Harbach, and Kitching (RH&K). Those authors created 74 new, elevated or resurrected genera from what had been the single genus Aedes, almost tripling the number of genera in the entire family Culicidae. The proposed classification is based on subjective assessments of the “number and nature of the characters that support the branches” subtending particular monophyletic groups in the results of cladistic analyses of a large set of morphological characters of representative species. To gauge the stability of RH&K’s generic groupings we reanalyzed their data with unweighted parsimony jackknife and maximum-parsimony analyses, with and without ordering 14 of the characters as in RH&K. We found that their phylogeny was largely weakly supported and their taxonomic rankings failed priority and other useful taxon-naming criteria. Consequently, we propose simplified aedine generic designations that 1) restore a classification system that is useful for the operational community; 2) enhance the ability of taxonomists to accurately place new species into genera; 3) maintain the progress toward a natural classification based on monophyletic groups of species; and 4) correct the current classification system that is subject to instability as new species are described and existing species more thoroughly defined. We do not challenge the phylogenetic hypotheses generated by the above-mentioned series of morphological studies. However, we reduce the ranks of the genera and subgenera of RH&K to subgenera or informal species groups, respectively, to preserve stability as new data become available. PMID:26226613

  17. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data.

    PubMed

    Havla, Lukas; Schneider, Moritz J; Thierfelder, Kolja M; Beyer, Sebastian E; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H; Dietrich, Olaf

    2016-02-01

    The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets. Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated. The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters. A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

  18. Identification of Drugs Inducing Phospholipidosis by Novel in vitro Data

    PubMed Central

    Muehlbacher, Markus; Tripal, Philipp; Roas, Florian; Kornhuber, Johannes

    2012-01-01

    Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μm and 5.0 μm). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood–brain barrier, and compounds that violate Lipinski’s rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD. PMID:22945602

  19. Pharmacological management of anticancer agent extravasation: A single institutional guideline.

    PubMed

    Kimmel, Jaime; Fleming, Patrick; Cuellar, Sandra; Anderson, Jennifer; Haaf, Christina Mactal

    2018-03-01

    Although the risk of extravasation of a chemotherapy (anticancer) medication is low, the complications associated with these events can have a significant impact on morbidity and health care costs. Institutions that administer anticancer agents should ideally have a current guideline on the proper management of the inadvertent administration of these toxic medications into tissues surrounding blood vessels. It is imperative that the health care team involved in administering drugs used to treat cancer be educated on the risk factors, preventative strategies and treatment of anticancer extravasations, as well as practice safe and proper administration techniques. Anticancer agents are generally divided into classes based on their ability to cause tissue damage. The review of current published guidelines and available literature reveals a lack of consensus on how these medications should be classified. In addition, many recently approved drugs for the treatment of cancer may lack data to support their classification and management of extravasation events. The treatment of the majority of extravasations of anticancer agents involves nonpharmacological measures, potentially in the ambulatory care setting. Antidotes are available for the extravasation of a minority of vesicant agents in order to mitigate tissue damage. Due to the limited data and lack of consensus in published guidelines, a working group was established to put forth an institutional guideline on the management of anticancer extravasations.

  20. A Conceptual Framework for Representing Human Behavior Characteristics in a System of Systems Agent-based Survivability Simulation-Intelligent Networks

    DTIC Science & Technology

    2014-10-17

    communication ), and those with â0â means no connectivity at all. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR...that two edges of the network with “1” have a crisp connectivity (and hence good communication ), and those with “0” means no connectivity at all. By...1” simply means that two edges of the network with “1” have a crisp connectivity (and hence good communication ), and those with “0” means no

  1. Management of dry eye disease.

    PubMed

    Lemp, Michael A

    2008-04-01

    The management of dry eye disease (DED) encompasses both pharmacologic and nonpharmacologic approaches, including avoidance of exacerbating factors, eyelid hygiene, tear supplementation, tear retention, tear stimulation, and anti-inflammatory agents. Artificial tears are the mainstay of DED therapy but, although they improve symptoms and objective findings, there is no evidence that they can resolve the underlying inflammation in DED. Topical corticosteroids are effective anti-inflammatory agents, but are not recommended for long-term use because of their adverse-effect profiles. Topical cyclosporine--currently the only pharmacologic treatment approved by the US Food and Drug Administration specifically for DED--is safe for long-term use and is disease-modifying rather than merely palliative. Treatment selection is guided primarily by DED severity. Recently published guidelines propose a severity classification based on clinical signs and symptoms, with treatment recommendations according to severity level.

  2. Computational Sensing and in vitro Classification of GMOs and Biomolecular Events

    DTIC Science & Technology

    2008-12-01

    COMPUTATIONAL SENSING AND IN VITRO CLASSIFICATION OF GMOs AND BIOMOLECULAR EVENTS Elebeoba May1∗, Miler T. Lee2†, Patricia Dolan1, Paul Crozier1...modified organisms ( GMOs ) in the pres- ence of non-lethal agents. Using an information and coding- theoretic framework we develop a de novo method for...high through- put screening, distinguishing genetically modified organisms ( GMOs ), molecular computing, differentiating biological mark- ers

  3. Development of a PET Prostate-Specific Membrane Antigen Imaging Agent: Preclinical Translation for Future Clinical Application

    DTIC Science & Technology

    2016-10-01

    small-molecule peptidomimetic imaging agents labeled with positron emitting fluorine- 18 . These data will enable the filing of an exploratory IND...outcome. 15. SUBJECT TERMS Prostate Cancer, Prostate Specific Membrane Antigen (PSMA), Fluorine- 18 , Molecular Imaging, Radiotracer, Automated...Synthesis, Phosphoramidate, Inhibitor, Peptide Mimic, Peptidomimetic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a

  4. Standoff detection and classification of bacteria by multispectral laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Duschek, Frank; Fellner, Lea; Gebert, Florian; Grünewald, Karin; Köhntopp, Anja; Kraus, Marian; Mahnke, Peter; Pargmann, Carsten; Tomaso, Herbert; Walter, Arne

    2017-04-01

    Biological hazardous substances such as certain fungi and bacteria represent a high risk for the broad public if fallen into wrong hands. Incidents based on bio-agents are commonly considered to have unpredictable and complex consequences for first responders and people. The impact of such an event can be minimized by an early and fast detection of hazards. The presented approach is based on optical standoff detection applying laser-induced fluorescence (LIF) on bacteria. The LIF bio-detector has been designed for outdoor operation at standoff distances from 20 m up to more than 100 m. The detector acquires LIF spectral data for two different excitation wavelengths (280 and 355 nm) which can be used to classify suspicious samples. A correlation analysis and spectral classification by a decision tree is used to discriminate between the measured samples. In order to demonstrate the capabilities of the system, suspensions of the low-risk and non-pathogenic bacteria Bacillus thuringiensis, Bacillus atrophaeus, Bacillus subtilis, Brevibacillus brevis, Micrococcus luteus, Oligella urethralis, Paenibacillus polymyxa and Escherichia coli (K12) have been investigated with the system, resulting in a discrimination accuracy of about 90%.

  5. 46 CFR 28.10 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bureau of Shipping (ABS) or a similar United States classification society, or an agent of the ABS or similar society; sections 4502 and 4506 which require safety equipment and operational stability for...

  6. 46 CFR 28.10 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Bureau of Shipping (ABS) or a similar United States classification society, or an agent of the ABS or similar society; sections 4502 and 4506 which require safety equipment and operational stability for...

  7. Matgéné: a program to develop job-exposure matrices in the general population in France.

    PubMed

    Févotte, Joëlle; Dananché, Brigitte; Delabre, Laurène; Ducamp, Stephane; Garras, Loïc; Houot, Marie; Luce, Danièle; Orlowski, Ewa; Pilorget, Corinne; Lacourt, Aude; Brochard, Patrick; Goldberg, Marcel; Imbernon, Ellen

    2011-10-01

    Matgéné is a program to develop job-exposure matrices (JEMs) adapted to the general population in France for the period since 1950. The aim is to create retrospective exposure assessment tools for estimating the prevalence of occupational exposure to various agents that can then be correlated to health-related parameters. JEMs were drawn up by a team of six industrial hygienists who based their assessments on available occupational measurement, economic and statistical data, and several thousand job descriptions from epidemiological studies performed in France since 1984. Each JEM is specific to one agent, assessing exposure for a set of homogeneous combinations (occupation × activity × period) according to two occupational classifications (ISCO 1968 and PCS 1994) and one economic activities classification (NAF 2000). The cells of the JEM carry an estimate of the probability and level of exposure. Level is estimated by the duration and intensity of exposure-linked tasks or by description of the tasks when exposure measurement data are lacking for the agent in question. The JEMs were applied to a representative sample of the French population in 2007, and prevalence for each exposure was estimated in various population groups. All documents and data are available on a dedicated website. By the end of 2010, 18 JEMs have been developed and eight are under development, concerning a variety of chemical agents: organic and mineral dust, mineral fibers, and solvents. By implementation in the French population, exposure prevalences were calculated at different dates and for complete careers, and attributable risk fractions were estimated for certain pathologies. Some of these results were validated by comparison with those of other programs. Initial Matgéné JEMs results are in agreement with the French and international literature, thus validating the methodology. Exposure estimates precision, however, vary between agents and according to the amount of exposure measurement data available. These JEMs are important epidemiological tools, and improving their quality will require investment in occupational health data harvesting, especially in the case of low-level exposures.

  8. [Viral biosafety, biosecurity, and bioterrorism].

    PubMed

    Garin, D

    2010-02-01

    Intentional release of infectious agents has always been considered as a possible weapon. Today this risk has expanded from use for wartime mass destruction to small-scale terrorist acts. Viruses, some of tropical origin, constitute a special biological hazard for several reasons: great infectious potential, adaptability to the host, difficulty for diagnosis in the hospital, and absence of specific treatment for the main agents involved. Handling of the dangerous biological agents requires special biocontainment laboratories equipped and classified according to increasing risk up to level 4. This article discusses the modalities of classification.

  9. Mass classification in mammography with multi-agent based fusion of human and machine intelligence

    NASA Astrophysics Data System (ADS)

    Xi, Dongdong; Fan, Ming; Li, Lihua; Zhang, Juan; Shan, Yanna; Dai, Gang; Zheng, Bin

    2016-03-01

    Although the computer-aided diagnosis (CAD) system can be applied for classifying the breast masses, the effects of this method on improvement of the radiologist' accuracy for distinguishing malignant from benign lesions still remain unclear. This study provided a novel method to classify breast masses by integrating the intelligence of human and machine. In this research, 224 breast masses were selected in mammography from database of DDSM with Breast Imaging Reporting and Data System (BI-RADS) categories. Three observers (a senior and a junior radiologist, as well as a radiology resident) were employed to independently read and classify these masses utilizing the Positive Predictive Values (PPV) for each BI-RADS category. Meanwhile, a CAD system was also implemented for classification of these breast masses between malignant and benign. To combine the decisions from the radiologists and CAD, the fusion method of the Multi-Agent was provided. Significant improvements are observed for the fusion system over solely radiologist or CAD. The area under the receiver operating characteristic curve (AUC) of the fusion system increased by 9.6%, 10.3% and 21% compared to that of radiologists with senior, junior and resident level, respectively. In addition, the AUC of this method based on the fusion of each radiologist and CAD are 3.5%, 3.6% and 3.3% higher than that of CAD alone. Finally, the fusion of the three radiologists with CAD achieved AUC value of 0.957, which was 5.6% larger compared to CAD. Our results indicated that the proposed fusion method has better performance than radiologist or CAD alone.

  10. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of these agents. International treaties limiting development and proliferation of weapons and continuing development of defense strategies and safe guards against agents of concern are important elements of plans for eliminating this threat.

  11. Abuse-deterrent formulations: part 1 - development of a formulation-based classification system.

    PubMed

    Mastropietro, David J; Omidian, Hossein

    2015-02-01

    Strategies have been implemented to decrease the large proportion of individuals misusing abusable prescription medications. Abuse-deterrent formulations (ADFs) have been grown to incorporate many different technologies that still lack a systematic naming and organizational nomenclature. Without a proper classification system, it has been challenging to properly identify ADFs, study and determine common traits or characteristics and simplify communication within the field. This article introduces a classification system for all ADF approaches and examines the physical, chemical and pharmacological characteristics of a formulation by placing them into primary, secondary and tertiary categories. Primary approaches block tampering done directly to the product. Secondary approaches work in vivo after the product is administered. Tertiary approaches use materials that discourage abuse but do not stop tampering. Part 2 of this article discusses proprietary technologies, patents and products utilizing primary approaches. Drug products using opioid antagonists and aversive agents have been seen over the past few decades to discourage primarily overuse and injection. However, innovation in formulation development has introduced products capable of deterring multiple forms of tampering and abuse. Often, this is accomplished using known excipients and manufacturing methods that are repurposed to prevent crushing, extraction and syringeability.

  12. On the International Agency for Research on Cancer classification of glyphosate as a probable human carcinogen.

    PubMed

    Tarone, Robert E

    2018-01-01

    The recent classification by International Agency for Research on Cancer (IARC) of the herbicide glyphosate as a probable human carcinogen has generated considerable discussion. The classification is at variance with evaluations of the carcinogenic potential of glyphosate by several national and international regulatory bodies. The basis for the IARC classification is examined under the assumptions that the IARC criteria are reasonable and that the body of scientific studies determined by IARC staff to be relevant to the evaluation of glyphosate by the Monograph Working Group is sufficiently complete. It is shown that the classification of glyphosate as a probable human carcinogen was the result of a flawed and incomplete summary of the experimental evidence evaluated by the Working Group. Rational and effective cancer prevention activities depend on scientifically sound and unbiased assessments of the carcinogenic potential of suspected agents. Implications of the erroneous classification of glyphosate with respect to the IARC Monograph Working Group deliberative process are discussed.

  13. The Microbial Rosetta Stone Database: A compilation of global and emerging infectious microorganisms and bioterrorist threat agents

    PubMed Central

    Ecker, David J; Sampath, Rangarajan; Willett, Paul; Wyatt, Jacqueline R; Samant, Vivek; Massire, Christian; Hall, Thomas A; Hari, Kumar; McNeil, John A; Büchen-Osmond, Cornelia; Budowle, Bruce

    2005-01-01

    Background Thousands of different microorganisms affect the health, safety, and economic stability of populations. Many different medical and governmental organizations have created lists of the pathogenic microorganisms relevant to their missions; however, the nomenclature for biological agents on these lists and pathogens described in the literature is inexact. This ambiguity can be a significant block to effective communication among the diverse communities that must deal with epidemics or bioterrorist attacks. Results We have developed a database known as the Microbial Rosetta Stone. The database relates microorganism names, taxonomic classifications, diseases, specific detection and treatment protocols, and relevant literature. The database structure facilitates linkage to public genomic databases. This paper focuses on the information in the database for pathogens that impact global public health, emerging infectious organisms, and bioterrorist threat agents. Conclusion The Microbial Rosetta Stone is available at . The database provides public access to up-to-date taxonomic classifications of organisms that cause human diseases, improves the consistency of nomenclature in disease reporting, and provides useful links between different public genomic and public health databases. PMID:15850481

  14. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  15. Taxonomic update on proposed nomenclature and classification changes for bacteria of medical importance, 2015.

    PubMed

    Janda, J Michael

    2016-10-01

    A key aspect of medical, public health, and diagnostic microbiology laboratories is the accurate and rapid reporting and communication regarding infectious agents of clinical significance. Microbial taxonomy in the age of molecular diagnostics and phylogenetics creates changes in taxonomy at a rapid rate further complicating this process. This update focuses on the description of new species and classification changes proposed in 2015. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Caries-removal effectiveness of a papain-based chemo-mechanical agent: A quantitative micro-CT study.

    PubMed

    Neves, Aline A; Lourenço, Roseane A; Alves, Haimon D; Lopes, Ricardo T; Primo, Laura G

    2015-01-01

    The aim of this study was to access the effectiveness and specificity of a papain-based chemo-mechanical caries-removal agent in providing minimum residual caries after cavity preparation. In order to do it, extracted carious molars were selected and scanned in a micro-CT before and after caries-removal procedures with the papain-based gel. Similar parameters for acquisition and reconstruction of the image stacks were used between the scans. After classification of the dentin substrate based on mineral density intervals and establishment of a carious tissue threshold, volumetric parameters related to effectiveness (mineral density of removed dentin volume and residual dentin tissue) and specificity (relation between carious dentin in removed volume and initial caries) of this caries-removal agent were obtained. In general, removed dentin volume was similar or higher than the initial carious volume, indicating that the method was able to effectively remove dentin tissue. Samples with an almost perfect accuracy in carious dentin removal also showed an increased removal of caries-affected tissue. On the contrary, less or no affected dentin was removed in samples where some carious tissue was left in residual dentin. Mineral density values in residual dentin were always higher or similar to the threshold for mineral density values in carious dentin. In conclusion, the papain-based gel was effective in removing carious dentin up to a conservative in vitro threshold. Lesion characteristics, such as activity and morphology of enamel lesion, may also influence caries-removal properties of the method. © Wiley Periodicals, Inc.

  17. Free radicals, reactive oxygen species, oxidative stress and its classification.

    PubMed

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. A Systematic Literature Review of Agents Applied in Healthcare.

    PubMed

    Isern, David; Moreno, Antonio

    2016-02-01

    Intelligent agents and healthcare have been intimately linked in the last years. The intrinsic complexity and diversity of care can be tackled with the flexibility, dynamics and reliability of multi-agent systems. The purpose of this review is to show the feasibility of applying intelligent agents in the healthcare domain and use the findings to provide a discussion of current trends and devise future research directions. A review of the most recent literature (2009-2014) of applications of agents in healthcare is discussed, and two classifications considering the main goal of the health systems as well as the main actors involved have been investigated. This review shows that the number of published works exhibits a growing interest of researchers in this field in a wide range of applications.

  19. A Diversified Investment Strategy Using Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro; Belo, Orlando

    In a previously published article, we presented an architecture for implementing agents with the ability to trade autonomously in the Forex market. At the core of this architecture is an ensemble of classification and regression models that is used to predict the direction of the price of a currency pair. In this paper, we will describe a diversified investment strategy consisting of five agents which were implemented using that architecture. By simulating trades with 18 months of out-of-sample data, we will demonstrate that data mining models can produce profitable predictions, and that the trading risk can be diminished through investment diversification.

  20. Adult Status Epilepticus: A Review of the Prehospital and Emergency Department Management

    PubMed Central

    Billington, Michael; Kandalaft, Osama R.; Aisiku, Imoigele P.

    2016-01-01

    Seizures are a common presentation in the prehospital and emergency department setting and status epilepticus represents an emergency neurologic condition. The classification and various types of seizures are numerous. The objectives of this narrative literature review focuses on adult patients with a presentation of status epilepticus in the prehospital and emergency department setting. In summary, benzodiazepines remain the primary first line therapeutic agent in the management of status epilepticus, however, there are new agents that may be appropriate for the management of status epilepticus as second- and third-line pharmacological agents. PMID:27563928

  1. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  2. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents.

    PubMed

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S

    2012-08-01

    The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  4. Differential diagnosis of the scalp hair folliculitis.

    PubMed

    Lugović-Mihić, Liborija; Barisić, Freja; Bulat, Vedrana; Buljan, Marija; Situm, Mirna; Bradić, Lada; Mihić, Josip

    2011-09-01

    Scalp hair folliculitis is a relatively common condition in dermatological practice and a major diagnostic and therapeutic challenge due to the lack of exact guidelines. Generally, inflammatory diseases of the pilosebaceous follicle of the scalp most often manifest as folliculitis. There are numerous infective agents that may cause folliculitis, including bacteria, viruses and fungi, as well as many noninfective causes. Several noninfectious diseases may present as scalp hair folliculitis, such as folliculitis decalvans capillitii, perifolliculitis capitis abscendens et suffodiens, erosive pustular dermatitis, lichen planopilaris, eosinophilic pustular folliculitis, etc. The classification of folliculitis is both confusing and controversial. There are many different forms of folliculitis and several classifications. According to the considerable variability of histologic findings, there are three groups of folliculitis: infectious folliculitis, noninfectious folliculitis and perifolliculitis. The diagnosis of folliculitis occasionally requires histologic confirmation and cannot be based solely on clinical appearance of scalp lesions. This article summarizes prominent variants of inflammatory diseases of the scalp hair follicle with differential diagnosis and appertaining histological features.

  5. Cutaneous Lupus Erythematosus: Diagnosis and treatment

    PubMed Central

    Okon, Lauren G.; Werth, Victoria P.

    2013-01-01

    Cutaneous lupus erythematosus encompasses a wide range of dermatologic manifestations, which may or may not be associated with the development of systemic disease. Cutaneous lupus is divided into several subtypes, including acute cutaneous lupus erythematosus, subacute cutaneous lupus erythematosus, and chronic cutaneous lupus erythematosus. Chronic cutaneous lupus erythematosus includes discoid lupus erythematosus, lupus erythematosus profundus, chilblain cutaneous lupus, and lupus tumidus. Diagnosis of these diseases requires proper classification of the subtype, through a combination of physical exam, laboratory studies, histology, antibody serology, and occasionally direct immunofluorescence, while ensuring to exclude systemic disease. Treatment of cutaneous lupus consists of patient education on proper sun protection along with appropriate topical and systemic agents. Systemic agents are indicated in cases of widespread, scarring, or treatment-refractory disease. In this review, we discuss issues in classification and diagnosis of the various subtypes of CLE, as well as provide an update on therapeutic management. PMID:24238695

  6. Prediction of lithium response in first-episode mania using the LITHium Intelligent Agent (LITHIA): Pilot data and proof-of-concept.

    PubMed

    Fleck, David E; Ernest, Nicholas; Adler, Caleb M; Cohen, Kelly; Eliassen, James C; Norris, Matthew; Komoroski, Richard A; Chu, Wen-Jang; Welge, Jeffrey A; Blom, Thomas J; DelBello, Melissa P; Strakowski, Stephen M

    2017-06-01

    Individualized treatment for bipolar disorder based on neuroimaging treatment targets remains elusive. To address this shortcoming, we developed a linguistic machine learning system based on a cascading genetic fuzzy tree (GFT) design called the LITHium Intelligent Agent (LITHIA). Using multiple objectively defined functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ( 1 H-MRS) inputs, we tested whether LITHIA could accurately predict the lithium response in participants with first-episode bipolar mania. We identified 20 subjects with first-episode bipolar mania who received an adequate trial of lithium over 8 weeks and both fMRI and 1 H-MRS scans at baseline pre-treatment. We trained LITHIA using 18 1 H-MRS and 90 fMRI inputs over four training runs to classify treatment response and predict symptom reductions. Each training run contained a randomly selected 80% of the total sample and was followed by a 20% validation run. Over a different randomly selected distribution of the sample, we then compared LITHIA to eight common classification methods. LITHIA demonstrated nearly perfect classification accuracy and was able to predict post-treatment symptom reductions at 8 weeks with at least 88% accuracy in training and 80% accuracy in validation. Moreover, LITHIA exceeded the predictive capacity of the eight comparator methods and showed little tendency towards overfitting. The results provided proof-of-concept that a novel GFT is capable of providing control to a multidimensional bioinformatics problem-namely, prediction of the lithium response-in a pilot data set. Future work on this, and similar machine learning systems, could help assign psychiatric treatments more efficiently, thereby optimizing outcomes and limiting unnecessary treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Classification of the micro and nanoparticles and biological agents by neural network analysis of the parameters of optical resonance of whispering gallery mode in dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas

    2011-07-01

    A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.

  8. Chemical warfare agents: their past and continuing threat and evolving therapies. Part I of II.

    PubMed

    Smith, Kathleen J; Skelton, Henry

    2003-01-01

    Chemical warfare agents are potentially accessible to even underdeveloped nations because they are easily and inexpensively produced. This means that they are ideal for use by terrorists and in military operations against civilian populations and troops. In terms of cutaneous injury, vesicants-mainly sulfur mustard-are the most significant chemical warfare agents. Advances in understanding the pathophysiology of the lesions produced by sulfur mustard have led to the research and development of barrier creams as well as pre- and post-exposure therapies to moderate the damage and accelerate healing. Part I of this paper will discuss the history and classification of chemical agents; Part II, which will appear in the September/October 2003 issue of SKINmed, will discuss characteristic manifestations of exposure to chemical agents, as well as prevention and therapy.

  9. Treatment Response and Outcomes of Grade 3 Pancreatic Neuroendocrine Neoplasms Based on Morphology: Well Differentiated Versus Poorly Differentiated.

    PubMed

    Raj, Nitya; Valentino, Emily; Capanu, Marinela; Tang, Laura H; Basturk, Olca; Untch, Brian R; Allen, Peter J; Klimstra, David S; Reidy-Lagunes, Diane

    2017-03-01

    Emerging data suggest that not all grade 3 (G3) pancreatic neuroendocrine neoplasms (panNENs) behave the same; tumor differentiation may predict outcome. Patients with G3 panNENs treated at our institution between 1999 and 2014 were identified. Demographics, response to therapy, and overall survival were determined. Forty-five patients were identified, 16 with G3 well differentiated pancreatic neuroendocrine tumors (WD-panNETs) and 29 with poorly differentiated neuroendocrine carcinomas (PDNEC). Median overall survival in G3 WD-panNET patients was 52.2 months (95% confidence interval, 19.3-86.9 months) compared with 10.1 months (95% confidence interval, 6.9-12.4 months) in PDNEC patients (P = 0.0009). Response rate to platinum agents was 10% in G3 WD-panNETs and 37% in PDNEC. Response rate to alkylating agents was 50% in G3 WD-panNETs and 50% in PDNEC. Both G3 WD-panNETs and PDNEC responded to platinum and alkylating agents. Overall survival was significantly greater in G3 WD-panNETs compared with PDNEC. These findings challenge current classification and suggest that G3 panNENs should be classified by morphology.

  10. Classifying Chinese Questions Related to Health Care Posted by Consumers Via the Internet.

    PubMed

    Guo, Haihong; Na, Xu; Hou, Li; Li, Jiao

    2017-06-20

    In question answering (QA) system development, question classification is crucial for identifying information needs and improving the accuracy of returned answers. Although the questions are domain-specific, they are asked by non-professionals, making the question classification task more challenging. This study aimed to classify health care-related questions posted by the general public (Chinese speakers) on the Internet. A topic-based classification schema for health-related questions was built by manually annotating randomly selected questions. The Kappa statistic was used to measure the interrater reliability of multiple annotation results. Using the above corpus, we developed a machine-learning method to automatically classify these questions into one of the following six classes: Condition Management, Healthy Lifestyle, Diagnosis, Health Provider Choice, Treatment, and Epidemiology. The consumer health question schema was developed with a four-hierarchical-level of specificity, comprising 48 quaternary categories and 35 annotation rules. The 2000 sample questions were coded with 2000 major codes and 607 minor codes. Using natural language processing techniques, we expressed the Chinese questions as a set of lexical, grammatical, and semantic features. Furthermore, the effective features were selected to improve the question classification performance. From the 6-category classification results, we achieved an average precision of 91.41%, recall of 89.62%, and F 1 score of 90.24%. In this study, we developed an automatic method to classify questions related to Chinese health care posted by the general public. It enables Artificial Intelligence (AI) agents to understand Internet users' information needs on health care. ©Haihong Guo, Xu Na, Li Hou, Jiao Li. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.06.2017.

  11. Diagnosis and treatment of dyspeptic patients in Japan.

    PubMed

    Manabe, Noriaki; Haruma, Ken

    2011-04-01

    Although functional gastrointestinal (GI) disorders has been paid more attention recently in Japan, similar to Western countries, the clinical characteristics of dyspeptic patients, current diagnostic approach to dyspeptic patients and current standard treatments for dyspeptic patients are not well known in Japan. This review, in the most part, summarizes two topics about Japanese dyspeptic patients. The first topic is the pros and cons of the diagnosis of Japanese dyspeptic patients using Rome III classification on the basis of our data and the second topic deals with standard treatments for dyspeptic patients-especially by primary care doctors in Japan. We conducted a PubMed search using the following key words alone or in combination: functional dyspepsia (FD), medical treatment, Rome III classification and Japanese. The Rome III classification for FD does not adequately identify a large proportion of Japanese dyspeptic patients, primarily due to their earlier presentation for medical evaluation. There are many kinds of options for the treatment of FD in Japan: proton-pump inhibitors, histamine H(2) receptor antagonists, mucoprotective agents, Japanese traditional herbal medicines, Helicobacter pylori eradication therapy and prokinetics. Under the current situation, Japanese primary care doctors choose drugs according to each subtype of FD, which means that they prescribe medicine according to the pathogenesis of each patient. While the Rome III classification seems logical, some aspects need further evaluation for Japanese dyspeptic patients. Japanese primary care doctors choose drugs appropriately based on the pathogenesis of FD. However, efforts to further elucidate underlying pathophysiologic mechanisms and identify the appropriate patient population using modified Rome classification will be required. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  12. Analysis of trichoscopic signs observed in 24 patients presenting tinea capitis: Hypotheses based on physiopathology and proposed new classification.

    PubMed

    Bourezane, Y; Bourezane, Y

    Trichoscopy (hair dermoscopy) is a non-invasive and very useful technique for the diagnosis and follow-up of hair and scalp disorders. In tinea capitis, specific aspects of the hair shaft have been described, with the main ones being: comma hair, corkscrew hair, bar code-like hair (BCH) and zigzag hair (ZZH). Herein we report on a retrospective study of 24 patients with tinea capitis (TC). All patients underwent trichoscopic examination and mycological culture. Trichoscopy was abnormal in all 24 patients showing hair-shaft abnormalities. We observed three types of images depending on the nature and the mechanism of infection and discuss the different trichoscopic aspects of the hair shaft (comma hair, corkscrew hair, bar code-like hair, zigzag hair, broken hair and black dots) resulting from 3 mechanisms of penetration of the fungus in the hair shaft (endothrix, ectothrix and ectothrix-endothrix). All patients had positive mycological cultures: 15 with trichophytic TC (8 with Trichophyton tonsurans, 5 with T. soudanense and 2 with T. verrucosum) and 9 microsporic TC (7 with Microsporum audouini, and 2 with M. canis). We propose for the first time, to our knowledge, a classification of trichoscopic signs of TC. This classification will enable rapid diagnosis and prediction of the nature of the fungus before mycological culture. Our study shows the importance of trichoscopy in the diagnosis and monitoring of TC as well as its very good correlation with mycological culture. We propose a new classification of trichoscopic signs dependent on the nature of the mycological agent and the mechanism of infection. Further prospective studies with more patients are needed to confirm this classification. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children.

    PubMed

    Higgins, L J; Koshy, J; Mitchell, S E; Weiss, C R; Carson, K A; Huisman, T A G M; Tekes, A

    2016-01-01

    To evaluate the relative accuracy of contrast-enhanced time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced magnetic resonance imaging (MRI) following International Society for the Study of Vascular Anomalies updated 2014-based classification of soft-tissue vascular anomalies in the head and neck in children. Time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced MRI of children with diagnosis of soft-tissue vascular anomalies in the head and neck referred for MRI between 2008 and 2014 were retrospectively reviewed. Forty-seven children (0-18 years) were evaluated. Two paediatric neuroradiologists evaluated time-resolved MRA and conventional MRI in two different sessions (30 days apart). Blood-pool endovascular MRI contrast agent gadofosveset trisodium was used. The present cohort had the following diagnoses: infantile haemangioma (n=6), venous malformation (VM; n=23), lymphatic malformation (LM; n=16), arteriovenous malformation (AVM; n=2). Time-resolved MRA alone accurately classified 38/47 (81%) and conventional MRI 42/47 (89%), respectively. Although time-resolved MRA alone is slightly superior to conventional MRI alone for diagnosis of infantile haemangioma, conventional MRI is slightly better for diagnosis of venous and LMs. Neither time-resolved MRA nor conventional MRI was sufficient for accurate diagnosis of AVM in this cohort. Conventional MRI combined with time-resolved MRA accurately classified 44/47 cases (94%). Time-resolved MRA using gadofosveset trisodium can accurately classify soft-tissue vascular anomalies in the head and neck in children. The addition of time-resolved MRA to existing conventional MRI protocols provides haemodynamic information, assisting the diagnosis of vascular anomalies in the paediatric population at one-third of the dose of other MRI contrast agents. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Chemical terrorism for the intensivist.

    PubMed

    Chalela, Julio A; Burnett, Thomas

    2012-05-01

    The use of chemical agents for terrorist attacks or military warfare is a major concern at the present time. Chemical agents can cause significant morbidity, are relatively inexpensive, and are easy to store and use. Weaponization of chemical agents is only limited by the physicochemical properties of some agents. Recent incidents involving toxic industrial chemicals and chemical terrorist attacks indicate that critical care services are frequently utilized. For obvious reasons, the critical care literature on chemical terrorism is scarce. This article reviews the clinical aspects of diagnosing and treating victims of chemical terrorism while emphasizing the critical care management. The intensivist needs to be familiar with the chemical agents that could be used in a terrorist attack. The military classification divides agents into lung agents, blood agents, vesicants, and nerve agents. Supportive critical care is the cornerstone of treatment for most casualties, and dramatic recovery can occur in many cases. Specific antidotes are available for some agents, but even without the antidote, aggressive intensive care support can lead to favorable outcome in many cases. Critical care and emergency services can be overwhelmed by a terrorist attack as many exposed but not ill will seek care.

  15. Application of foodborne disease outbreak data in the development and maintenance of HACCP systems.

    PubMed

    Panisello, P J; Rooney, R; Quantick, P C; Stanwell-Smith, R

    2000-09-10

    Five-hundred and thirty general foodborne outbreaks of food poisoning reported in England and Wales between 1992 and 1996 were reviewed to study their application to the development and maintenance of HACCP systems. Retrospective investigations of foodborne disease outbreaks provided information on aetiological agents, food vehicles and factors that contributed to the outbreaks. Salmonella spp. and foods of animal origin (red meat, poultry and seafood) were most frequently associated with outbreaks during this period. Improper cooking, inadequate storage, cross-contamination and use of raw ingredients in the preparation of food were the most common factors contributing to outbreaks. Classification and cross tabulation of surveillance information relating to aetiological agents, food vehicles and contributory factors facilitates hazard analysis. In forming control measures and their corresponding critical limits, this approach focuses monitoring on those aspects that are critical to the safety of the product. Incorporation of epidemiological data in the documentation of HACCP systems provides assurance that the system is based on the best scientific information available.

  16. A Review of Norms and Normative Multiagent Systems

    PubMed Central

    Mahmoud, Moamin A.; Ahmad, Mohd Sharifuddin; Mustapha, Aida

    2014-01-01

    Norms and normative multiagent systems have become the subjects of interest for many researchers. Such interest is caused by the need for agents to exploit the norms in enhancing their performance in a community. The term norm is used to characterize the behaviours of community members. The concept of normative multiagent systems is used to facilitate collaboration and coordination among social groups of agents. Many researches have been conducted on norms that investigate the fundamental concepts, definitions, classification, and types of norms and normative multiagent systems including normative architectures and normative processes. However, very few researches have been found to comprehensively study and analyze the literature in advancing the current state of norms and normative multiagent systems. Consequently, this paper attempts to present the current state of research on norms and normative multiagent systems and propose a norm's life cycle model based on the review of the literature. Subsequently, this paper highlights the significant areas for future work. PMID:25110739

  17. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy

    PubMed Central

    Espinoza, Jaime A.; Weber, Helga; García, Patricia; Nervi, Bruno; Garrido, Marcelo; Corvalán, Alejandro H.; Roa, Juan Carlos; Bizama, Carolina

    2015-01-01

    Gastric cancer (GC) is the third leading cause of cancer mortality worldwide. Although surgical resection is a potentially curative approach for localized cases of GC, most cases of GC are diagnosed in an advanced, non-curable stage and the response to traditional chemotherapy is limited. Fortunately, recent advances in our understanding of the molecular mechanisms that mediate GC hold great promise for the development of more effective treatment strategies. In this review, an overview of the morphological classification, current treatment approaches, and molecular alterations that have been characterized for GC are provided. In particular, the most recent molecular classification of GC and alterations identified in relevant signaling pathways, including ErbB, VEGF, PI3K/AKT/mTOR, and HGF/MET signaling pathways, are described, as well as inhibitors of these pathways. An overview of the completed and active clinical trials related to these signaling pathways are also summarized. Finally, insights regarding emerging stem cell pathways are described, and may provide additional novel markers for the development of therapeutic agents against GC. The development of more effective agents and the identification of biomarkers that can be used for the diagnosis, prognosis, and individualized therapy for GC patients, have the potential to improve the efficacy, safety, and cost-effectiveness for GC treatments. PMID:26267324

  18. 28 CFR 527.31 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Procedures. 527.31 Section 527.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER TRANSFERS Transfer of Inmates to State Agents for Production on State Writs § 527.31 Procedures...

  19. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive—a Laboratory and Clinical Perspective

    PubMed Central

    Spotnitz, William D.

    2014-01-01

    Background. Fibrin sealant became the first modern era material approved as a hemostat in the United States in 1998. It is the only agent presently approved as a hemostat, sealant, and adhesive by the Food and Drug Administration (FDA). The product is now supplied as patches in addition to the original liquid formulations. Both laboratory and clinical uses of fibrin sealant continue to grow. The new literature on this material also continues to proliferate rapidly (approximately 200 papers/year). Methods. An overview of current fibrin sealant products and their approved uses and a comprehensive PubMed based review of the recent literature (February 2012, through March 2013) on the laboratory and clinical use of fibrin sealant are provided. Product information is organized into sections based on a classification system for commercially available materials. Publications are presented in sections based on both laboratory research and clinical topics are listed in order of decreasing frequency. Results. Fibrin sealant remains useful hemostat, sealant, and adhesive. New formulations and applications continue to be developed. Conclusions. This agent remains clinically important with the recent introduction of new commercially available products. Fibrin sealant has multiple new uses that should result in further improvements in patient care. PMID:24729902

  20. MATline: a job-exposure matrix for carcinogenic chemicals.

    PubMed

    Gilardi, Luisella; Falcone, Umberto; Santoro, Silvano; Coffano, Elena

    2008-01-01

    MATline is a tool that can be used to predict which industrial processes can be expected to involve the use of a substance that is considered carcinogenic as documented in the literature. The database includes agents carrying risk phrases R45, R49 and R40 according to the method of classification adopted by the EU and/or agents in categories 1, 2A and 2B as classified by the International Agency for Research on Cancer (IARC). Each agent is associated with a list of industrial processes coded according to the tariff headings used by the National Institute of Insurance against Occupational Injuries and Diseases (Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, INAIL). The main sources of information are the IARC Monographs and databases available through the National Library of Medicine's TOXNET portal. The matrix currently includes 600 carcinogenic agents, 23 classes of agents and some 7000 links between agents and industrial processes. MATline can be viewed on the www.dors.it website.

  1. 2D- and 3D-quantitative structure-activity relationship studies for a series of phenazine N,N'-dioxide as antitumour agents.

    PubMed

    Cunha, Jonathan Da; Lavaggi, María Laura; Abasolo, María Inés; Cerecetto, Hugo; González, Mercedes

    2011-12-01

    Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r² = 0.755, q² = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r² = 0.757, q² = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r² = 0.736, q² = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r² = 0.858, q² = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency. © 2011 John Wiley & Sons A/S.

  2. A cross-cultural analysis of posthumous reproduction: The significance of the gender and margins-of-life perspectives.

    PubMed

    Hashiloni-Dolev, Yael; Schicktanz, Silke

    2017-06-01

    The scholarly discussion of posthumous reproduction (PHR) focuses on informed consent and the welfare of the future child, for the most part overlooking cultural differences between societies. Based on a cross-cultural comparison of legal and regulatory documents, analysis of pivotal cases and study of scholarly and media discussions in Israel and Germany, this paper analyses the relevant ethical and policy issues, and questions how cultural differences shape the practice of PHR. The findings challenge the common classifications of PHR by highlighting the gender perspective and adding brain-dead pregnant women to the debate. Based on this study's findings, four neglected cultural factors affecting social attitudes towards PHR are identified: (i) the relationship between the pregnant woman and her future child; (ii) what constitutes the beginning of life; (iii) what constitutes dying; and (iv) the social agent(s) seeking to have the future child. The paper argues that PHR can be better understood by adding the gender and margins-of-life perspectives, and that future ethical and practical discussions of this issue could benefit from the criteria emerging from this cross-cultural analysis.

  3. Advancements in Pharmacotherapy for Angina

    PubMed Central

    Jain, Ankur; Elgendy, Islam Y.; Al-Ani, Mohammad; Agarwal, Nayan; Pepine, Carl J.

    2017-01-01

    Introduction Angina pectoris is the most prevalent symptomatic manifestation of ischemic heart disease, frequently leads to a poor quality of life, and is a major cause of medical resource consumption. Since the early descriptions of nitrite and nitrate in the 19th century, there has been considerable advancement in the pharmacologic management of angina. Areas covered Management of chronic angina is often challenging for clinicians. Despite introduction of several pharmacological agents in last few decades, a significant proportion of patients continue to experience symptoms (i.e., refractory angina) with subsequent disability. For the purpose of this review, we searched PubMed and Cochrane databases from inception to August 2016 for the most clinically relevant publications that guide current practice in angina therapy and its development. In this article, we briefly review the pathophysiology of angina and mechanism-based classification of current therapy. This is followed by evidence-based insight into the traditional and novel pharmacotherapeutic agents, highlighting their clinical usefulness. Expert opinion Considering the wide array of available therapies with different mechanism efficacy and limiting factors, a personalized approach is essential, particularly for patients with refractory angina. Ongoing research with novel pharmacologic modalities is likely to provide new options for management of angina. PMID:28264619

  4. Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery

    PubMed Central

    Moran, Emilio Federico.

    2010-01-01

    High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433

  5. River reach classification for the Greater Mekong Region at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.

  6. Beyond Information Retrieval: Ways To Provide Content in Context.

    ERIC Educational Resources Information Center

    Wiley, Deborah Lynne

    1998-01-01

    Provides an overview of information retrieval from mainframe systems to Web search engines; discusses collaborative filtering, data extraction, data visualization, agent technology, pattern recognition, classification and clustering, and virtual communities. Argues that rather than huge data-storage centers and proprietary software, we need…

  7. Beyond crosswalks: reliability of exposure assessment following automated coding of free-text job descriptions for occupational epidemiology.

    PubMed

    Burstyn, Igor; Slutsky, Anton; Lee, Derrick G; Singer, Alison B; An, Yuan; Michael, Yvonne L

    2014-05-01

    Epidemiologists typically collect narrative descriptions of occupational histories because these are less prone than self-reported exposures to recall bias of exposure to a specific hazard. However, the task of coding these narratives can be daunting and prohibitively time-consuming in some settings. The aim of this manuscript is to evaluate the performance of a computer algorithm to translate the narrative description of occupational codes into standard classification of jobs (2010 Standard Occupational Classification) in an epidemiological context. The fundamental question we address is whether exposure assignment resulting from manual (presumed gold standard) coding of the narratives is materially different from that arising from the application of automated coding. We pursued our work through three motivating examples: assessment of physical demands in Women's Health Initiative observational study, evaluation of predictors of exposure to coal tar pitch volatiles in the US Occupational Safety and Health Administration's (OSHA) Integrated Management Information System, and assessment of exposure to agents known to cause occupational asthma in a pregnancy cohort. In these diverse settings, we demonstrate that automated coding of occupations results in assignment of exposures that are in reasonable agreement with results that can be obtained through manual coding. The correlation between physical demand scores based on manual and automated job classification schemes was reasonable (r = 0.5). The agreement between predictive probability of exceeding the OSHA's permissible exposure level for polycyclic aromatic hydrocarbons, using coal tar pitch volatiles as a surrogate, based on manual and automated coding of jobs was modest (Kendall rank correlation = 0.29). In the case of binary assignment of exposure to asthmagens, we observed that fair to excellent agreement in classifications can be reached, depending on presence of ambiguity in assigned job classification (κ = 0.5-0.8). Thus, the success of automated coding appears to depend on the setting and type of exposure that is being assessed. Our overall recommendation is that automated translation of short narrative descriptions of jobs for exposure assessment is feasible in some settings and essential for large cohorts, especially if combined with manual coding to both assess reliability of coding and to further refine the coding algorithm.

  8. Decoding motor responses from the EEG during altered states of consciousness induced by propofol

    NASA Astrophysics Data System (ADS)

    Blokland, Yvonne; Farquhar, Jason; Lerou, Jos; Mourisse, Jo; Scheffer, Gert Jan; van Geffen, Geert-Jan; Spyrou, Loukianos; Bruhn, Jörgen

    2016-04-01

    Objective. Patients undergoing general anesthesia may awaken and become aware of the surgical procedure. Due to neuromuscular blocking agents, patients could be conscious yet unable to move. Using brain-computer interface (BCI) technology, it may be possible to detect movement attempts from the EEG. However, it is unknown how an anesthetic influences the brain response to motor tasks. Approach. We tested the offline classification performance of a movement-based BCI in 12 healthy subjects at two effect-site concentrations of propofol. For each subject a second classifier was trained on the subject’s data obtained before sedation, then tested on the data obtained during sedation (‘transfer classification’). Main results. At concentration 0.5 μg ml-1, despite an overall propofol EEG effect, the mean single trial classification accuracy was 85% (95% CI 81%-89%), and 83% (79%-88%) for the transfer classification. At 1.0 μg ml-1, the accuracies were 81% (76%-86%), and 72% (66%-79%), respectively. At the highest propofol concentration for four subjects, unlike the remaining subjects, the movement-related brain response had been largely diminished, and the transfer classification accuracy was not significantly above chance. These subjects showed a slower and more erratic task response, indicating an altered state of consciousness distinct from that of the other subjects. Significance. The results show the potential of using a BCI to detect intra-operative awareness and justify further development of this paradigm. At the same time, the relationship between motor responses and consciousness and its clinical relevance for intraoperative awareness requires further investigation.

  9. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.

    2018-04-01

    The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.

  10. Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Qin, Xulei; Chen, Zhuo Georgia; Fei, Baowei

    2014-10-01

    Early detection of malignant lesions could improve both survival and quality of life of cancer patients. Hyperspectral imaging (HSI) has emerged as a powerful tool for noninvasive cancer detection and diagnosis, with the advantage of avoiding tissue biopsy and providing diagnostic signatures without the need of a contrast agent in real time. We developed a spectral-spatial classification method to distinguish cancer from normal tissue on hyperspectral images. We acquire hyperspectral reflectance images from 450 to 900 nm with a 2-nm increment from tumor-bearing mice. In our animal experiments, the HSI and classification method achieved a sensitivity of 93.7% and a specificity of 91.3%. The preliminary study demonstrated that HSI has the potential to be applied in vivo for noninvasive detection of tumors.

  11. Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor

    NASA Astrophysics Data System (ADS)

    Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi

    2017-12-01

    The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.

  12. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  13. 21 CFR 866.5510 - Immunoglobulins A, G, M, D, and E immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... antibodies) in serum. Measurement of these immunoglobulins aids in the diagnosis of abnormal protein metabolism and the body's lack of ability to resist infectious agents. (b) Classification. Class II...

  14. 21 CFR 866.5510 - Immunoglobulins A, G, M, D, and E immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... antibodies) in serum. Measurement of these immunoglobulins aids in the diagnosis of abnormal protein metabolism and the body's lack of ability to resist infectious agents. (b) Classification. Class II...

  15. 21 CFR 866.5510 - Immunoglobulins A, G, M, D, and E immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... antibodies) in serum. Measurement of these immunoglobulins aids in the diagnosis of abnormal protein metabolism and the body's lack of ability to resist infectious agents. (b) Classification. Class II...

  16. 21 CFR 866.5510 - Immunoglobulins A, G, M, D, and E immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological... antibodies) in serum. Measurement of these immunoglobulins aids in the diagnosis of abnormal protein metabolism and the body's lack of ability to resist infectious agents. (b) Classification. Class II...

  17. 21 CFR 884.5435 - Unscented menstrual pad.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... those with added antimicrobial agents or other drugs. (b) Classification. Class I (general controls... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Unscented menstrual pad. 884.5435 Section 884.5435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  18. Isolation and characterization of a novel Rickettsia species (Rickettsia asembonensis sp. nov.) obtained from cat fleas (Ctenocephalides felis).

    PubMed

    Maina, Alice N; Luce-Fedrow, Alison; Omulo, Sylvia; Hang, Jun; Chan, Teik-Chye; Ade, Fredrick; Jima, Dereje D; Ogola, Eric; Ge, Hong; Breiman, Robert F; Njenga, Moses K; Richards, Allen L

    2016-11-01

    A novel rickettsial agent, 'Candidatus Rickettsia asembonensis' strain NMRCiiT, was isolated from cat fleas, Ctenocephalides felis, from Kenya. Genotypic characterization of the new isolate based on sequence analysis of five rickettsial genes, rrs, gltA, ompA, ompB and sca4, indicated that this isolate clustered with Rickettsia felis URRWXCal2. The degree of nucleotide similarity demonstrated that isolate NMRCiiT belongs within the genus Rickettsia and fulfils the criteria for classification as a representative of a novel species. The name Rickettsia asembonensis sp. nov. is proposed, with NMRCiiT (=DSM 100172T=CDC CRIRC RAS001T=ATCC VR-1827T) as the type strain.

  19. Occupation and educational inequalities in laryngeal cancer: the use of a job index

    PubMed Central

    2013-01-01

    Background Previous studies tried to assess the association between socioeconomic status and laryngeal cancer. Alcohol and tobacco consumption explain already a large part of the social inequalities. Occupational exposures might explain a part of the remaining but the components and pathways of the socioeconomic contribution have yet to be fully disentangled. The aim of this study was to evaluate the role of occupation using different occupational indices, differentiating between physical, psycho-social and toxic exposures and trying to summarize the occupational burden into one variable. Methods A population-based case–control study conducted in Germany in 1998–2000 included 208 male cases and 702 controls. Information on occupational history, smoking, alcohol consumption and education was collected with face-to-face interviews. A recently developed job-classification index was used to account for the occupational burden. A sub-index focussed on jobs involving potentially carcinogenic agents (CAI) for the upper aero digestive tract. Results When adjusted for smoking and alcohol consumption, higher odds ratios (ORs) were found for lower education. This OR decreased after further adjustment using the physical and psycho-social job indices (OR = 3.2, 95%-CI: 1.5-6.8), similar to the OR using the sub-index CAI (OR = 3.0, 95%-CI: 1.4-6.5). Conclusions The use of an easily applicable control variable, simply constructed on standard occupational job classifications, provides the possibility to differentiate between educational and occupational contributions. Such an index might indirectly reflect the effect of carcinogenic agents, which are not collected in many studies. PMID:24246148

  20. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    PubMed

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  1. Cell-of-Origin in Diffuse Large B-Cell Lymphoma: Are the Assays Ready for the Clinic?

    PubMed

    Scott, David W

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma worldwide and consists of a heterogeneous group of cancers classified together on the basis of shared morphology, immunophenotype, and aggressive clinical behavior. It is now recognized that this malignancy comprises at least two distinct molecular subtypes identified by gene expression profiling: the activated B-cell-like (ABC) and the germinal center B-cell-like (GCB) groups-the cell-of-origin (COO) classification. These two groups have different genetic mutation landscapes, pathobiology, and outcomes following treatment. Evidence is accumulating that novel agents have selective activity in one or the other COO group, making COO a predictive biomarker. Thus, there is now a pressing need for accurate and robust methods to assign COO, to support clinical trials, and ultimately guide treatment decisions for patients. The "gold standard" methods for COO are based on gene expression profiling (GEP) of RNA from fresh frozen tissue using microarray technology, which is an impractical solution when formalin-fixed paraffin-embedded tissue (FFPET) biopsies are the standard diagnostic material. This review outlines the history of the COO classification before examining the practical implementation of COO assays applicable to FFPET biopsies. The immunohistochemistry (IHC)-based algorithms and gene expression-based assays suitable for the highly degraded RNA from FFPET are discussed. Finally, the technical and practical challenges that still need to be addressed are outlined before robust gene expression-based assays are used in the routine management of patients with DLBCL.

  2. The Iterated Classification Game: A New Model of the Cultural Transmission of Language

    PubMed Central

    Swarup, Samarth; Gasser, Les

    2010-01-01

    The Iterated Classification Game (ICG) combines the Classification Game with the Iterated Learning Model (ILM) to create a more realistic model of the cultural transmission of language through generations. It includes both learning from parents and learning from peers. Further, it eliminates some of the chief criticisms of the ILM: that it does not study grounded languages, that it does not include peer learning, and that it builds in a bias for compositional languages. We show that, over the span of a few generations, a stable linguistic system emerges that can be acquired very quickly by each generation, is compositional, and helps the agents to solve the classification problem with which they are faced. The ICG also leads to a different interpretation of the language acquisition process. It suggests that the role of parents is to initialize the linguistic system of the child in such a way that subsequent interaction with peers results in rapid convergence to the correct language. PMID:20190877

  3. The generalization ability of online SVM classification based on Markov sampling.

    PubMed

    Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang

    2015-03-01

    In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.

  4. Management of type-1 and type-2 diabetes by insulin injections in diabetology clinics - a scientific research review.

    PubMed

    Aziz, Kamran M A

    2012-05-01

    Better control of the diabetic metabolic state will prevent the diabetes complications. However in current clinical practice, it is sometimes difficult to achieve this goal. Additionally, physicians find themselves in an equivocal position to initiate insulin therapy, its selection, combining with Oral agents and further management. The current article was written to focus on diabetes pathogenesis at molecular level, its classification and management by insulin injections. Knowledge of basic biochemistry, pharmacology with kinetics of Insulin is essential for diabetes management. Nonetheless, it should be a priority to search for evidence based clinical methodologies for selecting the patients for initiating, modifying or combining the insulin therapy. Type-1 diabetic patients are best controlled on basal bolus insulin regimens. However in type-2 diabetes, metformin with lifestyle modifications should be the first line therapy, thereafter combined with oral hypoglycemic agents or shifting to insulin gradually if diabetes remains uncontrolled. Metformin is recommended to be prescribed with insulin as compared to oral hypoglycemic agents which should be discontinued while starting insulin. Monitoring the insulin therapy on regular visits to diabetologist and diabetes multidisciplinary team remains the integral part of diabetes management. The review also outlines relevant and recent insulin analogue patents for the management of Diabetes.

  5. EXTENDING AQUATIC CLASSIFICATION TO THE LANDSCAPE SCALE HYDROLOGY-BASED STRATEGIES

    EPA Science Inventory

    Aquatic classification of single water bodies (lakes, wetlands, estuaries) is often based on geologic origin, while stream classification has relied on multiple factors related to landform, geomorphology, and soils. We have developed an approach to aquatic classification based o...

  6. Molecular epidemiology of Oropouche virus, Brazil.

    PubMed

    Vasconcelos, Helena Baldez; Nunes, Márcio R T; Casseb, Lívia M N; Carvalho, Valéria L; Pinto da Silva, Eliana V; Silva, Mayra; Casseb, Samir M M; Vasconcelos, Pedro F C

    2011-05-01

    Oropouche virus (OROV) is the causative agent of Oropouche fever, an urban febrile arboviral disease widespread in South America, with >30 epidemics reported in Brazil and other Latin American countries during 1960-2009. To describe the molecular epidemiology of OROV, we analyzed the entire N gene sequences (small RNA) of 66 strains and 35 partial Gn (medium RNA) and large RNA gene sequences. Distinct patterns of OROV strain clustered according to N, Gn, and large gene sequences, which suggests that each RNA segment had a different evolutionary history and that the classification in genotypes must consider the genetic information for all genetic segments. Finally, time-scale analysis based on the N gene showed that OROV emerged in Brazil ≈223 years ago and that genotype I (based on N gene data) was responsible for the emergence of all other genotypes and for virus dispersal.

  7. Social skills interventions for individuals with autism: evaluation for evidence-based practices within a best evidence synthesis framework.

    PubMed

    Reichow, Brian; Volkmar, Fred R

    2010-02-01

    This paper presents a best evidence synthesis of interventions to increase social behavior for individuals with autism. Sixty-six studies published in peer-reviewed journals between 2001 and July 2008 with 513 participants were included. The results are presented by the age of the individual receiving intervention and by delivery agent of intervention. The findings suggest there is much empirical evidence supporting many different treatments for the social deficits of individuals with autism. Using the criteria of evidence-based practice proposed by Reichow et al. (Journal of Autism and Developmental Disorders, 38:1311-1318, 2008), social skills groups and video modeling have accumulated the evidence necessary for the classifications of established EBP and promising EBP, respectively. Recommendations for practice and areas of future research are provided.

  8. Social representations of biosecurity in nursing: occupational health and preventive care.

    PubMed

    Sousa, Álvaro Francisco Lopes de; Queiroz, Artur Acelino Francisco Luz Nunes; Oliveira, Layze Braz de; Moura, Maria Eliete Batista; Batista, Odinéa Maria Amorim; Andrade, Denise de

    2016-01-01

    to understand the biosecurity social representations by primary care nursing professionals and analyze how they articulate with quality of care. exploratory and qualitative research based on social representation theory. The study participants were 36 nursing workers from primary health care in a state capital in the Northeast region of Brazil. The data were analyzed by descending hierarchical classification. five classes were obtained: occupational accidents suffered by professionals; occupational exposure to biological agents; biosecurity management in primary health care; the importance of personal protective equipment; and infection control and biosecurity. the different positions taken by the professionals seem to be based on a field of social representations related to the concept of biosecurity, namely exposure to accidents and risks to which they are exposed. However, occupational accidents are reported as inherent to the practice.

  9. 29 CFR Appendix A to Subpart P of... - Soil Classification

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the particles are held together by a chemical agent, such as calcium carbonate, such that a hand-size sample cannot be crushed into powder or individual soil particles by finger pressure. Cohesive soil means... quantitative and qualitative information as may be necessary to identify properly the properties, factors, and...

  10. 28 CFR 527.30 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Purpose and scope. 527.30 Section 527.30 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER TRANSFERS Transfer of Inmates to State Agents for Production on State Writs § 527.30 Purpose and...

  11. 21 CFR 884.5460 - Scented or scented deodorized menstrual tampon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... menstrual tampons treated with added antimicrobial agents or other drugs. (b) Classification. Class II... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scented or scented deodorized menstrual tampon. 884.5460 Section 884.5460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  12. Extension of Companion Modeling Using Classification Learning

    NASA Astrophysics Data System (ADS)

    Torii, Daisuke; Bousquet, François; Ishida, Toru

    Companion Modeling is a methodology of refining initial models for understanding reality through a role-playing game (RPG) and a multiagent simulation. In this research, we propose a novel agent model construction methodology in which classification learning is applied to the RPG log data in Companion Modeling. This methodology enables a systematic model construction that handles multi-parameters, independent of the modelers ability. There are three problems in applying classification learning to the RPG log data: 1) It is difficult to gather enough data for the number of features because the cost of gathering data is high. 2) Noise data can affect the learning results because the amount of data may be insufficient. 3) The learning results should be explained as a human decision making model and should be recognized by the expert as being the result that reflects reality. We realized an agent model construction system using the following two approaches: 1) Using a feature selction method, the feature subset that has the best prediction accuracy is identified. In this process, the important features chosen by the expert are always included. 2) The expert eliminates irrelevant features from the learning results after evaluating the learning model through a visualization of the results. Finally, using the RPG log data from the Companion Modeling of agricultural economics in northeastern Thailand, we confirm the capability of this methodology.

  13. Annotation and prediction of stress and workload from physiological and inertial signals.

    PubMed

    Ghosh, Arindam; Danieli, Morena; Riccardi, Giuseppe

    2015-08-01

    Continuous daily stress and high workload can have negative effects on individuals' physical and mental well-being. It has been shown that physiological signals may support the prediction of stress and workload. However, previous research is limited by the low diversity of signals concurring to such predictive tasks and controlled experimental design. In this paper we present 1) a pipeline for continuous and real-life acquisition of physiological and inertial signals 2) a mobile agent application for on-the-go event annotation and 3) an end-to-end signal processing and classification system for stress and workload from diverse signal streams. We study physiological signals such as Galvanic Skin Response (GSR), Skin Temperature (ST), Inter Beat Interval (IBI) and Blood Volume Pulse (BVP) collected using a non-invasive wearable device; and inertial signals collected from accelerometer and gyroscope sensors. We combine them with subjects' inputs (e.g. event tagging) acquired using the agent application, and their emotion regulation scores. In our experiments we explore signal combination and selection techniques for stress and workload prediction from subjects whose signals have been recorded continuously during their daily life. The end-to-end classification system is described for feature extraction, signal artifact removal, and classification. We show that a combination of physiological, inertial and user event signals provides accurate prediction of stress for real-life users and signals.

  14. Classifications of Acute Scaphoid Fractures: A Systematic Literature Review.

    PubMed

    Ten Berg, Paul W; Drijkoningen, Tessa; Strackee, Simon D; Buijze, Geert A

    2016-05-01

    Background In the lack of consensus, surgeon-based preference determines how acute scaphoid fractures are classified. There is a great variety of classification systems with considerable controversies. Purposes The purpose of this study was to provide an overview of the different classification systems, clarifying their subgroups and analyzing their popularity by comparing citation indexes. The intention was to improve data comparison between studies using heterogeneous fracture descriptions. Methods We performed a systematic review of the literature based on a search of medical literature from 1950 to 2015, and a manual search using the reference lists in relevant book chapters. Only original descriptions of classifications of acute scaphoid fractures in adults were included. Popularity was based on citation index as reported in the databases of Web of Science (WoS) and Google Scholar. Articles that were cited <10 times in WoS were excluded. Results Our literature search resulted in 308 potentially eligible descriptive reports of which 12 reports met the inclusion criteria. We distinguished 13 different (sub) classification systems based on (1) fracture location, (2) fracture plane orientation, and (3) fracture stability/displacement. Based on citations numbers, the Herbert classification was most popular, followed by the Russe and Mayo classifications. All classification systems were based on plain radiography. Conclusions Most classification systems were based on fracture location, displacement, or stability. Based on the controversy and limited reliability of current classification systems, suggested research areas for an updated classification include three-dimensional fracture pattern etiology and fracture fragment mobility assessed by dynamic imaging.

  15. 7 CFR 27.36 - Classification and Micronaire determinations based on official standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification and Micronaire determinations based on... COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification and Micronaire Determinations § 27.36 Classification and Micronaire...

  16. 7 CFR 27.36 - Classification and Micronaire determinations based on official standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification and Micronaire determinations based on... COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification and Micronaire Determinations § 27.36 Classification and Micronaire...

  17. Quantitative CT analysis for the preoperative prediction of pathologic grade in pancreatic neuroendocrine tumors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayasree; Pulvirenti, Alessandra; Yamashita, Rikiya; Midya, Abhishek; Gönen, Mithat; Klimstra, David S.; Reidy, Diane L.; Allen, Peter J.; Do, Richard K. G.; Simpson, Amber L.

    2018-02-01

    Pancreatic neuroendocrine tumors (PanNETs) account for approximately 5% of all pancreatic tumors, affecting one individual per million each year.1 PanNETs are difficult to treat due to biological variability from benign to highly malignant, indolent to very aggressive. The World Health Organization classifies PanNETs into three categories based on cell proliferative rate, usually detected using the Ki67 index and cell morphology: low-grade (G1), intermediate-grade (G2) and high-grade (G3) tumors. Knowledge of grade prior to treatment would select patients for optimal therapy: G1/G2 tumors respond well to somatostatin analogs and targeted or cytotoxic drugs whereas G3 tumors would be targeted with platinum or alkylating agents.2, 3 Grade assessment is based on the pathologic examination of the surgical specimen, biopsy or ne-needle aspiration; however, heterogeneity in the proliferative index can lead to sampling errors.4 Based on studies relating qualitatively assessed shape and enhancement characteristics on CT imaging to tumor grade in PanNET,5 we propose objective classification of PanNET grade with quantitative analysis of CT images. Fifty-five patients were included in our retrospective analysis. A pathologist graded the tumors. Texture and shape-based features were extracted from CT. Random forest and naive Bayes classifiers were compared for the classification of G1/G2 and G3 PanNETs. The best area under the receiver operating characteristic curve (AUC) of 0:74 and accuracy of 71:64% was achieved with texture features. The shape-based features achieved an AUC of 0:70 and accuracy of 78:73%.

  18. Renoprotection and the Bardoxolone Methyl Story - Is This the Right Way Forward? A Novel View of Renoprotection in CKD Trials: A New Classification Scheme for Renoprotective Agents.

    PubMed

    Onuigbo, Macaulay

    2013-01-01

    In the June 2011 issue of the New England Journal of Medicine, the BEAM (Bardoxolone Methyl Treatment: Renal Function in CKD/Type 2 Diabetes) trial investigators rekindled new interest and also some controversy regarding the concept of renoprotection and the role of renoprotective agents, when they reported significant increases in the mean estimated glomerular filtration rate (eGFR) in diabetic chronic kidney disease (CKD) patients with an eGFR of 20-45 ml/min/1.73 m(2) of body surface area at enrollment who received the trial drug bardoxolone methyl versus placebo. Unfortunately, subsequent phase IIIb trials failed to show that the drug is a safe alternative renoprotective agent. Current renoprotection paradigms depend wholly and entirely on angiotensin blockade; however, these agents [angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)] have proved to be imperfect renoprotective agents. In this review, we examine the mechanistic limitations of the various previous randomized controlled trials on CKD renoprotection, including the paucity of veritable, elaborate and systematic assessment methods for the documentation and reporting of individual patient-level, drug-related adverse events. We review the evidence base for the presence of putative, multiple independent and unrelated pathogenetic mechanisms that drive (diabetic and non-diabetic) CKD progression. Furthermore, we examine the validity, or lack thereof, of the hyped notion that the blockade of a single molecule (angiotensin II), which can only antagonize the angiotensin cascade, would veritably successfully, consistently and unfailingly deliver adequate and qualitative renoprotection results in (diabetic and non-diabetic) CKD patients. We clearly posit that there is this overarching impetus to arrive at the inference that multiple, disparately diverse and independent pathways, including any veritable combination of the mechanisms that we examine in this review, and many more others yet to be identified, do concurrently and asymmetrically contribute to CKD initiation and propagation to end-stage renal disease (ESRD) in our CKD patients. We conclude that current knowledge of CKD initiation and progression to ESRD, the natural history of CKD and the impacts of acute kidney injury on this continuum remain in their infancy and call for more research. Finally, we suggest a new classification scheme for renoprotective agents: (1) the single-pathway blockers that block a single putative pathogenetic pathway involved in CKD progression, as typified by ACE inhibitors and/or ARBs, and (2) the multiple-pathway blockers that are able to block or antagonize the effects of multiple pathogenetic pathways through their ability to simultaneously block, downstream, the effects of several pathways or mechanisms of CKD to ESRD progression and could therefore concurrently interfere with several unrelated upstream pathways or mechanisms. We surmise that maybe the ideal and truly renoprotective agent, clearly a multiple-pathway blocker, is on the horizon. This calls for more research efforts from all.

  19. Renoprotection and the Bardoxolone Methyl Story – Is This the Right Way Forward? A Novel View of Renoprotection in CKD Trials: A New Classification Scheme for Renoprotective Agents

    PubMed Central

    Onuigbo, Macaulay

    2013-01-01

    In the June 2011 issue of the New England Journal of Medicine, the BEAM (Bardoxolone Methyl Treatment: Renal Function in CKD/Type 2 Diabetes) trial investigators rekindled new interest and also some controversy regarding the concept of renoprotection and the role of renoprotective agents, when they reported significant increases in the mean estimated glomerular filtration rate (eGFR) in diabetic chronic kidney disease (CKD) patients with an eGFR of 20-45 ml/min/1.73 m2 of body surface area at enrollment who received the trial drug bardoxolone methyl versus placebo. Unfortunately, subsequent phase IIIb trials failed to show that the drug is a safe alternative renoprotective agent. Current renoprotection paradigms depend wholly and entirely on angiotensin blockade; however, these agents [angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)] have proved to be imperfect renoprotective agents. In this review, we examine the mechanistic limitations of the various previous randomized controlled trials on CKD renoprotection, including the paucity of veritable, elaborate and systematic assessment methods for the documentation and reporting of individual patient-level, drug-related adverse events. We review the evidence base for the presence of putative, multiple independent and unrelated pathogenetic mechanisms that drive (diabetic and non-diabetic) CKD progression. Furthermore, we examine the validity, or lack thereof, of the hyped notion that the blockade of a single molecule (angiotensin II), which can only antagonize the angiotensin cascade, would veritably successfully, consistently and unfailingly deliver adequate and qualitative renoprotection results in (diabetic and non-diabetic) CKD patients. We clearly posit that there is this overarching impetus to arrive at the inference that multiple, disparately diverse and independent pathways, including any veritable combination of the mechanisms that we examine in this review, and many more others yet to be identified, do concurrently and asymmetrically contribute to CKD initiation and propagation to end-stage renal disease (ESRD) in our CKD patients. We conclude that current knowledge of CKD initiation and progression to ESRD, the natural history of CKD and the impacts of acute kidney injury on this continuum remain in their infancy and call for more research. Finally, we suggest a new classification scheme for renoprotective agents: (1) the single-pathway blockers that block a single putative pathogenetic pathway involved in CKD progression, as typified by ACE inhibitors and/or ARBs, and (2) the multiple-pathway blockers that are able to block or antagonize the effects of multiple pathogenetic pathways through their ability to simultaneously block, downstream, the effects of several pathways or mechanisms of CKD to ESRD progression and could therefore concurrently interfere with several unrelated upstream pathways or mechanisms. We surmise that maybe the ideal and truly renoprotective agent, clearly a multiple-pathway blocker, is on the horizon. This calls for more research efforts from all. PMID:23687511

  20. Poor concordance among nine immunohistochemistry classifiers of cell-of-origin for Diffuse Large B-cell Lymphoma: implications for therapeutic strategies

    PubMed Central

    Coutinho, Rita; Clear, Andrew James; Owen, Andrew; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Calaminici, Maria; Gribben, John G.

    2014-01-01

    Purpose The opportunity to improve therapeutic choices on the basis of molecular features of the tumour cells is on the horizon in Diffuse Large B-cell Lymphoma (DLBCL). Agents such as bortezomib exhibit selective activity against the poor outcome activated B-cell type DLBCL. In order for targeted therapies to succeed in this disease, robust strategies that segregate patients into molecular groups with high reliability are needed. While molecular studies are considered gold standard, several immunohistochemistry (IHC) algorithms have been published that claim to be able to stratify patients according to their cell-of-origin and to be relevant for patient outcome. However results are poorly reproducible by independent groups. Experimental design We investigated nine IHC algorithms for molecular classification in a dataset of DLBCL diagnostic biopsies, incorporating immunostaining for CD10, BCL6, BCL2, MUM1, FOXP1, GCET1 and LMO2. IHC profiles were assessed and agreed among three expert observers. A consensus matrix based on all scoring combinations and the number of subjects for each combination allowed to assess reliability. The survival impact of individual markers and classifiers was evaluated using Kaplan-Meier curves and the log-rank test. Results The concordance in patient’s classification across the different algorithms was low. Only 4% the tumors have been classified as GCB and 21% as ABC/non-GCB by all methods. None of the algorithms provided prognostic information in the R-CHOP treated cohort. Conclusion Further work is required to standardize IHC algorithms for DLBCL cell-of-origin classification for these to be considered reliable alternatives to molecular-based methods to be used for clinical decisions. PMID:24122791

  1. Poor concordance among nine immunohistochemistry classifiers of cell-of-origin for diffuse large B-cell lymphoma: implications for therapeutic strategies.

    PubMed

    Coutinho, Rita; Clear, Andrew James; Owen, Andrew; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; Gomes da Silva, Maria; Cabeçadas, José; Calaminici, Maria; Gribben, John G

    2013-12-15

    The opportunity to improve therapeutic choices on the basis of molecular features of the tumor cells is on the horizon in diffuse large B-cell lymphoma (DLBCL). Agents such as bortezomib exhibit selective activity against the poor outcome activated B-cell type (ABC) DLBCL. In order for targeted therapies to succeed in this disease, robust strategies that segregate patients into molecular groups with high reliability are needed. Although molecular studies are considered gold standard, several immunohistochemistry (IHC) algorithms have been published that claim to be able to stratify patients according to their cell-of-origin and to be relevant for patient outcome. However, results are poorly reproducible by independent groups. We investigated nine IHC algorithms for molecular classification in a dataset of DLBCL diagnostic biopsies, incorporating immunostaining for CD10, BCL6, BCL2, MUM1, FOXP1, GCET1, and LMO2. IHC profiles were assessed and agreed among three expert observers. A consensus matrix based on all scoring combinations and the number of subjects for each combination allowed us to assess reliability. The survival impact of individual markers and classifiers was evaluated using Kaplan-Meier curves and the log-rank test. The concordance in patient's classification across the different algorithms was low. Only 4% of the tumors have been classified as germinal center B-cell type (GCB) and 21% as ABC/non-GCB by all methods. None of the algorithms provided prognostic information in the R-CHOP (rituximab plus cyclophosphamide-adriamycin-vincristine-prednisone)-treated cohort. Further work is required to standardize IHC algorithms for DLBCL cell-of-origin classification for these to be considered reliable alternatives to molecular-based methods to be used for clinical decisions. ©2013 AACR.

  2. Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil.

    PubMed

    Fraga, Aline Padilha de; Gräf, Tiago; Pereira, Cleiton Schneider; Ikuta, Nilo; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2018-07-01

    Avian infectious bronchitis virus (IBV) is the etiological agent of a highly contagious disease, which results in severe economic losses to the poultry industry. The spike protein (S1 subunit) is responsible for the molecular diversity of the virus and many sero/genotypes are described around the world. Recently a new standardized classification of the IBV molecular diversity was conducted, based on phylogenetic analysis of the S1 gene sequences sampled worldwide. Brazil is one of the biggest poultry producers in the world and the present study aimed to review the molecular diversity and reconstruct the evolutionary history of IBV in the country. All IBV S1 gene sequences, with local and year of collection information available on GenBank, were retrieved. Phylogenetic analyses were carried out based on a maximum likelihood method for the classification of genotypes occurring in Brazil, according to the new classification. Bayesian phylogenetic analyses were performed with the Brazilian clade and related international sequences to determine the evolutionary history of IBV in Brazil. A total of 143 Brazilian sequences were classified as GI-11 and 46 as GI-1 (Mass). Within the GI-11 clade, we have identified a potential recombinant strain circulating in Brazil. Phylodynamic analysis demonstrated that IBV GI-11 lineage was introduced in Brazil in the 1950s (1951, 1917-1975 95% HPD) and population dynamics was mostly constant throughout the time. Despite the national vaccination protocols, our results show the widespread dissemination and maintenance of the IBV GI-11 lineage in Brazil and highlight the importance of continuous surveillance to evaluate the impact of currently used vaccine strains on the observed viral diversity of the country. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm.

    PubMed

    Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib

    2008-10-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.

  4. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    NASA Astrophysics Data System (ADS)

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, AdaBoost, and Decision Tree) and is a good technique for automatic classification of exoplanet-transit-like signal.

  5. Rule-based land use/land cover classification in coastal areas using seasonal remote sensing imagery: a case study from Lianyungang City, China.

    PubMed

    Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian

    2015-07-01

    Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.

  6. In-hospital mortality after pre-treatment with antiplatelet agents or oral anticoagulants and hematoma evacuation of intracerebral hematomas.

    PubMed

    Stein, Marco; Misselwitz, Björn; Hamann, Gerhard F; Kolodziej, Malgorzata; Reinges, Marcus H T; Uhl, Eberhard

    2016-04-01

    Pre-treatment with antiplatelet agents is described to be a risk factor for mortality after spontaneous intracerebral hemorrhage (ICH). However, the impact of antithrombotic agents on mortality in patients who undergo hematoma evacuation compared to conservatively treated patients with ICH remains controversial. This analysis is based on a prospective registry for quality assurance in stroke care in the State of Hesse, Germany. Patients' data were collected between January 2008 and December 2012. Only patients with the diagnosis of spontaneous ICH were included (International Classification of Diseases 10th Revision codes I61.0-I61.9). Predictors of in-hospital mortality were determined by univariate analysis. Predictors with P<0.1 were included in a binary logistic regression model. The binary logistic regression model was adjusted for age, initial Glasgow Coma Score (GCS), the presence of intraventricular hemorrhage (IVH), and pre-ICH disability prior to ictus. In 8,421 patients with spontaneous ICH, pre-treatment with oral anticoagulants or antiplatelet agents was documented in 16.3% and 25.1%, respectively. Overall in-hospital mortality was 23.2%. In-hospital mortality was decreased in operatively treated patients compared to conservatively treated patients (11.6% versus 24.0%; P<0.001). Patients with antiplatelet pre-treatment had a significantly higher risk of death during the hospital stay after hematoma evacuation (odds ratio [OR]: 2.5; 95% confidence interval [CI]: 1.24-4.97; P=0.010) compared to patients without antiplatelet pre-treatment treatment (OR: 0.9; 95% CI: 0.79-1.09; P=0.376). In conclusion a higher rate of in-hospital mortality after pre-treatment with antiplatelet agents in combination with hematoma evacuation after spontaneous ICH was observed in the presented cohort. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evidence-based review of clinical outcomes of guideline-recommended pharmacotherapies for generalized anxiety disorder.

    PubMed

    Bereza, Basil G; Machado, Márcio; Ravindran, Arun V; Einarson, Thomas R

    2012-08-01

    To quantify the rates of clinical outcomes of Canadian Psychiatric Association (CPA) guideline-recommended pharmacotherapies for generalized anxiety disorder (GAD) by drug classification within each treatment line. Evidence from original research cited by the CPA was included. Pooled analyses, duplicates, and studies with nonextractable data were excluded. Response, remission, and baseline-endpoint or mean reductions scores of the Hamilton Anxiety Rating Scale (HARS) were extracted. The Cochrane Collaboration's computer program, Review Manager, version 5, with a random effects model, was used to pool results. A total of 50 articles were cited as evidence for managing GAD by the CPA. There was sufficient evidence of remission with first- or third-line agents to pool reported rates, and with agents from all 3 treatment lines to pool response rates and reduction in HARS scores. The mean range of effect size varied considerably from study to study within each treatment line. Comparison of pooled remission rates between first- and second-line agents was not possible. While the range of values by drug and drug class overlapped, the summary results for the probability of response and reduction in HARS scores was greater for first-line, compared with second-line, treatments. Drug components for third-line treatments were heterogeneous and produced mixed results. Despite the abundance of evidence in its totality presented in the CPA guidelines, there is inadequate evidence to formulate recommendations based on the pooled results from this study alone. However, such analysis provides an additional resource for clinicians to make more effective treatment decisions for individual patients with GAD.

  8. Object-based land cover classification based on fusion of multifrequency SAR data and THAICHOTE optical imagery

    NASA Astrophysics Data System (ADS)

    Sukawattanavijit, Chanika; Srestasathiern, Panu

    2017-10-01

    Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.

  9. Object based image analysis for the classification of the growth stages of Avocado crop, in Michoacán State, Mexico

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.

    2014-11-01

    This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.

  10. From Web Directories to Ontologies: Natural Language Processing Challenges

    NASA Astrophysics Data System (ADS)

    Zaihrayeu, Ilya; Sun, Lei; Giunchiglia, Fausto; Pan, Wei; Ju, Qi; Chi, Mingmin; Huang, Xuanjing

    Hierarchical classifications are used pervasively by humans as a means to organize their data and knowledge about the world. One of their main advantages is that natural language labels, used to describe their contents, are easily understood by human users. However, at the same time, this is also one of their main disadvantages as these same labels are ambiguous and very hard to be reasoned about by software agents. This fact creates an insuperable hindrance for classifications to being embedded in the Semantic Web infrastructure. This paper presents an approach to converting classifications into lightweight ontologies, and it makes the following contributions: (i) it identifies the main NLP problems related to the conversion process and shows how they are different from the classical problems of NLP; (ii) it proposes heuristic solutions to these problems, which are especially effective in this domain; and (iii) it evaluates the proposed solutions by testing them on DMoz data.

  11. Innovative vehicle classification strategies : using LIDAR to do more for less.

    DOT National Transportation Integrated Search

    2012-06-23

    This study examines LIDAR (light detection and ranging) based vehicle classification and classification : performance monitoring. First, we develop a portable LIDAR based vehicle classification system that can : be rapidly deployed, and then we use t...

  12. Molecular Epidemiology of Oropouche Virus, Brazil

    PubMed Central

    Vasconcelos, Helena Baldez; Nunes, Márcio R.T.; Casseb, Lívia M.N.; Carvalho, Valéria L.; Pinto da Silva, Eliana V.; Silva, Mayra; Casseb, Samir M.M.

    2011-01-01

    Oropouche virus (OROV) is the causative agent of Oropouche fever, an urban febrile arboviral disease widespread in South America, with >30 epidemics reported in Brazil and other Latin American countries during 1960–2009. To describe the molecular epidemiology of OROV, we analyzed the entire N gene sequences (small RNA) of 66 strains and 35 partial Gn (medium RNA) and large RNA gene sequences. Distinct patterns of OROV strain clustered according to N, Gn, and large gene sequences, which suggests that each RNA segment had a different evolutionary history and that the classification in genotypes must consider the genetic information for all genetic segments. Finally, time-scale analysis based on the N gene showed that OROV emerged in Brazil ≈223 years ago and that genotype I (based on N gene data) was responsible for the emergence of all other genotypes and for virus dispersal. PMID:21529387

  13. A web-based land cover classification system based on ontology model of different classification systems

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Chen, X.

    2016-12-01

    Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.

  14. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  15. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    PubMed Central

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808

  16. Typing methods for the plague pathogen, Yersinia pestis.

    PubMed

    Lindler, Luther E

    2009-01-01

    Phenotypic and genotypic methodologies have been used to differentiate the etiological agent of plague, Yersinia pestis. Historically, phenotypic methods were used to place isolates into one of three biovars based on nitrate reduction and glycerol fermentation. Classification of Y. pestis into genetic subtypes is problematic due to the relative monomorphic nature of the pathogen. Resolution into groups is dependent on the number and types of loci used in the analysis. The last 5-10 years of research and analysis in the field of Y. pestis genotyping have resulted in a recognition by Western scientists that two basic types of Y. pestis exist. One type, considered to be classic strains that are able to cause human plague transmitted by the normal flea vector, is termed epidemic strains. The other type does not typically cause human infections by normal routes of infection, but is virulent for rodents and is termed endemic strains. Previous classification schemes used outside the Western hemisphere referred to these latter strains as Pestoides varieties of Y. pestis. Recent molecular analysis has definitely shown that both endemic and epidemic strains arose independently from a common Yersinia pseudotuberculosis ancestor. Currently, 11 major groups of Y. pestis are defined globally.

  17. Classification of weld defect based on information fusion technology for radiographic testing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less

  18. Classification of weld defect based on information fusion technology for radiographic testing system.

    PubMed

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.

  19. A Computerized English-Spanish Correlation Index to Five Biomedical Library Classification Schemes Based on MeSH*

    PubMed Central

    Muench, Eugene V.

    1971-01-01

    A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471

  20. [Land cover classification of Four Lakes Region in Hubei Province based on MODIS and ENVISAT data].

    PubMed

    Xue, Lian; Jin, Wei-Bin; Xiong, Qin-Xue; Liu, Zhang-Yong

    2010-03-01

    Based on the differences of back scattering coefficient in ENVISAT ASAR data, a classification was made on the towns, waters, and vegetation-covered areas in the Four Lakes Region of Hubei Province. According to the local cropping systems and phenological characteristics in the region, and by using the discrepancies of the MODIS-NDVI index from late April to early May, the vegetation-covered areas were classified into croplands and non-croplands. The classification results based on the above-mentioned procedure was verified by the classification results based on the ETM data with high spatial resolution. Based on the DEM data, the non-croplands were categorized into forest land and bottomland; and based on the discrepancies of mean NDVI index per month, the crops were identified as mid rice, late rice, and cotton, and the croplands were identified as paddy field and upland field. The land cover classification based on the MODIS data with low spatial resolution was basically consistent with that based on the ETM data with high spatial resolution, and the total error rate was about 13.15% when the classification results based on ETM data were taken as the standard. The utilization of the above-mentioned procedures for large scale land cover classification and mapping could make the fast tracking of regional land cover classification.

  1. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  2. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    PubMed

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  3. Scan-stratified case-control sampling for modeling blood-brain barrier integrity in multiple sclerosis.

    PubMed

    Pomann, Gina-Maria; Sweeney, Elizabeth M; Reich, Daniel S; Staicu, Ana-Maria; Shinohara, Russell T

    2015-09-10

    Multiple sclerosis (MS) is an immune-mediated neurological disease that causes morbidity and disability. In patients with MS, the accumulation of lesions in the white matter of the brain is associated with disease progression and worse clinical outcomes. Breakdown of the blood-brain barrier in newer lesions is indicative of more active disease-related processes and is a primary outcome considered in clinical trials of treatments for MS. Such abnormalities in active MS lesions are evaluated in vivo using contrast-enhanced structural MRI, during which patients receive an intravenous infusion of a costly magnetic contrast agent. In some instances, the contrast agents can have toxic effects. Recently, local image regression techniques have been shown to have modest performance for assessing the integrity of the blood-brain barrier based on imaging without contrast agents. These models have centered on the problem of cross-sectional classification in which patients are imaged at a single study visit and pre-contrast images are used to predict post-contrast imaging. In this paper, we extend these methods to incorporate historical imaging information, and we find the proposed model to exhibit improved performance. We further develop scan-stratified case-control sampling techniques that reduce the computational burden of local image regression models, while respecting the low proportion of the brain that exhibits abnormal vascular permeability. Copyright © 2015 John Wiley & Sons, Ltd.

  4. 14 CFR 1203.412 - Classification guides.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Classification guides. 1203.412 Section... PROGRAM Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification...

  5. 14 CFR 1203.412 - Classification guides.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Classification guides. 1203.412 Section... PROGRAM Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification...

  6. 14 CFR 1203.412 - Classification guides.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Classification guides. 1203.412 Section 1203... Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification authorities...

  7. Criminal undercover agents or "bad people" doing "good things".

    PubMed

    Amir, Menachem

    2003-08-01

    Information and intelligence have always been, and will remain, the most essential components of policing and indeed all law enforcement and security work, including the variety of drug control efforts. Sources of information are varied, ranging from everyday interactions of officers of the law with the public, anonymous reports, the use of paid and unpaid informants from the criminal underworld to law enforcement's and security services' use of agents. This presentation, based on interviews with "handlers" of informants who are offenders, who supply information and evidence against other criminals, and who may have been former comrades of the criminals, explores the dilemmas that informers and their handlers face at each stage of the operation from recruitment to operation in the field, until they "finger" their targets and become state witnesses. During each stage of the operation, agents' motivations, fears, sense of betrayal (being betrayed and betraying others), being snitches, the need to protect their identities, as well as their dependency upon their handlers, are the primary issues to be considered and resolved. Handlers may have to tolerate agents' commission of crimes during operations and often may also have to "treat" the informant's spouse. Borrowed identity, which is the main meaning and dynamic of the informants' actions and of any undercover work, will also be analyzed. This presentation, designed to allow for a presentation of relevant parameters so as to permit the comparative study and classification of undercover work by criminals, will also note critical unresolved issues in this area as well as suggest future needed research.

  8. Feature selection and classification of multiparametric medical images using bagging and SVM

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Resnick, Susan M.; Davatzikos, Christos

    2008-03-01

    This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.

  9. Image-classification-based global dimming algorithm for LED backlights in LCDs

    NASA Astrophysics Data System (ADS)

    Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv

    2015-07-01

    Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.

  10. A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm

    NASA Astrophysics Data System (ADS)

    Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina

    The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.

  11. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.

  12. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515

  13. Social Sciences in Forestry, A Current Selected Bibliography, No. 57. Special Appendix: Theses and Dissertations in Progress.

    ERIC Educational Resources Information Center

    Schwab, Judith L., Ed.

    1982-01-01

    Documents which address the interface between forestry and the social sciences comprise this annotated bibliography. A subject-matter classification scheme is used to group publications by subheadings under five major heading: (1) social science applied to forestry at large; (2) applied to forestry's productive agents; (3) applied to forest…

  14. Disposal of Chemotherapeutic Agent -- Contaminated Waste

    DTIC Science & Technology

    1989-03-01

    RESTRICTIVE MARKINGS 2a SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION/AVAILABILITY OF REPORT 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for Public...AIR .............. 22 INCINERATION SYSTEM 2 CHEMOTHERAPEUTIC WASTE THERMAL ...... 32 DESTRUCTION DISPOSAL SYSTEM 3 FRONT VIEW OF INCINERATION...The Environmental Protection Agency has published a manual (Reference 1) which provides guidelines on handling and 3 disposal of infectious waste from

  15. The groningen laryngomalacia classification system--based on systematic review and dynamic airway changes.

    PubMed

    van der Heijden, Martijn; Dikkers, Frederik G; Halmos, Gyorgy B

    2015-12-01

    Laryngomalacia is the most common cause of dyspnea and stridor in newborn infants. Laryngomalacia is a dynamic change of the upper airway based on abnormally pliable supraglottic structures, which causes upper airway obstruction. In the past, different classification systems have been introduced. Until now no classification system is widely accepted and applied. Our goal is to provide a simple and complete classification system based on systematic literature search and our experiences. Retrospective cohort study with literature review. All patients with laryngomalacia under the age of 5 at time of diagnosis were included. Photo and video documentation was used to confirm diagnosis and characteristics of dynamic airway change. Outcome was compared with available classification systems in literature. Eighty-five patients were included. In contrast to other classification systems, only three typical different dynamic changes have been identified in our series. Two existing classification systems covered 100% of our findings, but there was an unnecessary overlap between different types in most of the systems. Based on our finding, we propose a new a classification system for laryngomalacia, which is purely based on dynamic airway changes. The groningen laryngomalacia classification is a new, simplified classification system with three types, based on purely dynamic laryngeal changes, tested in a tertiary referral center: Type 1: inward collapse of arytenoids cartilages, Type 2: medial displacement of aryepiglottic folds, and Type 3: posterocaudal displacement of epiglottis against the posterior pharyngeal wall. © 2015 Wiley Periodicals, Inc.

  16. Information extraction with object based support vector machines and vegetation indices

    NASA Astrophysics Data System (ADS)

    Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun

    2016-07-01

    Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.

  17. Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Hu, Y.; Chen, J.

    2018-04-01

    Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.

  18. 14 CFR § 1203.412 - Classification guides.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Classification guides. § 1203.412 Section... PROGRAM Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification...

  19. Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency

    NASA Astrophysics Data System (ADS)

    Sojahrood, Amin Jafari; Kolios, Michael C.

    2012-07-01

    Through numerical simulation of the Hoff model we show that when ultrasound contrast agents (UCAs) are excited at frequencies which are close to integer (m>2) multiples of their natural resonance frequency, the bifurcation structure of the UCA oscillations as a function of pressure may be characterized by 3 general distinct regions. The UCA behavior starts with initial period one oscillations which undergoes a saddle node bifurcation to m coexisting attractors for an acoustic pressure above a threshold, P. Further increasing the pressure above a second threshold P, is followed by a sudden transition to period 1 oscillations.

  20. 78 FR 18252 - Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System... 2007 North American Industry Classification System (NAICS) codes currently used in Federal Wage System... (OPM) issued a final rule (73 FR 45853) to update the 2002 North American Industry Classification...

  1. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    NASA Astrophysics Data System (ADS)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  2. Sentiment classification technology based on Markov logic networks

    NASA Astrophysics Data System (ADS)

    He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe

    2016-07-01

    With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.

  3. Application of wavelet transformation and adaptive neighborhood based modified backpropagation (ANMBP) for classification of brain cancer

    NASA Astrophysics Data System (ADS)

    Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry

    2017-08-01

    This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.

  4. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  5. Antiprotozoan lead discovery by aligning dry and wet screening: prediction, synthesis, and biological assay of novel quinoxalinones.

    PubMed

    Martins Alho, Miriam A; Marrero-Ponce, Yovani; Barigye, Stephen J; Meneses-Marcel, Alfredo; Machado Tugores, Yanetsy; Montero-Torres, Alina; Gómez-Barrio, Alicia; Nogal, Juan J; García-Sánchez, Rory N; Vega, María Celeste; Rolón, Miriam; Martínez-Fernández, Antonio R; Escario, José A; Pérez-Giménez, Facundo; Garcia-Domenech, Ramón; Rivera, Norma; Mondragón, Ricardo; Mondragón, Mónica; Ibarra-Velarde, Froylán; Lopez-Arencibia, Atteneri; Martín-Navarro, Carmen; Lorenzo-Morales, Jacob; Cabrera-Serra, Maria Gabriela; Piñero, Jose; Tytgat, Jan; Chicharro, Roberto; Arán, Vicente J

    2014-03-01

    Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities. Nowadays, there is a pressing need to identify and develop new drug-based antiprotozoan therapies. In an effort to overcome this problem, the main purpose of this study is to develop a QSARs-based ensemble classifier for antiprotozoan drug-like entities from a heterogeneous compounds collection. Here, we use some of the TOMOCOMD-CARDD molecular descriptors and linear discriminant analysis (LDA) to derive individual linear classification functions in order to discriminate between antiprotozoan and non-antiprotozoan compounds as a way to enable the computational screening of virtual combinatorial datasets and/or drugs already approved. Firstly, we construct a wide-spectrum benchmark database comprising of 680 organic chemicals with great structural variability (254 of them antiprotozoan agents and 426 to drugs having other clinical uses). This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. In total, seven discriminant functions were obtained, by using the whole set of atom-based linear indices. All the LDA-based QSAR models show accuracies above 85% in the training set and values of Matthews correlation coefficients (C) vary from 0.70 to 0.86. The external validation set shows rather-good global classifications of around 80% (92.05% for best equation). Later, we developed a multi-agent QSAR classification system, in which the individual QSAR outputs are the inputs of the aforementioned fusion approach. Finally, the fusion model was used for the identification of a novel generation of lead-like antiprotozoan compounds by using ligand-based virtual screening of 'available' small molecules (with synthetic feasibility) in our 'in-house' library. A new molecular subsystem (quinoxalinones) was then theoretically selected as a promising lead series, and its derivatives subsequently synthesized, structurally characterized, and experimentally assayed by using in vitro screening that took into consideration a battery of five parasite-based assays. The chemicals 11(12) and 16 are the most active (hits) against apicomplexa (sporozoa) and mastigophora (flagellata) subphylum parasites, respectively. Both compounds depicted good activity in every protozoan in vitro panel and they did not show unspecific cytotoxicity on the host cells. The described technical framework seems to be a promising QSAR-classifier tool for the molecular discovery and development of novel classes of broad-antiprotozoan-spectrum drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of protozoan illnesses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Propagation, cascades, and agreement dynamics in complex communication and social networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming

    Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case. When applying the model of Naming Game on empirical social networks, this stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.

  7. Previous Use of Antithrombotic Agents Reduces Mortality and Length of Hospital Stay in Patients With High-risk Upper Gastrointestinal Bleeding.

    PubMed

    Dunne, Philip D J; Laursen, Stig B; Laine, Loren; Dalton, Harry R; Ngu, Jing H; Schultz, Michael; Rahman, Adam; Anderloni, Andrea; Murray, Iain A; Stanley, Adrian J

    2018-04-26

    Anti-thrombotic agents are risk factors for upper gastrointestinal bleeding (UGIB). However, few studies have evaluated their effects on patient outcomes. We assessed the effects of anti-thrombotic agents on outcomes of patients with high-risk UGIB. We performed a prospective study of 619 patients with acute UGIB (defined by hematemesis, coffee-ground vomit or melena) who required intervention and underwent endoscopy at 8 centers in North America, Asia, and Europe, from March 2014 through March 2015. We collected data recorded on use of anti-thrombotic agents, clinical features, and laboratory test results to calculate AIMS65, Glasgow-Blatchford Score, and full Rockall scores. We also collected and analyzed data on co-morbidities, endoscopic findings, blood transfusion, interventional radiology results, surgeries, length of hospital stay, rebleeding, and mortality. Of the 619 patients who required endoscopic therapy, data on use of anti-thrombotic agents was available for 568; 253 of these patients (44%) used anti-thrombotic agents. Compared to patients not taking anti-thrombotic agents, patients treated with anti-thrombotics were older (P < .001), had a higher mean American Society of Anesthesiologists classification score (P < .0001), had a higher mean Rockall score (P < .0001), a higher mean AIMS65 score (P < .0001), and more frequently bled from ulcers (P < .001). There were no differences between groups in sex, systolic blood pressure, level of hemoglobin at hospital admission, frequency of malignancies, Glasgow-Blatchford Score, need for surgery or interventional radiology, number of rebleeding events, or requirement for transfusion. All-cause mortality was lower in patients who took anti-thrombotic drugs (11 deaths, 4%) than in patients who did not (37 deaths, 12%) (P = .002); this was due to lower bleeding-related mortality in patients taking anti-thrombotic drugs (3 deaths, 1%) than in patients who were not (19 deaths, 6%) (P = .003). Patients taking anti-thrombotic drugs had mean hospital stays of 6.9 days (95% CI, 2-23 days) compared to 7.9 days for non-users of anti-thrombotic agents (95% CI, 2-26 days) (P = .04). Despite being older, with higher American Society of Anesthesiologists classification, AIMS65, and Rockall scores, patients who have UGIB that requires endoscopic therapy and take anti-thrombotic drugs have lower mortality due to GI bleeding and shorter hospital stays, with similar rates of rebleeding, surgery, and transfusions, compared with those not taking anti-thrombotic drugs. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  9. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Concept of Smart Cyberspace for Smart Grid Implementation

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Malov, D.

    2018-05-01

    The concept of Smart Cyberspace for Smart Grid (SG) implementation is presented in the paper. The classification of electromechanical units, based on the amount of analysing data, the classification of electromechanical units, based on the data processing speed; and the classification of computational network organization, based on required resources, are proposed in this paper. The combination of the considered classifications is formalized, which can be further used in organizing and planning of SG.

  11. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMES IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...

  12. THE WESTERN LAKE SUPERIOR COMPARATIVE WATERSHED FRAMEWORK: A FIELD TEST OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED GEOGRAPHICALLY-INDEPENDENT CLASSIFICATION

    EPA Science Inventory

    Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...

  13. FIELD TESTS OF GEOGRAPHICALLY-DEPENDENT VS. THRESHOLD-BASED WATERSHED CLASSIFICATION SCHEMED IN THE GREAT LAKES BASIN

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...

  14. World Reference Base | FAO SOILS PORTAL | Food and Agriculture

    Science.gov Websites

    > Soil classification > World Reference Base FAO SOILS PORTAL Survey Assessment Biodiversity Management Degradation/Restoration Policies/Governance Publications Soil properties Soil classification World Reference Base FAO legend USDA soil taxonomy Universal soil classification National Systems Numerical

  15. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate

  16. Using Artificial Physics to Control Agents

    DTIC Science & Technology

    1999-11-01

    unlimited 13. SUPPLEMENTARY NOTES IEEE International Conference on Information, Intelligence, and Systems, Oct 31 -Nov 3,1999. Bethesda, MD 14. ABSTRACT...distributed control can also perform distributed computation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same...1995. [9] H. Pattee. Artificial life needs a real epistemology. In Moran, Moreno, Merelo, and Chacon , editors, Advances in Artificial Life, pages

  17. Dynamic Routing and Coordination in Multi-Agent Networks

    DTIC Science & Technology

    2016-06-10

    SECURITY CLASSIFICATION OF: Supported by this project, we designed innovative routing, planning and coordination strategies for robotic networks and...tasks partitioned among robots , in what order are they to be performed, and along which deterministic routes or according to which stochastic rules do...individual robots move. The fundamental novelties and our recent breakthroughs supported by this project are manifold: (1) the application 1

  18. Dendrimers

    NASA Astrophysics Data System (ADS)

    Bryant, L. Henry; Bulte, Jeff W. M.

    Dendrimers have received an enormous amount of attention in the last ten years and several recent review articles have appeared in the literature that address their potential applications [1-3]. Stoddart et al [1] have stated that: "We are now approaching a time when the study of dendriniers bec omes inextricably linked with many other fields, leaving the comprehensive reviewer of the subject a near-impossible task to fulfil". On that note, this review provides a brief introduction to the chemical principles of dendrimers by highlighting main synthetic strategies and methods for characterisation. p]Dendrimers containing heteroatoms will not be reviewed per se since these have recently been reviewed [4]. The major thrust of this review is the potential applications of dendrimers in such areas as boron neutron capture therapy, as contrast agents in magnetic resonance imaging, as vaccines, as cellular transfection agents and as bioconjugate dendrimers, i.e., in-vitro immunoassays for antigens. The outline used in this review proved to be effective in classifying most published papers about dendrimers, but it must be kept in mind that some articles not only transcended two different classifications, such as synthesis and characterisation, but several classifications such as synthesis, characterisation and at least one potential application covered in this review.

  19. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  20. 32 CFR 1633.12 - Reconsideration of classification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., upon which the classification is based, change or when he finds that the registrant made a... 32 National Defense 6 2010-07-01 2010-07-01 false Reconsideration of classification. 1633.12... ADMINISTRATION OF CLASSIFICATION § 1633.12 Reconsideration of classification. No classification is permanent. The...

  1. 32 CFR 1633.12 - Reconsideration of classification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., upon which the classification is based, change or when he finds that the registrant made a... 32 National Defense 6 2011-07-01 2011-07-01 false Reconsideration of classification. 1633.12... ADMINISTRATION OF CLASSIFICATION § 1633.12 Reconsideration of classification. No classification is permanent. The...

  2. A review of supervised object-based land-cover image classification

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.

  3. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    PubMed Central

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function. PMID:26121466

  4. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    PubMed

    Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function.

  5. Onychomycosis: Pathogenesis, Diagnosis, and Management

    PubMed Central

    Elewski, Boni E.

    1998-01-01

    Although not life-threatening, onychomycosis (a fungal infection of the nail, usually caused by a dermatophyte) constitutes an important public health problem because of its high prevalence (about 10% of the U.S. population) and associated morbidity. The disease can have certain negative consequences for patients, such as pain, and can potentially undermine work and social lives. This review discusses the etiology, classification, diagnosis, and treatment of onychomycosis. Four types of onychomycosis are recognized based on the site and pattern of fungal invasion. Dermatophyte fungi are the predominant pathogens, but yeasts (especially Candida albicans) and nondermatophyte molds may also be implicated. Accurate diagnosis requires direct microscopy and fungal culture. The differential diagnosis includes psoriasis, lichen planus, onychogryphosis, and nail trauma. Onychomycosis is more difficult to treat than most dermatophytoses because of the inherent slow growth of the nail. Older antifungal agents (ketoconazole and griseofulvin) are unsuitable for onychomycosis because of their relatively poor efficacy and potential adverse effects. Three recently developed antimycotic agents (fluconazole, itraconazole, and terbinafine) offer high cure rates and good safety profiles. In addition, the short treatment times (<3 months) and intermittent dosing schedules are likely to enhance compliance and reduce the costs of therapy. PMID:9665975

  6. Leukemia risk among U. S. white male coal miners. A case-control study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, P.A.; Ames, R.G.; McCawley, M.A.

    The relevance of occupational exposure to electrical and magnetic fields (EMF) in the etiology of leukemia has been raised in several studies. Underground coal miners represent an occupational group with situationally determined EMF exposure, as high-voltage power distribution lines are strung overhead in the mines and converters and step-down transformers provide power to mining equipment. Risk in occupational exposure to EMF was examined in a case-control study of 40 leukemia decedents and 160 control subjects who died of causes other than cancer or accident and who were matched on age at death. Based on these data, 25 or more yearsmore » of underground mining, a surrogate of EMF exposure, was found to pose a statistically significant risk for leukemia (International Classification of Diseases (ICD) codes 204 through 207, eighth revision), myelogenous leukemia (ICD 205), and chronic lymphocytic leukemia (CLL) (ICD 204.1). Accumulative exposure to chemical agents probably poses a risk for acute myelogenous leukemia, although this relationship fell short of being statistically significant. Although CLL has not previously been attributed to environmental agents, these data suggest a possible CLL risk from prolonged exposure to EMF.« less

  7. Contemporary review of drug-induced pancreatitis: A different perspective

    PubMed Central

    Hung, Whitney Y; Abreu Lanfranco, Odaliz

    2014-01-01

    Although gallstone and alcohol use have been considered the most common causes of acute pancreatitis, hundreds of frequently prescribed medications are associated with this disease state. The true incidence is unknown since there are few population based studies available. The knowledge of drug induced acute pancreatitis is limited by the availability and the quality of the evidence as the majority of data is extrapolated from case reports. Establishing a definitive causal relationship between a drug and acute pancreatitis poses a challenge to clinicians. Several causative agent classification systems are often used to identify the suspected agents. They require regular updates since new drug induced acute pancreatitis cases are reported continuously. In addition, infrequently prescribed medications and herbal medications are often omitted. Furthermore, identification of drug induced acute pancreatitis with new medications often requires accumulation of post market case reports. The unrealistic expectation for a comprehensive list of medications and the multifactorial nature of acute pancreatitis call for a different approach. In this article, we review the potential mechanisms of drug induced acute pancreatitis and provide the perspective of deductive reasoning in order to allow clinicians to identify potential drug induced acute pancreatitis with limited data. PMID:25400984

  8. Designing and Implementation of River Classification Assistant Management System

    NASA Astrophysics Data System (ADS)

    Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan

    2018-03-01

    In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.

  9. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  10. Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof

    2016-10-01

    It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.

  11. [Proposals for social class classification based on the Spanish National Classification of Occupations 2011 using neo-Weberian and neo-Marxist approaches].

    PubMed

    Domingo-Salvany, Antònia; Bacigalupe, Amaia; Carrasco, José Miguel; Espelt, Albert; Ferrando, Josep; Borrell, Carme

    2013-01-01

    In Spain, the new National Classification of Occupations (Clasificación Nacional de Ocupaciones [CNO-2011]) is substantially different to the 1994 edition, and requires adaptation of occupational social classes for use in studies of health inequalities. This article presents two proposals to measure social class: the new classification of occupational social class (CSO-SEE12), based on the CNO-2011 and a neo-Weberian perspective, and a social class classification based on a neo-Marxist approach. The CSO-SEE12 is the result of a detailed review of the CNO-2011 codes. In contrast, the neo-Marxist classification is derived from variables related to capital and organizational and skill assets. The proposed CSO-SEE12 consists of seven classes that can be grouped into a smaller number of categories according to study needs. The neo-Marxist classification consists of 12 categories in which home owners are divided into three categories based on capital goods and employed persons are grouped into nine categories composed of organizational and skill assets. These proposals are complemented by a proposed classification of educational level that integrates the various curricula in Spain and provides correspondences with the International Standard Classification of Education. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  12. Applying deep neural networks to HEP job classification

    NASA Astrophysics Data System (ADS)

    Wang, L.; Shi, J.; Yan, X.

    2015-12-01

    The cluster of IHEP computing center is a middle-sized computing system which provides 10 thousands CPU cores, 5 PB disk storage, and 40 GB/s IO throughput. Its 1000+ users come from a variety of HEP experiments. In such a system, job classification is an indispensable task. Although experienced administrator can classify a HEP job by its IO pattern, it is unpractical to classify millions of jobs manually. We present how to solve this problem with deep neural networks in a supervised learning way. Firstly, we built a training data set of 320K samples by an IO pattern collection agent and a semi-automatic process of sample labelling. Then we implemented and trained DNNs models with Torch. During the process of model training, several meta-parameters was tuned with cross-validations. Test results show that a 5- hidden-layer DNNs model achieves 96% precision on the classification task. By comparison, it outperforms a linear model by 8% precision.

  13. Identifying type 1 and type 2 diabetic cases using administrative data: a tree-structured model.

    PubMed

    Lo-Ciganic, Weihsuan; Zgibor, Janice C; Ruppert, Kristine; Arena, Vincent C; Stone, Roslyn A

    2011-05-01

    To date, few administrative diabetes mellitus (DM) registries have distinguished type 1 diabetes mellitus (T1DM) from type 2 diabetes mellitus (T2DM). Using a classification tree model, a prediction rule was developed to distinguish T1DM from T2DM in a large administrative database. The Medical Archival Retrieval System at the University of Pittsburgh Medical Center included administrative and clinical data from January 1, 2000, through September 30, 2009, for 209,647 DM patients aged ≥18 years. Probable cases (8,173 T1DM and 125,111 T2DM) were identified by applying clinical criteria to administrative data. Nonparametric classification tree models were fit using TIBCO Spotfire S+ 8.1 (TIBCO Software), with model size based on 10-fold cross validation. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of T1DM were estimated. The main predictors that distinguished T1DM from T2DM are age <40 years; International Classification of Disease, 9th revision, codes of T1DM or T2DM diagnosis; inpatient oral hypoglycemic agent use; inpatient insulin use; and episode(s) of diabetic ketoacidosis diagnosis. Compared with a complex clinical algorithm, the tree-structured model to predict T1DM had 92.8% sensitivity, 99.3% specificity, 89.5% PPV, and 99.5% NPV. The preliminary predictive rule appears to be promising. Being able to distinguish between DM subtypes in administrative databases will allow large-scale subtype-specific analyses of medical care costs, morbidity, and mortality. © 2011 Diabetes Technology Society.

  14. Concurrent chemoradiotherapy with S-1 in patients with stage III-IV oral squamous cell carcinoma: A retrospective analysis of nodal classification based on the neck node level.

    PubMed

    Murakami, Ryuji; Semba, Akiko; Kawahara, Kenta; Matsuyama, Keiya; Hiraki, Akimitsu; Nagata, Masashi; Toya, Ryo; Yamashita, Yasuyuki; Oya, Natsuo; Nakayama, Hideki

    2017-07-01

    The aim of the present study was to retrospectively evaluate the treatment outcomes of concurrent chemoradiotherapy (CCRT) with S-1, an oral fluoropyrimidine anticancer agent, for advanced oral squamous cell carcinoma (SCC). The study population consisted of 47 patients with clinical stage III or IV oral SCC, who underwent CCRT with S-1. Pretreatment variables, including patient age, clinical stage, T classification, midline involvement of the primary tumor and nodal status, were analyzed as predictors of survival. In addition to the N classification (node-positive, multiple and contralateral), the prognostic impact of the level of nodal involvement was assessed. Nodal involvement was mainly observed at levels Ib and II; involvement at levels Ia and III-V was considered to be anterior and inferior extension, respectively, and was recorded as extensive nodal involvement (ENI). The 3-year overall survival (OS) and progression-free survival (PFS) rates were 37 and 27%, respectively. A finding of ENI was a significant factor for OS [hazard ratio (HR)=2.16; 95% confidence interval (CI): 1.03-4.55; P=0.038] and PFS (HR=2.65; 95% CI: 1.32-5.33; P=0.005); the 3-year OS and PFS rates in patients with vs. those without ENI were 23 vs. 50% and 9 vs. 43%, respectively. The other variables were not significant. Therefore, CCRT with S-1 may be an alternative treatment for advanced oral SCC; favorable outcomes are expected in patients without ENI.

  15. Lenke and King classification systems for adolescent idiopathic scoliosis: interobserver agreement and postoperative results.

    PubMed

    Hosseinpour-Feizi, Hojjat; Soleimanpour, Jafar; Sales, Jafar Ganjpour; Arzroumchilar, Ali

    2011-01-01

    The aim of this study was to investigate the interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis, and to compare the results of surgery performed based on classification of the scoliosis according to each of these classification systems. The study was conducted in Shohada Hospital in Tabriz, Iran, between 2009 and 2010. First, a reliability assessment was undertaken to assess interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis. Second, postoperative efficacy and safety of surgery performed based on the Lenke and King classifications were compared. Kappa coefficients of agreement were calculated to assess the agreement. Outcomes were compared using bivariate tests and repeated measures analysis of variance. A low to moderate interobserver agreement was observed for the King classification; the Lenke classification yielded mostly high agreement coefficients. The outcome of surgery was not found to be substantially different between the two systems. Based on the results, the Lenke classification method seems advantageous. This takes into consideration the Lenke classification's priority in providing details of curvatures in different anatomical surfaces to explain precise intensity of scoliosis, that it has higher interobserver agreement scores, and also that it leads to noninferior postoperative results compared with the King classification method.

  16. Distinguishing rational from irrational applications of pharmacogenetic synergies from the bench to clinical trials.

    PubMed

    Hucl, Tomas; Gallmeier, Eike; Kern, Scott E

    2007-06-01

    Single therapeutic agents very often fail in unselected patients. It is therefore commonplace to combine an agent specifically with a selected patient subgroup or with another agent. To support such efforts, it is useful to clarify the distinctions between the terms and the mathematical models used in analyzing combinations. To incorporate molecular disease classifications, the familiar concept of the therapeutic window is modified to define a pharmacogenetic window, which is an unambiguous numerical measure of the magnitude of interaction produced by a combination, and to define a test of pharmacogenetic synergy. In contrast, certain common comparative methods, such as vertical windows (comparing effects at a given dose) and animal models of mutational targets may be dominated by undesirable features. Although this discussion is oriented towards cancer therapy, an extension of these concepts to other comparative biologic assays is feasible and advisable.

  17. Buoyancy-generating agents for stomach-specific drug delivery: an overview with special emphasis on floating behavior.

    PubMed

    Ishak, Rania A H

    2015-01-01

    Gastric retentive drug delivery provides a promising technology exhibiting an extended gastric residence and a drug release independent of patient related variables. It is usually useful in improving local gastric treatment as well as overcoming drug-related problems .i.e. drugs having narrow absorption window, short half-life or low intestinal solubility. Buoyancy is considered one of the most promising approaches for gastro-retention of dosage forms. Floating drug delivery systems have a bulk density lower than gastric fluids and thus remain buoyant in the stomach causing an increase in gastric residence time. The buoyancy of these systems is attained by the aid of substances responsible to generate the low density. Various agents with different mechanisms were adopted either gas-generating agents, air entrapping swellable polymers, inherent low density substances, porous excipients, hollow/porous particles inducing preparation techniques or sublimating agents. Therefore, this review gives an exclusive descriptive classification of the different categories of these buoyancy-generating agents while representing the related research works. An overview is also conducted to describe relevant techniques assessing the floating behavior of such dosage forms either in vitro or in vivo. Finally, a collection representing FDA-approved floating pharmaceutical products is adopted with emphasis on the buoyancy-generating agent type used in each product.

  18. Toxicology of organophosphorus compounds in view of an increasing terrorist threat.

    PubMed

    Worek, Franz; Wille, Timo; Koller, Marianne; Thiermann, Horst

    2016-09-01

    The implementation of the Chemical Weapon Convention (CWC), prohibiting the development, production, storage and use of chemical weapons by 192 nations and the ban of highly toxic OP pesticides, especially class I pesticides according to the WHO classification, by many countries constitutes a great success of the international community. However, the increased interest of terrorist groups in toxic chemicals and chemical warfare agents presents new challenges to our societies. Almost seven decades of research on organophosphorus compound (OP) toxicology was mainly focused on a small number of OP nerve agents despite the fact that a huge number of OP analogues, many of these agents having comparable toxicity to classical nerve agents, were synthesized and published. Only limited physicochemical, toxicological and medical information on nerve agent analogues is available in the open literature. This implies potential gaps of our capabilities to detect, to decontaminate and to treat patients if nerve agent analogues are disseminated and may result in inadequate effectiveness of newly developed countermeasures. In summary, our societies may face new, up to now disregarded, threats by toxic OP which calls for increased awareness and appropriate preparedness of military and civilian CBRN defense, a broader approach for new physical and medical countermeasures and an integrated system of effective detection, decontamination, physical protection and treatment.

  19. 8 CFR 204.306 - Classification as an immediate relative based on a Convention adoption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Classification as an immediate relative....306 Classification as an immediate relative based on a Convention adoption. (a) Unless 8 CFR 204.309 requires the denial of a Form I-800A or Form I-800, a child is eligible for classification as an immediate...

  20. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  1. HIGH PREVALENCE OF AGENT ORANGE EXPOSURE AMONG THYROID CANCER PATIENTS IN THE NATIONAL VA HEALTHCARE SYSTEM.

    PubMed

    Le, Karen T; Sawicki, Mark P; Wang, Marilene B; Hershman, Jerome M; Leung, Angela M

    2016-06-01

    Thyroid cancer is the most common endocrine malignancy and the most rapidly increasing cancer in the U.S. Little is known regarding the epidemiology and characteristics of patients with thyroid cancer within the national Veterans Health Administration (VHA) integrated healthcare system. The aim of this study was to further understand the characteristics of thyroid cancer patients in the VHA population, particularly in relation to Agent Orange exposure. This is a descriptive analysis of the VA (Veterans Affairs) Corporate Data Warehouse database from all U.S. VHA healthcare sites from October1, 1999, to December 31, 2013. Information was extracted for all thyroid cancer patients based on International Classification of Diseases-ninth revision diagnosis codes; histologic subtypes of thyroid cancer were not available. There were 19,592 patients (86% men, 76% white, 58% married, 42% Vietnam-era Veteran) in the VHA system with a diagnosis of thyroid cancer within this 14-year study period. The gender-stratified prevalence rates of thyroid cancer among the Veteran population during the study period were 1:1,114 (women) and 1:1,023 (men), which were lower for women but similar for men, when compared to the U.S. general population in 2011 (1:350 for women and 1:1,219 for men). There was a significantly higher proportion of self-reported Agent Orange exposure among thyroid cancer patients (10.0%), compared to the general VHA population (6.2%) (P<.0001). Thyroid cancer patients, in this sample, have a higher prevalence of self-reported Agent Orange exposure compared to the overall national VA patient population. T4 = thyroxine TCDD = 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin TSH = thyroid-stimulating hormone VA = Veterans Affairs VHA = Veterans Health Administration.

  2. A discrimlnant function approach to ecological site classification in northern New England

    Treesearch

    James M. Fincher; Marie-Louise Smith

    1994-01-01

    Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...

  3. Classifications for Cesarean Section: A Systematic Review

    PubMed Central

    Torloni, Maria Regina; Betran, Ana Pilar; Souza, Joao Paulo; Widmer, Mariana; Allen, Tomas; Gulmezoglu, Metin; Merialdi, Mario

    2011-01-01

    Background Rising cesarean section (CS) rates are a major public health concern and cause worldwide debates. To propose and implement effective measures to reduce or increase CS rates where necessary requires an appropriate classification. Despite several existing CS classifications, there has not yet been a systematic review of these. This study aimed to 1) identify the main CS classifications used worldwide, 2) analyze advantages and deficiencies of each system. Methods and Findings Three electronic databases were searched for classifications published 1968–2008. Two reviewers independently assessed classifications using a form created based on items rated as important by international experts. Seven domains (ease, clarity, mutually exclusive categories, totally inclusive classification, prospective identification of categories, reproducibility, implementability) were assessed and graded. Classifications were tested in 12 hypothetical clinical case-scenarios. From a total of 2948 citations, 60 were selected for full-text evaluation and 27 classifications identified. Indications classifications present important limitations and their overall score ranged from 2–9 (maximum grade = 14). Degree of urgency classifications also had several drawbacks (overall scores 6–9). Woman-based classifications performed best (scores 5–14). Other types of classifications require data not routinely collected and may not be relevant in all settings (scores 3–8). Conclusions This review and critical appraisal of CS classifications is a methodologically sound contribution to establish the basis for the appropriate monitoring and rational use of CS. Results suggest that women-based classifications in general, and Robson's classification, in particular, would be in the best position to fulfill current international and local needs and that efforts to develop an internationally applicable CS classification would be most appropriately placed in building upon this classification. The use of a single CS classification will facilitate auditing, analyzing and comparing CS rates across different settings and help to create and implement effective strategies specifically targeted to optimize CS rates where necessary. PMID:21283801

  4. Building a common pipeline for rule-based document classification.

    PubMed

    Patterson, Olga V; Ginter, Thomas; DuVall, Scott L

    2013-01-01

    Instance-based classification of clinical text is a widely used natural language processing task employed as a step for patient classification, document retrieval, or information extraction. Rule-based approaches rely on concept identification and context analysis in order to determine the appropriate class. We propose a five-step process that enables even small research teams to develop simple but powerful rule-based NLP systems by taking advantage of a common UIMA AS based pipeline for classification. Our proposed methodology coupled with the general-purpose solution provides researchers with access to the data locked in clinical text in cases of limited human resources and compact timelines.

  5. Gold-standard for computer-assisted morphological sperm analysis.

    PubMed

    Chang, Violeta; Garcia, Alejandra; Hitschfeld, Nancy; Härtel, Steffen

    2017-04-01

    Published algorithms for classification of human sperm heads are based on relatively small image databases that are not open to the public, and thus no direct comparison is available for competing methods. We describe a gold-standard for morphological sperm analysis (SCIAN-MorphoSpermGS), a dataset of sperm head images with expert-classification labels in one of the following classes: normal, tapered, pyriform, small or amorphous. This gold-standard is for evaluating and comparing known techniques and future improvements to present approaches for classification of human sperm heads for semen analysis. Although this paper does not provide a computational tool for morphological sperm analysis, we present a set of experiments for comparing sperm head description and classification common techniques. This classification base-line is aimed to be used as a reference for future improvements to present approaches for human sperm head classification. The gold-standard provides a label for each sperm head, which is achieved by majority voting among experts. The classification base-line compares four supervised learning methods (1- Nearest Neighbor, naive Bayes, decision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu moments, Zernike moments and Fourier descriptors), reporting the accuracy and the true positive rate for each experiment. We used Fleiss' Kappa Coefficient to evaluate the inter-expert agreement and Fisher's exact test for inter-expert variability and statistical significant differences between descriptors and learning techniques. Our results confirm the high degree of inter-expert variability in the morphological sperm analysis. Regarding the classification base line, we show that none of the standard descriptors or classification approaches is best suitable for tackling the problem of sperm head classification. We discovered that the correct classification rate was highly variable when trying to discriminate among non-normal sperm heads. By using the Fourier descriptor and SVM, we achieved the best mean correct classification: only 49%. We conclude that the SCIAN-MorphoSpermGS will provide a standard tool for evaluation of characterization and classification approaches for human sperm heads. Indeed, there is a clear need for a specific shape-based descriptor for human sperm heads and a specific classification approach to tackle the problem of high variability within subcategories of abnormal sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  7. Diagnostic discrepancies in retinopathy of prematurity classification

    PubMed Central

    Campbell, J. Peter; Ryan, Michael C.; Lore, Emily; Tian, Peng; Ostmo, Susan; Jonas, Karyn; Chan, R.V. Paul; Chiang, Michael F.

    2016-01-01

    Objective To identify the most common areas for discrepancy in retinopathy of prematurity (ROP) classification between experts. Design Prospective cohort study. Subjects, Participants, and/or Controls 281 infants were identified as part of a multi-center, prospective, ROP cohort study from 7 participating centers. Each site had participating ophthalmologists who provided the clinical classification after routine examination using binocular indirect ophthalmoscopy (BIO), and obtained wide-angle retinal images, which were independently classified by two study experts. Methods Wide-angle retinal images (RetCam; Clarity Medical Systems, Pleasanton, CA) were obtained from study subjects, and two experts evaluated each image using a secure web-based module. Image-based classifications for zone, stage, plus disease, overall disease category (no ROP, mild ROP, Type II or pre-plus, and Type I) were compared between the two experts, and to the clinical classification obtained by BIO. Main Outcome Measures Inter-expert image-based agreement and image-based vs. ophthalmoscopic diagnostic agreement using absolute agreement and weighted kappa statistic. Results 1553 study eye examinations from 281 infants were included in the study. Experts disagreed on the stage classification in 620/1553 (40%) of comparisons, plus disease classification (including pre-plus) in 287/1553 (18%), zone in 117/1553 (8%), and overall ROP category in 618/1553 (40%). However, agreement for presence vs. absence of type 1 disease was >95%. There were no differences between image-based and clinical classification except for zone III disease. Conclusions The most common area of discrepancy in ROP classification is stage, although inter-expert agreement for clinically-significant disease such as presence vs. absence of type 1 and type 2 disease is high. There were no differences between image-based grading and the clinical exam in the ability to detect clinically-significant disease. This study provides additional evidence that image-based classification of ROP reliably detects clinically significant levels of ROP with high accuracy compared to the clinical exam. PMID:27238376

  8. Global adaptation in networks of selfish components: emergent associative memory at the system scale.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L

    2011-01-01

    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organize into structures that enhance global adaptation, efficiency, or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology, and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalization, and optimization are well understood. Such global functions within a single agent or organism are not wholly surprising, since the mechanisms (e.g., Hebbian learning) that create these neural organizations may be selected for this purpose; but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviors when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g., when they can influence which other agents they interact with), then, in adapting these inter-agent relationships to maximize their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviors as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalize by idealizing stored patterns and/or creating new combinations of subpatterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviors in the same sense, and by the same mechanism, as with the organizational principles familiar in connectionist models of organismic learning.

  9. THE ROLE OF WATERSHED CLASSIFICATION IN DIAGNOSING CAUSES OF BIOLOGICAL IMPAIRMENT

    EPA Science Inventory

    We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmention with a gewographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...

  10. Classification of cloud fields based on textural characteristics

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Chen, D. W.

    1987-01-01

    The present study reexamines the applicability of texture-based features for automatic cloud classification using very high spatial resolution (57 m) Landsat multispectral scanner digital data. It is concluded that cloud classification can be accomplished using only a single visible channel.

  11. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status.

    PubMed

    Bady, Pierre; Sciuscio, Davide; Diserens, Annie-Claire; Bloch, Jocelyne; van den Bent, Martin J; Marosi, Christine; Dietrich, Pierre-Yves; Weller, Michael; Mariani, Luigi; Heppner, Frank L; Mcdonald, David R; Lacombe, Denis; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika E

    2012-10-01

    The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg12434587 [corrected] and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.

  12. Molecular cancer classification using a meta-sample-based regularized robust coding method.

    PubMed

    Wang, Shu-Lin; Sun, Liuchao; Fang, Jianwen

    2014-01-01

    Previous studies have demonstrated that machine learning based molecular cancer classification using gene expression profiling (GEP) data is promising for the clinic diagnosis and treatment of cancer. Novel classification methods with high efficiency and prediction accuracy are still needed to deal with high dimensionality and small sample size of typical GEP data. Recently the sparse representation (SR) method has been successfully applied to the cancer classification. Nevertheless, its efficiency needs to be improved when analyzing large-scale GEP data. In this paper we present the meta-sample-based regularized robust coding classification (MRRCC), a novel effective cancer classification technique that combines the idea of meta-sample-based cluster method with regularized robust coding (RRC) method. It assumes that the coding residual and the coding coefficient are respectively independent and identically distributed. Similar to meta-sample-based SR classification (MSRC), MRRCC extracts a set of meta-samples from the training samples, and then encodes a testing sample as the sparse linear combination of these meta-samples. The representation fidelity is measured by the l2-norm or l1-norm of the coding residual. Extensive experiments on publicly available GEP datasets demonstrate that the proposed method is more efficient while its prediction accuracy is equivalent to existing MSRC-based methods and better than other state-of-the-art dimension reduction based methods.

  13. 26 CFR 1.1441-1 - Requirement for the deduction and withholding of tax on payments to foreign persons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). Further, payments that the withholding agent can reliably associate with documentary evidence described in... valid documentary evidence under §§ 1.1441-1(e)(1)(ii)(2) and 1.6049-5(c)(1) or (4) but cannot determine a payee's classification from the documentary evidence must apply the rules of this paragraph (b)(3...

  14. 26 CFR 1.1441-1 - Requirement for the deduction and withholding of tax on payments to foreign persons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). Further, payments that the withholding agent can reliably associate with documentary evidence described in... valid documentary evidence under §§ 1.1441-1(e)(1)(ii)(2) and 1.6049-5(c)(1) or (4) but cannot determine a payee's classification from the documentary evidence must apply the rules of this paragraph (b)(3...

  15. 26 CFR 1.1441-1 - Requirement for the deduction and withholding of tax on payments to foreign persons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). Further, payments that the withholding agent can reliably associate with documentary evidence described in... valid documentary evidence under §§ 1.1441-1(e)(1)(ii)(2) and 1.6049-5(c)(1) or (4) but cannot determine a payee's classification from the documentary evidence must apply the rules of this paragraph (b)(3...

  16. Acceleration of Advanced CN Antidote Agents for Mass Exposure Treatments: DMTS

    DTIC Science & Technology

    2014-12-01

    Intraosseous Injection; Inhalational Delivery 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...exposure models. We have administered antidotes via intramuscular injection, inhalation, and intraosseous routes. These animal models are all available...injection, inhalation, and intraosseous routes. These animal models are all available for ongoing testing of the novel candidate antidotes as was

  17. Unmanned Aerial Vehicle Non Line of Sight Chemical Detection Final Report

    DTIC Science & Technology

    2016-12-01

    aircraft system that is used to perform point detection of chemical warfare agents and collection of vapor, liquid, and solid samples. A modular payload...Standoff Quadcopter Unmanned aircraft system Modular payload 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Manufacturing Division, modular payloads are being developed to perform point detection and CBRNE sampling. The available UAS is a quadcopter capable of

  18. MetaGenSense: A web-application for analysis and exploration of high throughput sequencing metagenomic data

    PubMed Central

    Denis, Jean-Baptiste; Vandenbogaert, Mathias; Caro, Valérie

    2016-01-01

    The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS), solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users’ input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power). Galaxy is used to handle and analyze the user’s input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy’s main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration of intuitive exploratory tools, like Krona for representation of taxonomic classification, can be achieved very easily. In the trend of Galaxy, the interface enables the sharing of scientific results to fellow team members. PMID:28451381

  19. MetaGenSense: A web-application for analysis and exploration of high throughput sequencing metagenomic data.

    PubMed

    Correia, Damien; Doppelt-Azeroual, Olivia; Denis, Jean-Baptiste; Vandenbogaert, Mathias; Caro, Valérie

    2015-01-01

    The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS), solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users' input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power). Galaxy is used to handle and analyze the user's input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy's main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration of intuitive exploratory tools, like Krona for representation of taxonomic classification, can be achieved very easily. In the trend of Galaxy, the interface enables the sharing of scientific results to fellow team members.

  20. Associations between labial and whole salivary flow rates, systemic diseases and medications in a sample of older people.

    PubMed

    Smidt, Dorte; Torpet, Lis Andersen; Nauntofte, Birgitte; Heegaard, Karen Margrethe; Pedersen, Anne Marie Lynge

    2010-10-01

    To investigate the associations between age, gender, systemic diseases, medications and labial and whole salivary flow rates in older people. Unstimulated labial (LS) and unstimulated (UWS) and chewing-stimulated (SWS) whole salivary flow rates were measured in 389 randomly selected community-dwelling Danish women and 279 men aged 65-97 years. Systemic diseases, medications (coded according to the Anatomical Therapeutic Chemical (ATC) Classification System), tobacco and alcohol consumption were registered. The number of diseases and medications was higher and UWS lower in the older age groups. On average, women were slightly older, had more diseases, higher medication intake and lower UWS, SWS and LS than men. High number of diseases and medications was associated with low UWS, SWS and LS. In the healthy (14%) and nonmedicated (19%) participants, flow rates were not associated with age and gender, apart from SWS being lower in nonmedicated women. Low UWS were associated with psychiatric and respiratory disorders, type 2 diabetes and intake of psycholeptics, psychoanaleptics (especially SRRIs), respiratory agents, oral antidiabetics (particularly sulfonylureas), magnesium-hydroxide, cardiac agents, quinine, thiazides, calcium channel blockers, statins, urinary antispasmodics, glucosamine, NSAIDs, opioids and ophthalmologicals. SWS were lower in participants with ophthalmological disorders using ophthalmologicals (especially antiglaucoma agents and miotics), but also in those taking antidepressants, cardiac agents (mostly digitalis glycosides) and calcium channel blockers. Cardiovascular diseases and intake of anti-thrombotics (mainly low dose aspirins), calcium channel blockers and oral antidiabetics were associated with low LS. In older people, low salivary flow rates are associated with specific and high number of diseases and medications, but neither with age and gender per se nor with tobacco and alcohol consumption. Low UWS are associated with more diseases and medications than SWS and LS, which were primarily associated with cardiovascular diseases and medications including preventive agents such as low-dose aspirins and statins. New insights into medications and their association with salivary gland function were achieved using the ATC classification system. © 2010 John Wiley & Sons A/S.

  1. Uso del Registro de Solicitudes de Medicamentos no Incluidos en el Listado de Medicamentos Esenciales como Nueva Fuente de Información en los Sistemas Nacionales de Farmacovigilancia.

    PubMed

    Buendía, Jefferson Antonio; Zuluaga Salazar, Andrés Felipe; Vacca González, Claudia Patricia

    2013-12-01

    To describe the frequency of adverse drugs events (ADEs) as possible causes of request of drugs not included in national essential Medicines list in Colombia. This was a descriptive study developed in a private medical insurance company in Bogota, Colombia. Data were obtained from drug request form of drugs not included in a national essential Medicines list. We analyzed the content of the notes to identify the records related to the occurrence of ADEs in the period 2008 to 2009. Information concerning the adverse event and the drug involved was recorded in a data collection instrument developed by the researchers. The pharmacological classification of drugs was performed according to the Anatomical Therapeutic Chemical Classification System (ATC). We study 3,336 request forms of drugs not included in a national essential Medicines list. The level 1 groups of the ATC of drugs with greater frequency of ADEs were the cardiovascular agents (47%), nervous system agents (24%) and antineoplastic and immunomodulating agents (15%). The great majority was cases of light severity (62.7%) and classified as possible (48.4%). The results of this study support the innovative approach of using request form of drug not included in national essential Medicines list to obtain information regarding ADEs in developing countries; recognizing the importance of looking for new sources of report of adverse reactions to diminish the under-notification of ADEs. © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Published by International Society for Pharmacoeconomics and Outcomes Research (ISPOR) All rights reserved.

  2. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  3. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  4. A Bio-Inspired Herbal Tea Flavour Assessment Technique

    PubMed Central

    Zakaria, Nur Zawatil Isqi; Masnan, Maz Jamilah; Zakaria, Ammar; Shakaff, Ali Yeon Md

    2014-01-01

    Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers' performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied. PMID:25010697

  5. Classification review of dental adhesive systems: from the IV generation to the universal type

    PubMed Central

    Sofan, Eshrak; Sofan, Afrah; Palaia, Gaspare; Tenore, Gianluca; Romeo, Umberto; Migliau, Guido

    2017-01-01

    Summary Adhesive dentistry has undergone great progress in the last decades. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which relies on the effectiveness of current enamel-dentine adhesives. Adhesive dentistry began in 1955 by Buonocore on the benefits of acid etching. With changing technologies, dental adhesives have evolved from no-etch to total-etch (4th and 5th generation) to self-etch (6th, 7th and 8th generation) systems. Currently, bonding to dental substrates is based on three different strategies: 1) etch-and-rinse, 2) self-etch and 3) resin-modified glass-ionomer approach as possessing the unique properties of self-adherence to the tooth tissue. More recently, a new family of dentin adhesives has been introduced (universal or multi-mode adhesives), which may be used either as etch-and-rinse or as self-etch adhesives. The purpose of this article is to review the literature on the current knowledge for each adhesive system according to their classification that have been advocated by many authorities in most operative/restorative procedures. As noted by several valuable studies that have contributed to understanding of bonding to various substrates helps clinicians to choose the appropriate dentin bonding agents for optimal clinical outcomes. PMID:28736601

  6. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    PubMed

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.

  7. Lenke and King classification systems for adolescent idiopathic scoliosis: interobserver agreement and postoperative results

    PubMed Central

    Hosseinpour-Feizi, Hojjat; Soleimanpour, Jafar; Sales, Jafar Ganjpour; Arzroumchilar, Ali

    2011-01-01

    Purpose The aim of this study was to investigate the interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis, and to compare the results of surgery performed based on classification of the scoliosis according to each of these classification systems. Methods The study was conducted in Shohada Hospital in Tabriz, Iran, between 2009 and 2010. First, a reliability assessment was undertaken to assess interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis. Second, postoperative efficacy and safety of surgery performed based on the Lenke and King classifications were compared. Kappa coefficients of agreement were calculated to assess the agreement. Outcomes were compared using bivariate tests and repeated measures analysis of variance. Results A low to moderate interobserver agreement was observed for the King classification; the Lenke classification yielded mostly high agreement coefficients. The outcome of surgery was not found to be substantially different between the two systems. Conclusion Based on the results, the Lenke classification method seems advantageous. This takes into consideration the Lenke classification’s priority in providing details of curvatures in different anatomical surfaces to explain precise intensity of scoliosis, that it has higher interobserver agreement scores, and also that it leads to noninferior postoperative results compared with the King classification method. PMID:22267934

  8. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    PubMed

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  9. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  10. Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.

    2012-01-01

    A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.

  11. A new epileptic seizure classification based exclusively on ictal semiology.

    PubMed

    Lüders, H; Acharya, J; Baumgartner, C; Benbadis, S; Bleasel, A; Burgess, R; Dinner, D S; Ebner, A; Foldvary, N; Geller, E; Hamer, H; Holthausen, H; Kotagal, P; Morris, H; Meencke, H J; Noachtar, S; Rosenow, F; Sakamoto, A; Steinhoff, B J; Tuxhorn, I; Wyllie, E

    1999-03-01

    Historically, seizure semiology was the main feature in the differential diagnosis of epileptic syndromes. With the development of clinical EEG, the definition of electroclinical complexes became an essential tool to define epileptic syndromes, particularly focal epileptic syndromes. Modern advances in diagnostic technology, particularly in neuroimaging and molecular biology, now permit better definitions of epileptic syndromes. At the same time detailed studies showed that there does not necessarily exist a one-to-one relationship between epileptic seizures or electroclinical complexes and epileptic syndromes. These developments call for the reintroduction of an epileptic seizure classification based exclusively on clinical semiology, similar to the seizure classifications which were used by neurologists before the introduction of the modern diagnostic methods. This classification of epileptic seizures should always be complemented by an epileptic syndrome classification based on all the available clinical information (clinical history, neurological exam, ictal semiology, EEG, anatomical and functional neuroimaging, etc.). Such an approach is more consistent with mainstream clinical neurology and would avoid the current confusion between the classification of epileptic seizures (which in the International Seizure Classification is actually a classification of electroclinical complexes) and the classification of epileptic syndromes.

  12. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions

    PubMed Central

    Morton, Lindsay M.; Linet, Martha S.; Clarke, Christina A.; Kadin, Marshall E.; Vajdic, Claire M.; Monnereau, Alain; Maynadié, Marc; Chiu, Brian C.-H.; Marcos-Gragera, Rafael; Costantini, Adele Seniori; Cerhan, James R.; Weisenburger, Dennis D.

    2010-01-01

    After publication of the updated World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues in 2008, the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph) now presents an update of the hierarchical classification of lymphoid neoplasms for epidemiologic research based on the 2001 WHO classification, which we published in 2007. The updated hierarchical classification incorporates all of the major and provisional entities in the 2008 WHO classification, including newly defined entities based on age, site, certain infections, and molecular characteristics, as well as borderline categories, early and “in situ” lesions, disorders with limited capacity for clinical progression, lesions without current International Classification of Diseases for Oncology, 3rd Edition codes, and immunodeficiency-associated lymphoproliferative disorders. WHO subtypes are defined in hierarchical groupings, with newly defined groups for small B-cell lymphomas with plasmacytic differentiation and for primary cutaneous T-cell lymphomas. We suggest approaches for applying the hierarchical classification in various epidemiologic settings, including strategies for dealing with multiple coexisting lymphoma subtypes in one patient, and cases with incomplete pathologic information. The pathology materials useful for state-of-the-art epidemiology studies are also discussed. We encourage epidemiologists to adopt the updated InterLymph hierarchical classification, which incorporates the most recent WHO entities while demonstrating their relationship to older classifications. PMID:20699439

  13. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions.

    PubMed

    Turner, Jennifer J; Morton, Lindsay M; Linet, Martha S; Clarke, Christina A; Kadin, Marshall E; Vajdic, Claire M; Monnereau, Alain; Maynadié, Marc; Chiu, Brian C-H; Marcos-Gragera, Rafael; Costantini, Adele Seniori; Cerhan, James R; Weisenburger, Dennis D

    2010-11-18

    After publication of the updated World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues in 2008, the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph) now presents an update of the hierarchical classification of lymphoid neoplasms for epidemiologic research based on the 2001 WHO classification, which we published in 2007. The updated hierarchical classification incorporates all of the major and provisional entities in the 2008 WHO classification, including newly defined entities based on age, site, certain infections, and molecular characteristics, as well as borderline categories, early and "in situ" lesions, disorders with limited capacity for clinical progression, lesions without current International Classification of Diseases for Oncology, 3rd Edition codes, and immunodeficiency-associated lymphoproliferative disorders. WHO subtypes are defined in hierarchical groupings, with newly defined groups for small B-cell lymphomas with plasmacytic differentiation and for primary cutaneous T-cell lymphomas. We suggest approaches for applying the hierarchical classification in various epidemiologic settings, including strategies for dealing with multiple coexisting lymphoma subtypes in one patient, and cases with incomplete pathologic information. The pathology materials useful for state-of-the-art epidemiology studies are also discussed. We encourage epidemiologists to adopt the updated InterLymph hierarchical classification, which incorporates the most recent WHO entities while demonstrating their relationship to older classifications.

  14. Cost-effectiveness of a classification-based system for sub-acute and chronic low back pain.

    PubMed

    Apeldoorn, Adri T; Bosmans, Judith E; Ostelo, Raymond W; de Vet, Henrica C W; van Tulder, Maurits W

    2012-07-01

    Identifying relevant subgroups in patients with low back pain (LBP) is considered important to guide physical therapy practice and to improve outcomes. The aim of the present study was to assess the cost-effectiveness of a modified version of Delitto's classification-based treatment approach compared with usual physical therapy care in patients with sub-acute and chronic LBP with 1 year follow-up. All patients were classified using the modified version of Delitto's classification-based system and then randomly assigned to receive either classification-based treatment or usual physical therapy care. The main clinical outcomes measured were; global perceived effect, intensity of pain, functional disability and quality of life. Costs were measured from a societal perspective. Multiple imputations were used for missing data. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios was estimated using bootstrapping. Cost-effectiveness planes and cost-effectiveness acceptability curves were estimated. In total, 156 patients were included. The outcome analyses showed a significantly better outcome on global perceived effect favoring the classification-based approach, and no differences between the groups on pain, disability and quality-adjusted life-years. Mean total societal costs for the classification-based group were 2,287, and for the usual physical therapy care group 2,020. The difference was 266 (95% CI -720 to 1,612) and not statistically significant. Cost-effectiveness analyses showed that the classification-based approach was not cost-effective in comparison with usual physical therapy care for any clinical outcome measure. The classification-based treatment approach as used in this study was not cost-effective in comparison with usual physical therapy care in a population of patients with sub-acute and chronic LBP.

  15. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image

    NASA Astrophysics Data System (ADS)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu

    2017-10-01

    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  16. Cloud field classification based on textural features

    NASA Technical Reports Server (NTRS)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.

  17. The development of a classification schema for arts-based approaches to knowledge translation.

    PubMed

    Archibald, Mandy M; Caine, Vera; Scott, Shannon D

    2014-10-01

    Arts-based approaches to knowledge translation are emerging as powerful interprofessional strategies with potential to facilitate evidence uptake, communication, knowledge, attitude, and behavior change across healthcare provider and consumer groups. These strategies are in the early stages of development. To date, no classification system for arts-based knowledge translation exists, which limits development and understandings of effectiveness in evidence syntheses. We developed a classification schema of arts-based knowledge translation strategies based on two mechanisms by which these approaches function: (a) the degree of precision in key message delivery, and (b) the degree of end-user participation. We demonstrate how this classification is necessary to explore how context, time, and location shape arts-based knowledge translation strategies. Classifying arts-based knowledge translation strategies according to their core attributes extends understandings of the appropriateness of these approaches for various healthcare settings and provider groups. The classification schema developed may enhance understanding of how, where, and for whom arts-based knowledge translation approaches are effective, and enable theorizing of essential knowledge translation constructs, such as the influence of context, time, and location on utilization strategies. The classification schema developed may encourage systematic inquiry into the effectiveness of these approaches in diverse interprofessional contexts. © 2014 Sigma Theta Tau International.

  18. 42 CFR 412.513 - Patient classification system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Patient classification system. 412.513 Section 412... Long-Term Care Hospitals § 412.513 Patient classification system. (a) Classification methodology. CMS...-DRGs. (1) The classification of a particular discharge is based, as appropriate, on the patient's age...

  19. 42 CFR 412.513 - Patient classification system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Patient classification system. 412.513 Section 412... Long-Term Care Hospitals § 412.513 Patient classification system. (a) Classification methodology. CMS...-DRGs. (1) The classification of a particular discharge is based, as appropriate, on the patient's age...

  20. A Systematic Approach to Subgroup Classification in Intellectual Disability

    ERIC Educational Resources Information Center

    Schalock, Robert L.; Luckasson, Ruth

    2015-01-01

    This article describes a systematic approach to subgroup classification based on a classification framework and sequential steps involved in the subgrouping process. The sequential steps are stating the purpose of the classification, identifying the classification elements, using relevant information, and using clearly stated and purposeful…

  1. 5 CFR 511.602 - Notification of classification decision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Notification of classification decision... REGULATIONS CLASSIFICATION UNDER THE GENERAL SCHEDULE Classification Appeals § 511.602 Notification of classification decision. An employee whose position is reclassified to a lower grade which is based in whole or...

  2. 5 CFR 511.602 - Notification of classification decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Notification of classification decision... REGULATIONS CLASSIFICATION UNDER THE GENERAL SCHEDULE Classification Appeals § 511.602 Notification of classification decision. An employee whose position is reclassified to a lower grade which is based in whole or...

  3. Chinese wine classification system based on micrograph using combination of shape and structure features

    NASA Astrophysics Data System (ADS)

    Wan, Yi

    2011-06-01

    Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.

  4. MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS

    EPA Science Inventory

    Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...

  5. HYDROLOGIC REGIME CLASSIFICATION OF LAKE MICHIGAN COASTAL RIVERINE WETLANDS BASED ON WATERSHED CHARACTERISTICS

    EPA Science Inventory

    Classification of wetlands systems is needed not only to establish reference condition, but also to predict the relative sensitivity of different wetland classes. In the current study, we examined the potential for ecoregion- versus flow-based classification strategies to explain...

  6. Classification of large-scale fundus image data sets: a cloud-computing framework.

    PubMed

    Roychowdhury, Sohini

    2016-08-01

    Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.

  7. Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients.

    PubMed

    Sevel, Landrew S; Boissoneault, Jeff; Letzen, Janelle E; Robinson, Michael E; Staud, Roland

    2018-05-30

    Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group classification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.

  8. A Review of Major Nursing Vocabularies and the Extent to Which They Have the Characteristics Required for Implementation in Computer-based Systems

    PubMed Central

    Henry, Suzanne Bakken; Warren, Judith J.; Lange, Linda; Button, Patricia

    1998-01-01

    Building on the work of previous authors, the Computer-based Patient Record Institute (CPRI) Work Group on Codes and Structures has described features of a classification scheme for implementation within a computer-based patient record. The authors of the current study reviewed the evaluation literature related to six major nursing vocabularies (the North American Nursing Diagnosis Association Taxonomy 1, the Nursing Interventions Classification, the Nursing Outcomes Classification, the Home Health Care Classification, the Omaha System, and the International Classification for Nursing Practice) to determine the extent to which the vocabularies include the CPRI features. None of the vocabularies met all criteria. The Omaha System, Home Health Care Classification, and International Classification for Nursing Practice each included five features. Criteria not fully met by any systems were clear and non-redundant representation of concepts, administrative cross-references, syntax and grammar, synonyms, uncertainty, context-free identifiers, and language independence. PMID:9670127

  9. [Current knowledge on the strain typing of the pathogenic fungus Histoplasma capsulatum var. capsulatum: a review of the findings].

    PubMed

    Reyes-Montes, M del R; Taylor, M L; Curiel-Quesada, E; Mesa-Arango, A C

    2000-12-01

    The classification of microbial strains is currently based on different typing methods, which must meet certain criteria in order to be widely used. Phenotypic and genotypic methods are being employed in the epidemiology of several fungal diseases. However, some problems associated to the phenotypic methods have fostered genotyping procedures, from DNA polymorphic diversity to gene sequencing studies, all aiming to differentiate and to relate fungal isolates or strains. Through these studies, it is possible to identify outbreaks, to detect nosocomial infection transmission, and to determine the source of infection, as well as to recognize virulent isolates. This paper is aimed at analyzing the methods recently used to type Histoplasma capsulatum, causative agent of the systemic mycosis known as histoplasmosis, in order to recommend those that yield reproducible and accurate results.

  10. Chemical peels.

    PubMed

    Jackson, Adrianna

    2014-02-01

    Chemical peels are a method of resurfacing with a long-standing history of safety in the treatment of various skin conditions. This article reviews the classification of different chemical agents based on their depth of injury. The level of injury facilitates cell turnover, epidermal thickening, skin lightening, and new collagen formation. Preprocedural, periprocedural, and postprocedural skin care are briefly discussed. To select the appropriate chemical peel, the provider should evaluate the patient's expectations, medical history, skin type, and possible complications to determine the best chemical peel to achieve the desired results. Patients with Fitzpatrick skin types IV to VI have increased risk of dyspigmentation, hypertrophic, and keloid scarring. These individuals respond well to superficial and medium-depth chemical peels. Advances in the use of combination peels allow greater options for skin rejuvenation with less risk of complications. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Some new classification methods for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia

    2006-10-01

    Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.

  12. Macrophage Responses to Epithelial Dysfunction Promote Lung Fibrosis in Aging

    DTIC Science & Technology

    2017-10-01

    alveolar macrophages based on single cell molecular classification in patients with pulmonary fibrosis. We have recruited a planned number of patients...biomarkers expressed by human tissue-resident and monocyte-derived alveolar macrophages based on single cell molecular classification in patients with...identify novel biomarkers expressed by human tissue-resident and monocyte- derived alveolar macrophages based on single cell molecular classification

  13. Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods. 10; Chapter

    NASA Technical Reports Server (NTRS)

    Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.

    2013-01-01

    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas.

  14. Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle.

    PubMed

    Gilbert, Fabian; Böhm, Dirk; Eden, Lars; Schmalzl, Jonas; Meffert, Rainer H; Köstler, Herbert; Weng, Andreas M; Ziegler, Dirk

    2016-08-22

    The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman's rank correlation. Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting.

  15. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin.

    PubMed

    Bokulich, Nicholas A; Kaehler, Benjamin D; Rideout, Jai Ram; Dillon, Matthew; Bolyen, Evan; Knight, Rob; Huttley, Gavin A; Gregory Caporaso, J

    2018-05-17

    Taxonomic classification of marker-gene sequences is an important step in microbiome analysis. We present q2-feature-classifier ( https://github.com/qiime2/q2-feature-classifier ), a QIIME 2 plugin containing several novel machine-learning and alignment-based methods for taxonomy classification. We evaluated and optimized several commonly used classification methods implemented in QIIME 1 (RDP, BLAST, UCLUST, and SortMeRNA) and several new methods implemented in QIIME 2 (a scikit-learn naive Bayes machine-learning classifier, and alignment-based taxonomy consensus methods based on VSEARCH, and BLAST+) for classification of bacterial 16S rRNA and fungal ITS marker-gene amplicon sequence data. The naive-Bayes, BLAST+-based, and VSEARCH-based classifiers implemented in QIIME 2 meet or exceed the species-level accuracy of other commonly used methods designed for classification of marker gene sequences that were evaluated in this work. These evaluations, based on 19 mock communities and error-free sequence simulations, including classification of simulated "novel" marker-gene sequences, are available in our extensible benchmarking framework, tax-credit ( https://github.com/caporaso-lab/tax-credit-data ). Our results illustrate the importance of parameter tuning for optimizing classifier performance, and we make recommendations regarding parameter choices for these classifiers under a range of standard operating conditions. q2-feature-classifier and tax-credit are both free, open-source, BSD-licensed packages available on GitHub.

  16. Cancer Pain: A Critical Review of Mechanism-based Classification and Physical Therapy Management in Palliative Care

    PubMed Central

    Kumar, Senthil P

    2011-01-01

    Mechanism-based classification and physical therapy management of pain is essential to effectively manage painful symptoms in patients attending palliative care. The objective of this review is to provide a detailed review of mechanism-based classification and physical therapy management of patients with cancer pain. Cancer pain can be classified based upon pain symptoms, pain mechanisms and pain syndromes. Classification based upon mechanisms not only addresses the underlying pathophysiology but also provides us with an understanding behind patient's symptoms and treatment responses. Existing evidence suggests that the five mechanisms – central sensitization, peripheral sensitization, sympathetically maintained pain, nociceptive and cognitive-affective – operate in patients with cancer pain. Summary of studies showing evidence for physical therapy treatment methods for cancer pain follows with suggested therapeutic implications. Effective palliative physical therapy care using a mechanism-based classification model should be tailored to suit each patient's findings, using a biopsychosocial model of pain. PMID:21976851

  17. Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems

    PubMed Central

    Idkaidek, Nasir M.

    2013-01-01

    The aim of this commentary is to investigate the interplay of Biopharmaceutics Classification System (BCS), Biopharmaceutics Drug Disposition Classification System (BDDCS) and Salivary Excretion Classification System (SECS). BCS first classified drugs based on permeability and solubility for the purpose of predicting oral drug absorption. Then BDDCS linked permeability with hepatic metabolism and classified drugs based on metabolism and solubility for the purpose of predicting oral drug disposition. On the other hand, SECS classified drugs based on permeability and protein binding for the purpose of predicting the salivary excretion of drugs. The role of metabolism, rather than permeability, on salivary excretion is investigated and the results are not in agreement with BDDCS. Conclusion The proposed Salivary Excretion Classification System (SECS) can be used as a guide for drug salivary excretion based on permeability (not metabolism) and protein binding. PMID:24493977

  18. Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands

    PubMed Central

    Pasricha, Shivani; Payne, Michael; Canovas, David; Pase, Luke; Ngaosuwankul, Nathamon; Beard, Sally; Oshlack, Alicia; Smyth, Gordon K.; Chaiyaroj, Sansanee C.; Boyce, Kylie J.; Andrianopoulos, Alex

    2013-01-01

    Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify “phase or cell-state–specific” gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase–encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity. PMID:24062530

  19. Status of Vegetation Classification in Redwood Ecosystems

    Treesearch

    Thomas M. Mahony; John D. Stuart

    2007-01-01

    Vegetation classifications, based primarily on physiognomic variability and canopy dominants and derived principally from remotely sensed imagery, have been completed for the entire redwood range (Eyre 1980, Fox 1989). However, systematic, quantitative, floristic-based vegetation classifications in old-growth redwood forests have not been completed for large portions...

  20. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    NASA Astrophysics Data System (ADS)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  1. Prognostic outcome in patients treated with tyrosine kinase inhibitors as first-line molecular-targeted therapy for metastatic renal cell carcinoma: Experience in real-world clinical practice in Japan

    PubMed Central

    MIYAZAKI, AKIRA; MIYAKE, HIDEAKI; HARADA, KEN-ICHI; INOUE, TAKA-AKI; FUJISAWA, MASATO

    2015-01-01

    The aim of this study was to evaluate the oncological efficacy of tyrosine kinase inhibitors (TKIs) as first-line molecular-targeted therapy for Japanese patients with metastatic renal cell carcinoma (mRCC) in a routine clinical setting. This study included a total of 271 consecutive Japanese patients with TKI-naive mRCC, including 172 patients who received sorafenib and 99 who received sunitinib for ≥2 months as a first-line molecular-targeted agent. The prognostic outcomes of these patients were retrospectively assessed. During the observation period (median, 19 months), 126 patients (46.5%) succumbed to the disease and the median overall survival (OS) for the entire cohort was 33.1 months. The univariate analysis identified the Memorial Sloan-Kettering Cancer Center (MSKCC) classification, C-reactive protein (CRP) level, lymph node metastasis, bone metastasis, liver metastasis, histological subtype and sarcomatoid characteristics as significant predictors of OS. Of these factors, only the MSKCC classification, CRP level and liver metastasis were found to be independently associated with OS in the multivariate analysis. Furthermore, there were significant differences in OS according to the positivity for these 3 independent risk factors (i.e., negative for all factors vs. positive for a single factor vs. positive for 2 or 3 factors). These findings suggest that the introduction of TKIs as first-line molecular-targeted agents resulted in favorable cancer control outcomes in Japanese mRCC patients and that the prognosis of these patients may be stratified by 3 potential parameters, including the MSKCC classification, CRP level and liver metastasis. PMID:26137274

  2. New wideband radar target classification method based on neural learning and modified Euclidean metric

    NASA Astrophysics Data System (ADS)

    Jiang, Yicheng; Cheng, Ping; Ou, Yangkui

    2001-09-01

    A new method for target classification of high-range resolution radar is proposed. It tries to use neural learning to obtain invariant subclass features of training range profiles. A modified Euclidean metric based on the Box-Cox transformation technique is investigated for Nearest Neighbor target classification improvement. The classification experiments using real radar data of three different aircraft have demonstrated that classification error can reduce 8% if this method proposed in this paper is chosen instead of the conventional method. The results of this paper have shown that by choosing an optimized metric, it is indeed possible to reduce the classification error without increasing the number of samples.

  3. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  4. A domains-based taxonomy of supported accommodation for people with severe and persistent mental illness.

    PubMed

    Siskind, Dan; Harris, Meredith; Pirkis, Jane; Whiteford, Harvey

    2013-06-01

    A lack of definitional clarity in supported accommodation and the absence of a widely accepted system for classifying supported accommodation models creates barriers to service planning and evaluation. We undertook a systematic review of existing supported accommodation classification systems. Using a structured system for qualitative data analysis, we reviewed the stratification features in these classification systems, identified the key elements of supported accommodation and arranged them into domains and dimensions to create a new taxonomy. The existing classification systems were mapped onto the new taxonomy to verify the domains and dimensions. Existing classification systems used either a service-level characteristic or programmatic approach. We proposed a taxonomy based around four domains: duration of tenure; patient characteristics; housing characteristics; and service characteristics. All of the domains in the taxonomy were drawn from the existing classification structures; however, none of the existing classification structures covered all of the domains in the taxonomy. Existing classification systems are regionally based, limited in scope and lack flexibility. A domains-based taxonomy can allow more accurate description of supported accommodation services, aid in identifying the service elements likely to improve outcomes for specific patient populations, and assist in service planning.

  5. Hierarchical Higher Order Crf for the Classification of Airborne LIDAR Point Clouds in Urban Areas

    NASA Astrophysics Data System (ADS)

    Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C.

    2016-06-01

    We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.

  6. A fuzzy hill-climbing algorithm for the development of a compact associative classifier

    NASA Astrophysics Data System (ADS)

    Mitra, Soumyaroop; Lam, Sarah S.

    2012-02-01

    Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.

  7. Significance of clustering and classification applications in digital and physical libraries

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Ioannis; Koulouris, Alexandros; Zervos, Spiros; Dendrinos, Markos; Giannakopoulos, Georgios

    2015-02-01

    Applications of clustering and classification techniques can be proved very significant in both digital and physical (paper-based) libraries. The most essential application, document classification and clustering, is crucial for the content that is produced and maintained in digital libraries, repositories, databases, social media, blogs etc., based on various tags and ontology elements, transcending the traditional library-oriented classification schemes. Other applications with very useful and beneficial role in the new digital library environment involve document routing, summarization and query expansion. Paper-based libraries can benefit as well since classification combined with advanced material characterization techniques such as FTIR (Fourier Transform InfraRed spectroscopy) can be vital for the study and prevention of material deterioration. An improved two-level self-organizing clustering architecture is proposed in order to enhance the discrimination capacity of the learning space, prior to classification, yielding promising results when applied to the above mentioned library tasks.

  8. Behavior Based Social Dimensions Extraction for Multi-Label Classification

    PubMed Central

    Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin

    2016-01-01

    Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849

  9. Computerized Classification Testing with the Rasch Model

    ERIC Educational Resources Information Center

    Eggen, Theo J. H. M.

    2011-01-01

    If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…

  10. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  11. Multi-Agent Coordination Techniques for Naval Tactical Combat Resources Management

    DTIC Science & Technology

    2008-07-01

    resource coordination and cooperation problems. The combat resource allocation planning problem is treated in the companion report [2]. 2.3 Resource...report focuses on the resource coordination problem, while allocation algorithms are discussed in the companion report [2]. First, coordination in...classification of each should be indicated as with the title.) Canada’s Leader in Defence and National Security Science and Technology Chef de file au Canada en

  12. Biological-Warfare Agent Decontamination Efficacy Testing: Large-Scale Chamber mVHP (Trademark) Decontamination System Evaluation for Biological Contamination

    DTIC Science & Technology

    2007-08-01

    Aluminum - +- - - Viton + + + _ . Silicone .... Polyimide (Kapton) + . _ . 81 - Apex .... B1 - Stens .... 21 3.5.5 Enumerated Coupon Results. The first...Vaporous Hydrogen Peroxide mVHP B. anthracis Silicone G. stearothermophilus CARC Metal 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER OF 19a...aircraft, vehicles, protective- and sensitive-equipment that encompass a variety of material properties, compositions and porosities. The test

  13. The Logic of Definition

    DTIC Science & Technology

    2009-05-01

    adversary. This method is also known as definition by genus and differentia, acknowledging its roots in the Aristotelian method of classification. To define...a term, one begins by naming the larger group ( genus ) with which the phenomenon shares a common characteristic, then stating the specific...sets out the genus as agent11 (“one who, or that which”) and the differentia – that is, the attribute which distinguishes an adversary from other

  14. The Constructive Role of Decisions: Implications from a quantum Approach

    DTIC Science & Technology

    2016-12-01

    objectives. The first was to explore the nature of constructive influences in decision making . The second concerned understanding decision making in...Prisoner’s Dilemma. **First objective; constructive judgments. This is the idea that sometimes making a decision can alter the underlying relevant mental...the performance of the agent. 15.  SUBJECT TERMS EOARD, Quantum Probability, Human Modeling, Human Decision Making 16.  SECURITY CLASSIFICATION OF

  15. Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes

    DTIC Science & Technology

    2009-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Dramatic Differences in Organophosphorus Hydrolase Activity between Human and 5a... activity , V-agents, VX, bioscavenger, medical countermeasures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes† Tamara C. Otto,‡ Christina K. Harsch,§ David T

  16. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    surfaces in buildings following a terrorist attack using CB agents. Vaporized hydrogen peroxide ( VHP ) and Cl02 are decontamination technologies that...decontaminant. The focus of this technical report is the evaluation of the building interior materials and the Steris VHP technology. 15. SUBJECT...TERMS Material Compatibility VHP vaporized hydrogen peroxide 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  17. Jamming in Mobile Networks: A Game-Theoretic Approach

    DTIC Science & Technology

    2013-03-01

    general treatment of multiplayer differential games was presented by Starr and Ho [16], Leitmann [36], Vaisbord and Zhukovskiy [65], Zhukovskiy and...REPORT Jamming in mobile networks: A game -theoretic approach. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this paper, we address the problem of...model the intrusion as a pursuit-evasion game between a mobile jammer and a team of agents. First, we consider a differential game -theoretic approach

  18. CV-Muzar - The Virtual Community Environment that Uses Multiagent Systems for Formation of Groups

    NASA Astrophysics Data System (ADS)

    de Marchi, Ana Carolina Bertoletti; Moraes, Márcia Cristina

    The purpose of this chapter is to present two agents' societies responsible for group formation (sub-communities) in CV-Muzar (Augusto Ruschi Zoobotanical Museum Virtual Community of the University of Passo Fundo). These societies are integrated to execute a data mining classification process. The first society is a static society that intends preprocessing data, investigating the information about groups in the CV-Muzar. The second society is a dynamical society that will make a classification process by analyzing the existing groups and look for participants that have common subjects in order to constitute a sub-community. The formation of sub-communities is a new functionality within the CV-Muzar that intends to bring the participants together according to two scopes: interest similarity and knowledge complementarities.

  19. Pain after spinal cord injury: a review of classification, treatment approaches, and treatment assessment.

    PubMed

    Cardenas, Diana D; Felix, Elizabeth R

    2009-12-01

    Pain is a prevalent consequence of spinal cord injury (SCI) that can persist for years after the injury and can have a significant impact on physical and emotional function and quality of life. There are a variety of types of pain that may develop after a SCI, including those of primarily nociceptive origin and those of primarily neuropathic origin. Recommendations for diagnostic and treatment strategies have been varied in part because of the lack of a universal classification system and in part because of the biopsychosocial nature of pain. The most recent taxonomy for pain after SCI is described herein. Pain-management strategies, including pharmacological, interventional, and psychological treatments, also are described. For neuropathic pain in SCI, anticonvulsant agents and tricyclic antidepressants often are tried, but these treatments have had limited success in many patients, and alternative interventions (eg, massage therapy, acupuncture, meditation) often are just as successful. Treatment of nociceptive pain after SCI often includes nonsteroidal antiinflammatory agents and acetaminophen, but correction of underlying etiologies and behavior adjustments also should be implemented if possible. An overview of self-report pain questionnaires and scales is also presented to provide the clinician and researcher with a set of tools to evaluate the efficacy of pain interventions.

  20. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.

    PubMed

    Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng

    2017-05-10

    Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .

  1. A job-exposure matrix for use in population based studies in England and Wales.

    PubMed Central

    Pannett, B; Coggon, D; Acheson, E D

    1985-01-01

    The job-exposure matrix described has been developed for use in population based studies of occupational morbidity and mortality in England and Wales. The job axis of the matrix is based on the Registrar General's 1966 classification of occupations and 1968 classification of industries, and comprises 669 job categories. The exposure axis is made up of 49 chemical, physical, and biological agents, most of which are known or suspected causes of occupational disease. In the body of the matrix associations between jobs and exposures are graded to four levels. The matrix has been applied to data from a case-control study of lung cancer in which occupational histories were elicited by means of a postal questionnaire. Estimates of exposure to five known or suspected carcinogens (asbestos, chromates, cutting oils, formaldehyde, and inhaled polycyclic aromatic hydrocarbons were compared with those obtained by detailed review of individual occupational histories. When the matrix was used exposures were attributed to jobs more frequently than on the basis of individual histories. Lung cancer was significantly more common among subjects classed by the matrix as having potential exposure to chromates, but neither method of assigning exposures produced statistically significant associations with asbestos or polycyclic aromatic hydrocarbons. Possible explanations for the failure to show a clear effect of these known carcinogens are discussed. The greater accuracy of exposures inferred directly from individual histories was reflected in steeper dose response curves for asbestos, chromates, and polycyclic aromatic hydrocarbons. The improvement over results obtained with the matrix, however, was not great. For occupational data of the type examined in this study, direct exposure estimates offer little advantage over those provided at lower cost by a matrix. PMID:4063222

  2. 29 CFR 14.3 - DOL Classification Review Committee.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true DOL Classification Review Committee. 14.3 Section 14.3 Labor... Classification Review Committee. A DOL Classification Review Committee is hereby established. (a) Composition of... under the Freedom of Information Act, 5 U.S.C. 552, when a proposed denial is based on classification...

  3. An Evaluation of Item Response Theory Classification Accuracy and Consistency Indices

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Hao, Shiqi

    2012-01-01

    This article introduces two new classification consistency indices that can be used when item response theory (IRT) models have been applied. The new indices are shown to be related to Rudner's classification accuracy index and Guo's classification accuracy index. The Rudner- and Guo-based classification accuracy and consistency indices are…

  4. Prostate segmentation by sparse representation based classification

    PubMed Central

    Gao, Yaozong; Liao, Shu; Shen, Dinggang

    2012-01-01

    Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673

  5. Prostate segmentation by sparse representation based classification.

    PubMed

    Gao, Yaozong; Liao, Shu; Shen, Dinggang

    2012-10-01

    The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.

  6. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  7. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens.

    PubMed

    Sweeney, Michael T; Lubbers, Brian V; Schwarz, Stefan; Watts, Jeffrey L

    2018-06-01

    Standardized definitions for MDR are currently not available in veterinary medicine despite numerous reports indicating that antimicrobial resistance may be increasing among clinically significant bacteria in livestock and companion animals. As such, assessments of MDR presented in veterinary scientific reports are inconsistent. Herein, we apply previously standardized definitions for MDR, XDR and pandrug resistance (PDR) used in human medicine to animal pathogens and veterinary antimicrobial agents in which MDR is defined as an isolate that is not susceptible to at least one agent in at least three antimicrobial classes, XDR is defined as an isolate that is not susceptible to at least one agent in all but one or two available classes and PDR is defined as an isolate that is not susceptible to all agents in all available classes. These definitions may be applied to antimicrobial agents used to treat bovine respiratory disease (BRD) caused by Mannheimia haemolytica, Pasteurella multocida and Histophilus somni and swine respiratory disease (SRD) caused by Actinobacillus pleuropneumoniae, P. multocida and Streptococcus suis, as well as antimicrobial agents used to treat canine skin and soft tissue infections (SSTIs) caused by Staphylococcus and Streptococcus species. Application of these definitions in veterinary medicine should be considered static, whereas the classification of a particular resistance phenotype as MDR, XDR or PDR could change over time as more veterinary-specific clinical breakpoints or antimicrobial classes and/or agents become available in the future.

  8. Adaptive Sniping for Volatile and Stable Continuous Double Auction Markets

    NASA Astrophysics Data System (ADS)

    Toft, I. E.; Bagnall, A. J.

    This paper introduces a new adaptive sniping agent for the Continuous Double Auction. We begin by analysing the performance of the well known Kaplan sniper in two extremes of market conditions. We generate volatile and stable market conditions using the well known Zero Intelligence-Constrained agent and a new zero-intelligence agent Small Increment (SI). ZI-C agents submit random but profitable bids/offers and cause high volatility in prices and individual trader performance. Our new zero-intelligence agent, SI, makes small random adjustments to the outstanding bid/offer and hence is more cautious than ZI-C. We present results for SI in self-play and then analyse Kaplan in volatile and stable markets. We demonstrate that the non-adaptive Kaplan sniper can be configured to suit either market conditions, but no single configuration is performs well across both market types. We believe that in a dynamic auction environment where current or future market conditions cannot be predicted a viable sniping strategy should adapt its behaviour to suit prevailing market conditions. To this end, we propose the Adaptive Sniper (AS) agent for the CDA. AS traders classify sniping opportunities using a statistical model of market activity and adjust their classification thresholds using a Widrow-Hoff adapted search. Our AS agent requires little configuration, and outperforms the original Kaplan sniper in volatile and stable markets, and in a mixed trader type scenario that includes adaptive strategies from the literature.

  9. Recently disclosed chemical entities as potential candidates for management of tuberculosis.

    PubMed

    Stec, Jozef; Abourashed, Ehab A

    2015-01-01

    Tuberculosis (TB) is one of the deadliest infectious diseases worldwide. The drug discovery process of novel, safe and effective agents to combat TB involves identification of new molecular targets and novel chemical scaffolds. The current anti-TB drug pipeline includes several small molecules with more to follow as new candidates are disclosed. This review highlights the most significant findings described in 78 international, European and US patents for chemically diverse compounds as prospective anti-TB medications. Main points of emphasis include chemical classification, in vitro and in vivo activity, ADME/Tox profile and mycobacterial target as described in each patent. The collective mass of compounds disclosed in the reviewed patents introduces new candidates as potential therapeutic agents for TB infections.

  10. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.

  11. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  12. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning

    NASA Astrophysics Data System (ADS)

    Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene

    2016-07-01

    Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.

  13. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    PubMed

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  14. Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module.

    PubMed

    Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T

    2015-08-01

    An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).

  15. 28 CFR 17.26 - Derivative classification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...

  16. 28 CFR 17.26 - Derivative classification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...

  17. 28 CFR 17.26 - Derivative classification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...

  18. 28 CFR 17.26 - Derivative classification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...

  19. Infra-specific folk taxonomy in sorghum (Sorghum bicolor (L.) Moench) in Ethiopia: folk nomenclature, classification, and criteria

    PubMed Central

    Mekbib, Firew

    2007-01-01

    Background Sorghum is one of the main staple food crops for the poorest and most food insecure people of the world. As Ethiopia is the centre of origin and diversity for sorghum, the crop has been cultivated for many thousands of years. Hence, indigenous knowledge based sorghum classification and naming has a long tradition. Methods In order to assess folk taxonomy, various research methods were employed, including, focus group interviews with 360 farmers, direct on-farm participatory monitoring with 120 farmers, key informant interviews with 60 farmers and development agents and semi-structured interviews with 250 farmers. In addition, diversity fairs were conducted with over 1200 farmers. Assessment of folk taxonomy consistency was assessed by 30 farmers' evaluation of 44 folk species. Results Farmers have been growing sorghum for at least 500 years (20 generations). Sorghum is named as Mishinga in the region. Farmers used twenty five morphological, sixty biotic and abiotic and twelve use-related traits in folk taxonomy of sorghum. Farmers classified their gene-pool by hierarchical classifications into parts that represented distinguishable groups of accessions. Folk taxonomy trees were generated in the highland, intermediate and lowland sorghum ecologies. Over 78 folk species have been identified. The folk species were named after morphological, use-related and breeding methodology used. Relative distribution of folk species over the region, folk taxonomy consistency, and comparison of folk and formal taxonomy are described. Conclusion New folk taxonomy descriptors have been identified and suggested to be used as formal taxonomy descriptors. It is concluded that integrated folk-formal taxonomy has to be used for enhanced collection, characterisation and utilization of on farm genetic resources. PMID:18162135

  20. Infra-specific folk taxonomy in sorghum (Sorghum bicolor (L.) Moench) in Ethiopia: folk nomenclature, classification, and criteria.

    PubMed

    Mekbib, Firew

    2007-12-27

    Sorghum is one of the main staple food crops for the poorest and most food insecure people of the world. As Ethiopia is the centre of origin and diversity for sorghum, the crop has been cultivated for many thousands of years. Hence, indigenous knowledge based sorghum classification and naming has a long tradition. In order to assess folk taxonomy, various research methods were employed, including, focus group interviews with 360 farmers, direct on-farm participatory monitoring with 120 farmers, key informant interviews with 60 farmers and development agents and semi-structured interviews with 250 farmers. In addition, diversity fairs were conducted with over 1200 farmers. Assessment of folk taxonomy consistency was assessed by 30 farmers' evaluation of 44 folk species. Farmers have been growing sorghum for at least 500 years (20 generations). Sorghum is named as Mishinga in the region. Farmers used twenty five morphological, sixty biotic and abiotic and twelve use-related traits in folk taxonomy of sorghum. Farmers classified their gene-pool by hierarchical classifications into parts that represented distinguishable groups of accessions. Folk taxonomy trees were generated in the highland, intermediate and lowland sorghum ecologies. Over 78 folk species have been identified. The folk species were named after morphological, use-related and breeding methodology used. Relative distribution of folk species over the region, folk taxonomy consistency, and comparison of folk and formal taxonomy are described. New folk taxonomy descriptors have been identified and suggested to be used as formal taxonomy descriptors. It is concluded that integrated folk-formal taxonomy has to be used for enhanced collection, characterisation and utilization of on farm genetic resources.

  1. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    PubMed

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  2. Automated classification of articular cartilage surfaces based on surface texture.

    PubMed

    Stachowiak, G P; Stachowiak, G W; Podsiadlo, P

    2006-11-01

    In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.

  3. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  4. Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure

    ERIC Educational Resources Information Center

    Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.

    2006-01-01

    The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…

  5. The Sequential Probability Ratio Test and Binary Item Response Models

    ERIC Educational Resources Information Center

    Nydick, Steven W.

    2014-01-01

    The sequential probability ratio test (SPRT) is a common method for terminating item response theory (IRT)-based adaptive classification tests. To decide whether a classification test should stop, the SPRT compares a simple log-likelihood ratio, based on the classification bound separating two categories, to prespecified critical values. As has…

  6. Using Discrete Loss Functions and Weighted Kappa for Classification: An Illustration Based on Bayesian Network Analysis

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Lenaburg, Lubella

    2009-01-01

    In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…

  7. Selective classification for improved robustness of myoelectric control under nonideal conditions.

    PubMed

    Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S

    2011-06-01

    Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.

  8. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  9. Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm.

    PubMed

    Al-Saffar, Ahmed; Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-Bared, Mohammed

    2018-01-01

    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.

  10. Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm

    PubMed Central

    Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-bared, Mohammed

    2018-01-01

    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach. PMID:29684036

  11. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history.

    PubMed

    Kovalev, S Y; Mukhacheva, T A

    2017-11-01

    Tick-borne encephalitis is widespread in Eurasia and transmitted by Ixodes ticks. Classification of its causative agent, tick-borne encephalitis virus (TBEV), includes three subtypes, namely Far-Eastern, European, and Siberian (TBEV-Sib), as well as a group of 886-84-like strains with uncertain taxonomic status. TBEV-Sib is subdivided into three phylogenetic lineages: Baltic, Asian, and South-Siberian. A reason to reconsider TBEV-Sib classification was the analysis of 186 nucleotide sequences of an E gene fragment submitted to GenBank during the last two years. Within the South-Siberian lineage, we have identified a distinct group with prototype strains Aina and Vasilchenko as an individual lineage named East-Siberian. The analysis of reclassified lineages has promoted a new model of the evolutionary history of TBEV-Sib lineages and TBEV-Sib as a whole. Moreover, we present arguments supporting separation of 886-84-like strains into an individual TBEV subtype, which we propose to name Baikalian (TBEV-Bkl). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  13. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  14. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  15. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  16. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  17. Comparing K-mer based methods for improved classification of 16S sequences.

    PubMed

    Vinje, Hilde; Liland, Kristian Hovde; Almøy, Trygve; Snipen, Lars

    2015-07-01

    The need for precise and stable taxonomic classification is highly relevant in modern microbiology. Parallel to the explosion in the amount of sequence data accessible, there has also been a shift in focus for classification methods. Previously, alignment-based methods were the most applicable tools. Now, methods based on counting K-mers by sliding windows are the most interesting classification approach with respect to both speed and accuracy. Here, we present a systematic comparison on five different K-mer based classification methods for the 16S rRNA gene. The methods differ from each other both in data usage and modelling strategies. We have based our study on the commonly known and well-used naïve Bayes classifier from the RDP project, and four other methods were implemented and tested on two different data sets, on full-length sequences as well as fragments of typical read-length. The difference in classification error obtained by the methods seemed to be small, but they were stable and for both data sets tested. The Preprocessed nearest-neighbour (PLSNN) method performed best for full-length 16S rRNA sequences, significantly better than the naïve Bayes RDP method. On fragmented sequences the naïve Bayes Multinomial method performed best, significantly better than all other methods. For both data sets explored, and on both full-length and fragmented sequences, all the five methods reached an error-plateau. We conclude that no K-mer based method is universally best for classifying both full-length sequences and fragments (reads). All methods approach an error plateau indicating improved training data is needed to improve classification from here. Classification errors occur most frequent for genera with few sequences present. For improving the taxonomy and testing new classification methods, the need for a better and more universal and robust training data set is crucial.

  18. Model-based Clustering of High-Dimensional Data in Astrophysics

    NASA Astrophysics Data System (ADS)

    Bouveyron, C.

    2016-05-01

    The nature of data in Astrophysics has changed, as in other scientific fields, in the past decades due to the increase of the measurement capabilities. As a consequence, data are nowadays frequently of high dimensionality and available in mass or stream. Model-based techniques for clustering are popular tools which are renowned for their probabilistic foundations and their flexibility. However, classical model-based techniques show a disappointing behavior in high-dimensional spaces which is mainly due to their dramatical over-parametrization. The recent developments in model-based classification overcome these drawbacks and allow to efficiently classify high-dimensional data, even in the "small n / large p" situation. This work presents a comprehensive review of these recent approaches, including regularization-based techniques, parsimonious modeling, subspace classification methods and classification methods based on variable selection. The use of these model-based methods is also illustrated on real-world classification problems in Astrophysics using R packages.

  19. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    PubMed Central

    Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar

    2014-01-01

    Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357

  20. Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.

    PubMed

    Chen, Shizhi; Yang, Xiaodong; Tian, Yingli

    2015-09-01

    A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.

  1. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  2. An advanced method for classifying atmospheric circulation types based on prototypes connectivity graph

    NASA Astrophysics Data System (ADS)

    Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros

    2012-11-01

    Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.

  3. Vulnerable land ecosystems classification using spatial context and spectral indices

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martín, Consuelo; Marcello, Javier

    2017-10-01

    Natural habitats are exposed to growing pressure due to intensification of land use and tourism development. Thus, obtaining information on the vegetation is necessary for conservation and management projects. In this context, remote sensing is an important tool for monitoring and managing habitats, being classification a crucial stage. The majority of image classifications techniques are based upon the pixel-based approach. An alternative is the object-based (OBIA) approach, in which a previous segmentation step merges image pixels to create objects that are then classified. Besides, improved results may be gained by incorporating additional spatial information and specific spectral indices into the classification process. The main goal of this work was to implement and assess object-based classification techniques on very-high resolution imagery incorporating spectral indices and contextual spatial information in the classification models. The study area was Teide National Park in Canary Islands (Spain) using Worldview-2 orthoready imagery. In the classification model, two common indices were selected Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI), as well as two specific Worldview-2 sensor indices, Worldview Vegetation Index and Worldview Soil Index. To include the contextual information, Grey Level Co-occurrence Matrices (GLCM) were used. The classification was performed training a Support Vector Machine with sufficient and representative number of vegetation samples (Spartocytisus supranubius, Pterocephalus lasiospermus, Descurainia bourgaeana and Pinus canariensis) as well as urban, road and bare soil classes. Confusion Matrices were computed to evaluate the results from each classification model obtaining the highest overall accuracy (90.07%) combining both Worldview indices with the GLCM-dissimilarity.

  4. Evaluation of different classification methods for the diagnosis of schizophrenia based on functional near-infrared spectroscopy.

    PubMed

    Li, Zhaohua; Wang, Yuduo; Quan, Wenxiang; Wu, Tongning; Lv, Bin

    2015-02-15

    Based on near-infrared spectroscopy (NIRS), recent converging evidence has been observed that patients with schizophrenia exhibit abnormal functional activities in the prefrontal cortex during a verbal fluency task (VFT). Therefore, some studies have attempted to employ NIRS measurements to differentiate schizophrenia patients from healthy controls with different classification methods. However, no systematic evaluation was conducted to compare their respective classification performances on the same study population. In this study, we evaluated the classification performance of four classification methods (including linear discriminant analysis, k-nearest neighbors, Gaussian process classifier, and support vector machines) on an NIRS-aided schizophrenia diagnosis. We recruited a large sample of 120 schizophrenia patients and 120 healthy controls and measured the hemoglobin response in the prefrontal cortex during the VFT using a multichannel NIRS system. Features for classification were extracted from three types of NIRS data in each channel. We subsequently performed a principal component analysis (PCA) for feature selection prior to comparison of the different classification methods. We achieved a maximum accuracy of 85.83% and an overall mean accuracy of 83.37% using a PCA-based feature selection on oxygenated hemoglobin signals and support vector machine classifier. This is the first comprehensive evaluation of different classification methods for the diagnosis of schizophrenia based on different types of NIRS signals. Our results suggested that, using the appropriate classification method, NIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A novel method to guide classification of para swimmers with limb deficiency.

    PubMed

    Hogarth, Luke; Payton, Carl; Van de Vliet, Peter; Connick, Mark; Burkett, Brendan

    2018-05-30

    The International Paralympic Committee has directed International Federations that govern Para sports to develop evidence-based classification systems. This study defined the impact of limb deficiency impairment on 100 m freestyle performance to guide an evidence-based classification system in Para Swimming, which will be implemented following the 2020 Tokyo Paralympic games. Impairment data and competitive race performances of 90 international swimmers with limb deficiency were collected. Ensemble partial least squares regression established the relationship between relative limb length measures and competitive 100 m freestyle performance. The model explained 80% of the variance in 100 m freestyle performance, and found hand length and forearm length to be the most important predictors of performance. Based on the results of this model, Para swimmers were clustered into four-, five-, six- and seven-class structures using nonparametric kernel density estimations. The validity of these classification structures, and effectiveness against the current classification system, were examined by establishing within-class variations in 100 m freestyle performance and differences between adjacent classes. The derived classification structures were found to be more effective than current classification based on these criteria. This study provides a novel method that can be used to improve the objectivity and transparency of decision-making in Para sport classification. Expert consensus from experienced coaches, Para swimmers, classifiers and sport science and medicine personnel will benefit the translation of these findings into a revised classification system that is accepted by the Para swimming community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Compensation for occupational neurological and mental disorders.

    PubMed

    Kang, Dong-Mug; Kim, Inah

    2014-06-01

    Standards for the recognition of occupational diseases (ODs) in Korea were established in 1954 and have been amended several times. In 2013, there was a significant change in these standards. On the basis of scientific evidence and causality, the International Labour Organization list, European Commission schedule, and compensated cases in Korea were reviewed to revise the previous standards for the recognition of ODs in Korea. A disease-based approach using the International Classification of Diseases (10th version) was added on the previous standards, which were agent-specific approaches. The amended compensable occupational neurological disorders and occupational mental disorders (OMDs) in Korea are acute and chronic central nervous system (CNS) disorders, toxic neuropathy, peripheral neuropathy, manganese-related disorders, and post-traumatic stress disorder. Several agents including trichloroethylene (TCE), benzene, vinyl chloride, organotin, methyl bromide, and carbon monoxide (CO) were newly included as acute CNS disorders. TCE, lead, and mercury were newly included as chronic CNS disorders. Mercury, TCE, methyl n-butyl ketone, acrylamide, and arsenic were newly included in peripheral neuropathy. Post-traumatic stress disorders were newly included as the first OMD. This amendment makes the standard more comprehensive and practical. However, this amendment does not perfectly reflect the recent scientific progress and social concerns. Ongoing effort, research, and expert consensus are needed to improve the standard.

  7. PARADIGM - HF: The Rise of the Arnis.

    PubMed

    Guha, Kaushik; Varkey, Sneha; Sharma, Rakesh

    2016-01-01

    Heart failure remains a widespread commonly encountered clinical condition. It is responsible for increased healthcare expenditure, driven by frequent and often prolonged hospital admissions associated with an increased mortality. A clinically useful classification of the syndrome is, patients with left ventricular systolic impairment (Heart Failure and reduced ejection fraction, HFREF) and patients with preserved left ventricular systolic function (HFPEF). The pharmacological treatment for patients with HFREF has evolved over the last twenty five years, focusing on modulation of the neurohormonal activation which represents a hallmark of this condition. This has led to the development of a stepwise treatment algorithm predominately based on inhibition of the renin angiotensin aldosterone pathway and counteracting sympathetic over-activation. In particular since the early trials in chronic heart failure (CHF) demonstrated a significant mortality benefit with ACE-inhibitors, subsequent studies have been conducted in conjunction with these drugs. The rationale being that it would be unethical to trial any new agent without the concomitant use of ACE-inhibitors. The recent publication of the PARADIGM -HF study has challenged this convention by trialling a novel pharmacological agent against an ACE-inhibitor in a landmark trial. The review sets out the current pharmacological treatment for patients with heart failure and discusses the recent findings with this novel class of medication.

  8. Classifying diseases and remedies in ethnomedicine and ethnopharmacology.

    PubMed

    Staub, Peter O; Geck, Matthias S; Weckerle, Caroline S; Casu, Laura; Leonti, Marco

    2015-11-04

    Ethnopharmacology focuses on the understanding of local and indigenous use of medicines and therefore an emic approach is inevitable. Often, however, standard biomedical disease classifications are used to describe and analyse local diseases and remedies. Standard classifications might be a valid tool for cross-cultural comparisons and bioprospecting purposes but are not suitable to understand the local perception of disease and use of remedies. Different standard disease classification systems exist but their suitability for cross-cultural comparisons of ethnomedical data has never been assessed. Depending on the research focus, (I) ethnomedical, (II) cross-cultural, and (III) bioprospecting, we provide suggestions for the use of specific classification systems. We analyse three different standard biomedical classification systems (the International Classification of Diseases (ICD); the Economic Botany Data Collection Standard (EBDCS); and the International Classification of Primary Care (ICPC)), and discuss their value for categorizing diseases of ethnomedical systems and their suitability for cross-cultural research in ethnopharmacology. Moreover, based on the biomedical uses of all approved plant derived biomedical drugs, we propose a biomedical therapy-based classification system as a guide for the discovery of drugs from ethnopharmacological sources. Widely used standards, such as the International Classification of Diseases (ICD) by the WHO and the Economic Botany Data Collection Standard (EBDCS) are either technically challenging due to a categorisation system based on clinical examinations, which are usually not possible during field research (ICD) or lack clear biomedical criteria combining disorders and medical effects in an imprecise and confusing way (EBDCS). The International Classification of Primary Care (ICPC), also accepted by the WHO, has more in common with ethnomedical reality than the ICD or the EBDCS, as the categories are designed according to patient's perceptions and are less influenced by clinical medicine. Since diagnostic tools are not required, medical ethnobotanists and ethnopharmacologists can easily classify reported symptoms and complaints with the ICPC in one of the "chapters" based on 17 body systems, psychological and social problems. Also the biomedical uses of plant-derived drugs are classifiable into 17 broad organ- and therapy-based use-categories but can easily be divided into more specific subcategories. Depending on the research focus (I-III) we propose the following classification systems: I. Ethnomedicine: Ethnomedicine is culture-bound and local classifications have to be understood from an emic perspective. Consequently, the application of prefabricated, "one-size fits all" biomedical classification schemes is of limited value. II. Cross-cultural analysis: The ICPC is a suitable standard that can be applied but modified as required. III. Bioprospecting: We suggest a biomedical therapy-driven classification system with currently 17 use-categories based on biomedical uses of all approved plant derived natural product drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Tissue classification for laparoscopic image understanding based on multispectral texture analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena

    2016-03-01

    Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.

  10. 48 CFR 47.305-9 - Commodity description and freight classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... freight classification. 47.305-9 Section 47.305-9 Federal Acquisition Regulations System FEDERAL... Commodity description and freight classification. (a) Generally, the freight rate for supplies is based on the rating applicable to the freight classification description published in the National Motor...

  11. 48 CFR 47.305-9 - Commodity description and freight classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of previously shipped items, and different freight classifications may apply, the contracting officer... freight classification. 47.305-9 Section 47.305-9 Federal Acquisition Regulations System FEDERAL... Commodity description and freight classification. (a) Generally, the freight rate for supplies is based on...

  12. 48 CFR 47.305-9 - Commodity description and freight classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of previously shipped items, and different freight classifications may apply, the contracting officer... freight classification. 47.305-9 Section 47.305-9 Federal Acquisition Regulations System FEDERAL... Commodity description and freight classification. (a) Generally, the freight rate for supplies is based on...

  13. 48 CFR 47.305-9 - Commodity description and freight classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of previously shipped items, and different freight classifications may apply, the contracting officer... freight classification. 47.305-9 Section 47.305-9 Federal Acquisition Regulations System FEDERAL... Commodity description and freight classification. (a) Generally, the freight rate for supplies is based on...

  14. 48 CFR 47.305-9 - Commodity description and freight classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of previously shipped items, and different freight classifications may apply, the contracting officer... freight classification. 47.305-9 Section 47.305-9 Federal Acquisition Regulations System FEDERAL... Commodity description and freight classification. (a) Generally, the freight rate for supplies is based on...

  15. A System for Supporting Development and Update of the International Classification of Health Interventions (ICHI).

    PubMed

    Donada, Marc; Della Mea, Vincenzo; Cumerlato, Megan; Rankin, Nicole; Madden, Richard

    2018-01-01

    The International Classification of Health Interventions (ICHI) is a member of the WHO Family of International Classifications, being developed to provide a common tool for reporting and analysing health interventions for statistical purposes. A web-based platform for classification development and update has been specifically developed to support the initial development step and then, after final approval, the continuous revision and update of the classification. The platform provides features for classification editing, versioning, comment management and URI identifiers. During the last 12 months it has been used for developing the ICHI Beta version, replacing the previous process based on the exchange of Excel files. At November 2017, 90 users have provided input to the development of the classification, which has resulted in 2913 comments and 2971 changes in the classification, since June 2017. Further work includes the development of an URI API for machine to machine communication, following the model established for ICD-11.

  16. Drug related webpages classification using images and text information based on multi-kernel learning

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan

    2015-12-01

    In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.

  17. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  18. Selecting reusable components using algebraic specifications

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.

  19. Semi-supervised classification tool for DubaiSat-2 multispectral imagery

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, Saeed

    2015-10-01

    This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.

  20. [Evaluation of traditional pathological classification at molecular classification era for gastric cancer].

    PubMed

    Yu, Yingyan

    2014-01-01

    Histopathological classification is in a pivotal position in both basic research and clinical diagnosis and treatment of gastric cancer. Currently, there are different classification systems in basic science and clinical application. In medical literatures, different classifications are used including Lauren and WHO systems, which have confused many researchers. Lauren classification has been proposed for half a century, but is still used worldwide. It shows many advantages of simple, easy handling with prognostic significance. The WHO classification scheme is better than Lauren classification in that it is continuously being revised according to the progress of gastric cancer, and is always used in the clinical and pathological diagnosis of common scenarios. Along with the progression of genomics, transcriptomics, proteomics, metabolomics researches, molecular classification of gastric cancer becomes the current hot topics. The traditional therapeutic approach based on phenotypic characteristics of gastric cancer will most likely be replaced with a gene variation mode. The gene-targeted therapy against the same molecular variation seems more reasonable than traditional chemical treatment based on the same morphological change.

  1. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    PubMed

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  2. [Backgrounds for assessing occupational exposure to crystalline silica dust in Poland and worldwide].

    PubMed

    Maciejewska, Aleksandra

    2007-01-01

    Crystalline silica is an agent harmful to human health, and quite frequently present in occupational environments. Occupational groups exposed to crystalline silica dust include mostly workers of the mineral and coal mining as well as metallurgical, chemical and construction industries. In the European Union (EU), the number of those exposed to this agent is estimated at over 2 million persons. In Poland, the number of people employed under conditions of excessive silica dust exposure exceeds 50 thousand. The assessment of occupational exposure to crystalline silica comprises several steps: primarily workplace determinations, quantitative sample analyses and comparisons of the obtained results with admissible values. This work describes a set of instruments that enables direct comparison of the study results with admissible values binding in almost 40 countries. It also highlights the consequences resulting from the classification of quartz and cristobalite, the most common forms of crystalline silica, as carcinogens by the International Agency for Research on Cancer (IARC). A survey of air sampling and dust determination methods used in various countries to measure airborne dust concentrations of crystalline silica in occupational environments are presented along with relevant tables. The GESTIS data base, specifying the methods considered by EU as suitable for measuring and assessing harmful agents, was used as the selection criterion. Particular attention was paid to the methods used to determine crystalline silica; the effect of analytical methods applied, sample preparation procedures, and reference materials on the results of determinations was also analyzed. Main parameters of method validation, such as detection and determination limits, and precision of the analysis were compared.

  3. Evidence-based guideline update: steroids and antivirals for Bell palsy: report of the Guideline Development Subcommittee of the American Academy of Neurology.

    PubMed

    Gronseth, Gary S; Paduga, Remia

    2012-11-27

    To review evidence published since the 2001 American Academy of Neurology (AAN) practice parameter regarding the effectiveness, safety, and tolerability of steroids and antiviral agents for Bell palsy. We searched Medline and the Cochrane Database of Controlled Clinical Trials for studies published since January 2000 that compared facial functional outcomes in patients with Bell palsy receiving steroids/antivirals with patients not receiving these medications. We graded each study (Class I-IV) using the AAN therapeutic classification of evidence scheme. We compared the proportion of patients recovering facial function in the treated group with the proportion of patients recovering facial function in the control group. Nine studies published since June 2000 on patients with Bell palsy receiving steroids/antiviral agents were identified. Two of these studies were rated Class I because of high methodologic quality. For patients with new-onset Bell palsy, steroids are highly likely to be effective and should be offered to increase the probability of recovery of facial nerve function (2 Class I studies, Level A) (risk difference 12.8%-15%). For patients with new-onset Bell palsy, antiviral agents in combination with steroids do not increase the probability of facial functional recovery by >7%. Because of the possibility of a modest increase in recovery, patients might be offered antivirals (in addition to steroids) (Level C). Patients offered antivirals should be counseled that a benefit from antivirals has not been established, and, if there is a benefit, it is likely that it is modest at best.

  4. Chinese Sentence Classification Based on Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Gu, Chengwei; Wu, Ming; Zhang, Chuang

    2017-10-01

    Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.

  5. Abstracting of suspected illegal land use in urban areas using case-based classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo

    2008-11-01

    This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.

  6. Development of the 5-cm Agent Fate Wind Tunnel

    DTIC Science & Technology

    2006-12-01

    ABERDEEN PROVING GROUND, MD 21010-5424 Disclaimer The findings in this report are not to be construed as an official Department of the Army position...CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER OF 19a. NAME OF RESPONSIBLE PERSON ABSTRACT PAGES Sandra J. Johnson a. REPORT b. ABSTRACT c. THIS PAGE...threat persistence for operational scenarios. The findings will then be incorporated into other models and field manuals to provide more accurate

  7. Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias

    DTIC Science & Technology

    2017-10-01

    Syndromes , AML – Acute Myeloid Leukemia, BiKE – Bi-specific Killer Engager, TriKE – Tri-specific Killer E 16. SECURITY CLASSIFICATION OF: 17...Natural Killer CML – Chronic Myeloid Leukemia MDS – Myelodysplastic Syndromes AML – Acute Myeloid Leukemia BiKE – Bi-specific Killer Engager TriKE...incidence of myeloid malignancies is increased due to exposure to ionizing radiation , chemicals, and other agents during deployment. Although

  8. Image Analysis and Classification Based on Soil Strength

    DTIC Science & Technology

    2016-08-01

    Satellite imagery classification is useful for a variety of commonly used ap- plications, such as land use classification, agriculture , wetland...required use of a coinci- dent digital elevation model (DEM) and a high-resolution orthophoto- graph collected by the National Agriculture Imagery Program...14. ABSTRACT Satellite imagery classification is useful for a variety of commonly used applications, such as land use classification, agriculture

  9. Inter-comparison of weather and circulation type classifications for hydrological drought development

    NASA Astrophysics Data System (ADS)

    Fleig, Anne K.; Tallaksen, Lena M.; Hisdal, Hege; Stahl, Kerstin; Hannah, David M.

    Classifications of weather and circulation patterns are often applied in research seeking to relate atmospheric state to surface environmental phenomena. However, numerous procedures have been applied to define the patterns, thus limiting comparability between studies. The COST733 Action “ Harmonisation and Applications of Weather Type Classifications for European regions” tests 73 different weather type classifications (WTC) and their associate weather types (WTs) and compares the WTCs’ utility for various applications. The objective of this study is to evaluate the potential of these WTCs for analysis of regional hydrological drought development in north-western Europe. Hydrological drought is defined in terms of a Regional Drought Area Index (RDAI), which is based on deficits derived from daily river flow series. RDAI series (1964-2001) were calculated for four homogeneous regions in Great Britain and two in Denmark. For each region, WTs associated with hydrological drought development were identified based on antecedent and concurrent WT-frequencies for major drought events. The utility of the different WTCs for the study of hydrological drought development was evaluated, and the influence of WTC attributes, i.e. input variables, number of defined WTs and general classification concept, on WTC performance was assessed. The objective Grosswetterlagen (OGWL), the objective Second-Generation Lamb Weather Type Classification (LWT2) with 18 WTs and two implementations of the objective Wetterlagenklassifikation (WLK; with 40 and 28 WTs) outperformed all other WTCs. In general, WTCs with more WTs (⩾27) were found to perform better than WTCs with less (⩽18) WTs. The influence of input variables was not consistent across the different classification procedures, and the performance of a WTC was determined primarily by the classification procedure itself. Overall, classification procedures following the relatively simple general classification concept of predefining WTs based on thresholds, performed better than those based on more sophisticated classification concepts such as deriving WTs by cluster analysis or artificial neural networks. In particular, PCA based WTCs with 9 WTs and automated WTCs with a high number of predefined WTs (subjectively and threshold based) performed well. It is suggested that the explicit consideration of the air flow characteristics of meridionality, zonality and cyclonicity in the definition of WTs is a useful feature for a WTC when analysing regional hydrological drought development.

  10. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  11. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  12. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  13. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  14. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...

  15. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  16. A probabilistic approach to segmentation and classification of neoplasia in uterine cervix images using color and geometric features

    NASA Astrophysics Data System (ADS)

    Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron

    2005-04-01

    Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.

  17. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer

    PubMed Central

    Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results. PMID:28467468

  18. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    PubMed

    Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  19. Limitations and implications of stream classification

    USGS Publications Warehouse

    Juracek, K.E.; Fitzpatrick, F.A.

    2003-01-01

    Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.

  20. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  1. Computer-aided classification of optical images for diagnosis of osteoarthritis in the finger joints.

    PubMed

    Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei

    2011-01-01

    This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.

  2. [Chronic prostatitis: a new paradigm of treatment].

    PubMed

    Bozhedomov, V A

    2016-08-01

    This paper proposes health care recommendations for men with chronic prostatitis (CP) taking into account etiopathogenesis and the clinical presentation of the disease. The proposal is based on the experience of federal and regional clinics of urology and gynecology, respective departments for postgraduate education and on the analysis of scientific literature. It is shown that managing patients with CP requires consideration of factors beyond the traditional practice of urology. The author validates the need to use the modern prostatitis classification UPOINT instead of the traditional NIH NIDDK (1995) to increase the effectiveness of treatment. It is demonstrated that the concurrent use of medications and non-pharmacological treatments aimed at different aspects of the state improve the treatment effectiveness. Indications are refined for medical and non-pharmacological treatments: antibiotics, alpha-blockers, anticholinergic agents, analgesics, antidepressants, herbal remedies, pelvic floor physiotherapy, psychotherapy. The shortcomings and mistakes of existing guidelines/standards are analyzed.

  3. Microorganisms detection on substrates using QCL spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Castro-Suarez, John R.; Ríos-Velázquez, Carlos; Vázquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2013-05-01

    Recent investigations have focused on the improvement of rapid and accurate methods to develop spectroscopic markers of compounds constituting microorganisms that are considered biological threats. Quantum cascade lasers (QCL) systems have revolutionized many areas of research and development in defense and security applications, including his area of research. Infrared spectroscopy detection based on QCL was employed to acquire mid infrared (MIR) spectral signatures of Bacillus thuringiensis (Bt), Escherichia coli (Ec) and Staphylococcus epidermidis (Se), which were used as biological agent simulants of biothreats. The experiments were carried out in reflection mode on various substrates such as cardboard, glass, travel baggage, wood and stainless steel. Chemometrics statistical routines such as principal component analysis (PCA) regression and partial least squares-discriminant analysis (PLS-DA) were applied to the recorded MIR spectra. The results show that the infrared vibrational techniques investigated are useful for classification/detection of the target microorganisms on the types of substrates studied.

  4. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    NASA Astrophysics Data System (ADS)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  5. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    NASA Astrophysics Data System (ADS)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes corresponding to geological descriptors. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria.

  6. Development of a computer-based clinical decision support tool for selecting appropriate rehabilitation interventions for injured workers.

    PubMed

    Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar

    2013-12-01

    To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.

  7. New therapeutic solutions for Behçet's syndrome.

    PubMed

    Vitale, Antonio; Rigante, Donato; Lopalco, Giuseppe; Emmi, Giacomo; Bianco, Maria Teresa; Galeazzi, Mauro; Iannone, Florenzo; Cantarini, Luca

    2016-07-01

    Behçet's syndrome (BS) is a systemic inflammatory disorder characterized by a wide range of potential clinical manifestations with no gold-standard therapy. However, the recent classification of BS at a crossroads between autoimmune and autoinflammatory syndromes has paved the way to new further therapeutic opportunities in addition to anti-tumor necrosis factor agents. This review provides a digest of all current experience and evidence about pharmacological agents recently described as having a role in the treatment of BS, including interleukin (IL)-1 inhibitors, tocilizumab, rituximab, alemtuzumab, ustekinumab, interferon-alpha-2a, and apremilast. IL-1 inhibitors currently represent the most studied agents among the latest treatment options for BS, proving to be effective, safe and with an acceptable retention on treatment. However, since BS is a peculiar disorder with clinical features responding to certain treatments that in turn can worsen other manifestations, identifying new treatment options for patients unresponsive to the current drug armamentarium is of great relevance. A number of agents have been studied in the last decade showing changing fortunes in some cases and promising results in others. The latter will potentially provide their contribution for better clinical management of BS, improving patients' quality of life and long-term outcome.

  8. Surface-active agents from the group of polyoxyethylated glycerol esters of fatty acids. Part III. Surface activity and solubilizing properties of the products of oxyethylation of lard (Adeps suillus, F.P. VIII) in the equilibrium system in relation to lipophilic therapeutic agents (class II and III of BCS).

    PubMed

    Nachajski, Michał J; Piotrowska, Jowita B; Kołodziejczyk, Michał K; Lukosek, Marek; Zgoda, Marian M

    2013-01-01

    Research was conducted into the solubilization processes of diclofenac, ibuprofen, ketoprofen and naproxen in equilibrium conditions in the environment of aqueous solutions of oxyethylated lard's fractions (Adeps suillus, Polish Pharmacopoeia VIII). The determined thermodynamic (cmc, deltaGm(0)) and hydrodynamic (R0, R(obs), omega, M(eta)) parameters characterizing the micelle of the solubilizer and the adduct demonstrate that lipophilic therapeutic agents are adsorbed in a palisade structure of the micelle due to a topologically created so-called "lipophilic adsorption pocket". This shows that the hydrophilicity of the micelle and the adsorption layer decreases at the phase boundary, which is confirmed by the calculated values of coefficients A(m) and r x (a). The results obtained indicate the possibility of making use of the class of non-ionic surfactants which are not ksenobiotics for the modification of the profile of solid oral dosage forms with lipophilic therapeutic agents from the II class of Biopharmaceutics Classification System (BCS).

  9. Classification and Quality Evaluation of Tobacco Leaves Based on Image Processing and Fuzzy Comprehensive Evaluation

    PubMed Central

    Zhang, Fan; Zhang, Xinhong

    2011-01-01

    Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744

  10. Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

    PubMed

    Bi, Xia-An; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

  11. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    NASA Astrophysics Data System (ADS)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to proper wages usage. Thus a more precise and unambiguous boundaries of segments (objects) were received. As a results of the classification 5 classes of land cover (buildings, water, high and low vegetation and others) were extracted. Both pixel-based image analysis and OBIA were conducted with a minimum mapping unit of 10m2. Results were validated on the basis on manual classification and random points (80 per test area), reference data set was manually interpreted using ortophotomaps and expert knowledge of the test site areas.

  12. A classification of the mechanisms producing pathological tissue changes.

    PubMed

    Grippo, John O; Oh, Daniel S

    2013-05-01

    The objectives are to present a classification of mechanisms which can produce pathological changes in body tissues and fluids, as well as to clarify and define the term biocorrosion, which has had a singular use in engineering. Considering the emerging field of biomedical engineering, it is essential to use precise definitions in the lexicons of engineering, bioengineering and related sciences such as medicine, dentistry and veterinary medicine. The mechanisms of stress, friction and biocorrosion and their pathological effects on tissues are described. Biocorrosion refers to the chemical, biochemical and electrochemical changes by degradation or induced growth of living body tissues and fluids. Various agents which can affect living tissues causing biocorrosion are enumerated which support the necessity and justify the use of this encompassing and more precise definition of biocorrosion. A distinction is made between the mechanisms of corrosion and biocorrosion.

  13. The Extension of Holland's Occupational Classification to All Occupations in the Dictionary of Occupational Titles.

    ERIC Educational Resources Information Center

    Viernstein, Mary Cowan

    Two methods are presented for extending Holland's occupational classification to include all occupations in the Dictionary of Occupational Titles (DOT). Holland's classification is based on a theory of personality types, with occupations in the classification organized into major categories (Realistic, Investigative, Artistic, Social,…

  14. Objected-oriented remote sensing image classification method based on geographic ontology model

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Liu, Z. J.; Gu, H. Y.

    2016-11-01

    Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.

  15. Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data

    NASA Astrophysics Data System (ADS)

    Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd

    2016-04-01

    This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.

  16. SB certification handout material requirements, test methods, responsibilities, and minimum classification levels for mixture-based specification for flexible base.

    DOT National Transportation Integrated Search

    2012-10-01

    A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...

  17. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  18. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  19. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    PubMed

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  20. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  1. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2000-12-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  2. Automatic classification of sleep stages based on the time-frequency image of EEG signals.

    PubMed

    Bajaj, Varun; Pachori, Ram Bilas

    2013-12-01

    In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Meeting the criteria of a nursing diagnosis classification: Evaluation of ICNP, ICF, NANDA and ZEFP.

    PubMed

    Müller-Staub, Maria; Lavin, Mary Ann; Needham, Ian; van Achterberg, Theo

    2007-07-01

    Few studies described nursing diagnosis classification criteria and how classifications meet these criteria. The purpose was to identify criteria for nursing diagnosis classifications and to assess how these criteria are met by different classifications. First, a literature review was conducted (N=50) to identify criteria for nursing diagnoses classifications and to evaluate how these criteria are met by the International Classification of Nursing Practice (ICNP), the International Classification of Functioning, Disability and Health (ICF), the International Nursing Diagnoses Classification (NANDA), and the Nursing Diagnostic System of the Centre for Nursing Development and Research (ZEFP). Using literature review based general and specific criteria, the principal investigator evaluated each classification, applying a matrix. Second, a convenience sample of 20 nursing experts from different Swiss care institutions answered standardized interview forms, querying current national and international classification state and use. The first general criterion is that a diagnosis classification should describe the knowledge base and subject matter for which the nursing profession is responsible. ICNP) and NANDA meet this goal. The second general criterion is that each class fits within a central concept. The ICF and NANDA are the only two classifications built on conceptually driven classes. The third general classification criterion is that each diagnosis possesses a description, diagnostic criteria, and related etiologies. Although ICF and ICNP describe diagnostic terms, only NANDA fulfils this criterion. The analysis indicated that NANDA fulfilled most of the specific classification criteria in the matrix. The nursing experts considered NANDA to be the best-researched and most widely implemented classification in Switzerland and internationally. The international literature and the opinion of Swiss expert nurses indicate that-from the perspective of classifying comprehensive nursing diagnoses-NANDA should be recommended for nursing practice and electronic nursing documentation. Study limitations and future research needs are discussed.

  4. How should children with speech sound disorders be classified? A review and critical evaluation of current classification systems.

    PubMed

    Waring, R; Knight, R

    2013-01-01

    Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of theoretically differing classification systems have been proposed based on either an aetiological (medical) approach, a descriptive-linguistic approach or a processing approach. To describe and review the supporting evidence, and to provide a critical evaluation of the current childhood SSD classification systems. Descriptions of the major specific approaches to classification are reviewed and research papers supporting the reliability and validity of the systems are evaluated. Three specific paediatric SSD classification systems; the aetiologic-based Speech Disorders Classification System, the descriptive-linguistic Differential Diagnosis system, and the processing-based Psycholinguistic Framework are identified as potentially useful in classifying children with SSD into homogeneous subgroups. The Differential Diagnosis system has a growing body of empirical support from clinical population studies, across language error pattern studies and treatment efficacy studies. The Speech Disorders Classification System is currently a research tool with eight proposed subgroups. The Psycholinguistic Framework is a potential bridge to linking cause and surface level speech errors. There is a need for a universally agreed-upon classification system that is useful to clinicians and researchers. The resulting classification system needs to be robust, reliable and valid. A universal classification system would allow for improved tailoring of treatments to subgroups of SSD which may, in turn, lead to improved treatment efficacy. © 2012 Royal College of Speech and Language Therapists.

  5. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  6. Plant species classification using flower images—A comparative study of local feature representations

    PubMed Central

    Seeland, Marco; Rzanny, Michael; Alaqraa, Nedal; Wäldchen, Jana; Mäder, Patrick

    2017-01-01

    Steady improvements of image description methods induced a growing interest in image-based plant species classification, a task vital to the study of biodiversity and ecological sensitivity. Various techniques have been proposed for general object classification over the past years and several of them have already been studied for plant species classification. However, results of these studies are selective in the evaluated steps of a classification pipeline, in the utilized datasets for evaluation, and in the compared baseline methods. No study is available that evaluates the main competing methods for building an image representation on the same datasets allowing for generalized findings regarding flower-based plant species classification. The aim of this paper is to comparatively evaluate methods, method combinations, and their parameters towards classification accuracy. The investigated methods span from detection, extraction, fusion, pooling, to encoding of local features for quantifying shape and color information of flower images. We selected the flower image datasets Oxford Flower 17 and Oxford Flower 102 as well as our own Jena Flower 30 dataset for our experiments. Findings show large differences among the various studied techniques and that their wisely chosen orchestration allows for high accuracies in species classification. We further found that true local feature detectors in combination with advanced encoding methods yield higher classification results at lower computational costs compared to commonly used dense sampling and spatial pooling methods. Color was found to be an indispensable feature for high classification results, especially while preserving spatial correspondence to gray-level features. In result, our study provides a comprehensive overview of competing techniques and the implications of their main parameters for flower-based plant species classification. PMID:28234999

  7. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    NASA Astrophysics Data System (ADS)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  8. Mycofier: a new machine learning-based classifier for fungal ITS sequences.

    PubMed

    Delgado-Serrano, Luisa; Restrepo, Silvia; Bustos, Jose Ricardo; Zambrano, Maria Mercedes; Anzola, Juan Manuel

    2016-08-11

    The taxonomic and phylogenetic classification based on sequence analysis of the ITS1 genomic region has become a crucial component of fungal ecology and diversity studies. Nowadays, there is no accurate alignment-free classification tool for fungal ITS1 sequences for large environmental surveys. This study describes the development of a machine learning-based classifier for the taxonomical assignment of fungal ITS1 sequences at the genus level. A fungal ITS1 sequence database was built using curated data. Training and test sets were generated from it. A Naïve Bayesian classifier was built using features from the primary sequence with an accuracy of 87 % in the classification at the genus level. The final model was based on a Naïve Bayes algorithm using ITS1 sequences from 510 fungal genera. This classifier, denoted as Mycofier, provides similar classification accuracy compared to BLASTN, but the database used for the classification contains curated data and the tool, independent of alignment, is more efficient and contributes to the field, given the lack of an accurate classification tool for large data from fungal ITS1 sequences. The software and source code for Mycofier are freely available at https://github.com/ldelgado-serrano/mycofier.git .

  9. A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E; Moran, Emilio

    2008-01-01

    Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.

  10. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching

    PubMed Central

    Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi

    2015-01-01

    The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise. PMID:26205263

  11. A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio

    2009-01-01

    Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716

  12. Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran.

    PubMed

    Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin

    2016-12-01

    In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.

  13. a Two-Step Classification Approach to Distinguishing Similar Objects in Mobile LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    He, H.; Khoshelham, K.; Fraser, C.

    2017-09-01

    Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.

  14. A hybrid sensing approach for pure and adulterated honey classification.

    PubMed

    Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar

    2012-10-17

    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.

  15. A discrete wavelet based feature extraction and hybrid classification technique for microarray data analysis.

    PubMed

    Bennet, Jaison; Ganaprakasam, Chilambuchelvan Arul; Arputharaj, Kannan

    2014-01-01

    Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN), naive Bayes, and support vector machine (SVM). Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT) and moving window technique (MWT) is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  16. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    NASA Astrophysics Data System (ADS)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  17. Property Specification Patterns for intelligence building software

    NASA Astrophysics Data System (ADS)

    Chun, Seungsu

    2018-03-01

    In this paper, through the property specification pattern research for Modal MU(μ) logical aspects present a single framework based on the pattern of intelligence building software. In this study, broken down by state property specification pattern classification of Dwyer (S) and action (A) and was subdivided into it again strong (A) and weaknesses (E). Through these means based on a hierarchical pattern classification of the property specification pattern analysis of logical aspects Mu(μ) was applied to the pattern classification of the examples used in the actual model checker. As a result, not only can a more accurate classification than the existing classification systems were easy to create and understand the attributes specified.

  18. Polarimetric SAR image classification based on discriminative dictionary learning model

    NASA Astrophysics Data System (ADS)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  19. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  20. Efficacy measures associated to a plantar pressure based classification system in diabetic foot medicine.

    PubMed

    Deschamps, Kevin; Matricali, Giovanni Arnoldo; Desmet, Dirk; Roosen, Philip; Keijsers, Noel; Nobels, Frank; Bruyninckx, Herman; Staes, Filip

    2016-09-01

    The concept of 'classification' has, similar to many other diseases, been found to be fundamental in the field of diabetic medicine. In the current study, we aimed at determining efficacy measures of a recently published plantar pressure based classification system. Technical efficacy of the classification system was investigated by applying a high resolution, pixel-level analysis on the normalized plantar pressure pedobarographic fields of the original experimental dataset consisting of 97 patients with diabetes and 33 persons without diabetes. Clinical efficacy was assessed by considering the occurence of foot ulcers at the plantar aspect of the forefoot in this dataset. Classification efficacy was assessed by determining the classification recognition rate as well as its sensitivity and specificity using cross-validation subsets of the experimental dataset together with a novel cohort of 12 patients with diabetes. Pixel-level comparison of the four groups associated to the classification system highlighted distinct regional differences. Retrospective analysis showed the occurence of eleven foot ulcers in the experimental dataset since their gait analysis. Eight out of the eleven ulcers developed in a region of the foot which had the highest forces. Overall classification recognition rate exceeded 90% for all cross-validation subsets. Sensitivity and specificity of the four groups associated to the classification system exceeded respectively the 0.7 and 0.8 level in all cross-validation subsets. The results of the current study support the use of the novel plantar pressure based classification system in diabetic foot medicine. It may particularly serve in communication, diagnosis and clinical decision making. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Defining the mobilome.

    PubMed

    Siefert, Janet L

    2009-01-01

    This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.

  2. A comparative study for chest radiograph image retrieval using binary texture and deep learning classification.

    PubMed

    Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit

    2015-08-01

    In this work various approaches are investigated for X-ray image retrieval and specifically chest pathology retrieval. Given a query image taken from a data set of 443 images, the objective is to rank images according to similarity. Different features, including binary features, texture features, and deep learning (CNN) features are examined. In addition, two approaches are investigated for the retrieval task. One approach is based on the distance of image descriptors using the above features (hereon termed the "descriptor"-based approach); the second approach ("classification"-based approach) is based on a probability descriptor, generated by a pair-wise classification of each two classes (pathologies) and their decision values using an SVM classifier. Best results are achieved using deep learning features in a classification scheme.

  3. New insights into the classification and nomenclature of cortical GABAergic interneurons.

    PubMed

    DeFelipe, Javier; López-Cruz, Pedro L; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R; Huang, Josh; Jones, Edward G; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A; Marín, Oscar; Markram, Henry; McBain, Chris J; Meyer, Hanno S; Monyer, Hannah; Nelson, Sacha B; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L R; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M; Sherwood, Chet C; Staiger, Jochen F; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A

    2013-03-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.

  4. New insights into the classification and nomenclature of cortical GABAergic interneurons

    PubMed Central

    DeFelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L. R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A.

    2013-01-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus. PMID:23385869

  5. Automatic topic identification of health-related messages in online health community using text classification.

    PubMed

    Lu, Yingjie

    2013-01-01

    To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.

  6. An unbalanced spectra classification method based on entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-bao; Zhao, Wen-juan

    2017-05-01

    How to solve the problem of distinguishing the minority spectra from the majority of the spectra is quite important in astronomy. In view of this, an unbalanced spectra classification method based on entropy (USCM) is proposed in this paper to deal with the unbalanced spectra classification problem. USCM greatly improves the performances of the traditional classifiers on distinguishing the minority spectra as it takes the data distribution into consideration in the process of classification. However, its time complexity is exponential with the training size, and therefore, it can only deal with the problem of small- and medium-scale classification. How to solve the large-scale classification problem is quite important to USCM. It can be easily obtained by mathematical computation that the dual form of USCM is equivalent to the minimum enclosing ball (MEB), and core vector machine (CVM) is introduced, USCM based on CVM is proposed to deal with the large-scale classification problem. Several comparative experiments on the 4 subclasses of K-type spectra, 3 subclasses of F-type spectra and 3 subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS) verify USCM and USCM based on CVM perform better than kNN (k nearest neighbor) and SVM (support vector machine) in dealing with the problem of rare spectra mining respectively on the small- and medium-scale datasets and the large-scale datasets.

  7. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability.

    PubMed

    Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R

    2015-05-01

    The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.

  8. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  9. Investigation of gastric cancers in nude mice using X-ray in-line phase contrast imaging.

    PubMed

    Tao, Qiang; Luo, Shuqian

    2014-07-24

    This paper is to report the new imaging of gastric cancers without the use of imaging agents. Both gastric normal regions and gastric cancer regions can be distinguished by using the principal component analysis (PCA) based on the gray level co-occurrence matrix (GLCM). Human gastric cancer BGC823 cells were implanted into the stomachs of nude mice. Then, 3, 5, 7, 9 or 11 days after cancer cells implantation, the nude mice were sacrificed and their stomachs were removed. X-ray in-line phase contrast imaging (XILPCI), an X-ray phase contrast imaging method, has greater soft tissue contrast than traditional absorption radiography and generates higher-resolution images. The gastric specimens were imaged by an XILPCIs' charge coupled device (CCD) of 9 μm image resolution. The PCA of the projective images' region of interests (ROIs) based on GLCM were extracted to discriminate gastric normal regions and gastric cancer regions. Different stages of gastric cancers were classified by using support vector machines (SVMs). The X-ray in-line phase contrast images of nude mice gastric specimens clearly show the gastric architectures and the details of the early gastric cancers. The phase contrast computed tomography (CT) images of nude mice gastric cancer specimens are better than the traditional absorption CT images without the use of imaging agents. The results of the PCA of the texture parameters based on GLCM of normal regions is (F1+F2) >8.5, but those of cancer regions is (F1+F2) <8.5. The classification accuracy is 83.3% that classifying gastric specimens into different stages using SVMs. This is a very preliminary feasibility study. With further researches, XILPCI could become a noninvasive method for future the early detection of gastric cancers or medical researches.

  10. Standoff laser-induced fluorescence of suspensions from different bacterial strains

    NASA Astrophysics Data System (ADS)

    Duschek, Frank; Walter, Arne; Fellner, Lea; Grünewald, Karin; Pargmann, Carsten; Handke, Jürgen; Tomaso, Herbert

    2016-10-01

    Biological hazardous substances like certain fungi and bacteria represent a high risk for the broad public if fallen into wrong hands. Incidents based on bio agents are commonly considered to have incalculable and complex consequences for first responders and people. The impact of such an event can be minimized by a combination of different sensor technologies that have been developed to detect bio-threats and to gather information after an incident. Sensors for bio-agents can be grouped into two categories. Sampling devices collect material from locations supposed to be contaminated, and they are able to identify biological material with high sensitivity and selectivity. However, these point sensors need to be positioned correctly in advance of an attack, and moving sources of biological material cannot be tracked. A different approach is based on optical standoff detection. For biological samples laser induced florescence (LIF) has been proven to get real time data on location and type of hazards without being in contact with the suspicious substance. This work is based on a bio-detector developed at the DLR Lampoldshausen. The LIF detection has been designed for outdoor operation at standoff distances from 20 m up to more than 100 m. The detector acquires LIF spectral data for two different excitation wavelengths (280 and 355 nm) as well as time resolved information for the fluorescence decay which can be used to classify suspicious samples. While the classification device had been trained on uncritical samples (like amino acids, NADH, yeast, chemicals, oils), this work presents the progress to more relevant, living bacteria of different strains. The low risk and non-pathogenic bacteria Bacillus thuringensis, Bacillus atrophaeus, Bacillus subtilis, Brevibacillus brevis, Micrococcus luteus, Oligella urethralis, Paenibacillus polymyxa and Escherichia coli (K12) have been investigated with the above set-up at both excitation wavelengths

  11. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  12. Unveiling a spinor field classification with non-Abelian gauge symmetries

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  13. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    PubMed

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [The establishment, development and application of classification approach of freshwater phytoplankton based on the functional group: a review].

    PubMed

    Yang, Wen; Zhu, Jin-Yong; Lu, Kai-Hong; Wan, Li; Mao, Xiao-Hua

    2014-06-01

    Appropriate schemes for classification of freshwater phytoplankton are prerequisites and important tools for revealing phytoplanktonic succession and studying freshwater ecosystems. An alternative approach, functional group of freshwater phytoplankton, has been proposed and developed due to the deficiencies of Linnaean and molecular identification in ecological applications. The functional group of phytoplankton is a classification scheme based on autoecology. In this study, the theoretical basis and classification criterion of functional group (FG), morpho-functional group (MFG) and morphology-based functional group (MBFG) were summarized, as well as their merits and demerits. FG was considered as the optimal classification approach for the aquatic ecology research and aquatic environment evaluation. The application status of FG was introduced, with the evaluation standards and problems of two approaches to assess water quality on the basis of FG, index methods of Q and QR, being briefly discussed.

  15. Classification-Based Spatial Error Concealment for Visual Communications

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Zheng, Yefeng; Wu, Min

    2006-12-01

    In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.

  16. Uav-Based Crops Classification with Joint Features from Orthoimage and Dsm Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Shi, Y.; Duan, Y.; Wu, W.

    2018-04-01

    Accurate crops classification remains a challenging task due to the same crop with different spectra and different crops with same spectrum phenomenon. Recently, UAV-based remote sensing approach gains popularity not only for its high spatial and temporal resolution, but also for its ability to obtain spectraand spatial data at the same time. This paper focus on how to take full advantages of spatial and spectrum features to improve crops classification accuracy, based on an UAV platform equipped with a general digital camera. Texture and spatial features extracted from the RGB orthoimage and the digital surface model of the monitoring area are analysed and integrated within a SVM classification framework. Extensive experiences results indicate that the overall classification accuracy is drastically improved from 72.9 % to 94.5 % when the spatial features are combined together, which verified the feasibility and effectiveness of the proposed method.

  17. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  18. Treatment-Based Classification versus Usual Care for Management of Low Back Pain

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-11-1-0657 TITLE: Treatment-Based Classification versus Usual Care for Management of Low Back Pain PRINCIPAL INVESTIGATOR...Treatment-Based Classification versus Usual Care for Management of Low Back Pain 5b. GRANT NUMBER W81XWH-11-1-0657 5c. PROGRAM ELEMENT NUMBER 6...AUTHOR(S) MAJ Daniel Rhon – daniel_rhon@baylor.edu 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S

  19. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.

    PubMed

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-12-16

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  20. An objective and parsimonious approach for classifying natural flow regimes at a continental scale

    NASA Astrophysics Data System (ADS)

    Archfield, S. A.; Kennen, J.; Carlisle, D.; Wolock, D.

    2013-12-01

    Hydroecological stream classification--the process of grouping streams by similar hydrologic responses and, thereby, similar aquatic habitat--has been widely accepted and is often one of the first steps towards developing ecological flow targets. Despite its importance, the last national classification of streamgauges was completed about 20 years ago. A new classification of 1,534 streamgauges in the contiguous United States is presented using a novel and parsimonious approach to understand similarity in ecological streamflow response. This new classification approach uses seven fundamental daily streamflow statistics (FDSS) rather than winnowing down an uncorrelated subset from 200 or more ecologically relevant streamflow statistics (ERSS) commonly used in hydroecological classification studies. The results of this investigation demonstrate that the distributions of 33 tested ERSS are consistently different among the classes derived from the seven FDSS. It is further shown that classification based solely on the 33 ERSS generally does a poorer job in grouping similar streamgauges than the classification based on the seven FDSS. This new classification approach has the additional advantages of overcoming some of the subjectivity associated with the selection of the classification variables and provides a set of robust continental-scale classes of US streamgauges.

  1. [The electronic use of the NANDA-, NOC- and NIC- classifications and implications for nursing practice].

    PubMed

    Bernhart-Just, Alexandra; Hillewerth, Kathrin; Holzer-Pruss, Christina; Paprotny, Monika; Zimmermann Heinrich, Heidi

    2009-12-01

    The data model developed on behalf of the Nursing Service Commission of the Canton of Zurich (Pflegedienstkommission des Kantons Zürich) is based on the NANDA nursing diagnoses, the Nursing Outcome Classification, and the Nursing Intervention Classification (NNN Classifications). It also includes integrated functions for cost-centered accounting, service recording, and the Swiss Nursing Minimum Data Set. The data model uses the NNN classifications to map a possible form of the nursing process in the electronic patient health record, where the nurse can choose nursing diagnoses, outcomes, and interventions relevant to the patient situation. The nurses' choice is guided both by the different classifications and their linkages, and the use of specific text components pre-defined for each classification and accessible through the respective linkages. This article describes the developed data model and illustrates its clinical application in a specific patient's situation. Preparatory work required for the implementation of NNN classifications in practical nursing such as content filtering and the creation of linkages between the NNN classifications are described. Against the background of documentation of the nursing process based on the DAPEP(1) data model, possible changes and requirements are deduced. The article provides a contribution to the discussion of a change in documentation of the nursing process by implementing nursing classifications in electronic patient records.

  2. The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks

    PubMed Central

    Kasprak, Alan; Hough-Snee, Nate

    2016-01-01

    Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework’s decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form-based criticisms may also ignore the geomorphic tenet that channel form reflects formative hydrogeomorphic processes across a given landscape. PMID:26982076

  3. Naïve Bayes classification in R.

    PubMed

    Zhang, Zhongheng

    2016-06-01

    Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes' theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naïve Bayes classification.

  4. Computer-implemented land use classification with pattern recognition software and ERTS digital data. [Mississippi coastal plains

    NASA Technical Reports Server (NTRS)

    Joyce, A. T.

    1974-01-01

    Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.

  5. Classification of Dual-Wavelength Airborne Laser Scanning Point Cloud Based on the Radiometric Properties of the Objects

    NASA Astrophysics Data System (ADS)

    Pilarska, M.

    2018-05-01

    Airborne laser scanning (ALS) is a well-known and willingly used technology. One of the advantages of this technology is primarily its fast and accurate data registration. In recent years ALS is continuously developed. One of the latest achievements is multispectral ALS, which consists in obtaining simultaneously the data in more than one laser wavelength. In this article the results of the dual-wavelength ALS data classification are presented. The data were acquired with RIEGL VQ-1560i sensor, which is equipped with two laser scanners operating in different wavelengths: 532 nm and 1064 nm. Two classification approaches are presented in the article: classification, which is based on geometric relationships between points and classification, which mostly relies on the radiometric properties of registered objects. The overall accuracy of the geometric classification was 86 %, whereas for the radiometric classification it was 81 %. As a result, it can be assumed that the radiometric features which are provided by the multispectral ALS have potential to be successfully used in ALS point cloud classification.

  6. Diverse Region-Based CNN for Hyperspectral Image Classification.

    PubMed

    Zhang, Mengmeng; Li, Wei; Du, Qian

    2018-06-01

    Convolutional neural network (CNN) is of great interest in machine learning and has demonstrated excellent performance in hyperspectral image classification. In this paper, we propose a classification framework, called diverse region-based CNN, which can encode semantic context-aware representation to obtain promising features. With merging a diverse set of discriminative appearance factors, the resulting CNN-based representation exhibits spatial-spectral context sensitivity that is essential for accurate pixel classification. The proposed method exploiting diverse region-based inputs to learn contextual interactional features is expected to have more discriminative power. The joint representation containing rich spectral and spatial information is then fed to a fully connected network and the label of each pixel vector is predicted by a softmax layer. Experimental results with widely used hyperspectral image data sets demonstrate that the proposed method can surpass any other conventional deep learning-based classifiers and other state-of-the-art classifiers.

  7. Fusion and Gaussian mixture based classifiers for SONAR data

    NASA Astrophysics Data System (ADS)

    Kotari, Vikas; Chang, KC

    2011-06-01

    Underwater mines are inexpensive and highly effective weapons. They are difficult to detect and classify. Hence detection and classification of underwater mines is essential for the safety of naval vessels. This necessitates a formulation of highly efficient classifiers and detection techniques. Current techniques primarily focus on signals from one source. Data fusion is known to increase the accuracy of detection and classification. In this paper, we formulated a fusion-based classifier and a Gaussian mixture model (GMM) based classifier for classification of underwater mines. The emphasis has been on sound navigation and ranging (SONAR) signals due to their extensive use in current naval operations. The classifiers have been tested on real SONAR data obtained from University of California Irvine (UCI) repository. The performance of both GMM based classifier and fusion based classifier clearly demonstrate their superior classification accuracy over conventional single source cases and validate our approach.

  8. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  9. Pathohistological classification systems in gastric cancer: Diagnostic relevance and prognostic value

    PubMed Central

    Berlth, Felix; Bollschweiler, Elfriede; Drebber, Uta; Hoelscher, Arnulf H; Moenig, Stefan

    2014-01-01

    Several pathohistological classification systems exist for the diagnosis of gastric cancer. Many studies have investigated the correlation between the pathohistological characteristics in gastric cancer and patient characteristics, disease specific criteria and overall outcome. It is still controversial as to which classification system imparts the most reliable information, and therefore, the choice of system may vary in clinical routine. In addition to the most common classification systems, such as the Laurén and the World Health Organization (WHO) classifications, other authors have tried to characterize and classify gastric cancer based on the microscopic morphology and in reference to the clinical outcome of the patients. In more than 50 years of systematic classification of the pathohistological characteristics of gastric cancer, there is no sole classification system that is consistently used worldwide in diagnostics and research. However, several national guidelines for the treatment of gastric cancer refer to the Laurén or the WHO classifications regarding therapeutic decision-making, which underlines the importance of a reliable classification system for gastric cancer. The latest results from gastric cancer studies indicate that it might be useful to integrate DNA- and RNA-based features of gastric cancer into the classification systems to establish prognostic relevance. This article reviews the diagnostic relevance and the prognostic value of different pathohistological classification systems in gastric cancer. PMID:24914328

  10. Land use/cover classification in the Brazilian Amazon using satellite images.

    PubMed

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  11. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  12. The Effect of Simplified Bonding Agents on the Bond Strength to Dentin of Self-Activated Dual-Cure Resin Cements

    DTIC Science & Technology

    2013-04-26

    versions of the self-etch adhesives on the market are one-step systems where the acidified primer and adhesive monomer are mixed together and placed in a...Figure 3 - Adhesive Classification B. Effects of Simplification at the Microscopic level Using restorative systems with simplified...bonding failures when self-cured “build-up” composites were bonded with simplified adhesive systems (Swift, 1999). They were alerted to potential

  13. Adsorption of 2 Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gas Surface Interface

    DTIC Science & Technology

    2014-11-19

    C. A. S.; Sumpter, K. B.; Wagner, G. W.; Rice, J. S. Degradation of the Blister Agent Sulfur Mustard, Bis(2-chloroethyl) Sulfide, on Concrete . J...SECURITY CLASSIFICATION OF: This work investigates the fundamental nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen...nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen bonding and other intermolecular forces for the surrogate molecule

  14. A New Paradigm for the Treatment of Ovarian Cancer: The Use of Epigenetic Therapy to Sensitize Patients to Immunotherapy and Chemotherapy

    DTIC Science & Technology

    2016-10-01

    lymphoid and cancer cells from freshly dissociated tumors in cases where enough tumor is available, allowing analysis by flow cytometry and mRNA...agent, 5-aza-cytidine (AZA) potently stimulates tumor immune attraction of T- cells to the tumor microenvironment. This augmented by addition of a...demethylation, histone deactylases, immune checkpoint therapy, viral defense, immune cell attraction 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. A comprehensive simulation study on classification of RNA-Seq data.

    PubMed

    Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet

    2017-01-01

    RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.

  16. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  17. California desert resource inventory using multispectral classification of digitally mosaicked Landsat frames

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Mcleod, R. G.; Zobrist, A. L.; Johnson, H. B.

    1979-01-01

    Procedures for adjustment of brightness values between frames and the digital mosaicking of Landsat frames to standard map projections are developed for providing a continuous data base for multispectral thematic classification. A combination of local terrain variations in the Californian deserts and a global sampling strategy based on transects provided the framework for accurate classification throughout the entire geographic region.

  18. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.

    PubMed

    Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R

    2017-11-22

    A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.

  19. High-performance computer aided detection system for polyp detection in CT colonography with fluid and fecal tagging

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wang, Shijun; Kabadi, Suraj; Summers, Ronald M.

    2009-02-01

    CT colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. Computer-aided detection (CAD) of polyps has improved consistency and sensitivity of virtual colonoscopy interpretation and reduced interpretation burden. A CAD system typically consists of four stages: (1) image preprocessing including colon segmentation; (2) initial detection generation; (3) feature selection; and (4) detection classification. In our experience, three existing problems limit the performance of our current CAD system. First, highdensity orally administered contrast agents in fecal-tagging CTC have scatter effects on neighboring tissues. The scattering manifests itself as an artificial elevation in the observed CT attenuation values of the neighboring tissues. This pseudo-enhancement phenomenon presents a problem for the application of computer-aided polyp detection, especially when polyps are submerged in the contrast agents. Second, general kernel approach for surface curvature computation in the second stage of our CAD system could yield erroneous results for thin structures such as small (6-9 mm) polyps and for touching structures such as polyps that lie on haustral folds. Those erroneous curvatures will reduce the sensitivity of polyp detection. The third problem is that more than 150 features are selected from each polyp candidate in the third stage of our CAD system. These high dimensional features make it difficult to learn a good decision boundary for detection classification and reduce the accuracy of predictions. Therefore, an improved CAD system for polyp detection in CTC data is proposed by introducing three new techniques. First, a scale-based scatter correction algorithm is applied to reduce pseudo-enhancement effects in the image pre-processing stage. Second, a cubic spline interpolation method is utilized to accurately estimate curvatures for initial detection generation. Third, a new dimensionality reduction classifier, diffusion map and local linear embedding (DMLLE), is developed for classification and false positives (FP) reduction. Performance of the improved CAD system is evaluated and compared with our existing CAD system (without applying those techniques) using CT scans of 1186 patients. These scans are divided into a training set and a test set. The sensitivity of the improved CAD system increased 18% on training data at a rate of 5 FPs per patient and 15% on test data at a rate of 5 FPs per patient. Our results indicated that the improved CAD system achieved significantly better performance on medium-sized colonic adenomas with higher sensitivity and lower FP rate in CTC.

  20. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode classification methods. On empirical data their classification performances are at a comparable level to the other methods. Conclusions The classification analysis shows that supervised machine learning methods are promising candidates for handling with success the DNA Barcoding species classification problem, obtaining excellent performances. To conclude, a powerful tool to perform species identification is now available to the DNA Barcoding community. PMID:24721333

Top