Sample records for agent based framework

  1. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    NASA Technical Reports Server (NTRS)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  2. Agent-Based Framework for Personalized Service Provisioning in Converged IP Networks

    NASA Astrophysics Data System (ADS)

    Podobnik, Vedran; Matijasevic, Maja; Lovrek, Ignac; Skorin-Kapov, Lea; Desic, Sasa

    In a global multi-service and multi-provider market, the Internet Service Providers will increasingly need to differentiate in the service quality they offer and base their operation on new, consumer-centric business models. In this paper, we propose an agent-based framework for the Business-to-Consumer (B2C) electronic market, comprising the Consumer Agents, Broker Agents and Content Agents, which enable Internet consumers to select a content provider in an automated manner. We also discuss how to dynamically allocate network resources to provide end-to-end Quality of Service (QoS) for a given consumer and content provider.

  3. Development of agent-based on-line adaptive signal control (ASC) framework using connected vehicle (CV) technology.

    DOT National Transportation Integrated Search

    2016-04-01

    In this study, we developed an adaptive signal control (ASC) framework for connected vehicles (CVs) using agent-based modeling technique. : The proposed framework consists of two types of agents: 1) vehicle agents (VAs); and 2) signal controller agen...

  4. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  5. Developing framework for agent- based diabetes disease management system: user perspective.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza; Rahimi, Azin

    2014-02-01

    One of the characteristics of agents is mobility which makes them very suitable for remote electronic health and tele medicine. The aim of this study is developing a framework for agent based diabetes information management at national level through identifying required agents. The main tool is a questioner that is designed in three sections based on studying library resources, performance of major organizations in the field of diabetes in and out of the country and interviews with experts in the medical, health information management and software fields. Questionnaires based on Delphi methods were distributed among 20 experts. In order to design and identify agents required in health information management for the prevention and appropriate and rapid treatment of diabetes, the results were analyzed using SPSS 17 and Results were plotted with FREEPLANE mind map software. ACCESS TO DATA TECHNOLOGY IN PROPOSED FRAMEWORK IN ORDER OF PRIORITY IS: mobile (mean 1/80), SMS, EMAIL (mean 2/80), internet, web (mean 3/30), phone (mean 3/60), WIFI (mean 4/60). In delivering health care to diabetic patients, considering social and human aspects is essential. Having a systematic view for implementation of agent systems and paying attention to all aspects such as feedbacks, user acceptance, budget, motivation, hierarchy, useful standards, affordability of individuals, identifying barriers and opportunities and so on, are necessary.

  6. A Decentralized Framework for Multi-Agent Robotic Systems

    PubMed Central

    2018-01-01

    Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles. PMID:29389849

  7. An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Gidden, Matthew J.

    Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

  8. Agent-based modeling of the immune system: NetLogo, a promising framework.

    PubMed

    Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

  9. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Giulia

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020.more » The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.« less

  10. A Micro-Level Data-Calibrated Agent-Based Model: The Synergy between Microsimulation and Agent-Based Modeling.

    PubMed

    Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee

    2018-01-01

    Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.

  11. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2017-04-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  12. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Giulia

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020.more » The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.« less

  13. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  14. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less

  15. Detoxification of Chemical Warfare Agents Using a Zr6 -Based Metal-Organic Framework/Polymer Mixture.

    PubMed

    Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K

    2016-10-10

    Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Towards a framework for agent-based image analysis of remote-sensing data.

    PubMed

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  17. Towards a framework for agent-based image analysis of remote-sensing data

    PubMed Central

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-01-01

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916

  18. An Observation-Driven Agent-Based Modeling and Analysis Framework for C. elegans Embryogenesis.

    PubMed

    Wang, Zi; Ramsey, Benjamin J; Wang, Dali; Wong, Kwai; Li, Husheng; Wang, Eric; Bao, Zhirong

    2016-01-01

    With cutting-edge live microscopy and image analysis, biologists can now systematically track individual cells in complex tissues and quantify cellular behavior over extended time windows. Computational approaches that utilize the systematic and quantitative data are needed to understand how cells interact in vivo to give rise to the different cell types and 3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis framework is presented in this paper to study C. elegans embryogenesis. The framework is designed to incorporate the large amounts of experimental observations on cellular behavior and reserve data structures/interfaces that allow regulatory mechanisms to be added as more insights are gained. Observed cellular behaviors are organized into lineage identity, timing and direction of cell division, and path of cell movement. The framework also includes global parameters such as the eggshell and a clock. Division and movement behaviors are driven by statistical models of the observations. Data structures/interfaces are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global parameters until the descriptive model is replaced by a regulatory mechanism. This approach provides a framework to handle the ongoing experiments of single-cell analysis of complex tissues where mechanistic insights lag data collection and need to be validated on complex observations.

  19. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  20. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  1. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  2. Towards an agent-oriented programming language based on Scala

    NASA Astrophysics Data System (ADS)

    Mitrović, Dejan; Ivanović, Mirjana; Budimac, Zoran

    2012-09-01

    Scala and its multi-threaded model based on actors represent an excellent framework for developing purely reactive agents. This paper presents an early research on extending Scala with declarative programming constructs, which would result in a new agent-oriented programming language suitable for developing more advanced, BDI agent architectures. The main advantage the new language over many other existing solutions for programming BDI agents is a natural and straightforward integration of imperative and declarative programming constructs, fitted under a single development framework.

  3. On-lattice agent-based simulation of populations of cells within the open-source Chaste framework.

    PubMed

    Figueredo, Grazziela P; Joshi, Tanvi V; Osborne, James M; Byrne, Helen M; Owen, Markus R

    2013-04-06

    Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction-diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the 'what if' scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system.

  4. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  5. A framework for service enterprise workflow simulation with multi-agents cooperation

    NASA Astrophysics Data System (ADS)

    Tan, Wenan; Xu, Wei; Yang, Fujun; Xu, Lida; Jiang, Chuanqun

    2013-11-01

    Process dynamic modelling for service business is the key technique for Service-Oriented information systems and service business management, and the workflow model of business processes is the core part of service systems. Service business workflow simulation is the prevalent approach to be used for analysis of service business process dynamically. Generic method for service business workflow simulation is based on the discrete event queuing theory, which is lack of flexibility and scalability. In this paper, we propose a service workflow-oriented framework for the process simulation of service businesses using multi-agent cooperation to address the above issues. Social rationality of agent is introduced into the proposed framework. Adopting rationality as one social factor for decision-making strategies, a flexible scheduling for activity instances has been implemented. A system prototype has been developed to validate the proposed simulation framework through a business case study.

  6. Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework.

    PubMed

    Zhao, Jianshi; Cai, Ximing; Wang, Zhongjing

    2013-07-15

    Water allocation can be undertaken through administered systems (AS), market-based systems (MS), or a combination of the two. The debate on the performance of the two systems has lasted for decades but still calls for attention in both research and practice. This paper compares water users' behavior under AS and MS through a consistent agent-based modeling framework for water allocation analysis that incorporates variables particular to both MS (e.g., water trade and trading prices) and AS (water use violations and penalties/subsidies). Analogous to the economic theory of water markets under MS, the theory of rational violation justifies the exchange of entitled water under AS through the use of cross-subsidies. Under water stress conditions, a unique water allocation equilibrium can be achieved by following a simple bargaining rule that does not depend upon initial market prices under MS, or initial economic incentives under AS. The modeling analysis shows that the behavior of water users (agents) depends on transaction, or administrative, costs, as well as their autonomy. Reducing transaction costs under MS or administrative costs under AS will mitigate the effect that equity constraints (originating with primary water allocation) have on the system's total net economic benefits. Moreover, hydrologic uncertainty is shown to increase market prices under MS and penalties/subsidies under AS and, in most cases, also increases transaction, or administrative, costs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. An Information Theoretic Framework and Self-organizing Agent- based Sensor Network Architecture for Power Plant Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loparo, Kenneth; Kolacinski, Richard; Threeanaew, Wanchat

    A central goal of the work was to enable both the extraction of all relevant information from sensor data, and the application of information gained from appropriate processing and fusion at the system level to operational control and decision-making at various levels of the control hierarchy through: 1. Exploiting the deep connection between information theory and the thermodynamic formalism, 2. Deployment using distributed intelligent agents with testing and validation in a hardware-in-the loop simulation environment. Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while the generality of current definitions provides sufficient flexibility, the currentmore » architecture frameworks do not inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks often do not make a distinction between ``data'' and ``information.'' This work defines an enterprise architecture for health and condition monitoring of power plant equipment and further provides the appropriate foundation for addressing shortcomings in current architecture definition frameworks through the discovery of the information connectivity between the elements of a power generation plant. That is, to identify the correlative structure between available observations streams using informational measures. The principle focus here is on the implementation and testing of an emergent, agent-based, algorithm based on the foraging behavior of ants for eliciting this structure and on measures for characterizing differences between communication topologies. The elicitation algorithms are applied to data streams produced by a detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant. The elicitation algorithm and topology characterization can be based on different informational metrics for detecting connectivity, e.g. mutual information and linear correlation.« less

  8. Principal-agent theory: a framework for improving health care reform in Tennessee.

    PubMed

    Sekwat, A

    2000-01-01

    Using a framework based on principal-agent theory, this study examines problems faced by managed care organizations (MCOs) and major health care providers under the state of Tennessee's current capitation-based managed care programs called TennCare. Based on agency theory, the study proposes a framework to show how an effective collaborative relationship can be forged between the state of Tennessee and participating MCOs which takes into account the major concerns of third-party health care providers. The proposed framework further enhances realization of the state's key health care reform goals which are to control the rising costs of health care delivery and to expand health care coverage to uninsured and underinsured Tennesseans.

  9. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  10. Brands as Intentional Agents Framework: How Perceived Intentions and Ability Can Map Brand Perception.

    PubMed

    Kervyn, Nicolas; Fiske, Susan T; Malone, Chris

    2012-04-01

    Building on the Stereotype Content Model, this paper introduces and tests the Brands as Intentional Agents Framework. A growing body of research suggests that consumers have relationships with brands that resemble relations between people. We propose that consumers perceive brands in the same way they perceive people. This approach allows us to explore how social perception theories and processes can predict brand purchase interest and loyalty. Brands as Intentional Agents Framework is based on a well-established social perception approach: the Stereotype Content Model. Two studies support the Brands as Intentional Agents Framework prediction that consumers assess a brand's perceived intentions and ability and that these perceptions elicit distinct emotions and drive differential brand behaviors. The research shows that human social interaction relationships translate to consumer-brand interactions in ways that are useful to inform brand positioning and brand communications.

  11. Brands as Intentional Agents Framework: How Perceived Intentions and Ability Can Map Brand Perception

    PubMed Central

    Kervyn, Nicolas; Fiske, Susan T.; Malone, Chris

    2013-01-01

    Building on the Stereotype Content Model, this paper introduces and tests the Brands as Intentional Agents Framework. A growing body of research suggests that consumers have relationships with brands that resemble relations between people. We propose that consumers perceive brands in the same way they perceive people. This approach allows us to explore how social perception theories and processes can predict brand purchase interest and loyalty. Brands as Intentional Agents Framework is based on a well-established social perception approach: the Stereotype Content Model. Two studies support the Brands as Intentional Agents Framework prediction that consumers assess a brand’s perceived intentions and ability and that these perceptions elicit distinct emotions and drive differential brand behaviors. The research shows that human social interaction relationships translate to consumer-brand interactions in ways that are useful to inform brand positioning and brand communications. PMID:24403815

  12. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  13. Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology

    NASA Astrophysics Data System (ADS)

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-11-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  14. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  15. KODAMA and VPC based Framework for Ubiquitous Systems and its Experiment

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenichi; Amamiya, Satoshi; Iwao, Tadashige; Zhong, Guoqiang; Kainuma, Tatsuya; Amamiya, Makoto

    Recently, agent technologies have attracted a lot of interest as an emerging programming paradigm. With such agent technologies, services are provided through collaboration among agents. At the same time, the spread of mobile technologies and communication infrastructures has made it possible to access the network anytime and from anywhere. Using agents and mobile technologies to realize ubiquitous computing systems, we propose a new framework based on KODAMA and VPC. KODAMA provides distributed management mechanisms by using the concept of community and communication infrastructure to deliver messages among agents without agents being aware of the physical network. VPC provides a method of defining peer-to-peer services based on agent communication with policy packages. By merging the characteristics of both KODAMA and VPC functions, we propose a new framework for ubiquitous computing environments. It provides distributed management functions according to the concept of agent communities, agent communications which are abstracted from the physical environment, and agent collaboration with policy packages. Using our new framework, we conducted a large-scale experiment in shopping malls in Nagoya, which sent advertisement e-mails to users' cellular phones according to user location and attributes. The empirical results showed that our new framework worked effectively for sales in shopping malls.

  16. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  17. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors.

    PubMed

    Cenek, Martin; Dahl, Spencer K

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  18. A framework for the use of agent based modeling to simulate ...

    EPA Pesticide Factsheets

    Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc

  19. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    a thermodynamic framework as a set of reactions that roll-up the integrated effect that diverse biological communities exert on a geological system. This approach may work well to predict the effect of certain biological communities in specific environments in which experimental data is available. However, it does not further our knowledge of how the geobiological system actually functions on a micro scale. Agent-based techniques may provide a framework to explore the fundamental interactions required to explain the system-wide behavior. This presentation will present a survey of several promising applications of agent-based modeling approaches to problems in the geosciences and describe specific contributions to some of the inherent challenges facing this approach.

  20. An Approach for Autonomy: A Collaborative Communication Framework for Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren Russell, Jr.

    2005-01-01

    Research done during the last three years has studied the emersion properties of Complex Adaptive Systems (CAS). The deployment of Artificial Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has led the author to investigate applications of CAS within the field of Autonomous Multi-Agent Systems. The core objective of current research efforts is focused on the simplicity of Intelligent Agents (IA) and the modeling of these agents within complex systems. This research effort looks at the communication, interaction, and adaptability of multi-agents as applied to complex systems control. The embodiment concept applied to robotics has application possibilities within multi-agent frameworks. A new framework for agent awareness within a virtual 3D world concept is possible where the vehicle is composed of collaborative agents. This approach has many possibilities for applications to complex systems. This paper describes the development of an approach to apply this virtual framework to the NASA Goddard Space Flight Center (GSFC) tetrahedron structure developed under the Autonomous Nano Technology Swarm (ANTS) program and the Super Miniaturized Addressable Reconfigurable Technology (SMART) architecture program. These projects represent an innovative set of novel concepts deploying adaptable, self-organizing structures composed of many tetrahedrons. This technology is pushing current applied Agents Concepts to new levels of requirements and adaptability.

  1. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    DOE PAGES

    McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; ...

    2014-12-01

    The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  3. a Simulation-As Framework Facilitating Webgis Based Installation Planning

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chang, Z. Y.; Fei, Y. F.

    2017-09-01

    Installation Planning is constrained by both natural and social conditions, especially for spatially sparse but functionally connected facilities. Simulation is important for proper deploy in space and configuration in function of facilities to make them a cohesive and supportive system to meet users' operation needs. Based on requirement analysis, we propose a framework to combine GIS and Agent simulation to overcome the shortness in temporal analysis and task simulation of traditional GIS. In this framework, Agent based simulation runs as a service on the server, exposes basic simulation functions, such as scenario configuration, simulation control, and simulation data retrieval to installation planners. At the same time, the simulation service is able to utilize various kinds of geoprocessing services in Agents' process logic to make sophisticated spatial inferences and analysis. This simulation-as-a-service framework has many potential benefits, such as easy-to-use, on-demand, shared understanding, and boosted performances. At the end, we present a preliminary implement of this concept using ArcGIS javascript api 4.0 and ArcGIS for server, showing how trip planning and driving can be carried out by agents.

  4. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    DOE PAGES

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less

  5. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  6. A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks

    PubMed Central

    Ye, Dayon; Zhang, Minji; Yang, Yu

    2015-01-01

    Wireless sensor networks (WSNs) have been widely investigated in recent years. One of the fundamental issues in WSNs is packet routing, because in many application domains, packets have to be routed from source nodes to destination nodes as soon and as energy efficiently as possible. To address this issue, a large number of routing approaches have been proposed. Although every existing routing approach has advantages, they also have some disadvantages. In this paper, a multi-agent framework is proposed that can assist existing routing approaches to improve their routing performance. This framework enables each sensor node to build a cooperative neighbour set based on past routing experience. Such cooperative neighbours, in turn, can help the sensor to effectively relay packets in the future. This framework is independent of existing routing approaches and can be used to assist many existing routing approaches. Simulation results demonstrate the good performance of this framework in terms of four metrics: average delivery latency, successful delivery ratio, number of live nodes and total sensing coverage. PMID:25928063

  7. A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support.

    PubMed

    Fernandes, Chrystinne Oliveira; Lucena, Carlos José Pereira De

    2017-03-27

    Although there have been significant advances in network, hardware, and software technologies, the health care environment has not taken advantage of these developments to solve many of its inherent problems. Research activities in these 3 areas make it possible to apply advanced technologies to address many of these issues such as real-time monitoring of a large number of patients, particularly where a timely response is critical. The objective of this research was to design and develop innovative technological solutions to offer a more proactive and reliable medical care environment. The short-term and primary goal was to construct IoT4Health, a flexible software framework to generate a range of Internet of things (IoT) applications, containing components such as multi-agent systems that are designed to perform Remote Patient Monitoring (RPM) activities autonomously. An investigation into its full potential to conduct such patient monitoring activities in a more proactive way is an expected future step. A framework methodology was selected to evaluate whether the RPM domain had the potential to generate customized applications that could achieve the stated goal of being responsive and flexible within the RPM domain. As a proof of concept of the software framework's flexibility, 3 applications were developed with different implementations for each framework hot spot to demonstrate potential. Agents4Health was selected to illustrate the instantiation process and IoT4Health's operation. To develop more concrete indicators of the responsiveness of the simulated care environment, an experiment was conducted while Agents4Health was operating, to measure the number of delays incurred in monitoring the tasks performed by agents. IoT4Health's construction can be highlighted as our contribution to the development of eHealth solutions. As a software framework, IoT4Health offers extensibility points for the generation of applications. Applications can extend the framework in

  8. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  9. Agent-Based Scientific Workflow Composition

    NASA Astrophysics Data System (ADS)

    Barker, A.; Mann, B.

    2006-07-01

    Agents are active autonomous entities that interact with one another to achieve their objectives. This paper addresses how these active agents are a natural fit to consume the passive Service Oriented Architecture which is found in Internet and Grid Systems, in order to compose, coordinate and execute e-Science experiments. A framework is introduced which allows an e-Science experiment to be described as a MultiAgent System.

  10. School-Based Decision Making: A Principal-Agent Perspective.

    ERIC Educational Resources Information Center

    Ferris, James M.

    1992-01-01

    A principal-agent framework is used to examine potential gains in educational performance and potential threats to public accountability that school-based decision-making proposals pose. Analysis underscores the need to tailor the design of decentralized decision making to the sources of poor educational performance and threats to school…

  11. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  12. A Software Framework for Remote Patient Monitoring by Using Multi-Agent Systems Support

    PubMed Central

    2017-01-01

    applications. Applications can extend the framework in the following ways: identification, collection, storage, recovery, visualization, monitoring, anomalies detection, resource notification, and dynamic reconfiguration. Based on other outcomes involving observation of the resulting applications, it was noted that its design contributed toward more proactive patient monitoring. Through these experimental systems, anomalies were detected in real time, with agents sending notifications instantly to the health providers. Conclusions We conclude that the cost-benefit of the construction of a more generic and complex system instead of a custom-made software system demonstrated the worth of the approach, making it possible to generate applications in this domain in a more timely fashion. PMID:28347973

  13. Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications

    NASA Astrophysics Data System (ADS)

    Zu, Yue

    Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total

  14. TANDEM: A Trust-Based Agent Framework for Networked Decision Making

    DTIC Science & Technology

    2015-09-10

    selective (20–80 %), while the rest are good citizens, trust acts as a method to isolate misbehaving agents. If the majority of the agents have high...competence and low selectivity, then they can use trust to isolate route information around the misbehaving agents, improving Comm and Steps. The impact is...more dramatic when only 20–40 % of the agents are misbehaving . However, using trust results in reduced SA as the information available at the

  15. Multi-Agent Framework for Virtual Learning Spaces.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Nunez, Gustavo

    1999-01-01

    Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…

  16. Consentaneous Agent-Based and Stochastic Model of the Financial Markets

    PubMed Central

    Gontis, Vygintas; Kononovicius, Aleksejus

    2014-01-01

    We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation. PMID:25029364

  17. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, Joshua; Hope, Michael; Ley, Hubert

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less

  18. IPA (v1): a framework for agent-based modelling of soil water movement

    NASA Astrophysics Data System (ADS)

    Mewes, Benjamin; Schumann, Andreas H.

    2018-06-01

    In the last decade, agent-based modelling (ABM) became a popular modelling technique in social sciences, medicine, biology, and ecology. ABM was designed to simulate systems that are highly dynamic and sensitive to small variations in their composition and their state. As hydrological systems, and natural systems in general, often show dynamic and non-linear behaviour, ABM can be an appropriate way to model these systems. Nevertheless, only a few studies have utilized the ABM method for process-based modelling in hydrology. The percolation of water through the unsaturated soil is highly responsive to the current state of the soil system; small variations in composition lead to major changes in the transport system. Hence, we present a new approach for modelling the movement of water through a soil column: autonomous water agents that transport water through the soil while interacting with their environment as well as with other agents under physical laws.

  19. Agent-Based vs. Equation-based Epidemiological Models:A Model Selection Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R; Nutaro, James J

    This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation based model and an agent based model of the 1918 Spanish flu and we leverage data published in the literature for our case- study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigmmore » to another. We conclude with a discussion of our experience and document future ideas for a model validation framework.« less

  20. Development of a dynamic framework to explain population patterns of leisure-time physical activity through agent-based modeling.

    PubMed

    Garcia, Leandro M T; Diez Roux, Ana V; Martins, André C R; Yang, Yong; Florindo, Alex A

    2017-08-22

    Despite the increasing body of evidences on the factors influencing leisure-time physical activity, our understanding of the mechanisms and interactions that lead to the formation and evolution of population patterns is still limited. Moreover, most frameworks in this field fail to capture dynamic processes. Our aim was to create a dynamic conceptual model depicting the interaction between key psychological attributes of individuals and main aspects of the built and social environments in which they live. This conceptual model will inform and support the development of an agent-based model aimed to explore how population patterns of LTPA in adults may emerge from the dynamic interplay between psychological traits and built and social environments. We integrated existing theories and models as well as available empirical data (both from literature reviews), and expert opinions (based on a systematic expert assessment of an intermediary version of the model). The model explicitly presents intention as the proximal determinant of leisure-time physical activity, a relationship dynamically moderated by the built environment (access, quality, and available activities) - with the strength of the moderation varying as a function of the person's intention- and influenced both by the social environment (proximal network's and community's behavior) and the person's behavior. Our conceptual model is well supported by evidence and experts' opinions and will inform the design of our agent-based model, as well as data collection and analysis of future investigations on population patterns of leisure-time physical activity among adults.

  1. Agent-based modelling in synthetic biology.

    PubMed

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  2. Destruction of chemical warfare agents using metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Mondloch, Joseph E.; Katz, Michael J.; Isley, William C., III; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W.; Hall, Morgan G.; Decoste, Jared B.; Peterson, Gregory W.; Snurr, Randall Q.; Cramer, Christopher J.; Hupp, Joseph T.; Farha, Omar K.

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic ZrIV ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  3. Destruction of chemical warfare agents using metal-organic frameworks.

    PubMed

    Mondloch, Joseph E; Katz, Michael J; Isley, William C; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W; Snurr, Randall Q; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  4. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    NASA Astrophysics Data System (ADS)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  5. Data-driven agent-based modeling, with application to rooftop solar adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less

  6. Data-driven agent-based modeling, with application to rooftop solar adoption

    DOE PAGES

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...

    2016-01-25

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less

  7. Knowledge Management in Role Based Agents

    NASA Astrophysics Data System (ADS)

    Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz

    In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.

  8. An Argumentation Framework based on Paraconsistent Logic

    NASA Astrophysics Data System (ADS)

    Umeda, Yuichi; Takahashi, Takehisa; Sawamura, Hajime

    Argumentation is the most representative of intelligent activities of humans. Therefore, it is natural to think that it could have many implications for artificial intelligence and computer science as well. Specifically, argumentation may be considered a most primitive capability for interaction among computational agents. In this paper we present an argumentation framework based on the four-valued paraconsistent logic. Tolerance and acceptance of inconsistency that this logic has as its logical feature allow for arguments on inconsistent knowledge bases with which we are often confronted. We introduce various concepts for argumentation, such as arguments, attack relations, argument justification, preferential criteria of arguments based on social norms, and so on, in a way proper to the four-valued paraconsistent logic. Then, we provide the fixpoint semantics and dialectical proof theory for our argumentation framework. We also give the proofs of the soundness and completeness.

  9. An Empirical Agent-Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework.

    PubMed

    Kandiah, Venu; Binder, Andrew R; Berglund, Emily Z

    2017-10-01

    Water reuse can serve as a sustainable alternative water source for urban areas. However, the successful implementation of large-scale water reuse projects depends on community acceptance. Because of the negative perceptions that are traditionally associated with reclaimed water, water reuse is often not considered in the development of urban water management plans. This study develops a simulation model for understanding community opinion dynamics surrounding the issue of water reuse, and how individual perceptions evolve within that context, which can help in the planning and decision-making process. Based on the social amplification of risk framework, our agent-based model simulates consumer perceptions, discussion patterns, and their adoption or rejection of water reuse. The model is based on the "risk publics" model, an empirical approach that uses the concept of belief clusters to explain the adoption of new technology. Each household is represented as an agent, and parameters that define their behavior and attributes are defined from survey data. Community-level parameters-including social groups, relationships, and communication variables, also from survey data-are encoded to simulate the social processes that influence community opinion. The model demonstrates its capabilities to simulate opinion dynamics and consumer adoption of water reuse. In addition, based on empirical data, the model is applied to investigate water reuse behavior in different regions of the United States. Importantly, our results reveal that public opinion dynamics emerge differently based on membership in opinion clusters, frequency of discussion, and the structure of social networks. © 2017 Society for Risk Analysis.

  10. Information of Complex Systems and Applications in Agent Based Modeling.

    PubMed

    Bao, Lei; Fritchman, Joseph C

    2018-04-18

    Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.

  11. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    PubMed

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  12. Intelligent microchip networks: an agent-on-chip synthesis framework for the design of smart and robust sensor networks

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2013-05-01

    Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour

  13. Chronic Heart Failure Follow-up Management Based on Agent Technology.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza

    2015-10-01

    Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.

  14. Chronic Heart Failure Follow-up Management Based on Agent Technology

    PubMed Central

    Safdari, Reza

    2015-01-01

    Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038

  15. The ‘like me’ framework for recognizing and becoming an intentional agent

    PubMed Central

    Meltzoff, Andrew N.

    2007-01-01

    Infant imitation demonstrates that the perception and production of human action are closely linked by a ‘supramodal’ representation of action. This action representation unites observation and execution into a common framework, and it has far-reaching implications for the development of social cognition. It allows infants to see the behaviors of others as commensurate with their own—as ‘like me.’ Based on the ‘like me’ perception of others, social encounters are interpretable and informative. Infants can use themselves as a framework for understanding others and can learn about the possibilities and consequences of their own potential acts by observing the behavior of others. Through social interaction with other intentional agents who are viewed as ‘like me,’ infants develop a richer social cognition. This paper explores the early manifestations and cascading developmental effects of the ‘like me’ conception. PMID:17081488

  16. Agent oriented programming: An overview of the framework and summary of recent research

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1993-01-01

    This is a short overview of the agent-oriented programming (AOP) framework. AOP can be viewed as an specialization of object-oriented programming. The state of an agent consists of components called beliefs, choices, capabilities, commitments, and possibly others; for this reason the state of an agent is called its mental state. The mental state of agents is captured formally in an extension of standard epistemic logics: beside temporalizing the knowledge and belief operators, AOP introduces operators for commitment, choice and capability. Agents are controlled by agent programs, which include primitives for communicating with other agents. In the spirit of speech-act theory, each communication primitive is of a certain type: informing, requesting, offering, etc. This document describes these features in more detail and summarizes recent results and ongoing AOP-related work.

  17. Evolutionary Agent-based Models to design distributed water management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a

  18. Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Mesgari, M.-S.

    2015-12-01

    During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  19. Agent-based modeling of the spread of influenza-like illness in an emergency department: a simulation study.

    PubMed

    Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D

    2011-11-01

    The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.

  20. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    PubMed

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Unified Behavior Framework for the Simulation of Autonomous Agents

    DTIC Science & Technology

    2015-03-01

    1980s, researchers have designed a variety of robot control architectures intending to imbue robots with some degree of autonomy. A recently developed ...Identification Friend or Foe viii THE UNIFIED BEHAVIOR FRAMEWORK FOR THE SIMULATION OF AUTONOMOUS AGENTS I. Introduction The development of autonomy has...room for research by utilizing methods like simulation and modeling that consume less time and fewer monetary resources. A recently developed reactive

  2. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  3. Flexible, secure agent development framework

    DOEpatents

    Goldsmith,; Steven, Y [Rochester, MN

    2009-04-07

    While an agent generator is generating an intelligent agent, it can also evaluate the data processing platform on which it is executing, in order to assess a risk factor associated with operation of the agent generator on the data processing platform. The agent generator can retrieve from a location external to the data processing platform an open site that is configurable by the user, and load the open site into an agent substrate, thereby creating a development agent with code development capabilities. While an intelligent agent is executing a functional program on a data processing platform, it can also evaluate the data processing platform to assess a risk factor associated with performing the data processing function on the data processing platform.

  4. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.

  5. Application of agent-based system for bioprocess description and process improvement.

    PubMed

    Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J

    2010-01-01

    Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which

  6. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  7. Little by Little Does the Trick: Design and Construction of a Discrete Event Agent-Based Simulation Framework

    DTIC Science & Technology

    2007-12-01

    model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality. 15. NUMBER OF...and a Behavioral model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality...prototypes an architectural design which is generalizable, reusable, and extensible. We have created an initial set of model elements that demonstrate

  8. A Real-time Strategy Agent Framework and Strategy Classifier for Computer Generated Forces

    DTIC Science & Technology

    2012-06-01

    via our strategy definition schema, plays the game according to the defined strategy. 4 ) Generate a quality RTS data set. 5) Create an accurate and...General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Thesis Overview...Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 Agent Framework

  9. An equation-free approach to agent-based computation: Bifurcation analysis and control of stationary states

    NASA Astrophysics Data System (ADS)

    Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.

    2012-08-01

    We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.

  10. A Buyer Behaviour Framework for the Development and Design of Software Agents in E-Commerce.

    ERIC Educational Resources Information Center

    Sproule, Susan; Archer, Norm

    2000-01-01

    Software agents are computer programs that run in the background and perform tasks autonomously as delegated by the user. This paper blends models from marketing research and findings from the field of decision support systems to build a framework for the design of software agents to support in e-commerce buying applications. (Contains 35…

  11. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    PubMed

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  12. Developing a consensus framework and risk profile for agents of opportunity in academic medical centers: implications for public health preparedness.

    PubMed

    Farmer, Brenna M; Nelson, Lewis S; Graham, Margaret E; Bendzans, Carly; McCrillis, Aileen M; Portelli, Ian; Zhang, Meng; Goldberg, Judith; Rosenberg, Sheldon D; Goldfrank, Lewis R; Tunik, Michael

    2010-12-01

    Agents of opportunity (AO) in academic medical centers (AMC) are defined as unregulated or lightly regulated substances used for medical research or patient care that can be used as "dual purpose" substances by terrorists to inflict damage upon populations. Most of these agents are used routinely throughout AMC either during research or for general clinical practice. To date, the lack of careful regulations for AOs creates uncertain security conditions and increased malicious potential. Using a consensus-based approach, we collected information and opinions from staff working in an AMC and 4 AMC-affiliated hospitals concerning identification of AO, AO attributes, and AMC risk and preparedness, focusing on AO security and dissemination mechanisms and likely hospital response. The goal was to develop a risk profile and framework for AO in the institution. Agents of opportunity in 4 classes were identified and an AO profile was developed, comprising 16 attributes denoting information critical to preparedness for AO misuse. Agents of opportunity found in AMC present a unique and vital gap in public health preparedness. Findings of this project may provide a foundation for a discussion and consensus efforts to determine a nationally accepted risk profile framework for AO. This foundation may further lead to the implementation of appropriate regulatory policies to improve public health preparedness. Agents of opportunity modeling of dissemination properties should be developed to better predict AO risk.

  13. An agent-based hydroeconomic model to evaluate water policies in Jordan

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Gorelick, S.

    2014-12-01

    Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.

  14. Agent-based power sharing scheme for active hybrid power sources

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  15. Agent Based Modeling and Simulation Framework for Supply Chain Risk Management

    DTIC Science & Technology

    2012-03-01

    Christopher and Peck 2004) macroeconomic , policy, competition, and resource (Ghoshal 1987) value chain, operational, event, and recurring (Shi 2004...clustering algorithms in agent logic to protect company privacy ( da Silva et al. 2006), aggregation of domain context in agent data analysis logic (Xiang...Operational Availability ( OA ) for FMC and PMC. 75 Mission Capable (MICAP) Hours is the measure of total time (in a month) consumable or reparable

  16. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions.

    PubMed

    Wilmoth, Jared L; Doak, Peter W; Timm, Andrea; Halsted, Michelle; Anderson, John D; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T; Fuentes-Cabrera, Miguel

    2018-01-01

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P . aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.

  17. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions

    DOE PAGES

    Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; ...

    2018-02-06

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less

  18. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density andmore » local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.« less

  19. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions

    PubMed Central

    Wilmoth, Jared L.; Doak, Peter W.; Timm, Andrea; Halsted, Michelle; Anderson, John D.; Ginovart, Marta; Prats, Clara; Portell, Xavier; Retterer, Scott T.; Fuentes-Cabrera, Miguel

    2018-01-01

    The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models. PMID:29467721

  20. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  1. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  2. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul M. Torrens; Atsushi Nara; Xun Li

    2012-01-01

    Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-usedmore » methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be 'good enough' for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.« less

  3. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach

    PubMed Central

    2016-01-01

    Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235

  4. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    PubMed

    Laghari, Samreen; Niazi, Muaz A

    2016-01-01

    Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  5. Heme-Containing Metal-Organic Frameworks for the Oxidative Degradation of Chemical Warfare Agents

    DTIC Science & Technology

    2016-04-14

    stability of the oxo without sacrificing its inherent reactivity, we have synthesized a new framework featuring fluorinated groups in the ortho...especially suitable for the degradation of electrophilic phosphorous center, leading to the cleavage of P-S or P-O bond present in VX nerve agents

  6. Efficient Agent-Based Cluster Ensembles

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian; Tumer, Kagan

    2006-01-01

    Numerous domains ranging from distributed data acquisition to knowledge reuse need to solve the cluster ensemble problem of combining multiple clusterings into a single unified clustering. Unfortunately current non-agent-based cluster combining methods do not work in a distributed environment, are not robust to corrupted clusterings and require centralized access to all original clusterings. Overcoming these issues will allow cluster ensembles to be used in fundamentally distributed and failure-prone domains such as data acquisition from satellite constellations, in addition to domains demanding confidentiality such as combining clusterings of user profiles. This paper proposes an efficient, distributed, agent-based clustering ensemble method that addresses these issues. In this approach each agent is assigned a small subset of the data and votes on which final cluster its data points should belong to. The final clustering is then evaluated by a global utility, computed in a distributed way. This clustering is also evaluated using an agent-specific utility that is shown to be easier for the agents to maximize. Results show that agents using the agent-specific utility can achieve better performance than traditional non-agent based methods and are effective even when up to 50% of the agents fail.

  7. Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering.

    PubMed

    Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J

    2018-04-05

    The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

  8. A Novel Framework for Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence (CSSSA2016)

    EPA Science Inventory

    Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...

  9. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    PubMed

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve

  10. Application of Psychological Theories in Agent-Based Modeling: The Case of the Theory of Planned Behavior.

    PubMed

    Scalco, Andrea; Ceschi, Andrea; Sartori, Riccardo

    2018-01-01

    It is likely that computer simulations will assume a greater role in the next future to investigate and understand reality (Rand & Rust, 2011). Particularly, agent-based models (ABMs) represent a method of investigation of social phenomena that blend the knowledge of social sciences with the advantages of virtual simulations. Within this context, the development of algorithms able to recreate the reasoning engine of autonomous virtual agents represents one of the most fragile aspects and it is indeed crucial to establish such models on well-supported psychological theoretical frameworks. For this reason, the present work discusses the application case of the theory of planned behavior (TPB; Ajzen, 1991) in the context of agent-based modeling: It is argued that this framework might be helpful more than others to develop a valid representation of human behavior in computer simulations. Accordingly, the current contribution considers issues related with the application of the model proposed by the TPB inside computer simulations and suggests potential solutions with the hope to contribute to shorten the distance between the fields of psychology and computer science.

  11. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land

  12. CATS-based Agents That Err

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.

  13. Understanding the Dynamics of Violent Political Revolutions in an Agent-Based Framework.

    PubMed

    Moro, Alessandro

    2016-01-01

    This paper develops an agent-based computational model of violent political revolutions in which a subjugated population of citizens and an armed revolutionary organisation attempt to overthrow a central authority and its loyal forces. The model replicates several patterns of rebellion consistent with major historical revolutions, and provides an explanation for the multiplicity of outcomes that can arise from an uprising. The relevance of the heterogeneity of scenarios predicted by the model can be understood by considering the recent experience of the Arab Spring involving several rebellions that arose in an apparently similar way, but resulted in completely different political outcomes: the successful revolution in Tunisia, the failed protests in Saudi Arabia and Bahrain, and civil war in Syria and Libya.

  14. Understanding the Dynamics of Violent Political Revolutions in an Agent-Based Framework

    PubMed Central

    Moro, Alessandro

    2016-01-01

    This paper develops an agent-based computational model of violent political revolutions in which a subjugated population of citizens and an armed revolutionary organisation attempt to overthrow a central authority and its loyal forces. The model replicates several patterns of rebellion consistent with major historical revolutions, and provides an explanation for the multiplicity of outcomes that can arise from an uprising. The relevance of the heterogeneity of scenarios predicted by the model can be understood by considering the recent experience of the Arab Spring involving several rebellions that arose in an apparently similar way, but resulted in completely different political outcomes: the successful revolution in Tunisia, the failed protests in Saudi Arabia and Bahrain, and civil war in Syria and Libya. PMID:27104855

  15. Engaging Youth Through Spatial Socio-Technical Storytelling, Participatory GIS, Agent-Based Modeling, Online Geogames and Action Projects

    NASA Astrophysics Data System (ADS)

    Poplin, A.; Shenk, L.; Krejci, C.; Passe, U.

    2017-09-01

    The main goal of this paper is to present the conceptual framework for engaging youth in urban planning activities that simultaneously create locally meaningful positive change. The framework for engaging youth interlinks the use of IT tools such as geographic information systems (GIS), agent-based modelling (ABM), online serious games, and mobile participatory geographic information systems with map-based storytelling and action projects. We summarize the elements of our framework and the first results gained in the program Community Growers established in a neighbourhood community of Des Moines, the capital of Iowa, USA. We conclude the paper with a discussion and future research directions.

  16. Web-based health care agents; the case of reminders and todos, too (R2Do2).

    PubMed

    Silverman, B G; Andonyadis, C; Morales, A

    1998-11-01

    This paper describes efforts to develop and field an agent-based, healthcare middleware framework that securely connects practice rule sets to patient records to anticipate health todo items and to remind and alert users about these items over the web. Reminders and todos, too (R2Do2) is an example of merging data- and document-centric architectures, and of integrating agents into patient-provider collaboration environments. A test of this capability verifies that R2Do2 is progressing toward its two goals: (1) an open standards framework for middleware in the healthcare field; and (2) an implementation of the 'principle of optimality' to derive the best possible health plans for each user. This paper concludes with lessons learned to date.

  17. UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis

    DTIC Science & Technology

    2013-06-01

    CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should

  18. Integrated consensus-based frameworks for unmanned vehicle routing and targeting assignment

    NASA Astrophysics Data System (ADS)

    Barnawi, Waleed T.

    Unmanned aerial vehicles (UAVs) are increasingly deployed in complex and dynamic environments to perform multiple tasks cooperatively with other UAVs that contribute to overarching mission effectiveness. Studies by the Department of Defense (DoD) indicate future operations may include anti-access/area-denial (A2AD) environments which limit human teleoperator decision-making and control. This research addresses the problem of decentralized vehicle re-routing and task reassignments through consensus-based UAV decision-making. An Integrated Consensus-Based Framework (ICF) is formulated as a solution to the combined single task assignment problem and vehicle routing problem. The multiple assignment and vehicle routing problem is solved with the Integrated Consensus-Based Bundle Framework (ICBF). The frameworks are hierarchically decomposed into two levels. The bottom layer utilizes the renowned Dijkstra's Algorithm. The top layer addresses task assignment with two methods. The single assignment approach is called the Caravan Auction Algorithm (CarA) Algorithm. This technique extends the Consensus-Based Auction Algorithm (CBAA) to provide awareness for task completion by agents and adopt abandoned tasks. The multiple assignment approach called the Caravan Auction Bundle Algorithm (CarAB) extends the Consensus-Based Bundle Algorithm (CBBA) by providing awareness for lost resources, prioritizing remaining tasks, and adopting abandoned tasks. Research questions are investigated regarding the novelty and performance of the proposed frameworks. Conclusions regarding the research questions will be provided through hypothesis testing. Monte Carlo simulations will provide evidence to support conclusions regarding the research hypotheses for the proposed frameworks. The approach provided in this research addresses current and future military operations for unmanned aerial vehicles. However, the general framework implied by the proposed research is adaptable to any unmanned

  19. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  20. Integrated control of lateral and vertical vehicle dynamics based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia

    2014-03-01

    The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.

  1. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  2. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  3. An Agent-Based Model of Farmer Decision Making in Jordan

    NASA Astrophysics Data System (ADS)

    Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim

    2016-04-01

    We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.

  4. High performance cellular level agent-based simulation with FLAME for the GPU.

    PubMed

    Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela

    2010-05-01

    Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.

  5. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    PubMed

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  6. Pathogen transfer through environment-host contact: an agent-based queueing theoretic framework.

    PubMed

    Chen, Shi; Lenhart, Suzanne; Day, Judy D; Lee, Chihoon; Dulin, Michael; Lanzas, Cristina

    2017-11-02

    Queueing theory studies the properties of waiting queues and has been applied to investigate direct host-to-host transmitted disease dynamics, but its potential in modelling environmentally transmitted pathogens has not been fully explored. In this study, we provide a flexible and customizable queueing theory modelling framework with three major subroutines to study the in-hospital contact processes between environments and hosts and potential nosocomial pathogen transfer, where environments are servers and hosts are customers. Two types of servers with different parameters but the same utilization are investigated. We consider various forms of transfer functions that map contact duration to the amount of pathogen transfer based on existing literature. We propose a case study of simulated in-hospital contact processes and apply stochastic queues to analyse the amount of pathogen transfer under different transfer functions, and assume that pathogen amount decreases during the inter-arrival time. Different host behaviour (feedback and non-feedback) as well as initial pathogen distribution (whether in environment and/or in hosts) are also considered and simulated. We assess pathogen transfer and circulation under these various conditions and highlight the importance of the nonlinear interactions among contact processes, transfer functions and pathogen demography during the contact process. Our modelling framework can be readily extended to more complicated queueing networks to simulate more realistic situations by adjusting parameters such as the number and type of servers and customers, and adding extra subroutines. © The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  7. AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*

    PubMed Central

    Bruch, Elizabeth; Atwell, Jon

    2014-01-01

    Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351

  8. A learning-based agent for home neurorehabilitation.

    PubMed

    Lydakis, Andreas; Meng, Yuanliang; Munroe, Christopher; Wu, Yi-Ning; Begum, Momotaz

    2017-07-01

    This paper presents the iterative development of an artificially intelligent system to promote home-based neurorehabilitation. Although proper, structured practice of rehabilitation exercises at home is the key to successful recovery of motor functions, there is no home-program out there which can monitor a patient's exercise-related activities and provide corrective feedback in real time. To this end, we designed a Learning from Demonstration (LfD) based home-rehabilitation framework that combines advanced robot learning algorithms with commercially available wearable technologies. The proposed system uses exercise-related motion information and electromyography signals (EMG) of a patient to train a Markov Decision Process (MDP). The trained MDP model can enable an agent to serve as a coach for a patient. On a system level, this is the first initiative, to the best of our knowledge, to employ LfD in an health-care application to enable lay users to program an intelligent system. From a rehabilitation research perspective, this is a completely novel initiative to employ machine learning to provide interactive corrective feedback to a patient in home settings.

  9. Ecology Based Decentralized Agent Management System

    NASA Technical Reports Server (NTRS)

    Peysakhov, Maxim D.; Cicirello, Vincent A.; Regli, William C.

    2004-01-01

    The problem of maintaining a desired number of mobile agents on a network is not trivial, especially if we want a completely decentralized solution. Decentralized control makes a system more r e bust and less susceptible to partial failures. The problem is exacerbated on wireless ad hoc networks where host mobility can result in significant changes in the network size and topology. In this paper we propose an ecology-inspired approach to the management of the number of agents. The approach associates agents with living organisms and tasks with food. Agents procreate or die based on the abundance of uncompleted tasks (food). We performed a series of experiments investigating properties of such systems and analyzed their stability under various conditions. We concluded that the ecology based metaphor can be successfully applied to the management of agent populations on wireless ad hoc networks.

  10. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  11. Multi-issue Agent Negotiation Based on Fairness

    NASA Astrophysics Data System (ADS)

    Zuo, Baohe; Zheng, Sue; Wu, Hong

    Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.

  12. An Agent-Based Cockpit Task Management System

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1997-01-01

    An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.

  13. Agents in bioinformatics, computational and systems biology.

    PubMed

    Merelli, Emanuela; Armano, Giuliano; Cannata, Nicola; Corradini, Flavio; d'Inverno, Mark; Doms, Andreas; Lord, Phillip; Martin, Andrew; Milanesi, Luciano; Möller, Steffen; Schroeder, Michael; Luck, Michael

    2007-01-01

    The adoption of agent technologies and multi-agent systems constitutes an emerging area in bioinformatics. In this article, we report on the activity of the Working Group on Agents in Bioinformatics (BIOAGENTS) founded during the first AgentLink III Technical Forum meeting on the 2nd of July, 2004, in Rome. The meeting provided an opportunity for seeding collaborations between the agent and bioinformatics communities to develop a different (agent-based) approach of computational frameworks both for data analysis and management in bioinformatics and for systems modelling and simulation in computational and systems biology. The collaborations gave rise to applications and integrated tools that we summarize and discuss in context of the state of the art in this area. We investigate on future challenges and argue that the field should still be explored from many perspectives ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages to be used by information agents, and to the adoption of agents for computational grids.

  14. Scoping Planning Agents With Shared Models

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Frank, Jeremy D.; Jonsson, Ari K.; McGann, Conor

    2003-01-01

    In this paper we provide a formal framework to define the scope of planning agents based on a single declarative model. Having multiple agents sharing a single model provides numerous advantages that lead to reduced development costs and increase reliability of the system. We formally define planning in terms of extensions of an initial partial plan, and a set of flaws that make the plan unacceptable. A Flaw Filter (FF) allows us to identify those flaws relevant to an agent. Flaw filters motivate the Plan Identification Function (PIF), which specifies when an agent is is ready hand control to another agent for further work. PIFs define a set of plan extensions that can be generated from a model and a plan request. FFs and PIFs can be used to define the scope of agents without changing the model. We describe an implementation of PIFsand FFswithin the context of EUROPA, a constraint-based planning architecture, and show how it can be used to easily design many different agents.

  15. Agent Based Fault Tolerance for the Mobile Environment

    NASA Astrophysics Data System (ADS)

    Park, Taesoon

    This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.

  16. The practice of agent-based model visualization.

    PubMed

    Dorin, Alan; Geard, Nicholas

    2014-01-01

    We discuss approaches to agent-based model visualization. Agent-based modeling has its own requirements for visualization, some shared with other forms of simulation software, and some unique to this approach. In particular, agent-based models are typified by complexity, dynamism, nonequilibrium and transient behavior, heterogeneity, and a researcher's interest in both individual- and aggregate-level behavior. These are all traits requiring careful consideration in the design, experimentation, and communication of results. In the case of all but final communication for dissemination, researchers may not make their visualizations public. Hence, the knowledge of how to visualize during these earlier stages is unavailable to the research community in a readily accessible form. Here we explore means by which all phases of agent-based modeling can benefit from visualization, and we provide examples from the available literature and online sources to illustrate key stages and techniques.

  17. Agent-based models of cellular systems.

    PubMed

    Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca

    2013-01-01

    Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.

  18. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  19. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  20. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    NASA Astrophysics Data System (ADS)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  1. Estimation of the age-specific per-contact probability of Ebola virus transmission in Liberia using agent-based simulations

    NASA Astrophysics Data System (ADS)

    Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2016-06-01

    Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.

  2. Addressing the translational dilemma: dynamic knowledge representation of inflammation using agent-based modeling.

    PubMed

    An, Gary; Christley, Scott

    2012-01-01

    Given the panoply of system-level diseases that result from disordered inflammation, such as sepsis, atherosclerosis, cancer, and autoimmune disorders, understanding and characterizing the inflammatory response is a key target of biomedical research. Untangling the complex behavioral configurations associated with a process as ubiquitous as inflammation represents a prototype of the translational dilemma: the ability to translate mechanistic knowledge into effective therapeutics. A critical failure point in the current research environment is a throughput bottleneck at the level of evaluating hypotheses of mechanistic causality; these hypotheses represent the key step toward the application of knowledge for therapy development and design. Addressing the translational dilemma will require utilizing the ever-increasing power of computers and computational modeling to increase the efficiency of the scientific method in the identification and evaluation of hypotheses of mechanistic causality. More specifically, development needs to focus on facilitating the ability of non-computer trained biomedical researchers to utilize and instantiate their knowledge in dynamic computational models. This is termed "dynamic knowledge representation." Agent-based modeling is an object-oriented, discrete-event, rule-based simulation method that is well suited for biomedical dynamic knowledge representation. Agent-based modeling has been used in the study of inflammation at multiple scales. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggest that this modeling framework is well suited for addressing the translational dilemma. This review describes agent-based modeling, gives examples of its applications in the study of inflammation, and introduces a proposed general expansion of the use of modeling and simulation to augment the generation and evaluation of knowledge

  3. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA

    Treesearch

    Thomas A. Spies; Eric White; Alan Ager; Jeffrey D. Kline; John P. Bolte; Emily K. Platt; Keith A. Olsen; Robert J. Pabst; Ana M. G. Barros; John D. Bailey; Susan Charnley; Anita T. Morzillo; Jennifer Koch; Michelle M. Steen-Adams; Peter H. Singleton; James Sulzman; Cynthia Schwartz; Blair Csuti

    2017-01-01

    Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern...

  4. An Immune Agent for Web-Based AI Course

    ERIC Educational Resources Information Center

    Gong, Tao; Cai, Zixing

    2006-01-01

    To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…

  5. A decentralised multi-agent approach to enhance the stability of smart microgrids with renewable energy

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.

    2016-05-01

    This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.

  6. A proposal for a computer-based framework of support for public health in the management of biological incidents: the Czech Republic experience.

    PubMed

    Bures, Vladimír; Otcenásková, Tereza; Cech, Pavel; Antos, Karel

    2012-11-01

    Biological incidents jeopardising public health require decision-making that consists of one dominant feature: complexity. Therefore, public health decision-makers necessitate appropriate support. Based on the analogy with business intelligence (BI) principles, the contextual analysis of the environment and available data resources, and conceptual modelling within systems and knowledge engineering, this paper proposes a general framework for computer-based decision support in the case of a biological incident. At the outset, the analysis of potential inputs to the framework is conducted and several resources such as demographic information, strategic documents, environmental characteristics, agent descriptors and surveillance systems are considered. Consequently, three prototypes were developed, tested and evaluated by a group of experts. Their selection was based on the overall framework scheme. Subsequently, an ontology prototype linked with an inference engine, multi-agent-based model focusing on the simulation of an environment, and expert-system prototypes were created. All prototypes proved to be utilisable support tools for decision-making in the field of public health. Nevertheless, the research revealed further issues and challenges that might be investigated by both public health focused researchers and practitioners.

  7. Evaluating Water Demand Using Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  8. A technology path to tactical agent-based modeling

    NASA Astrophysics Data System (ADS)

    James, Alex; Hanratty, Timothy P.

    2017-05-01

    Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.

  9. An integrated modeling framework of socio-economic, biophysical, and hydrological processes in Midwest landscapes: Remote sensing data, agro-hydrological model, and agent-based model

    NASA Astrophysics Data System (ADS)

    Ding, Deng

    Intensive human-environment interactions are taking place in Midwestern agricultural systems. An integrated modeling framework is suitable for predicting dynamics of key variables of the socio-economic, biophysical, hydrological processes as well as exploring the potential transitions of system states in response to changes of the driving factors. The purpose of this dissertation is to address issues concerning the interacting processes and consequent changes in land use, water balance, and water quality using an integrated modeling framework. This dissertation is composed of three studies in the same agricultural watershed, the Clear Creek watershed in East-Central Iowa. In the first study, a parsimonious hydrologic model, the Threshold-Exceedance-Lagrangian Model (TELM), is further developed into RS-TELM (Remote Sensing TELM) to integrate remote sensing vegetation data for estimating evapotranspiration. The goodness of fit of RS-TELM is comparable to a well-calibrated SWAT (Soil and Water Assessment Tool) and even slightly superior in capturing intra-seasonal variability of stream flow. The integration of RS LAI (Leaf Area Index) data improves the model's performance especially over the agriculture dominated landscapes. The input of rainfall datasets with spatially explicit information plays a critical role in increasing the model's goodness of fit. In the second study, an agent-based model is developed to simulate farmers' decisions on crop type and fertilizer application in response to commodity and biofuel crop prices. The comparison between simulated crop land percentage and crop rotations with satellite-based land cover data suggest that farmers may be underestimating the effects that continuous corn production has on yields (yield drag). The simulation results given alternative market scenarios based on a survey of agricultural land owners and operators in the Clear Creek Watershed show that, farmers see cellulosic biofuel feedstock production in the form

  10. A hybrid agent-based approach for modeling microbiological systems.

    PubMed

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  11. A mobile agent-based moving objects indexing algorithm in location based service

    NASA Astrophysics Data System (ADS)

    Fang, Zhixiang; Li, Qingquan; Xu, Hong

    2006-10-01

    This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.

  12. A Multi Agent Based Approach for Prehospital Emergency Management.

    PubMed

    Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh

    2017-07-01

    To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities.  The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.

  13. A Multi Agent Based Approach for Prehospital Emergency Management

    PubMed Central

    Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh

    2017-01-01

    Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities.  The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061

  14. Regional frameworks applied to hydrology: can landscape-based frameworks capture the hydrologic variability?

    Treesearch

    R. McManamay; D. Orth; C. Dolloff; E. Frimpong

    2011-01-01

    Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...

  15. New approaches in agent-based modeling of complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2017-12-01

    Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

  16. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  17. From Agents to Continuous Change via Aesthetics: Learning Mechanics with Visual Agent-Based Computational Modeling

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Farris, Amy Voss; Wright, Mason

    2012-01-01

    Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…

  18. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    NASA Astrophysics Data System (ADS)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  19. Adaptive Agent Modeling of Distributed Language: Investigations on the Effects of Cultural Variation and Internal Action Representations

    ERIC Educational Resources Information Center

    Cangelosi, Angelo

    2007-01-01

    In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…

  20. Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Behboodi, Sahand; Crawford, Curran

    This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methodsmore » presented.« less

  1. Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies

    DOE PAGES

    Chassin, David P.; Behboodi, Sahand; Crawford, Curran; ...

    2015-12-23

    This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methodsmore » presented.« less

  2. A general science-based framework for dynamical spatio-temporal models

    USGS Publications Warehouse

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic

  3. MonALISA, an agent-based monitoring and control system for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.

  4. An Agent-based Model for Groundwater Allocation and Management at the Bakken Shale in Western North Dakota

    NASA Astrophysics Data System (ADS)

    Lin, T.; Lin, Z.; Lim, S.

    2017-12-01

    We present an integrated modeling framework to simulate groundwater level change under the dramatic increase of hydraulic fracturing water use in the Bakken Shale oil production area. The framework combines the agent-based model (ABM) with the Fox Hills-Hell Creek (FH-HC) groundwater model. In development of the ABM, institution theory is used to model the regulation policies from the North Dakota State Water Commission, while evolutionary programming and cognitive maps are used to model the social structure that emerges from the behavior of competing individual water businesses. Evolutionary programming allows individuals to select an appropriate strategy when annually applying for potential water use permits; whereas cognitive maps endow agent's ability and willingness to compete for more water sales. All agents have their own influence boundaries that inhibit their competitive behavior toward their neighbors but not to non-neighbors. The decision-making process is constructed and parameterized with both quantitative and qualitative information, i.e., empirical water use data and knowledge gained from surveys with stakeholders. By linking institution theory, evolutionary programming, and cognitive maps, our approach addresses a higher complexity of the real decision making process. Furthermore, this approach is a new exploration for modeling the dynamics of Coupled Human and Natural System. After integrating ABM with the FH-HC model, drought and limited water accessibility scenarios are simulated to predict FH-HC ground water level changes in the future. The integrated modeling framework of ABM and FH-HC model can be used to support making scientifically sound policies in water allocation and management.

  5. Modelling of robotic work cells using agent based-approach

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  6. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  7. The highly intelligent virtual agents for modeling financial markets

    NASA Astrophysics Data System (ADS)

    Yang, G.; Chen, Y.; Huang, J. P.

    2016-02-01

    Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.

  8. Internet-enabled collaborative agent-based supply chains

    NASA Astrophysics Data System (ADS)

    Shen, Weiming; Kremer, Rob; Norrie, Douglas H.

    2000-12-01

    This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.

  9. Agent-Based Models in Social Physics

    NASA Astrophysics Data System (ADS)

    Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo

    2018-06-01

    We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.

  10. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  11. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  12. Pedestrian simulation and distribution in urban space based on visibility analysis and agent simulation

    NASA Astrophysics Data System (ADS)

    Ying, Shen; Li, Lin; Gao, Yurong

    2009-10-01

    Spatial visibility analysis is the important direction of pedestrian behaviors because our visual conception in space is the straight method to get environment information and navigate your actions. Based on the agent modeling and up-tobottom method, the paper develop the framework about the analysis of the pedestrian flow depended on visibility. We use viewshed in visibility analysis and impose the parameters on agent simulation to direct their motion in urban space. We analyze the pedestrian behaviors in micro-scale and macro-scale of urban open space. The individual agent use visual affordance to determine his direction of motion in micro-scale urban street on district. And we compare the distribution of pedestrian flow with configuration in macro-scale urban environment, and mine the relationship between the pedestrian flow and distribution of urban facilities and urban function. The paper first computes the visibility situations at the vantage point in urban open space, such as street network, quantify the visibility parameters. The multiple agents use visibility parameters to decide their direction of motion, and finally pedestrian flow reach to a stable state in urban environment through the simulation of multiple agent system. The paper compare the morphology of visibility parameters and pedestrian distribution with urban function and facilities layout to confirm the consistence between them, which can be used to make decision support in urban design.

  13. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Simulating Cancer Growth with Multiscale Agent-Based Modeling

    PubMed Central

    Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.

    2014-01-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698

  15. Metal-Organic Framework Modified Glass Substrate for Analysis of Highly Volatile Chemical Warfare Agents by Paper Spray Mass Spectrometry.

    PubMed

    Dhummakupt, Elizabeth S; Carmany, Daniel O; Mach, Phillip M; Tovar, Trenton M; Ploskonka, Ann M; Demond, Paul S; DeCoste, Jared B; Glaros, Trevor

    2018-03-07

    Paper spray mass spectrometry has been shown to successfully analyze chemical warfare agent (CWA) simulants. However, due to the volatility differences between the simulants and real G-series (i.e., sarin, soman) CWAs, analysis from an untreated paper substrate proved difficult. To extend the analytical lifetime of these G-agents, metal-organic frameworks (MOFs) were successfully integrated onto the paper spray substrates to increase adsorption and desorption. In this study, several MOFs and nanoparticles were tested to extend the analytical lifetimes of sarin, soman, and cyclosarin on paper spray substrates. It was found that the addition of either UiO-66 or HKUST-1 to the paper substrate increased the analytical lifetime of the G-agents from less than 5 min detectability to at least 50 min.

  16. An event-triggered control approach for the leader-tracking problem with heterogeneous agents

    NASA Astrophysics Data System (ADS)

    Garcia, Eloy; Cao, Yongcan; Casbeer, David W.

    2018-05-01

    This paper presents an event-triggered control and communication framework for the cooperative leader-tracking problem with communication constraints. Continuous communication among agents is not assumed in this work and decentralised event-based strategies are proposed for agents with heterogeneous linear dynamics. Also, the leader dynamics are unknown and only intermittent measurements of its states are obtained by a subset of the followers. The event-based method not only represents a way to restrict communication among agents, but it also provides a decentralised scheme for scheduling information broadcasts. Notably, each agent is able to determine its own broadcasting instants independently of any other agent in the network. In an extension, the case where transmission of information is affected by time-varying communication delays is addressed. Finally, positive lower-bounds on the inter-event time intervals are obtained in order to show that Zeno behaviour does not exist and, therefore, continuous exchange of information is never needed in this framework.

  17. A Conceptual Framework for Determining Training Needs of Extension Agents Applied to Dairy Science. The Findings from Extension Studies.

    ERIC Educational Resources Information Center

    Verma, Satish

    A summary of an Extension Education dissertation on a study to develop a framework of curriculum and learning theory features, to determine needs of Extension agents, and to show its application to dairy science is presented. Tyler's rationale for deriving educational objectives (curriculum theory) and Bloom's taxonomy of cognitive behavior…

  18. PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.

    PubMed

    Wu, Huizi; Huang, Jiaguo

    2016-01-01

    Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on

  19. The selection of adhesive systems for resin-based luting agents.

    PubMed

    Carville, Rebecca; Quinn, Frank

    2008-01-01

    The use of resin-based luting agents is ever expanding with the development of adhesive dentistry. A multitude of different adhesive systems are used with resin-based luting agents, and new products are introduced to the market frequently. Traditional adhesives generally required a multiple step bonding procedure prior to cementing with active resin-based luting materials; however, combined agents offer a simple application procedure. Self-etching 'all-in-one' systems claim that there is no need for the use of a separate adhesive process. The following review addresses the advantages and disadvantages of the available adhesive systems used with resin-based luting agents.

  20. The Key Events Dose-Response Framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds.

    PubMed

    Julien, Elizabeth; Boobis, Alan R; Olin, Stephen S

    2009-09-01

    The ILSI Research Foundation convened a cross-disciplinary working group to examine current approaches for assessing dose-response and identifying safe levels of intake or exposure for four categories of bioactive agents-food allergens, nutrients, pathogenic microorganisms, and environmental chemicals. This effort generated a common analytical framework-the Key Events Dose-Response Framework (KEDRF)-for systematically examining key events that occur between the initial dose of a bioactive agent and the effect of concern. Individual key events are considered with regard to factors that influence the dose-response relationship and factors that underlie variability in that relationship. This approach illuminates the connection between the processes occurring at the level of fundamental biology and the outcomes observed at the individual and population levels. Thus, it promotes an evidence-based approach for using mechanistic data to reduce reliance on default assumptions, to quantify variability, and to better characterize biological thresholds. This paper provides an overview of the KEDRF and introduces a series of four companion papers that illustrate initial application of the approach to a range of bioactive agents.

  1. Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents

    PubMed Central

    Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365

  2. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  3. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  4. Agent-based real-time signal coordination in congested networks.

    DOT National Transportation Integrated Search

    2014-01-01

    This study is the continuation of a previous NEXTRANS study on agent-based reinforcement : learning methods for signal coordination in congested networks. In the previous study, the : formulation of a real-time agent-based traffic signal control in o...

  5. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid

  6. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  7. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  8. Agent-Based Mapping of Credit Risk for Sustainable Microfinance

    PubMed Central

    Lee, Joung-Hun; Jusup, Marko; Podobnik, Boris; Iwasa, Yoh

    2015-01-01

    By drawing analogies with independent research areas, we propose an unorthodox framework for mapping microfinance credit risk---a major obstacle to the sustainability of lenders outreaching to the poor. Specifically, using the elements of network theory, we constructed an agent-based model that obeys the stylized rules of microfinance industry. We found that in a deteriorating economic environment confounded with adverse selection, a form of latent moral hazard may cause a regime shift from a high to a low loan payment probability. An after-the-fact recovery, when possible, required the economic environment to improve beyond that which led to the shift in the first place. These findings suggest a small set of measurable quantities for mapping microfinance credit risk and, consequently, for balancing the requirements to reasonably price loans and to operate on a fully self-financed basis. We illustrate how the proposed mapping works using a 10-year monthly data set from one of the best-known microfinance representatives, Grameen Bank in Bangladesh. Finally, we discuss an entirely new perspective for managing microfinance credit risk based on enticing spontaneous cooperation by building social capital. PMID:25945790

  9. Agent-based mapping of credit risk for sustainable microfinance.

    PubMed

    Lee, Joung-Hun; Jusup, Marko; Podobnik, Boris; Iwasa, Yoh

    2015-01-01

    By drawing analogies with independent research areas, we propose an unorthodox framework for mapping microfinance credit risk--a major obstacle to the sustainability of lenders outreaching to the poor. Specifically, using the elements of network theory, we constructed an agent-based model that obeys the stylized rules of microfinance industry. We found that in a deteriorating economic environment confounded with adverse selection, a form of latent moral hazard may cause a regime shift from a high to a low loan payment probability. An after-the-fact recovery, when possible, required the economic environment to improve beyond that which led to the shift in the first place. These findings suggest a small set of measurable quantities for mapping microfinance credit risk and, consequently, for balancing the requirements to reasonably price loans and to operate on a fully self-financed basis. We illustrate how the proposed mapping works using a 10-year monthly data set from one of the best-known microfinance representatives, Grameen Bank in Bangladesh. Finally, we discuss an entirely new perspective for managing microfinance credit risk based on enticing spontaneous cooperation by building social capital.

  10. Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics

    NASA Astrophysics Data System (ADS)

    Saeedi, Sara

    2018-06-01

    With the advancement of computational modeling and simulation (M&S) methods as well as data collection technologies, urban dynamics modeling substantially improved over the last several decades. The complex urban dynamics processes are most effectively modeled not at the macro-scale, but following a bottom-up approach, by simulating the decisions of individual entities, or residents. Agent-based modeling (ABM) provides the key to a dynamic M&S framework that is able to integrate socioeconomic with environmental models, and to operate at both micro and macro geographical scales. In this study, a multi-agent system is proposed to simulate residential dynamics by considering spatiotemporal land use changes. In the proposed ABM, macro-scale land use change prediction is modeled by Artificial Neural Network (ANN) and deployed as the agent environment and micro-scale residential dynamics behaviors autonomously implemented by household agents. These two levels of simulation interacted and jointly promoted urbanization process in an urban area of Tehran city in Iran. The model simulates the behavior of individual households in finding ideal locations to dwell. The household agents are divided into three main groups based on their income rank and they are further classified into different categories based on a number of attributes. These attributes determine the households' preferences for finding new dwellings and change with time. The ABM environment is represented by a land-use map in which the properties of the land parcels change dynamically over the simulation time. The outputs of this model are a set of maps showing the pattern of different groups of households in the city. These patterns can be used by city planners to find optimum locations for building new residential units or adding new services to the city. The simulation results show that combining macro- and micro-level simulation can give full play to the potential of the ABM to understand the driving

  11. Using Principal-Agent Theory as a Framework for Analysis in Evaluating the Multiple Stakeholders Involved in the Accreditation and Quality Assurance of International Medical Branch Campuses

    ERIC Educational Resources Information Center

    Borgos, Jill E.

    2013-01-01

    This article applies the theoretical framework of principal-agent theory in order to better understand the complex organisational relationships emerging between entities invested in the establishment and monitoring of cross-border international branch campus medical schools. Using the key constructs of principal-agent theory, information asymmetry…

  12. Fuselets: an agent based architecture for fusion of heterogeneous information and data

    NASA Astrophysics Data System (ADS)

    Beyerer, Jürgen; Heizmann, Michael; Sander, Jennifer

    2006-04-01

    A new architecture for fusing information and data from heterogeneous sources is proposed. The approach takes criminalistics as a model. In analogy to the work of detectives, who attempt to investigate crimes, software agents are initiated that pursue clues and try to consolidate or to dismiss hypotheses. Like their human pendants, they can, if questions beyond their competences arise, consult expert agents. Within the context of a certain task, region, and time interval, specialized operations are applied to each relevant information source, e.g. IMINT, SIGINT, ACINT,..., HUMINT, data bases etc. in order to establish hit lists of first clues. Each clue is described by its pertaining facts, uncertainties, and dependencies in form of a local degree-of-belief (DoB) distribution in a Bayesian sense. For each clue an agent is initiated which cooperates with other agents and experts. Expert agents support to make use of different information sources. Consultations of experts, capable to access certain information sources, result in changes of the DoB of the pertaining clue. According to the significance of concentration of their DoB distribution clues are abandoned or pursued further to formulate task specific hypotheses. Communications between the agents serve to find out whether different clues belong to the same cause and thus can be put together. At the end of the investigation process, the different hypotheses are evaluated by a jury and a final report is created that constitutes the fusion result. The approach proposed avoids calculating global DoB distributions by adopting a local Bayesian approximation and thus reduces the complexity of the exact problem essentially. Different information sources are transformed into DoB distributions using the maximum entropy paradigm and considering known facts as constraints. Nominal, ordinal and cardinal quantities can be treated within this framework equally. The architecture is scalable by tailoring the number of agents

  13. Transaction-Based Building Controls Framework, Volume 1: Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaram, Sriram; Pratt, Robert G.; Akyol, Bora A.

    This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

  14. Biocompatible blood pool MRI contrast agents based on hyaluronan

    PubMed Central

    Zhu, Wenlian; Artemov, Dmitri

    2010-01-01

    Biocompatible gadolinium blood pool contrast agents based on a biopolymer, hyaluronan, were investigated for magnetic resonance angiography application. Hyaluronan, a non-sulfated linear glucosaminoglycan composed of 2000–25,000 repeating disaccharide subunits of D-glucuronic acid and N-acetylglucosamine with molecular weight up to 20 MDa, is a major component of the extracellular matrix. Two gadolinium contrast agents based on 16 and 74 kDa hyaluronan were synthesized, both with R1 relaxivity around 5 mM−1 s−1 per gadolinium at 9.4 T at 25°C. These two hyaluronan based agents show significant enhancement of the vasculature for an extended period of time. Initial excretion was primarily through the renal system. Later uptake was observed in the stomach and lower gastrointestinal tract. Macromolecular hyaluronan-based gadolinium agents have a high clinical translation potential as hyaluronan is already approved by FDA for a variety of medical applications. PMID:21504061

  15. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    PubMed

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.

  16. Modeling marine oily wastewater treatment by a probabilistic agent-based approach.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong

    2018-02-01

    This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A framework for unravelling the complexities of unsustainable water resource use

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  18. Stability of subsystem solutions in agent-based models

    NASA Astrophysics Data System (ADS)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  19. Modeling Peer Assessment as Agent Negotiation in a Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Lai, K. Robert; Lan, Chung Hsien

    2006-01-01

    This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…

  20. A New Approach To Secure Federated Information Bases Using Agent Technology.

    ERIC Educational Resources Information Center

    Weippi, Edgar; Klug, Ludwig; Essmayr, Wolfgang

    2003-01-01

    Discusses database agents which can be used to establish federated information bases by integrating heterogeneous databases. Highlights include characteristics of federated information bases, including incompatible database management systems, schemata, and frequently changing context; software agent technology; Java agents; system architecture;…

  1. Research on monocentric model of urbanization by agent-based simulation

    NASA Astrophysics Data System (ADS)

    Xue, Ling; Yang, Kaizhong

    2008-10-01

    Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.

  2. An Agent-Based Model for the Role of Short-Term Memory Enhancement in the Emergence of Grammatical Agreement.

    PubMed

    Vera, Javier

    2018-01-01

    What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.

  3. Agent-based simulation of a financial market

    NASA Astrophysics Data System (ADS)

    Raberto, Marco; Cincotti, Silvano; Focardi, Sergio M.; Marchesi, Michele

    2001-10-01

    This paper introduces an agent-based artificial financial market in which heterogeneous agents trade one single asset through a realistic trading mechanism for price formation. Agents are initially endowed with a finite amount of cash and a given finite portfolio of assets. There is no money-creation process; the total available cash is conserved in time. In each period, agents make random buy and sell decisions that are constrained by available resources, subject to clustering, and dependent on the volatility of previous periods. The model proposed herein is able to reproduce the leptokurtic shape of the probability density of log price returns and the clustering of volatility. Implemented using extreme programming and object-oriented technology, the simulator is a flexible computational experimental facility that can find applications in both academic and industrial research projects.

  4. Exploring Tradeoffs in Demand-side and Supply-side Management of Urban Water Resources using Agent-based Modeling and Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Berglund, E. Z.

    2015-12-01

    Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.

  5. A Framework for Model-Based Inquiry through Agent-Based Programming

    ERIC Educational Resources Information Center

    Xiang, Lin; Passmore, Cynthia

    2015-01-01

    There has been increased recognition in the past decades that model-based inquiry (MBI) is a promising approach for cultivating deep understandings by helping students unite phenomena and underlying mechanisms. Although multiple technology tools have been used to improve the effectiveness of MBI, there are not enough detailed examinations of how…

  6. A cognitive information processing framework for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Feiyi; Qi, Hairong

    2004-09-01

    In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.

  7. A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling

    NASA Astrophysics Data System (ADS)

    Jaxa-Rozen, M.

    2016-12-01

    The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).

  8. Demeter, persephone, and the search for emergence in agent-based models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Howe, T. R.; Collier, N. T.

    2006-01-01

    In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent ormore » potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.« less

  9. A Framework for Socio-Scientific Issues Based Education

    ERIC Educational Resources Information Center

    Presley, Morgan L.; Sickel, Aaron J.; Muslu, Nilay; Merle-Johnson, Dominike; Witzig, Stephen B.; Izci, Kemal; Sadler, Troy D.

    2013-01-01

    Science instruction based on student exploration of socio-scientific issues (SSI) has been presented as a powerful strategy for supporting science learning and the development of scientific literacy. This paper presents an instructional framework for SSI based education. The framework is based on a series of research studies conducted in a diverse…

  10. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  11. The fractional volatility model: An agent-based interpretation

    NASA Astrophysics Data System (ADS)

    Vilela Mendes, R.

    2008-06-01

    Based on the criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, some features of the model are reviewed and extended to account for leverage effects. Using agent-based models, one tries to find which agent strategies and (or) properties of the financial institutions might be responsible for the features of the fractional volatility model.

  12. A Context-Aware Self-Adaptive Fractal Based Generalized Pedagogical Agent Framework for Mobile Learning

    ERIC Educational Resources Information Center

    Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi

    2015-01-01

    The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…

  13. An Agent-Based Data Mining System for Ontology Evolution

    NASA Astrophysics Data System (ADS)

    Hadzic, Maja; Dillon, Darshan

    We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.

  14. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    PubMed

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  15. Science-based Framework for Environmental Benefits Assessment

    DTIC Science & Technology

    2013-03-01

    ER D C/ EL T R -1 3 -4 Environmental Benefits Analysis Program Science-based Framework for Environmental Benefits Assessment E nv ir...acwc.sdp.sirsi.net/client/default. Environmental Benefits Analysis Program ERDC/EL TR-13-4 March 2013 Science-based Framework for Environmental Benefits ...evaluating ecosystem restoration benefits within the context of USACE Civil Works planning process. An emphasis is placed on knowledge gained from

  16. A Security Monitoring Framework For Virtualization Based HEP Infrastructures

    NASA Astrophysics Data System (ADS)

    Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.; ALICE Collaboration

    2017-10-01

    High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.

  17. The Study on Collaborative Manufacturing Platform Based on Agent

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Qu, Zheng-geng

    To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.

  18. A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations

    PubMed Central

    Mah, In Kyoung

    2017-01-01

    For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements—a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis. PMID:29068314

  19. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  20. A knowledge base architecture for distributed knowledge agents

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel; Walls, Bryan

    1990-01-01

    A tuple space based object oriented model for knowledge base representation and interpretation is presented. An architecture for managing distributed knowledge agents is then implemented within the model. The general model is based upon a database implementation of a tuple space. Objects are then defined as an additional layer upon the database. The tuple space may or may not be distributed depending upon the database implementation. A language for representing knowledge and inference strategy is defined whose implementation takes advantage of the tuple space. The general model may then be instantiated in many different forms, each of which may be a distinct knowledge agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA model as well as using more well known message passing mechanisms. An implementation of the model is presented describing strategies used to keep inference tractable without giving up expressivity. An example applied to a power management and distribution network for Space Station Freedom is given.

  1. Template-Based Geometric Simulation of Flexible Frameworks

    PubMed Central

    Wells, Stephen A.; Sartbaeva, Asel

    2012-01-01

    Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055

  2. Comparing administered and market-based water allocation systems using an agent-based modeling approach

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Cai, X.; Wang, Z.

    2009-12-01

    It also has been well recognized that market-based systems can have significant advantages over administered systems for water allocation. However there are not many successful water markets around the world yet and administered systems exist commonly in water allocation management practice. This paradox has been under discussion for decades and still calls for attention for both research and practice. This paper explores some insights for the paradox and tries to address why market systems have not been widely implemented for water allocation. Adopting the theory of agent-based system we develop a consistent analytical model to interpret both systems. First we derive some theorems based on the analytical model, with respect to the necessary conditions for economic efficiency of water allocation. Following that the agent-based model is used to illustrate the coherence and difference between administered and market-based systems. The two systems are compared from three aspects: 1) the driving forces acting on the system state, 2) system efficiency, and 3) equity. Regarding economic efficiency, penalty on the violation of water use permits (or rights) under an administered system can lead to system-wide economic efficiency, as well as being acceptable by some agents, which follows the theory of the so-call rational violation. Ideal equity will be realized if penalty equals incentive with an administered system and if transaction costs are zero with a market system. The performances of both agents and the over system are explained with an administered system and market system, respectively. The performances of agents are subject to different mechanisms of interactions between agents under the two systems. The system emergency (i.e., system benefit, equilibrium market price, etc), resulting from the performance at the agent level, reflects the different mechanism of the two systems, the “invisible hand” with the market system and administrative measures (penalty

  3. Applications of agent-based modeling to nutrient movement Lake Michigan

    EPA Science Inventory

    As part of an ongoing project aiming to provide useful information for nearshore management (harmful algal blooms, nutrient loading), we explore the value of agent-based models in Lake Michigan. Agent-based models follow many individual “agents” moving through a simul...

  4. On effectiveness of network sensor-based defense framework

    NASA Astrophysics Data System (ADS)

    Zhang, Difan; Zhang, Hanlin; Ge, Linqiang; Yu, Wei; Lu, Chao; Chen, Genshe; Pham, Khanh

    2012-06-01

    Cyber attacks are increasing in frequency, impact, and complexity, which demonstrate extensive network vulnerabilities with the potential for serious damage. Defending against cyber attacks calls for the distributed collaborative monitoring, detection, and mitigation. To this end, we develop a network sensor-based defense framework, with the aim of handling network security awareness, mitigation, and prediction. We implement the prototypical system and show its effectiveness on detecting known attacks, such as port-scanning and distributed denial-of-service (DDoS). Based on this framework, we also implement the statistical-based detection and sequential testing-based detection techniques and compare their respective detection performance. The future implementation of defensive algorithms can be provisioned in our proposed framework for combating cyber attacks.

  5. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  6. Multi-agent systems and their applications

    DOE PAGES

    Xie, Jing; Liu, Chen-Ching

    2017-07-14

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  7. Multi-agent systems and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Liu, Chen-Ching

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  8. B-tree search reinforcement learning for model based intelligent agent

    NASA Astrophysics Data System (ADS)

    Bhuvaneswari, S.; Vignashwaran, R.

    2013-03-01

    Agents trained by learning techniques provide a powerful approximation of active solutions for naive approaches. In this study using B - Trees implying reinforced learning the data search for information retrieval is moderated to achieve accuracy with minimum search time. The impact of variables and tactics applied in training are determined using reinforcement learning. Agents based on these techniques perform satisfactory baseline and act as finite agents based on the predetermined model against competitors from the course.

  9. Incorporating BDI Agents into Human-Agent Decision Making Research

    NASA Astrophysics Data System (ADS)

    Kamphorst, Bart; van Wissen, Arlette; Dignum, Virginia

    Artificial agents, people, institutes and societies all have the ability to make decisions. Decision making as a research area therefore involves a broad spectrum of sciences, ranging from Artificial Intelligence to economics to psychology. The Colored Trails (CT) framework is designed to aid researchers in all fields in examining decision making processes. It is developed both to study interaction between multiple actors (humans or software agents) in a dynamic environment, and to study and model the decision making of these actors. However, agents in the current implementation of CT lack the explanatory power to help understand the reasoning processes involved in decision making. The BDI paradigm that has been proposed in the agent research area to describe rational agents, enables the specification of agents that reason in abstract concepts such as beliefs, goals, plans and events. In this paper, we present CTAPL: an extension to CT that allows BDI software agents that are written in the practical agent programming language 2APL to reason about and interact with a CT environment.

  10. A novel 3D framework indium phosphite-oxalate based on a pcu-type topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Mengmeng; Zhou, Mingdong; Hu, Dianwen

    2016-05-15

    A new inorganic–organic hybrid indium phosphite-oxalate, formulated as H[In{sub 5}(HPO{sub 3}){sub 6}(H{sub 2}PO{sub 3}){sub 2}(C{sub 2}O{sub 4}){sub 2}]·(C{sub 4}N{sub 2}H{sub 11}){sub 2}·H{sub 2}O 1 has been hydrothermally synthesized in the presence of piperazine acting as a structure directing agent (SDA). The single crystal X-ray diffraction reveals that compound 1 shows three-dimensional open-framework with intersecting 12-ring channels along the [010] and [001] directions, which is constructed from strictly alternating double 6-ring units (D6Rs), [C{sub 2}O{sub 4}]{sup 2−} groups and [H{sub 2}PO{sub 3}]{sup −} pseudo-pyramids. It is noted that the classical D6R SBU is firstly reported in main metal phosphite/phosphite-oxalate. By regardingmore » D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. The as-synthesized product was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses. - Graphical abstract: A 3D open-framework indium phosphite-oxalate has been synthesized under hydrothermal conditions. A classical SBU, D6R, is present in the structure. By regarding D6R as the 6-connected nodes, the inorganic–organic hybrid framework is based on a pcu-type topology. - Highlights: • A new indium phosphite-oxalate based on a pcu-type topology has been synthesized. • A classical SBU, D6R, is present in the structure. • The classical SBU is firstly reported in main metal phosphite/phosphite-oxalate.« less

  11. CHAMPION: Intelligent Hierarchical Reasoning Agents for Enhanced Decision Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohimer, Ryan E.; Greitzer, Frank L.; Noonan, Christine F.

    2011-11-15

    We describe the design and development of an advanced reasoning framework employing semantic technologies, organized within a hierarchy of computational reasoning agents that interpret domain specific information. Designed based on an inspirational metaphor of the pattern recognition functions performed by the human neocortex, the CHAMPION reasoning framework represents a new computational modeling approach that derives invariant knowledge representations through memory-prediction belief propagation processes that are driven by formal ontological language specification and semantic technologies. The CHAMPION framework shows promise for enhancing complex decision making in diverse problem domains including cyber security, nonproliferation and energy consumption analysis.

  12. An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.

    2009-07-01

    A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.

  13. OntoTrader: An Ontological Web Trading Agent Approach for Environmental Information Retrieval

    PubMed Central

    Iribarne, Luis; Padilla, Nicolás; Ayala, Rosa; Asensio, José A.; Criado, Javier

    2014-01-01

    Modern Web-based Information Systems (WIS) are becoming increasingly necessary to provide support for users who are in different places with different types of information, by facilitating their access to the information, decision making, workgroups, and so forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system, which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture, an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system agents to communicate with the trading agent and the behavioral framework for the SOLERES OntoTrader agent, an Environmental Management Information System (EMIS). This framework implements a “Query-Searching/Recovering-Response” information retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool which allows our proposal to be evaluated and validated. PMID:24977211

  14. OntoTrader: an ontological Web trading agent approach for environmental information retrieval.

    PubMed

    Iribarne, Luis; Padilla, Nicolás; Ayala, Rosa; Asensio, José A; Criado, Javier

    2014-01-01

    Modern Web-based Information Systems (WIS) are becoming increasingly necessary to provide support for users who are in different places with different types of information, by facilitating their access to the information, decision making, workgroups, and so forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system, which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture, an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system agents to communicate with the trading agent and the behavioral framework for the SOLERES OntoTrader agent, an Environmental Management Information System (EMIS). This framework implements a "Query-Searching/Recovering-Response" information retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool which allows our proposal to be evaluated and validated.

  15. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  16. Agent-based method for distributed clustering of textual information

    DOEpatents

    Potok, Thomas E [Oak Ridge, TN; Reed, Joel W [Knoxville, TN; Elmore, Mark T [Oak Ridge, TN; Treadwell, Jim N [Louisville, TN

    2010-09-28

    A computer method and system for storing, retrieving and displaying information has a multiplexing agent (20) that calculates a new document vector (25) for a new document (21) to be added to the system and transmits the new document vector (25) to master cluster agents (22) and cluster agents (23) for evaluation. These agents (22, 23) perform the evaluation and return values upstream to the multiplexing agent (20) based on the similarity of the document to documents stored under their control. The multiplexing agent (20) then sends the document (21) and the document vector (25) to the master cluster agent (22), which then forwards it to a cluster agent (23) or creates a new cluster agent (23) to manage the document (21). The system also searches for stored documents according to a search query having at least one term and identifying the documents found in the search, and displays the documents in a clustering display (80) of similarity so as to indicate similarity of the documents to each other.

  17. New framework of NGN web-based management system

    NASA Astrophysics Data System (ADS)

    Nian, Zhou; Jie, Yin; Qian, Mao

    2007-11-01

    This paper introduces the basic conceptions and key technology of the Ajax and some popular frameworks in the J2EE architecture, try to integrate all the frameworks into a new framework. The developers can develop web applications much more convenient by using this framework and the web application can provide a more friendly and interactive platform to the end users. At last an example is given to explain how to use the new framework to build a web-based management system of the softswitch network.

  18. Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources

    NASA Astrophysics Data System (ADS)

    Al-Amin, S.

    2015-12-01

    Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.

  19. ProgrammingRationalAgents in GOAL

    NASA Astrophysics Data System (ADS)

    Hindriks, Koen V.

    The agent programming language GOAL is a high-level programming language to program rational agents that derive their choice of action from their beliefsand goals. The language provides the basic building blocks to design and implementrationalagents by meansofa setofprogramming constructs. These programming constructs allow and facilitate the manipulation of an agent’sbeliefs and goals and to structure its decision-making. GOAL agents are called rational because they satisfy a numberof basic rationality constraints and because they decide to perform actions to further their goals based uponareasoning scheme derived from practical reasoning. The programming concepts of belief and goal incorporated into GOAL provide the basis for this form of reasoning and are similarto their common sense counterparts used everyday to explain the actions that we perform. In addition, GOAL provides the means for agents to focus their attention on specic goals and to communicate at the knowledge level. This provides an intuitive basis for writing high-level agent programs. At the same time these concepts and programming constructs have a well-dened, formal semantics. The formal semantics provides the basis for deninga verication framework for GOAL for verifying and reasoning about GOAL agents whichis similar to some of the wellknownagent logics introduced in the literature.

  20. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  1. Research on Production Scheduling System with Bottleneck Based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke

    Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.

  2. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    PubMed

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  3. TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds

    ERIC Educational Resources Information Center

    Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien

    2013-01-01

    Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…

  4. Agent-Based Model Approach to Complex Phenomena in Real Economy

    NASA Astrophysics Data System (ADS)

    Iyetomi, H.; Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Souma, W.

    An agent-based model for firms' dynamics is developed. The model consists of firm agents with identical characteristic parameters and a bank agent. Dynamics of those agents are described by their balance sheets. Each firm tries to maximize its expected profit with possible risks in market. Infinite growth of a firm directed by the ``profit maximization" principle is suppressed by a concept of ``going concern". Possibility of bankruptcy of firms is also introduced by incorporating a retardation effect of information on firms' decision. The firms, mutually interacting through the monopolistic bank, become heterogeneous in the course of temporal evolution. Statistical properties of firms' dynamics obtained by simulations based on the model are discussed in light of observations in the real economy.

  5. A coupled modeling framework for sustainable watershed management in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia

    2017-12-01

    There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco

  6. Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2002-01-01

    Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…

  7. A Framework of Multi Objectives Negotiation for Dynamic Supply Chain Model

    NASA Astrophysics Data System (ADS)

    Chai, Jia Yee; Sakaguchi, Tatsuhiko; Shirase, Keiichi

    Trends of globalization and advances in Information Technology (IT) have created opportunity in collaborative manufacturing across national borders. A dynamic supply chain utilizes these advances to enable more flexibility in business cooperation. This research proposes a concurrent decision making framework for a three echelons dynamic supply chain model. The dynamic supply chain is formed by autonomous negotiation among agents based on multi agents approach. Instead of generating negotiation aspects (such as amount, price and due date) arbitrary, this framework proposes to utilize the information available at operational level of an organization in order to generate realistic negotiation aspect. The effectiveness of the proposed model is demonstrated by various case studies.

  8. Pain expressiveness and altruistic behavior: an exploration using agent-based modeling.

    PubMed

    de C Williams, Amanda C; Gallagher, Elizabeth; Fidalgo, Antonio R; Bentley, Peter J

    2016-03-01

    Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.

  9. Animated pedagogical agents: How the presence and nonverbal communication of a virtual instructor affect perceptions and learning outcomes in a computer-based environment about basic physics concepts

    NASA Astrophysics Data System (ADS)

    Frechette, M. Casey

    One important but under-researched area of instructional technology concerns the effects of animated pedagogical agents (APAs), or lifelike characters designed to enhance learning in computer-based environments. This research sought to broaden what is currently known about APAs' instructional value by investigating the effects of agents' visual presence and nonverbal communication. A theoretical framework based on APA literature published in the past decade guided the design of the study. This framework sets forth that APAs impact learning through their presence and communication. The communication displayed by an APA involves two distinct kinds of nonverbal cues: cognitive (hand and arm gestures) and affective (facial expressions). It was predicted that the presence of an agent would enhance learning and that nonverbal communication would amplify these effects. The research utilized a between-subjects experimental design. Participants were randomly assigned to treatment conditions in a controlled lab setting, and group means were compared with a MANCOVA. Participants received (1) a non-animated agent, (2) an agent with hand and arm gestures, (3) an agent with facial expressions, or (4) a fully animated agent. The agent appeared in a virtual learning environment focused on Kepler's laws of planetary motion. A control group did not receive the visual presence of an agent. Two effects were studied: participants' perceptions and their learning outcomes. Perceptions were measured with an attitudinal survey with five subscales. Learning outcomes were measured with an open-ended recall test, a multiple choice comprehension test, and an open-ended transfer test. Learners presented with an agent with affective nonverbal communication comprehended less than learners exposed to a non-animated agent. No significant differences were observed when a group exposed to a fully animated agent was compared to a group with a non-animated agent. Adding both nonverbal communication

  10. The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach

    NASA Astrophysics Data System (ADS)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as

  11. Situation awareness-based agent transparency for human-autonomy teaming effectiveness

    NASA Astrophysics Data System (ADS)

    Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.

    2017-05-01

    We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.

  12. Vector-based navigation using grid-like representations in artificial agents.

    PubMed

    Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan

    2018-05-01

    Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to

  13. Framework for Supporting Web-Based Collaborative Applications

    NASA Astrophysics Data System (ADS)

    Dai, Wei

    The article proposes an intelligent framework for supporting Web-based applications. The framework focuses on innovative use of existing resources and technologies in the form of services and takes the leverage of theoretical foundation of services science and the research from services computing. The main focus of the framework is to deliver benefits to users with various roles such as service requesters, service providers, and business owners to maximize their productivity when engaging with each other via the Web. The article opens up with research motivations and questions, analyses the existing state of research in the field, and describes the approach in implementing the proposed framework. Finally, an e-health application is discussed to evaluate the effectiveness of the framework where participants such as general practitioners (GPs), patients, and health-care workers collaborate via the Web.

  14. Conversational Agents for Academically Productive Talk: A Comparison of Directed and Undirected Agent Interventions

    ERIC Educational Resources Information Center

    Tegos, Stergios; Demetriadis, Stavros; Papadopoulos, Pantelis M.; Weinberger, Armin

    2016-01-01

    Conversational agents that draw on the framework of academically productive talk (APT) have been lately shown to be effective in helping learners sustain productive forms of peer dialogue in diverse learning settings. Yet, literature suggests that more research is required on how learners respond to and benefit from such flexible agents in order…

  15. A Framework for Enterprise Operating Systems Based on Zachman Framework

    NASA Astrophysics Data System (ADS)

    Ostadzadeh, S. Shervin; Rahmani, Amir Masoud

    Nowadays, the Operating System (OS) isn't only the software that runs your computer. In the typical information-driven organization, the operating system is part of a much larger platform for applications and data that extends across the LAN, WAN and Internet. An OS cannot be an island unto itself; it must work with the rest of the enterprise. Enterprise wide applications require an Enterprise Operating System (EOS). Enterprise operating systems used in an enterprise have brought about an inevitable tendency to lunge towards organizing their information activities in a comprehensive way. In this respect, Enterprise Architecture (EA) has proven to be the leading option for development and maintenance of enterprise operating systems. EA clearly provides a thorough outline of the whole information system comprising an enterprise. To establish such an outline, a logical framework needs to be laid upon the entire information system. Zachman Framework (ZF) has been widely accepted as a standard scheme for identifying and organizing descriptive representations that have prominent roles in enterprise-wide system development. In this paper, we propose a framework based on ZF for enterprise operating systems. The presented framework helps developers to design and justify completely integrated business, IT systems, and operating systems which results in improved project success rate.

  16. Agent-based model for rural-urban migration: A dynamic consideration

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid

    2015-10-01

    This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.

  17. IDEA: Planning at the Core of Autonomous Reactive Agents

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Several successful autonomous systems are separated into technologically diverse functional layers operating at different levels of abstraction. This diversity makes them difficult to implement and validate. In this paper, we present IDEA (Intelligent Distributed Execution Architecture), a unified planning and execution framework. In IDEA a layered system can be implemented as separate agents, one per layer, each representing its interactions with the world in a model. At all levels, the model representation primitives and their semantics is the same. Moreover, each agent relies on a single model, plan database, plan runner and on a variety of planners, both reactive and deliberative. The framework allows the specification of agents that operate, within a guaranteed reaction time and supports flexible specification of reactive vs. deliberative agent behavior. Within the IDEA framework we are working to fully duplicate the functionalities of the DS1 Remote Agent and extend it to domains of higher complexity than autonomous spacecraft control.

  18. Intelligent judgements over health risks in a spatial agent-based model.

    PubMed

    Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana

    2018-03-20

    Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of

  19. Efficient Agent-Based Models for Non-Genomic Evolution

    NASA Technical Reports Server (NTRS)

    Gupta, Nachi; Agogino, Adrian; Tumer, Kagan

    2006-01-01

    Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.

  20. Agent-Based Modeling in Public Health: Current Applications and Future Directions.

    PubMed

    Tracy, Melissa; Cerdá, Magdalena; Keyes, Katherine M

    2018-04-01

    Agent-based modeling is a computational approach in which agents with a specified set of characteristics interact with each other and with their environment according to predefined rules. We review key areas in public health where agent-based modeling has been adopted, including both communicable and noncommunicable disease, health behaviors, and social epidemiology. We also describe the main strengths and limitations of this approach for questions with public health relevance. Finally, we describe both methodologic and substantive future directions that we believe will enhance the value of agent-based modeling for public health. In particular, advances in model validation, comparisons with other causal modeling procedures, and the expansion of the models to consider comorbidity and joint influences more systematically will improve the utility of this approach to inform public health research, practice, and policy.

  1. Reverse engineering a social agent-based hidden markov model--visage.

    PubMed

    Chen, Hung-Ching Justin; Goldberg, Mark; Magdon-Ismail, Malik; Wallace, William A

    2008-12-01

    We present a machine learning approach to discover the agent dynamics that drives the evolution of the social groups in a community. We set up the problem by introducing an agent-based hidden Markov model for the agent dynamics: an agent's actions are determined by micro-laws. Nonetheless, We learn the agent dynamics from the observed communications without knowing state transitions. Our approach is to identify the appropriate micro-laws corresponding to an identification of the appropriate parameters in the model. The model identification problem is then formulated as a mixed optimization problem. To solve the problem, we develop a multistage learning process for determining the group structure, the group evolution, and the micro-laws of a community based on the observed set of communications among actors, without knowing the semantic contents. Finally, to test the quality of our approximations and the feasibility of the approach, we present the results of extensive experiments on synthetic data as well as the results on real communities, such as Enron email and Movie newsgroups. Insight into agent dynamics helps us understand the driving forces behind social evolution.

  2. Contract Monitoring in Agent-Based Systems: Case Study

    NASA Astrophysics Data System (ADS)

    Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal

    Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.

  3. An intervention fidelity framework for technology-based behavioral interventions.

    PubMed

    Devito Dabbs, Annette; Song, Mi-Kyung; Hawkins, Robert; Aubrecht, Jill; Kovach, Karen; Terhorst, Lauren; Connolly, Mary; McNulty, Mary; Callan, Judith

    2011-01-01

    Despite the proliferation of health technologies, descriptions of the unique considerations and practical guidance for evaluating the intervention fidelity of technology-based behavioral interventions are lacking. The aims of this study were to (a) discuss how technology-based behavioral interventions challenge conventions about how intervention fidelity is conceptualized and evaluated, (b) propose an intervention fidelity framework that may be more appropriate for technology-based behavioral interventions, and (c) present a plan for operationalizing each concept in the framework using the intervention fidelity monitoring plan for Pocket PATH (Personal Assistant for Tracking Health), a mobile health technology designed to promote self-care behaviors after lung transplantation, as an exemplar. The literature related to intervention fidelity and technology acceptance was used to identify the issues that are unique to the fidelity of technology-based behavioral interventions and thus important to include in a proposed intervention fidelity framework. An intervention fidelity monitoring plan for technology-based behavioral interventions was developed as an example. The intervention fidelity monitoring plan was deemed feasible and practical to implement and showed utility in operationalizing the concepts such as assessing interventionists' delivery and participants' acceptance of the technology-based behavioral intervention. The framework has the potential to guide the development of implementation fidelity monitoring tools for other technology-based behavioral interventions. Further application and testing of this framework will allow for a better understanding of the role that technology acceptance plays in the adoption and enactment of the behaviors that technology-based behavioral interventions are intended to promote.

  4. Model-Drive Architecture for Agent-Based Systems

    NASA Technical Reports Server (NTRS)

    Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.

    2004-01-01

    The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.

  5. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  6. Agent-Based Modeling of Growth Processes

    ERIC Educational Resources Information Center

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  7. Multi-agent cooperation rescue algorithm based on influence degree and state prediction

    NASA Astrophysics Data System (ADS)

    Zheng, Yanbin; Ma, Guangfu; Wang, Linlin; Xi, Pengxue

    2018-04-01

    Aiming at the multi-agent cooperative rescue in disaster, a multi-agent cooperative rescue algorithm based on impact degree and state prediction is proposed. Firstly, based on the influence of the information in the scene on the collaborative task, the influence degree function is used to filter the information. Secondly, using the selected information to predict the state of the system and Agent behavior. Finally, according to the result of the forecast, the cooperative behavior of Agent is guided and improved the efficiency of individual collaboration. The simulation results show that this algorithm can effectively solve the cooperative rescue problem of multi-agent and ensure the efficient completion of the task.

  8. Persuasion Model and Its Evaluation Based on Positive Change Degree of Agent Emotion

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    For it can meet needs of negotiation among organizations take place in different time and place, and for it can make its course more rationality and result more ideal, persuasion based on agent can improve cooperation among organizations well. Integrated emotion change in agent persuasion can further bring agent advantage of artificial intelligence into play. Emotion of agent persuasion is classified, and the concept of positive change degree is given. Based on this, persuasion model based on positive change degree of agent emotion is constructed, which is explained clearly through an example. Finally, the method of relative evaluation is given, which is also verified through a calculation example.

  9. Simulating the behavior of patients who leave a public hospital emergency department without being seen by a physician: a cellular automaton and agent-based framework

    PubMed Central

    Yousefi, Milad; Yousefi, Moslem; Fogliatto, F.S.; Ferreira, R.P.M.; Kim, J.H.

    2018-01-01

    The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies. PMID:29340526

  10. Simulating the behavior of patients who leave a public hospital emergency department without being seen by a physician: a cellular automaton and agent-based framework.

    PubMed

    Yousefi, Milad; Yousefi, Moslem; Fogliatto, F S; Ferreira, R P M; Kim, J H

    2018-01-11

    The objective of this study was to develop an agent based modeling (ABM) framework to simulate the behavior of patients who leave a public hospital emergency department (ED) without being seen (LWBS). In doing so, the study complements computer modeling and cellular automata (CA) techniques to simulate the behavior of patients in an ED. After verifying and validating the model by comparing it with data from a real case study, the significance of four preventive policies including increasing number of triage nurses, fast-track treatment, increasing the waiting room capacity and reducing treatment time were investigated by utilizing ordinary least squares regression. After applying the preventing policies in ED, an average of 42.14% reduction in the number of patients who leave without being seen and 6.05% reduction in the average length of stay (LOS) of patients was reported. This study is the first to apply CA in an ED simulation. Comparing the average LOS before and after applying CA with actual times from emergency department information system showed an 11% improvement. The simulation results indicated that the most effective approach to reduce the rate of LWBS is applying fast-track treatment. The ABM approach represents a flexible tool that can be constructed to reflect any given environment. It is also a support system for decision-makers to assess the relative impact of control strategies.

  11. Diversity and Community: The Role of Agent-Based Modeling.

    PubMed

    Stivala, Alex

    2017-06-01

    Community psychology involves several dialectics between potentially opposing ideals, such as theory and practice, rights and needs, and respect for human diversity and sense of community. Some recent papers in the American Journal of Community Psychology have examined the diversity-community dialectic, some with the aid of agent-based modeling and concepts from network science. This paper further elucidates these concepts and suggests that research in community psychology can benefit from a useful dialectic between agent-based modeling and the real-world concerns of community psychology. © Society for Community Research and Action 2017.

  12. Disaggregation and Refinement of System Dynamics Models via Agent-based Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J; Ozmen, Ozgur; Schryver, Jack C

    System dynamics models are usually used to investigate aggregate level behavior, but these models can be decomposed into agents that have more realistic individual behaviors. Here we develop a simple model of the STEM workforce to illuminate the impacts that arise from the disaggregation and refinement of system dynamics models via agent-based modeling. Particularly, alteration of Poisson assumptions, adding heterogeneity to decision-making processes of agents, and discrete-time formulation are investigated and their impacts are illustrated. The goal is to demonstrate both the promise and danger of agent-based modeling in the context of a relatively simple model and to delineate themore » importance of modeling decisions that are often overlooked.« less

  13. An agent-based modeling framework for evaluating hypotheses on risks for developing autism: effects of the gut microbial environment.

    PubMed

    Weston, Bronson; Fogal, Benjamin; Cook, Daniel; Dhurjati, Prasad

    2015-04-01

    The number of cases diagnosed with Autism Spectrum Disorders is rising at an alarming rate with the Centers for Disease Control estimating the 2014 incidence rate as 1 in 68. Recently, it has been hypothesized that gut bacteria may contribute to the development of autism. Specifically, the relative balances between the inflammatory microbes clostridia and desulfovibrio and the anti-inflammatory microbe bifidobacteria may become destabilized prior to autism development. The imbalance leads to a leaky gut, characterized by a more porous epithelial membrane resulting in microbial toxin release into the blood, which may contribute to brain inflammation and autism development. To test how changes in population dynamics of the gut microbiome may lead to the imbalanced microbial populations associated with autism patients, we constructed a novel agent-based model of clostridia, desulfovibrio, and bifidobacteria population interactions in the gut. The model demonstrates how changing physiological conditions in the gut can affect the population dynamics of the microbiome. Simulations using our agent-based model indicate that despite large perturbations to initial levels of bacteria, the populations robustly achieve a single steady-state given similar gut conditions. These simulation results suggests that disturbance such as a prebiotic or antibiotic treatment may only transiently affect the gut microbiome. However, sustained prebiotic treatments may correct low population counts of bifidobacteria. Furthermore, our simulations suggest that clostridia growth rate is a key determinant of risk of autism development. Treatment of high-risk infants with supra-physiological levels of lysozymes may suppress clostridia growth rate, resulting in a steep decrease in the clostridia population and therefore reduced risk of autism development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Personalized E- learning System Based on Intelligent Agent

    NASA Astrophysics Data System (ADS)

    Duo, Sun; Ying, Zhou Cai

    Lack of personalized learning is the key shortcoming of traditional e-Learning system. This paper analyzes the personal characters in e-Learning activity. In order to meet the personalized e-learning, a personalized e-learning system based on intelligent agent was proposed and realized in the paper. The structure of system, work process, the design of intelligent agent and the realization of intelligent agent were introduced in the paper. After the test use of the system by certain network school, we found that the system could improve the learner's initiative participation, which can provide learners with personalized knowledge service. Thus, we thought it might be a practical solution to realize self- learning and self-promotion in the lifelong education age.

  15. Applications of Agent Based Approaches in Business (A Three Essay Dissertation)

    ERIC Educational Resources Information Center

    Prawesh, Shankar

    2013-01-01

    The goal of this dissertation is to investigate the enabling role that agent based simulation plays in business and policy. The aforementioned issue has been addressed in this dissertation through three distinct, but related essays. The first essay is a literature review of different research applications of agent based simulation in various…

  16. Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.

    PubMed

    Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A

    2016-05-26

    The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.

  17. Development and verification of an agent-based model of opinion leadership.

    PubMed

    Anderson, Christine A; Titler, Marita G

    2014-09-27

    The use of opinion leaders is a strategy used to speed the process of translating research into practice. Much is still unknown about opinion leader attributes and activities and the context in which they are most effective. Agent-based modeling is a methodological tool that enables demonstration of the interactive and dynamic effects of individuals and their behaviors on other individuals in the environment. The purpose of this study was to develop and test an agent-based model of opinion leadership. The details of the design and verification of the model are presented. The agent-based model was developed by using a software development platform to translate an underlying conceptual model of opinion leadership into a computer model. Individual agent attributes (for example, motives and credibility) and behaviors (seeking or providing an opinion) were specified as variables in the model in the context of a fictitious patient care unit. The verification process was designed to test whether or not the agent-based model was capable of reproducing the conditions of the preliminary conceptual model. The verification methods included iterative programmatic testing ('debugging') and exploratory analysis of simulated data obtained from execution of the model. The simulation tests included a parameter sweep, in which the model input variables were adjusted systematically followed by an individual time series experiment. Statistical analysis of model output for the 288 possible simulation scenarios in the parameter sweep revealed that the agent-based model was performing, consistent with the posited relationships in the underlying model. Nurse opinion leaders act on the strength of their beliefs and as a result, become an opinion resource for their uncertain colleagues, depending on their perceived credibility. Over time, some nurses consistently act as this type of resource and have the potential to emerge as opinion leaders in a context where uncertainty exists. The

  18. Nature as a network of morphological infocomputational processes for cognitive agents

    NASA Astrophysics Data System (ADS)

    Dodig-Crnkovic, Gordana

    2017-01-01

    This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted.

  19. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    PubMed Central

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  20. Research on environmental impact of water-based fire extinguishing agents

    NASA Astrophysics Data System (ADS)

    Wang, Shuai

    2018-02-01

    This paper offers current status of application of water-based fire extinguishing agents, the environmental and research considerations of the need for the study of toxicity research. This paper also offers systematic review of test methods of toxicity and environmental impact of water-based fire extinguishing agents currently available, illustrate the main requirements and relevant test methods, and offer some research findings for future research considerations. The paper also offers limitations of current study.

  1. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  2. Cyber Security Research Frameworks For Coevolutionary Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rush, George D.; Tauritz, Daniel Remy

    Several architectures have been created for developing and testing systems used in network security, but most are meant to provide a platform for running cyber security experiments as opposed to automating experiment processes. In the first paper, we propose a framework termed Distributed Cyber Security Automation Framework for Experiments (DCAFE) that enables experiment automation and control in a distributed environment. Predictive analysis of adversaries is another thorny issue in cyber security. Game theory can be used to mathematically analyze adversary models, but its scalability limitations restrict its use. Computational game theory allows us to scale classical game theory to larger,more » more complex systems. In the second paper, we propose a framework termed Coevolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve attacker and defender agent strategies and capabilities and evaluate potential solutions with a custom network defense simulation. The third paper is a continuation of the CANDLES project in which we rewrote key parts of the framework. Attackers and defenders have been redesigned to evolve pure strategy, and a new network security simulation is devised which specifies network architecture and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search space and justify the use of a coevolutionary algorithm.« less

  3. A Framework for Concept-Based Digital Course Libraries

    ERIC Educational Resources Information Center

    Dicheva, Darina; Dichev, Christo

    2004-01-01

    This article presents a general framework for building conceptbased digital course libraries. The framework is based on the idea of using a conceptual structure that represents a subject domain ontology for classification of the course library content. Two aspects, domain conceptualization, which supports findability and ontologies, which support…

  4. Coevolution in management fashion: an agent-based model of consultant-driven innovation.

    PubMed

    Strang, David; David, Robert J; Akhlaghpour, Saeed

    2014-07-01

    The rise of management consultancy has been accompanied by increasingly marked faddish cycles in management techniques, but the mechanisms that underlie this relationship are not well understood. The authors develop a simple agent-based framework that models innovation adoption and abandonment on both the supply and demand sides. In opposition to conceptions of consultants as rhetorical wizards who engineer waves of management fashion, firms and consultants are treated as boundedly rational actors who chase the secrets of success by mimicking their highest-performing peers. Computational experiments demonstrate that consultant-driven versions of this dynamic in which the outcomes of firms are strongly conditioned by their choice of consultant are robustly faddish. The invasion of boom markets by low-quality consultants undercuts popular innovations while simultaneously restarting the fashion cycle by prompting the flight of high-quality consultants into less densely occupied niches. Computational experiments also indicate conditions involving consultant mobility, aspiration levels, mimic probabilities, and client-provider matching that attenuate faddishness.

  5. Connectionist agent-based learning in bank-run decision making

    NASA Astrophysics Data System (ADS)

    Huang, Weihong; Huang, Qiao

    2018-05-01

    It is of utter importance for the policy makers, bankers, and investors to thoroughly understand the probability of bank-run (PBR) which was often neglected in the classical models. Bank-run is not merely due to miscoordination (Diamond and Dybvig, 1983) or deterioration of bank assets (Allen and Gale, 1998) but various factors. This paper presents the simulation results of the nonlinear dynamic probabilities of bank runs based on the global games approach, with the distinct assumption that heterogenous agents hold highly correlated but unidentical beliefs about the true payoffs. The specific technique used in the simulation is to let agents have an integrated cognitive-affective network. It is observed that, even when the economy is good, agents are significantly affected by the cognitive-affective network to react to bad news which might lead to bank-run. Both the rise of the late payoffs, R, and the early payoffs, r, will decrease the effect of the affective process. The increased risk sharing might or might not increase PBR, and the increase in late payoff is beneficial for preventing the bank run. This paper is one of the pioneers that links agent-based computational economics and behavioral economics.

  6. Agent Based Intelligence in a Tetrahedral Rover

    NASA Technical Reports Server (NTRS)

    Phelps, Peter; Truszkowski, Walt

    2007-01-01

    A tetrahedron is a 4-node 6-strut pyramid structure which is being used by the NASA - Goddard Space Flight Center as the basic building block for a new approach to robotic motion. The struts are extendable; it is by the sequence of activities: strut-extension, changing the center of gravity and falling that the tetrahedron "moves". Currently, strut-extension is handled by human remote control. There is an effort underway to make the movement of the tetrahedron autonomous, driven by an attempt to achieve a goal. The approach being taken is to associate an intelligent agent with each node. Thus, the autonomous tetrahedron is realized as a constrained multi-agent system, where the constraints arise from the fact that between any two agents there is an extendible strut. The hypothesis of this work is that, by proper composition of such automated tetrahedra, robotic structures of various levels of complexity can be developed which will support more complex dynamic motions. This is the basis of the new approach to robotic motion which is under investigation. A Java-based simulator for the single tetrahedron, realized as a constrained multi-agent system, has been developed and evaluated. This paper reports on this project and presents a discussion of the structure and dynamics of the simulator.

  7. Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions

    PubMed Central

    Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.

    2016-01-01

    The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380

  8. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  9. Intelligent agent-based intrusion detection system using enhanced multiclass SVM.

    PubMed

    Ganapathy, S; Yogesh, P; Kannan, A

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.

  10. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    PubMed Central

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  11. Distributed decision-making in electric power system transmission maintenance scheduling using multi-agent systems (MAS)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong

    In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but

  12. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren

    2004-01-01

    This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.

  13. Nature-based supportive care opportunities: a conceptual framework.

    PubMed

    Blaschke, Sarah; O'Callaghan, Clare C; Schofield, Penelope

    2018-03-22

    Given preliminary evidence for positive health outcomes related to contact with nature for cancer populations, research is warranted to ascertain possible strategies for incorporating nature-based care opportunities into oncology contexts as additional strategies for addressing multidimensional aspects of cancer patients' health and recovery needs. The objective of this study was to consolidate existing research related to nature-based supportive care opportunities and generate a conceptual framework for discerning relevant applications in the supportive care setting. Drawing on research investigating nature-based engagement in oncology contexts, a two-step analytic process was used to construct a conceptual framework for guiding nature-based supportive care design and future research. Concept analysis methodology generated new representations of understanding by extracting and synthesising salient concepts. Newly formulated concepts were transposed to findings from related research about patient-reported and healthcare expert-developed recommendations for nature-based supportive care in oncology. Five theoretical concepts (themes) were formulated describing patients' reasons for engaging with nature and the underlying needs these interactions address. These included: connecting with what is genuinely valued, distancing from the cancer experience, meaning-making and reframing the cancer experience, finding comfort and safety, and vital nurturance. Eight shared patient and expert recommendations were compiled, which address the identified needs through nature-based initiatives. Eleven additional patient-reported recommendations attend to beneficial and adverse experiential qualities of patients' nature-based engagement and complete the framework. The framework outlines salient findings about helpful nature-based supportive care opportunities for ready access by healthcare practitioners, designers, researchers and patients themselves. © Article author(s) (or their

  14. A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care

    NASA Astrophysics Data System (ADS)

    Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.

    This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.

  15. Using uncertainty and sensitivity analyses in socioecological agent-based models to improve their analytical performance and policy relevance.

    PubMed

    Ligmann-Zielinska, Arika; Kramer, Daniel B; Spence Cheruvelil, Kendra; Soranno, Patricia A

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system.

  16. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  17. Natural Humic-Acid-Based Phototheranostic Agent.

    PubMed

    Miao, Zhao-Hua; Li, Kai; Liu, Pei-Ying; Li, Zhenglin; Yang, Huanjie; Zhao, Qingliang; Chang, Manli; Yang, Qingzhu; Zhen, Liang; Xu, Cheng-Yan

    2018-04-01

    Humic acids, a major constituent of natural organic carbon resources, are naturally formed through the microbial biodegradation of animal and plant residues. Due to numerous physiologically active groups (phenol, carboxyl, and quinone), the biomedical applications of humic acid have been already investigated across different cultures for several centuries or even longer. In this work, sodium humate, the sodium salt of humic acid, is explored as phototheranostic agent for light-induced photoacoustic imaging and photothermal therapy based on intrinsic absorption in the near-infrared region. The purified colloidal sodium humate exhibits a high photothermal conversion efficiency up to 76.3%, much higher than that of the majority of state-of-the-art photothermal agents including gold nanorods, Cu 9 S 5 nanoparticles, antimonene quantum dots, and black phosphorus quantum dots, leading to obvious photoacoustic enhancement in vitro and in vivo. Besides, highly effective photothermal ablation of HeLa tumor is achieved through intratumoral injection. Impressively, sodium humate reveals ultralow toxicity at the cellular and animal levels. This work promises the great potential of humic acids as light-mediated theranostic agents, thus expanding the application scope of traditional humic acids in biomedical field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems

    PubMed Central

    Merrick, Kathryn E.; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots. PMID:24198797

  19. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems.

    PubMed

    Merrick, Kathryn E; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots.

  20. What makes virtual agents believable?

    NASA Astrophysics Data System (ADS)

    Bogdanovych, Anton; Trescak, Tomas; Simoff, Simeon

    2016-01-01

    In this paper we investigate the concept of believability and make an attempt to isolate individual characteristics (features) that contribute to making virtual characters believable. As the result of this investigation we have produced a formalisation of believability and based on this formalisation built a computational framework focused on simulation of believable virtual agents that possess the identified features. In order to test whether the identified features are, in fact, responsible for agents being perceived as more believable, we have conducted a user study. In this study we tested user reactions towards the virtual characters that were created for a simulation of aboriginal inhabitants of a particular area of Sydney, Australia in 1770 A.D. The participants of our user study were exposed to short simulated scenes, in which virtual agents performed some behaviour in two different ways (while possessing a certain aspect of believability vs. not possessing it). The results of the study indicate that virtual agents that appear resource bounded, are aware of their environment, own interaction capabilities and their state in the world, agents that can adapt to changes in the environment and exist in correct social context are those that are being perceived as more believable. Further in the paper we discuss these and other believability features and provide a quantitative analysis of the level of contribution for each such feature to the overall perceived believability of a virtual agent.

  1. Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling

    NASA Technical Reports Server (NTRS)

    Campbell, Kenyth

    2012-01-01

    The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.

  2. Argumentation in Science Education: A Model-based Framework

    NASA Astrophysics Data System (ADS)

    Böttcher, Florian; Meisert, Anke

    2011-02-01

    The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons for the appropriateness of a theoretical model which explains a certain phenomenon. Argumentation is considered to be the process of the critical evaluation of such a model if necessary in relation to alternative models. Secondly, some methodological details are exemplified for the use of a model-based analysis in the concrete classroom context. Third, the application of the approach in comparison with other analytical models will be presented to demonstrate the explicatory power and depth of the model-based perspective. Primarily, the framework of Toulmin to structurally analyse arguments is contrasted with the approach presented here. It will be demonstrated how common methodological and theoretical problems in the context of Toulmin's framework can be overcome through a model-based perspective. Additionally, a second more complex argumentative sequence will also be analysed according to the invented analytical scheme to give a broader impression of its potential in practical use.

  3. QUICR-learning for Multi-Agent Coordination

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian K.; Tumer, Kagan

    2006-01-01

    Coordinating multiple agents that need to perform a sequence of actions to maximize a system level reward requires solving two distinct credit assignment problems. First, credit must be assigned for an action taken at time step t that results in a reward at time step t > t. Second, credit must be assigned for the contribution of agent i to the overall system performance. The first credit assignment problem is typically addressed with temporal difference methods such as Q-learning. The second credit assignment problem is typically addressed by creating custom reward functions. To address both credit assignment problems simultaneously, we propose the "Q Updates with Immediate Counterfactual Rewards-learning" (QUICR-learning) designed to improve both the convergence properties and performance of Q-learning in large multi-agent problems. QUICR-learning is based on previous work on single-time-step counterfactual rewards described by the collectives framework. Results on a traffic congestion problem shows that QUICR-learning is significantly better than a Q-learner using collectives-based (single-time-step counterfactual) rewards. In addition QUICR-learning provides significant gains over conventional and local Q-learning. Additional results on a multi-agent grid-world problem show that the improvements due to QUICR-learning are not domain specific and can provide up to a ten fold increase in performance over existing methods.

  4. Case-based retrieval framework for gene expression data.

    PubMed

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2015-01-01

    The process of retrieving similar cases in a case-based reasoning system is considered a big challenge for gene expression data sets. The huge number of gene expression values generated by microarray technology leads to complex data sets and similarity measures for high-dimensional data are problematic. Hence, gene expression similarity measurements require numerous machine-learning and data-mining techniques, such as feature selection and dimensionality reduction, to be incorporated into the retrieval process. This article proposes a case-based retrieval framework that uses a k-nearest-neighbor classifier with a weighted-feature-based similarity to retrieve previously treated patients based on their gene expression profiles. The herein-proposed methodology is validated on several data sets: a childhood leukemia data set collected from The Children's Hospital at Westmead, as well as the Colon cancer, the National Cancer Institute (NCI), and the Prostate cancer data sets. Results obtained by the proposed framework in retrieving patients of the data sets who are similar to new patients are as follows: 96% accuracy on the childhood leukemia data set, 95% on the NCI data set, 93% on the Colon cancer data set, and 98% on the Prostate cancer data set. The designed case-based retrieval framework is an appropriate choice for retrieving previous patients who are similar to a new patient, on the basis of their gene expression data, for better diagnosis and treatment of childhood leukemia. Moreover, this framework can be applied to other gene expression data sets using some or all of its steps.

  5. Biosafety and Biosecurity: A Relative Risk-Based Framework for Safer, More Secure, and Sustainable Laboratory Capacity Building.

    PubMed

    Dickmann, Petra; Sheeley, Heather; Lightfoot, Nigel

    2015-01-01

    Laboratory capacity building is characterized by a paradox between endemicity and resources: countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high-containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. A group at Chatham House developed a draft conceptual framework for safer, more secure, and sustainable laboratory capacity building. The draft generic framework is guided by the phrase "LOCAL - PEOPLE - MAKE SENSE" that represents three major principles: capacity building according to local needs (local) with an emphasis on relationship and trust building (people) and continuous outcome and impact measurement (make sense). This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.

  6. Simulation-based intelligent robotic agent for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Biegl, Csaba A.; Springfield, James F.; Cook, George E.; Fernandez, Kenneth R.

    1990-01-01

    A robot control package is described which utilizes on-line structural simulation of robot manipulators and objects in their workspace. The model-based controller is interfaced with a high level agent-independent planner, which is responsible for the task-level planning of the robot's actions. Commands received from the agent-independent planner are refined and executed in the simulated workspace, and upon successful completion, they are transferred to the real manipulators.

  7. Consensus for multi-agent systems with time-varying input delays

    NASA Astrophysics Data System (ADS)

    Yuan, Chengzhi; Wu, Fen

    2017-10-01

    This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.

  8. Multiscale agent-based cancer modeling.

    PubMed

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  9. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    PubMed

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  11. Engineering large-scale agent-based systems with consensus

    NASA Technical Reports Server (NTRS)

    Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.

    1994-01-01

    The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.

  12. iCrowd: agent-based behavior modeling and crowd simulator

    NASA Astrophysics Data System (ADS)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  13. Agent-based modeling as a tool for program design and evaluation.

    PubMed

    Lawlor, Jennifer A; McGirr, Sara

    2017-12-01

    Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Using Agent-Based Technologies to Enhance Learning in Educational Games

    ERIC Educational Resources Information Center

    Tumenayu, Ogar Ofut; Shabalina, Olga; Kamaev, Valeriy; Davtyan, Alexander

    2014-01-01

    Recent research has shown that educational games positively motivate learning. However, there is a little evidence that they can trigger learning to a large extent if the game-play is supported by additional activities. We aim to support educational games development with an Agent-Based Technology (ABT) by using intelligent pedagogical agents that…

  15. Unsilencing Critical Conversations in Social-Studies Teacher Education Using Agent-Based Modeling

    ERIC Educational Resources Information Center

    Hostetler, Andrew; Sengupta, Pratim; Hollett, Ty

    2018-01-01

    In this article, we argue that when complex sociopolitical issues such as ethnocentrism and racial segregation are represented as complex, emergent systems using agent-based computational models (in short agent-based models or ABMs), discourse about these representations can disrupt social studies teacher candidates' dispositions of teaching…

  16. Agent-Based Models in Empirical Social Research

    ERIC Educational Resources Information Center

    Bruch, Elizabeth; Atwell, Jon

    2015-01-01

    Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first…

  17. Framework Support For Knowledge-Based Software Development

    NASA Astrophysics Data System (ADS)

    Huseth, Steve

    1988-03-01

    The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.

  18. Using framework-based synthesis for conducting reviews of qualitative studies.

    PubMed

    Dixon-Woods, Mary

    2011-04-14

    Framework analysis is a technique used for data analysis in primary qualitative research. Recent years have seen its being adapted to conduct syntheses of qualitative studies. Framework-based synthesis shows considerable promise in addressing applied policy questions. An innovation in the approach, known as 'best fit' framework synthesis, has been published in BMC Medical Research Methodology this month. It involves reviewers in choosing a conceptual model likely to be suitable for the question of the review, and using it as the basis of their initial coding framework. This framework is then modified in response to the evidence reported in the studies in the reviews, so that the final product is a revised framework that may include both modified factors and new factors that were not anticipated in the original model. 'Best fit' framework-based synthesis may be especially suitable in addressing urgent policy questions where the need for a more fully developed synthesis is balanced by the need for a quick answer. Please see related article: http://www.biomedcentral.com/1471-2288/11/29.

  19. Organization of the secure distributed computing based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera

    2018-04-01

    Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.

  20. The Agent-based Approach: A New Direction for Computational Models of Development.

    ERIC Educational Resources Information Center

    Schlesinger, Matthew; Parisi, Domenico

    2001-01-01

    Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…

  1. Overarching framework for data-based modelling

    NASA Astrophysics Data System (ADS)

    Schelter, Björn; Mader, Malenka; Mader, Wolfgang; Sommerlade, Linda; Platt, Bettina; Lai, Ying-Cheng; Grebogi, Celso; Thiel, Marco

    2014-02-01

    One of the main modelling paradigms for complex physical systems are networks. When estimating the network structure from measured signals, typically several assumptions such as stationarity are made in the estimation process. Violating these assumptions renders standard analysis techniques fruitless. We here propose a framework to estimate the network structure from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we propose a rigorous mathematical theory that underlies this framework. Based on this theory, we present a highly efficient algorithm and the corresponding statistics that are immediately sensibly applicable to measured signals. We demonstrate its performance in a simulation study. In experiments of transitions between vigilance stages in rodents, we infer small network structures with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key to understand and diagnose numerous diseases such as dementia. We argue that the suggested framework combines features that other approaches followed so far lack.

  2. Sedaxicenes: potential new antifungal ferrocene-based agents?

    PubMed

    Rubbiani, R; Blacque, O; Gasser, G

    2016-04-21

    Fungal infections are a group of diseases spread all over the world with an extremely high morbidity. Worryingly, although several pathogenic fungi were found to develop resistance towards traditional therapy, research towards the discovery of novel antimycotic agents is very limited. Considering the promising results obtained with the ferrocene-based drug candidates Ferroquine and Ferrocifen as antimalarial and anticancer drug candidates, respectively, we envisaged derivatizing the organic scaffold of a new broad-spectrum fungicide, namely sedaxane, with a ferrocenyl moiety in order to obtain new metal-based antifungal agents. The new ferrocenyl sedaxane derivatives called herein Sedaxicenes (, and ) were characterized using different analytical techniques and the structures were confirmed by X-ray crystallography. As expected for antimycotic agents, , and were found to have a low or even no toxicity towards human cells (IC50 > 100 μM). Interestingly, while the parent drug did not display any mycotoxicity (EC50 > 100 μM), complex was found to have some antifungal activity with an IC50 value of 43 μM under the same experimental conditions. In order to investigate the possible redox-mediated mode of action of , we synthesized the ruthenocene analogue of , namely . Ruthenocene is known to have a completely different electrochemical behaviour from ferrocene although both the compounds are isostructural. As anticipated, complex was found to induce an increase of the reactive oxygen species level in S. cerevisiae, contrary to its analogue and to the parent compound sedaxane.

  3. Study on the E-commerce platform based on the agent

    NASA Astrophysics Data System (ADS)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  4. Agent based modeling of the coevolution of hostility and pacifism

    NASA Astrophysics Data System (ADS)

    Dalmagro, Fermin; Jimenez, Juan

    2015-01-01

    We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.

  5. Integrating an agent-based model into a large-scale hydrological model for evaluating drought management in California

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; He, X.; Wada, Y.; Burek, P.; Kahil, M.; Wood, E. F.; Oppenheimer, M.

    2017-12-01

    California has endured record-breaking drought since winter 2011 and will likely experience more severe and persistent drought in the coming decades under changing climate. At the same time, human water management practices can also affect drought frequency and intensity, which underscores the importance of human behaviour in effective drought adaptation and mitigation. Currently, although a few large-scale hydrological and water resources models (e.g., PCR-GLOBWB) consider human water use and management practices (e.g., irrigation, reservoir operation, groundwater pumping), none of them includes the dynamic feedback between local human behaviors/decisions and the natural hydrological system. It is, therefore, vital to integrate social and behavioral dimensions into current hydrological modeling frameworks. This study applies the agent-based modeling (ABM) approach and couples it with a large-scale hydrological model (i.e., Community Water Model, CWatM) in order to have a balanced representation of social, environmental and economic factors and a more realistic representation of the bi-directional interactions and feedbacks in coupled human and natural systems. In this study, we focus on drought management in California and considers two types of agents, which are (groups of) farmers and state management authorities, and assumed that their corresponding objectives are to maximize the net crop profit and to maintain sufficient water supply, respectively. Farmers' behaviors are linked with local agricultural practices such as cropping patterns and deficit irrigation. More precisely, farmers' decisions are incorporated into CWatM across different time scales in terms of daily irrigation amount, seasonal/annual decisions on crop types and irrigated area as well as the long-term investment of irrigation infrastructure. This simulation-based optimization framework is further applied by performing different sets of scenarios to investigate and evaluate the effectiveness

  6. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents

    PubMed Central

    Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin

    2018-01-01

    Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097

  7. A spatial web/agent-based model to support stakeholders' negotiation regarding land development.

    PubMed

    Pooyandeh, Majeed; Marceau, Danielle J

    2013-11-15

    Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second

  8. Towards a Cloud Based Smart Traffic Management Framework

    NASA Astrophysics Data System (ADS)

    Rahimi, M. M.; Hakimpour, F.

    2017-09-01

    Traffic big data has brought many opportunities for traffic management applications. However several challenges like heterogeneity, storage, management, processing and analysis of traffic big data may hinder their efficient and real-time applications. All these challenges call for well-adapted distributed framework for smart traffic management that can efficiently handle big traffic data integration, indexing, query processing, mining and analysis. In this paper, we present a novel, distributed, scalable and efficient framework for traffic management applications. The proposed cloud computing based framework can answer technical challenges for efficient and real-time storage, management, process and analyse of traffic big data. For evaluation of the framework, we have used OpenStreetMap (OSM) real trajectories and road network on a distributed environment. Our evaluation results indicate that speed of data importing to this framework exceeds 8000 records per second when the size of datasets is near to 5 million. We also evaluate performance of data retrieval in our proposed framework. The data retrieval speed exceeds 15000 records per second when the size of datasets is near to 5 million. We have also evaluated scalability and performance of our proposed framework using parallelisation of a critical pre-analysis in transportation applications. The results show that proposed framework achieves considerable performance and efficiency in traffic management applications.

  9. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.

  10. Agent based models for testing city evacuation strategies under a flood event as strategy to reduce flood risk

    NASA Astrophysics Data System (ADS)

    Medina, Neiler; Sanchez, Arlex; Nokolic, Igor; Vojinovic, Zoran

    2016-04-01

    This research explores the uses of Agent Based Models (ABM) and its potential to test large scale evacuation strategies in coastal cities at risk from flood events due to extreme hydro-meteorological events with the final purpose of disaster risk reduction by decreasing human's exposure to the hazard. The first part of the paper corresponds to the theory used to build the models such as: Complex adaptive systems (CAS) and the principles and uses of ABM in this field. The first section outlines the pros and cons of using AMB to test city evacuation strategies at medium and large scale. The second part of the paper focuses on the central theory used to build the ABM, specifically the psychological and behavioral model as well as the framework used in this research, specifically the PECS reference model is cover in this section. The last part of this section covers the main attributes or characteristics of human beings used to described the agents. The third part of the paper shows the methodology used to build and implement the ABM model using Repast-Symphony as an open source agent-based modelling and simulation platform. The preliminary results for the first implementation in a region of the island of Sint-Maarten a Dutch Caribbean island are presented and discussed in the fourth section of paper. The results obtained so far, are promising for a further development of the model and its implementation and testing in a full scale city

  11. Hypercompetitive Environments: An Agent-based model approach

    NASA Astrophysics Data System (ADS)

    Dias, Manuel; Araújo, Tanya

    Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.

  12. Comparison of Physics Frameworks for WebGL-Based Game Engine

    NASA Astrophysics Data System (ADS)

    Yogya, Resa; Kosala, Raymond

    2014-03-01

    Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.

  13. Network Community Detection based on the Physarum-inspired Computational Framework.

    PubMed

    Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili

    2016-12-13

    Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.

  14. Agent-Based Modeling in Systems Pharmacology.

    PubMed

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  15. Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems

    NASA Astrophysics Data System (ADS)

    Rimer, S.; Mullapudi, A. M.; Kerkez, B.

    2017-12-01

    The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting

  16. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  17. Multi-agent framework for negotiation in a closed environment

    NASA Astrophysics Data System (ADS)

    Cretan, Adina; Coutinho, Carlos; Bratu, Ben; Jardim-Goncalves, Ricardo

    2013-10-01

    The goal of this paper is to offer support for small and medium enterprises which cannot or do not want to fulfill a big contract alone. Each organization has limited resources and in order to better accomplish a higher external demand, the managers are forced to outsource parts of their contracts even to concurrent organizations. In this concurrent environment each enterprise wants to preserve its decision autonomy and to disclose as little as possible from its business information. To describe this interaction, our approach is to define a framework for managing parallel and concurrent negotiations among independent organizations acting in the same industrial market. The complexity of our negotiation framework is done by the dynamic environment in which multi-attribute and multi-participant negotiations are racing over the same set of resources. Moreover, the proposed framework helps the organizations within the collaborative networked environment to augment their efficiency and ability to react to unforeseen situations, thus improving their market competitiveness.

  18. ENGAGE: A Game Based Learning and Problem Solving Framework

    DTIC Science & Technology

    2012-07-13

    Gamification Summit 2012  Mensa Colloquium 2012.2: Social and Video Games  Seattle Science Festival  TED Salon Vancouver : http...From - To) 6/1/2012 – 6/30/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b...Popović ENGAGE: A Game Based Learning and Problem Solving Framework (Task 1 Month 4) Progress, Status and Management Report Monthly Progress

  19. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    NASA Astrophysics Data System (ADS)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  20. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization

    PubMed Central

    González, Rocío Ballesteros; Leinster, Paul; Wright, Ros

    2017-01-01

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results

  1. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization.

    PubMed

    Rivas Casado, Mónica; González, Rocío Ballesteros; Ortega, José Fernando; Leinster, Paul; Wright, Ros

    2017-09-26

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results.

  2. Security patterns and a weighting scheme for mobile agents

    NASA Astrophysics Data System (ADS)

    Walker, Jessie J.

    The notion of mobility has always been a prime factor in human endeavor and achievement. This need to migrate by humans has been distilled into software entities, which are their representatives on distant environments. Software agents are developed to act on behalf of a user. Mobile agents were born from the understanding that many times it was much more useful to move the code (program) to where the resources are located, instead of connecting remotely. Within the mobile agent research community, security has traditionally been the most defining issue facing the community and preventing the paradigm from gaining wide acceptance. There are still numerous difficult problems being addressed with very few practical solutions, such as the malicious host and agent problems. These problems are some of the most active areas of research within the mobile agent community. The major principles, facets, fundamental concepts, techniques and architectures of the field are well understood within the community. This is evident by the many mobile agent systems developed in the last decade that share common core components such as agent management, communication facilities, and mobility services. In other words new mobile agent systems and frameworks do not provide any new insights into agent system architecture or mobility services, agent coordination, communication that could be useful to the agent research community, although these new mobile agent systems do in many instances validate, refine, demonstrate the reuse of many previously proposed and discussed mobile agent research elements. Since mobile agent research for the last decade has been defined by security and related issues, our research into security patterns are within this narrow arena of mobile agent research. The research presented in this thesis examines the issue of mobile agent security from the standpoint of security pattern documented from the universe of mobile agent systems. In addition, we explore how

  3. GPU based framework for geospatial analyses

    NASA Astrophysics Data System (ADS)

    Cosmin Sandric, Ionut; Ionita, Cristian; Dardala, Marian; Furtuna, Titus

    2017-04-01

    Parallel processing on multiple CPU cores is already used at large scale in geocomputing, but parallel processing on graphics cards is just at the beginning. Being able to use an simple laptop with a dedicated graphics card for advanced and very fast geocomputation is an advantage that each scientist wants to have. The necessity to have high speed computation in geosciences has increased in the last 10 years, mostly due to the increase in the available datasets. These datasets are becoming more and more detailed and hence they require more space to store and more time to process. Distributed computation on multicore CPU's and GPU's plays an important role by processing one by one small parts from these big datasets. These way of computations allows to speed up the process, because instead of using just one process for each dataset, the user can use all the cores from a CPU or up to hundreds of cores from GPU The framework provide to the end user a standalone tools for morphometry analyses at multiscale level. An important part of the framework is dedicated to uncertainty propagation in geospatial analyses. The uncertainty may come from the data collection or may be induced by the model or may have an infinite sources. These uncertainties plays important roles when a spatial delineation of the phenomena is modelled. Uncertainty propagation is implemented inside the GPU framework using Monte Carlo simulations. The GPU framework with the standalone tools proved to be a reliable tool for modelling complex natural phenomena The framework is based on NVidia Cuda technology and is written in C++ programming language. The code source will be available on github at https://github.com/sandricionut/GeoRsGPU Acknowledgement: GPU framework for geospatial analysis, Young Researchers Grant (ICUB-University of Bucharest) 2016, director Ionut Sandric

  4. Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy

    PubMed Central

    Wang, Dongdong; Zhou, Jiajia; Shi, Ruohong; Wu, Huihui; Chen, Ruhui; Duan, Beichen; Xia, Guoliang; Xu, Pengping; Wang, Hui; Zhou, Shu; Wang, Chengming; Wang, Haibao; Guo, Zhen; Chen, Qianwang

    2017-01-01

    Metal-organic-frameworks (MOFs) possess high porosity, large surface area, and tunable functionality are promising candidates for synchronous diagnosis and therapy in cancer treatment. Although large number of MOFs has been discovered, conventional MOF-based nanoplatforms are mainly limited to the sole MOF source with sole functionality. In this study, surfactant modified Prussian blue (PB) core coated by compact ZIF-8 shell (core-shell dual-MOFs, CSD-MOFs) has been reported through a versatile stepwise approach. With Prussian blue as core, CSD-MOFs are able to serve as both magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI) agents. We show that CSD-MOFs crystals loading the anticancer drug doxorubicin (DOX) are efficient pH and near-infrared (NIR) dual-stimuli responsive drug delivery vehicles. After the degradation of ZIF-8, simultaneous NIR irradiation to the inner PB MOFs continuously generate heat that kill cancer cells. Their efficacy on HeLa cancer cell lines is higher compared with the respective single treatment modality, achieving synergistic chemo-thermal therapy efficacy. In vivo results indicate that the anti-tumor efficacy of CSD-MOFs@DOX+NIR was 7.16 and 5.07 times enhanced compared to single chemo-therapy and single thermal-therapy respectively. Our strategy opens new possibilities to construct multifunctional theranostic systems through integration of two different MOFs. PMID:29158848

  5. Linking MODFLOW with an agent-based land-use model to support decision making

    USGS Publications Warehouse

    Reeves, H.W.; Zellner, M.L.

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  6. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  7. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    PubMed

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evolving nutritional strategies in the presence of competition: a geometric agent-based model.

    PubMed

    Senior, Alistair M; Charleston, Michael A; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2015-03-01

    Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term 'nutritional latitude'; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts.

  9. Evolving Nutritional Strategies in the Presence of Competition: A Geometric Agent-Based Model

    PubMed Central

    Senior, Alistair M.; Charleston, Michael A.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2015-01-01

    Access to nutrients is a key factor governing development, reproduction and ultimately fitness. Within social groups, contest-competition can fundamentally affect nutrient access, potentially leading to reproductive asymmetry among individuals. Previously, agent-based models have been combined with the Geometric Framework of nutrition to provide insight into how nutrition and social interactions affect one another. Here, we expand this modelling approach by incorporating evolutionary algorithms to explore how contest-competition over nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically, we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbalanced foods, which we term ‘nutritional latitude’; a higher degree of nutritional latitude constitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a transition between two alternative strategies occurs at moderate to high levels of competition. When competition is low, individuals display a low level of nutritional latitude and regularly switch foods in search of an optimum. When food is scarce and contest-competition is intense, high nutritional latitude appears optimal, and individuals continue to consume an imbalanced food for longer periods before attempting to switch to an alternative. However, the relative balance of nutrients within available foods also strongly influences at what levels of competition, if any, transitions between these two strategies occur. Our models imply that competition combined with reproductive skew in social groups can play a role in the evolution of diet breadth. We discuss how the integration of agent-based, nutritional and evolutionary modelling may be applied in future studies to further understand the evolution of nutritional strategies across social and ecological contexts. PMID:25815976

  10. An agent-based method for simulating porous fluid-saturated structures with indistinguishable components

    NASA Astrophysics Data System (ADS)

    Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle

    2017-10-01

    Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.

  11. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    NASA Astrophysics Data System (ADS)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications

  12. Mathematical Frameworks for Diagnostics, Prognostics and Condition Based Maintenance Problems

    DTIC Science & Technology

    2008-08-15

    REPORT Mathematical Frameworks for Diagnostics, Prognostics and Condition Based Maintenance Problems (W911NF-05-1-0426) 14. ABSTRACT 16. SECURITY ...other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 9. SPONSORING/MONITORING AGENCY NAME...parallel and distributed computing environment were researched. In support of the Condition Based Maintenance (CBM) philosophy, a theoretical framework

  13. Agent-based modelling of consumer energy choices

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  14. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed.

  15. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. PMID:29706894

  16. Representations in Dynamical Embodied Agents: Re-Analyzing a Minimally Cognitive Model Agent

    ERIC Educational Resources Information Center

    Mirolli, Marco

    2012-01-01

    Understanding the role of "representations" in cognitive science is a fundamental problem facing the emerging framework of embodied, situated, dynamical cognition. To make progress, I follow the approach proposed by an influential representational skeptic, Randall Beer: building artificial agents capable of minimally cognitive behaviors and…

  17. LGBTQ relationally based positive psychology: An inclusive and systemic framework.

    PubMed

    Domínguez, Daniela G; Bobele, Monte; Coppock, Jacqueline; Peña, Ezequiel

    2015-05-01

    Positive psychologists have contributed to our understandings of how positive emotions and flexible cognition enhance resiliency. However, positive psychologists' research has been slow to address the relational resources and interactions that help nonheterosexual families overcome adversity. Addressing overlooked lesbian, gay, bisexual, transgender, or queer (LGBTQ) and systemic factors in positive psychology, this article draws on family resilience literature and LGBTQ literature to theorize a systemic positive psychology framework for working with nonheterosexual families. We developed the LGBTQ relationally based positive psychology framework that integrates positive psychology's strengths-based perspective with the systemic orientation of Walsh's (1996) family resilience framework along with the cultural considerations proposed by LGBTQ family literature. We theorize that the LGBTQ relationally based positive psychology framework takes into consideration the sociopolitical adversities impacting nonheterosexual families and sensitizes positive psychologists, including those working in organized care settings, to the systemic interactions of same-sex loving relationships. (c) 2015 APA, all rights reserved).

  18. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  19. PISA — Pooling Information from Several Agents: Multiplayer Argumentation from Experience

    NASA Astrophysics Data System (ADS)

    Wardeh, Maya; Bench-Capon, Trevor; Coenen, Frans

    In this paper a framework, PISA (Pooling Information from Several Agents), to facilitate multiplayer (three or more protagonists), "argumentation from experience" is described. Multiplayer argumentation is a form of dialogue game involving three or more players. The PISA framework is founded on a two player argumentation framework, PADUA (Protocol for Argumentation Dialogue Using Association Rules), also developed by the authors. One of the main advantages of both PISA and PADUA is that they avoid the resource intensive need to predefine a knowledge base, instead data mining techniques are used to facilitate the provision of "just in time" information. Many of the issues associated with multiplayer dialogue games do not present a significant challenge in the two player game. The main original contributions of this paper are the mechanisms whereby the PISA framework addresses these challenges.

  20. Models and Frameworks: A Synergistic Association for Developing Component-Based Applications

    PubMed Central

    Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A.; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development. PMID:25147858

  1. Models and frameworks: a synergistic association for developing component-based applications.

    PubMed

    Alonso, Diego; Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development.

  2. Elements of decisional dynamics: An agent-based approach applied to artificial financial market

    NASA Astrophysics Data System (ADS)

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  3. Elements of decisional dynamics: An agent-based approach applied to artificial financial market.

    PubMed

    Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille

    2018-02-01

    This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).

  4. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python

  5. Requirements Modeling with Agent Programming

    NASA Astrophysics Data System (ADS)

    Dasgupta, Aniruddha; Krishna, Aneesh; Ghose, Aditya K.

    Agent-oriented conceptual modeling notations are highly effective in representing requirements from an intentional stance and answering questions such as what goals exist, how key actors depend on each other, and what alternatives must be considered. In this chapter, we review an approach to executing i* models by translating these into set of interacting agents implemented in the CASO language and suggest how we can perform reasoning with requirements modeled (both functional and non-functional) using i* models. In this chapter we particularly incorporate deliberation into the agent design. This allows us to benefit from the complementary representational capabilities of the two frameworks.

  6. Agents, Bayes, and Climatic Risks - a modular modelling approach

    NASA Astrophysics Data System (ADS)

    Haas, A.; Jaeger, C.

    2005-08-01

    When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine.

  7. A research and experimentation framework for exploiting VoI-based methods within analyst workflows in tactical operation centers

    NASA Astrophysics Data System (ADS)

    Sadler, Laurel

    2017-05-01

    In today's battlefield environments, analysts are inundated with real-time data received from the tactical edge that must be evaluated and used for managing and modifying current missions as well as planning for future missions. This paper describes a framework that facilitates a Value of Information (VoI) based data analytics tool for information object (IO) analysis in a tactical and command and control (C2) environment, which reduces analyst work load by providing automated or analyst assisted applications. It allows the analyst to adjust parameters for data matching of the IOs that will be received and provides agents for further filtering or fusing of the incoming data. It allows for analyst enhancement and markup to be made to and/or comments to be attached to the incoming IOs, which can then be re-disseminated utilizing the VoI based dissemination service. The analyst may also adjust the underlying parameters before re-dissemination of an IO, which will subsequently adjust the value of the IO based on this new/additional information that has been added, possibly increasing the value from the original. The framework is flexible and extendable, providing an easy to use, dynamically changing Command and Control decision aid that focuses and enhances the analyst workflow.

  8. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  9. Argumentation in Science Education: A Model-Based Framework

    ERIC Educational Resources Information Center

    Bottcher, Florian; Meisert, Anke

    2011-01-01

    The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons…

  10. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    PubMed

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  11. Developing a theoretical framework for complex community-based interventions.

    PubMed

    Angeles, Ricardo N; Dolovich, Lisa; Kaczorowski, Janusz; Thabane, Lehana

    2014-01-01

    Applying existing theories to research, in the form of a theoretical framework, is necessary to advance knowledge from what is already known toward the next steps to be taken. This article proposes a guide on how to develop a theoretical framework for complex community-based interventions using the Cardiovascular Health Awareness Program as an example. Developing a theoretical framework starts with identifying the intervention's essential elements. Subsequent steps include the following: (a) identifying and defining the different variables (independent, dependent, mediating/intervening, moderating, and control); (b) postulating mechanisms how the independent variables will lead to the dependent variables; (c) identifying existing theoretical models supporting the theoretical framework under development; (d) scripting the theoretical framework into a figure or sets of statements as a series of hypotheses, if/then logic statements, or a visual model; (e) content and face validation of the theoretical framework; and (f) revising the theoretical framework. In our example, we combined the "diffusion of innovation theory" and the "health belief model" to develop our framework. Using the Cardiovascular Health Awareness Program as the model, we demonstrated a stepwise process of developing a theoretical framework. The challenges encountered are described, and an overview of the strategies employed to overcome these challenges is presented.

  12. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  13. Capturing multi-stage fuzzy uncertainties in hybrid system dynamics and agent-based models for enhancing policy implementation in health systems research.

    PubMed

    Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa

    2018-01-01

    In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data

  14. Children's Agentive Orientations in Play-Based and Academically Focused Preschools in Hong Kong

    ERIC Educational Resources Information Center

    Cheng Pui-Wah, Doris; Reunamo, Jyrki; Cooper, Paul; Liu, Karen; Vong, Keang-ieng Peggy

    2015-01-01

    The article describes a comparative case study on children's agentive orientations in two Hong Kong preschools, one is play-based and the other is academically focused. Agentive orientations were measured using Reunamo's interview tool, which focuses on children's uses of accommodative and agentive orientations in everyday situations. The findings…

  15. Reinforcement learning agents providing advice in complex video games

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew E.; Carboni, Nicholas; Fachantidis, Anestis; Vlahavas, Ioannis; Torrey, Lisa

    2014-01-01

    This article introduces a teacher-student framework for reinforcement learning, synthesising and extending material that appeared in conference proceedings [Torrey, L., & Taylor, M. E. (2013)]. Teaching on a budget: Agents advising agents in reinforcement learning. {Proceedings of the international conference on autonomous agents and multiagent systems}] and in a non-archival workshop paper [Carboni, N., &Taylor, M. E. (2013, May)]. Preliminary results for 1 vs. 1 tactics in StarCraft. {Proceedings of the adaptive and learning agents workshop (at AAMAS-13)}]. In this framework, a teacher agent instructs a student agent by suggesting actions the student should take as it learns. However, the teacher may only give such advice a limited number of times. We present several novel algorithms that teachers can use to budget their advice effectively, and we evaluate them in two complex video games: StarCraft and Pac-Man. Our results show that the same amount of advice, given at different moments, can have different effects on student learning, and that teachers can significantly affect student learning even when students use different learning methods and state representations.

  16. Facilitating the Specification Capture and Transformation Process in the Development of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Filho, Aluzio Haendehen; Caminada, Numo; Haeusler, Edward Hermann; vonStaa, Arndt

    2004-01-01

    To support the development of flexible and reusable MAS, we have built a framework designated MAS-CF. MAS-CF is a component framework that implements a layered architecture based on contextual composition. Interaction rules, controlled by architecture mechanisms, ensure very low coupling, making possible the sharing of distributed services in a transparent, dynamic and independent way. These properties propitiate large-scale reuse, since organizational abstractions can be reused and propagated to all instances created from a framework. The objective is to reduce complexity and development time of multi-agent systems through the reuse of generic organizational abstractions.

  17. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  18. StakeMeter: value-based stakeholder identification and quantification framework for value-based software systems.

    PubMed

    Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N A; Bin Zaheer, Kashif

    2015-01-01

    Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called 'StakeMeter'. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error.

  19. StakeMeter: Value-Based Stakeholder Identification and Quantification Framework for Value-Based Software Systems

    PubMed Central

    Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N. A.; Zaheer, Kashif Bin

    2015-01-01

    Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called ‘StakeMeter’. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error. PMID:25799490

  20. Web based listing of agents associated with new onset work-related asthma.

    PubMed

    Rosenman, K D; Beckett, W S

    2015-05-01

    Work-related asthma is common and yet remains a challenge to diagnose. Access to a listing of agents associated with work-related asthma has been suggested as useful in assisting in the diagnosis. The Association of Occupational and Environmental Clinics (AOEC) developed criteria that were used to review the peer-reviewed medical literature published in English. Based on this review, substances were designated either as a sensitizing agent or an irritant. The reviews were conducted by a board certified internist/pulmonologist/occupational medicine specialist from 2002 to 2007 and a board certified internist/occupational medicine physician from 2008- date. All reviews were then reviewed by the nine member AOEC board of directors. The original list of agents associated with new onset work-related asthma was derived from the tables of a text book on work-related asthma. After 13 years of review, there are 327 substances designated as asthma agents on the AOEC list; 173 (52.9%) coded as sensitizers, 35 (10.7%) as generally recognized as an asthma causing agent, four (1.2%) as irritants, two (0.6%) as both a sensitizer and an irritant and 113(34.6%) agents that still need to be reviewed. The AOEC has developed a readily available web based listing of agents associated with new onset work-related asthma in adults. The listing is based on peer-reviewed criteria. The listing is updated twice a year. Regular review of the peer-reviewed medical literature is conducted to determine whether new substances should be added to the list. Clinicians should find the list useful when considering the diagnosis of work-related asthma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents

    PubMed Central

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-01-01

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  2. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  3. Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)

    2002-01-01

    The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.

  4. Agent-based model to rural urban migration analysis

    NASA Astrophysics Data System (ADS)

    Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.

    2006-05-01

    In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.

  5. Titanium-based Organic Frameworks for Chemical Transformations

    EPA Science Inventory

    Metal–organic frameworks (MOFs) based on organic bridging ligands are a promising class of highly ordered porous materials1 with potential applications in catalysis, gas storage and photoelectric devices. The availability of external surface of the solid-state catalysts plays an ...

  6. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.

    PubMed

    Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander

    2018-05-10

    Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.

  7. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  8. Agent-based models of financial markets

    NASA Astrophysics Data System (ADS)

    Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T.

    2007-03-01

    This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont

  9. Design and Control of Large Collections of Learning Agents

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian

    2001-01-01

    The intelligent control of multiple autonomous agents is an important yet difficult task. Previous methods used to address this problem have proved to be either too brittle, too hard to use, or not scalable to large systems. The 'Collective Intelligence' project at NASA/Ames provides an elegant, machine-learning approach to address these problems. This approach mathematically defines some essential properties that a reward system should have to promote coordinated behavior among reinforcement learners. This work has focused on creating additional key properties and algorithms within the mathematics of the Collective Intelligence framework. One of the additions will allow agents to learn more quickly, in a more coordinated manner. The other will let agents learn with less knowledge of their environment. These additions will allow the framework to be applied more easily, to a much larger domain of multi-agent problems.

  10. Stationary average consensus protocol for a class of heterogeneous high-order multi-agent systems with application for aircraft

    NASA Astrophysics Data System (ADS)

    Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher

    2018-01-01

    This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.

  11. Multi-Agent Architecture with Support to Quality of Service and Quality of Control

    NASA Astrophysics Data System (ADS)

    Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique

    Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.

  12. A Systematic Review of Agent-Based Modelling and Simulation Applications in the Higher Education Domain

    ERIC Educational Resources Information Center

    Gu, X.; Blackmore, K. L.

    2015-01-01

    This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…

  13. Development of a competency framework for evidence-based practice in nursing.

    PubMed

    Leung, Kat; Trevena, Lyndal; Waters, Donna

    2016-04-01

    The measurement of competence in evidence-based practice (EBP) remains challenging to many educators and academics due to the lack of explicit competency criteria. Much uncertainty exists about what specific EBP competencies nurses should meet and how these should be measured. The objectives of this study are to develop a competency framework for measuring evidence-based knowledge and skills in nursing and to elicit the views of health educators/researchers about elements within the framework. A descriptive survey design with questionnaire. Between August and December 2013, forty-two health academics/educators, clinicians; and researchers from the medical and nursing schools at the University of Sydney and the Nurse Teacher's Society in Australia were invited to comment on proposed elements for measuring evidence-based knowledge and skills. The EBP competency framework was designed to measure nurses' knowledge and skills for using evidence in practice. Participants were invited to rate their agreement on the structure and relevance of the framework and to state their opinion about the measurement criteria for evidence-based nursing practice. Participant agreement on the structure and relevance of the framework was substantial, ICC: 0.80, 95% CI: 0.67-0.88, P<0.0001. Qualitative analysis of two open-ended survey questions revealed three common themes in participants' opinion of the competency elements: (1) a useful EBP framework; (2) varying expectations of EBP competence; and (3) challenges to EBP implementation. The findings of this study suggested that the EBP competency framework is of credible value for facilitating evidence-based practice education and research in nursing. However, there remains some uncertainty and disagreement about the levels of EBP competence required for nurses. These challenges further implicate the need for setting a reasonable competency benchmark with a broader group of stakeholders in nursing. Copyright © 2016 Elsevier Ltd. All

  14. Adaptive, Distributed Control of Constrained Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.

  15. Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components.

    PubMed

    Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W

    2015-10-01

    This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.

  16. Agent-Based Negotiation in Uncertain Environments

    NASA Astrophysics Data System (ADS)

    Debenham, John; Sierra, Carles

    An agent aims to secure his projected needs by attempting to build a set of (business) relationships with other agents. A relationship is built by exchanging private information, and is characterised by its intimacy — degree of closeness — and balance — degree of fairness. Each argumentative interaction between two agents then has two goals: to satisfy some immediate need, and to do so in a way that develops the relationship in a desired direction. An agent's desire to develop each relationship in a particular way then places constraints on the argumentative utterances. The form of negotiation described is argumentative interaction constrained by a desire to develop such relationships.

  17. Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy

    NASA Astrophysics Data System (ADS)

    Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho

    2009-07-01

    Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.

  18. Evolution of a multi-agent system in a cyclical environment.

    PubMed

    Baptista, Tiago; Costa, Ernesto

    2008-06-01

    The synchronisation phenomena in biological systems is a current and recurring subject of scientific study. This topic, namely that of circadian clocks, served as inspiration to develop an agent-based simulation that serves the main purpose of being a proof-of-concept of the model used in the BitBang framework, that implements a modern autonomous agent model. Despite having been extensively studied, circadian clocks still have much to be investigated. Rather than wanting to learn more about the internals of this biological process, we look to study the emergence of this kind of adaptation to a daily cycle. To that end we implemented a world with a day/night cycle, and analyse the ways the agents adapt to that cycle. The results show the evolution of the agents' ability to gather food. If we look at the total number of agents over the course of an experiment, we can pinpoint the time when reproductive technology emerges. We also show that the agents adapt to the daily cycle. This circadian rhythm can be shown by analysing the variation on the agents metabolic rate, which is affected by the variation of their movement patterns. In the experiments conducted we can observe that the metabolic rate of the agents varies according to the daily cycle.

  19. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection

    PubMed Central

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-01-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency. PMID:29194393

  20. Developing a Novel Parameter Estimation Method for Agent-Based Model in Immune System Simulation under the Framework of History Matching: A Case Study on Influenza A Virus Infection.

    PubMed

    Li, Tingting; Cheng, Zhengguo; Zhang, Le

    2017-12-01

    Since they can provide a natural and flexible description of nonlinear dynamic behavior of complex system, Agent-based models (ABM) have been commonly used for immune system simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters of the model by incorporating experimental data. In this paper, a systematic procedure for immune system simulation by integrating the ABM and regression method under the framework of history matching is developed. A novel parameter estimation method by incorporating the experiment data for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM) is employed to train a statistical regression model by using the input and output data of ABM and play a role as an emulator during history matching. Next, we reduce the input space of parameters by introducing an implausible measure to discard the implausible input values. At last, the estimation of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data set is employed to demonstrate the performance of our proposed method, and the results show that the proposed method not only has good fitting and predicting accuracy, but it also owns favorable computational efficiency.

  1. Calibrating emergent phenomena in stock markets with agent based models

    PubMed Central

    Sornette, Didier

    2018-01-01

    Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data. PMID:29499049

  2. Calibrating emergent phenomena in stock markets with agent based models.

    PubMed

    Fievet, Lucas; Sornette, Didier

    2018-01-01

    Since the 2008 financial crisis, agent-based models (ABMs), which account for out-of-equilibrium dynamics, heterogeneous preferences, time horizons and strategies, have often been envisioned as the new frontier that could revolutionise and displace the more standard models and tools in economics. However, their adoption and generalisation is drastically hindered by the absence of general reliable operational calibration methods. Here, we start with a different calibration angle that qualifies an ABM for its ability to achieve abnormal trading performance with respect to the buy-and-hold strategy when fed with real financial data. Starting from the common definition of standard minority and majority agents with binary strategies, we prove their equivalence to optimal decision trees. This efficient representation allows us to exhaustively test all meaningful single agent models for their potential anomalous investment performance, which we apply to the NASDAQ Composite index over the last 20 years. We uncover large significant predictive power, with anomalous Sharpe ratio and directional accuracy, in particular during the dotcom bubble and crash and the 2008 financial crisis. A principal component analysis reveals transient convergence between the anomalous minority and majority models. A novel combination of the optimal single-agent models of both classes into a two-agents model leads to remarkable superior investment performance, especially during the periods of bubbles and crashes. Our design opens the field of ABMs to construct novel types of advanced warning systems of market crises, based on the emergent collective intelligence of ABMs built on carefully designed optimal decision trees that can be reversed engineered from real financial data.

  3. Can agent based models effectively reduce fisheries management implementation uncertainty?

    NASA Astrophysics Data System (ADS)

    Drexler, M.

    2016-02-01

    Uncertainty is an inherent feature of fisheries management. Implementation uncertainty remains a challenge to quantify often due to unintended responses of users to management interventions. This problem will continue to plague both single species and ecosystem based fisheries management advice unless the mechanisms driving these behaviors are properly understood. Equilibrium models, where each actor in the system is treated as uniform and predictable, are not well suited to forecast the unintended behaviors of individual fishers. Alternatively, agent based models (AMBs) can simulate the behaviors of each individual actor driven by differing incentives and constraints. This study evaluated the feasibility of using AMBs to capture macro scale behaviors of the US West Coast Groundfish fleet. Agent behavior was specified at the vessel level. Agents made daily fishing decisions using knowledge of their own cost structure, catch history, and the histories of catch and quota markets. By adding only a relatively small number of incentives, the model was able to reproduce highly realistic macro patterns of expected outcomes in response to management policies (catch restrictions, MPAs, ITQs) while preserving vessel heterogeneity. These simulations indicate that agent based modeling approaches hold much promise for simulating fisher behaviors and reducing implementation uncertainty. Additional processes affecting behavior, informed by surveys, are continually being added to the fisher behavior model. Further coupling of the fisher behavior model to a spatial ecosystem model will provide a fully integrated social, ecological, and economic model capable of performing management strategy evaluations to properly consider implementation uncertainty in fisheries management.

  4. An Uncertainty Quantification Framework for Prognostics and Condition-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2014-01-01

    This paper presents a computational framework for uncertainty quantification in prognostics in the context of condition-based monitoring of aerospace systems. The different sources of uncertainty and the various uncertainty quantification activities in condition-based prognostics are outlined in detail, and it is demonstrated that the Bayesian subjective approach is suitable for interpreting uncertainty in online monitoring. A state-space model-based framework for prognostics, that can rigorously account for the various sources of uncertainty, is presented. Prognostics consists of two important steps. First, the state of the system is estimated using Bayesian tracking, and then, the future states of the system are predicted until failure, thereby computing the remaining useful life of the system. The proposed framework is illustrated using the power system of a planetary rover test-bed, which is being developed and studied at NASA Ames Research Center.

  5. The Impact of a Peer-Learning Agent Based on Pair Programming in a Programming Course

    ERIC Educational Resources Information Center

    Han, Keun-Woo; Lee, EunKyoung; Lee, YoungJun

    2010-01-01

    This paper analyzes the educational effects of a peer-learning agent based on pair programming in programming courses. A peer-learning agent system was developed to facilitate the learning of a programming language through the use of pair programming strategies. This system is based on the role of a peer-learning agent from pedagogical and…

  6. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. NINJA: a noninvasive framework for internal computer security hardening

    NASA Astrophysics Data System (ADS)

    Allen, Thomas G.; Thomson, Steve

    2004-07-01

    Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive

  8. Reinforcement Learning Multi-Agent Modeling of Decision-Making Agents for the Study of Transboundary Surface Water Conflicts with Application to the Syr Darya River Basin

    NASA Astrophysics Data System (ADS)

    Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.

    2008-12-01

    In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non

  9. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  10. Programming secure mobile agents in healthcare environments using role-based permissions.

    PubMed

    Georgiadis, C K; Baltatzis, J; Pangalos, G I

    2003-01-01

    The healthcare environment consists of vast amounts of dynamic and unstructured information, distributed over a large number of information systems. Mobile agent technology is having an ever-growing impact on the delivery of medical information. It supports acquiring and manipulating information distributed in a large number of information systems. Moreover is suitable for the computer untrained medical stuff. But the introduction of mobile agents generates advanced threads to the sensitive healthcare information, unless the proper countermeasures are taken. By applying the role-based approach to the authorization problem, we ease the sharing of information between hospital information systems and we reduce the administering part. The different initiative of the agent's migration method, results in different methods of assigning roles to the agent.

  11. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments

    PubMed Central

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691

  12. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.

    PubMed

    Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.

  13. An Agent Based Collaborative Simplification of 3D Mesh Model

    NASA Astrophysics Data System (ADS)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  14. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    PubMed

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  15. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  16. Research of negotiation in network trade system based on multi-agent

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Guozheng; Wu, Haiyan

    2009-07-01

    A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.

  17. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  18. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  19. A Model Independent S/W Framework for Search-Based Software Testing

    PubMed Central

    Baik, Jongmoon

    2014-01-01

    In Model-Based Testing (MBT) area, Search-Based Software Testing (SBST) has been employed to generate test cases from the model of a system under test. However, many types of models have been used in MBT. If the type of a model has changed from one to another, all functions of a search technique must be reimplemented because the types of models are different even if the same search technique has been applied. It requires too much time and effort to implement the same algorithm over and over again. We propose a model-independent software framework for SBST, which can reduce redundant works. The framework provides a reusable common software platform to reduce time and effort. The software framework not only presents design patterns to find test cases for a target model but also reduces development time by using common functions provided in the framework. We show the effectiveness and efficiency of the proposed framework with two case studies. The framework improves the productivity by about 50% when changing the type of a model. PMID:25302314

  20. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  1. An Exemplar-Based Multi-View Domain Generalization Framework for Visual Recognition.

    PubMed

    Niu, Li; Li, Wen; Xu, Dong; Cai, Jianfei

    2018-02-01

    In this paper, we propose a new exemplar-based multi-view domain generalization (EMVDG) framework for visual recognition by learning robust classifier that are able to generalize well to arbitrary target domain based on the training samples with multiple types of features (i.e., multi-view features). In this framework, we aim to address two issues simultaneously. First, the distribution of training samples (i.e., the source domain) is often considerably different from that of testing samples (i.e., the target domain), so the performance of the classifiers learnt on the source domain may drop significantly on the target domain. Moreover, the testing data are often unseen during the training procedure. Second, when the training data are associated with multi-view features, the recognition performance can be further improved by exploiting the relation among multiple types of features. To address the first issue, considering that it has been shown that fusing multiple SVM classifiers can enhance the domain generalization ability, we build our EMVDG framework upon exemplar SVMs (ESVMs), in which a set of ESVM classifiers are learnt with each one trained based on one positive training sample and all the negative training samples. When the source domain contains multiple latent domains, the learnt ESVM classifiers are expected to be grouped into multiple clusters. To address the second issue, we propose two approaches under the EMVDG framework based on the consensus principle and the complementary principle, respectively. Specifically, we propose an EMVDG_CO method by adding a co-regularizer to enforce the cluster structures of ESVM classifiers on different views to be consistent based on the consensus principle. Inspired by multiple kernel learning, we also propose another EMVDG_MK method by fusing the ESVM classifiers from different views based on the complementary principle. In addition, we further extend our EMVDG framework to exemplar-based multi-view domain

  2. Infectious Agents Trigger Trophic Cascades.

    PubMed

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The distributed agent-based approach in the e-manufacturing environment

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.

    2015-11-01

    The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.

  4. Platinum-based anticancer agents: innovative design strategies and biological perspectives.

    PubMed

    Ho, Yee-Ping; Au-Yeung, Steve C F; To, Kenneth K W

    2003-09-01

    The impact of cisplatin on cancer chemotherapy cannot be denied. Over the past 20 years, much effort has been dedicated to discover new platinum-based anticancer agents that are superior to cisplatin or its analogue, carboplatin. Most structural modifications are based on changing one or both of the ligand types coordinated to platinum. Altering the leaving group can influence tissue and intracellular distribution of the drug, whereas the carrier ligand usually determines the structure of adducts formed with DNA. DNA-Pt adducts produced by cisplatin and many of its classical analogues are almost identical, and would explain their similar patterns of tumor sensitivity and susceptibility to resistance. Recently some highly innovative design strategies have emerged, aimed at overcoming platinum resistance and/or to introduce novel mechanisms of antitumor action. Platinum compounds bearing the 1,2-diaminocyclohexane carrier ligand; and those of multinuclear Pt complexes giving rise to radically different DNA-Pt adducts, have resulted in novel anticancer agents capable of circumventing cisplatin resistance. Other strategies have focused on integrating biologically active ligands with platinum moieties intended to selectively localizing the anticancer properties. With the rapid advance in molecular biology, combined with innovation, it is possible new Pt-based anticancer agents will materialize in the near future. Copyright 2003 Wiley Periodicals, Inc.

  5. Agent Based Model of Livestock Movements

    NASA Astrophysics Data System (ADS)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  6. Brief introductory guide to agent-based modeling and an illustration from urban health research.

    PubMed

    Auchincloss, Amy H; Garcia, Leandro Martin Totaro

    2015-11-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.

  7. Brief introductory guide to agent-based modeling and an illustration from urban health research

    PubMed Central

    Auchincloss, Amy H.; Garcia, Leandro Martin Totaro

    2017-01-01

    There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364

  8. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Annetta Paule; Dolislager, Fredrick G

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include themore » G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development are also

  9. A standard protocol for describing individual-based and agent-based models

    USGS Publications Warehouse

    Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen, Sigrunn; Ginot, Vincent; Giske, Jarl; Goss-Custard, John; Grand, Tamara; Heinz, Simone K.; Huse, Geir; Huth, Andreas; Jepsen, Jane U.; Jorgensen, Christian; Mooij, Wolf M.; Muller, Birgit; Pe'er, Guy; Piou, Cyril; Railsback, Steven F.; Robbins, Andrew M.; Robbins, Martha M.; Rossmanith, Eva; Ruger, Nadja; Strand, Espen; Souissi, Sami; Stillman, Richard A.; Vabo, Rune; Visser, Ute; DeAngelis, Donald L.

    2006-01-01

    Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers.

  10. Observer-based distributed adaptive iterative learning control for linear multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Liu, Sanyang; Li, Junmin

    2017-10-01

    This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.

  11. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the

  12. Distributed Market-Based Algorithms for Multi-Agent Planning with Shared Resources

    DTIC Science & Technology

    2013-02-01

    1 Introduction 1 2 Distributed Market-Based Multi-Agent Planning 5 2.1 Problem Formulation...over the deterministic planner, on the “test set” of scenarios with changing economies. . . 50 xi xii Chapter 1 Introduction Multi-agent planning is...representation of the objective (4.2.1). For example, for the supply chain mangement problem, we assumed a sequence of Bernoulli coin flips, which seems

  13. Balloon-assisted embolization of skull base meningioma with liquid embolic agent.

    PubMed

    Abdel Kerim, Amr; Bonneville, Fabrice; Jean, Betty; Cornu, Philippe; LeJean, Lise; Chiras, Jacques

    2010-01-01

    The authors report a novel technique of balloon-assisted embolization of a skull base meningioma supplied by a branch of the cavernous segment of the internal carotid artery using liquid embolic agent. A temporarily inflated balloon distal to the meningioma's feeding vessel may improve the access to this small branch and may reduce the chances of unintended reflux during delivery of the liquid embolic agent.

  14. Animals as sentinels of chemical terrorism agents: an evidence-based review.

    PubMed

    Rabinowitz, Peter; Wiley, James; Odofin, Lynda; Wilcox, Matthew; Dein, F Joshua

    2008-02-01

    The goal of this systematic review was to identify evidence that animals could serve as sentinels of an attack with a chemical terrorism agent. The biomedical literature was systematically searched for evidence that wild or domestic animals exposed to certain chemical weapons of terrorism had either greater susceptibility, shorter latency period, or increased exposure risk versus humans. Additionally, we searched for documented reports of such animals historically serving as sentinels for chemical warfare agents. For a small number of agents, there was limited evidence that domestic and/or wild animals could provide sentinel information to humans following an airborne attack with chemical agents, usually related to increased potential for environmental exposure. Some of this evidence was based on anecdotal case reports, and in many cases high quality chemical terrorism agent evidence regarding comparative susceptibility, exposure, and latency between humans and sentinel animal species was not found. Currently, there is insufficient evidence for routine use of animals as sentinels for airborne chemical warfare agents. At the same time, Poison Center surveillance systems should include animal calls, and greater communication between veterinarians and physicians could help with preparedness for a chemical terrorism attack. Further analysis of comparative chemical warfare agent toxicity between sentinel animal species and humans is needed.

  15. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  16. A Framework for a WAP-Based Course Registration System

    ERIC Educational Resources Information Center

    AL-Bastaki, Yousif; Al-Ajeeli, Abid

    2005-01-01

    This paper describes a WAP-based course registration system designed and implemented to facilitating the process of students' registration at Bahrain University. The framework will support many opportunities for applying WAP based technology to many services such as wireless commerce, cashless payment... and location-based services. The paper…

  17. Review of the systems biology of the immune system using agent-based models.

    PubMed

    Shinde, Snehal B; Kurhekar, Manish P

    2018-06-01

    The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.

  18. Error Generation in CATS-Based Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd

    2003-01-01

    This research presents a methodology for generating errors from a model of nominally preferred correct operator activities, given a particular operational context, and maintaining an explicit link to the erroneous contextual information to support analyses. It uses the Crew Activity Tracking System (CATS) model as the basis for error generation. This report describes how the process works, and how it may be useful for supporting agent-based system safety analyses. The report presents results obtained by applying the error-generation process and discusses implementation issues. The research is supported by the System-Wide Accident Prevention Element of the NASA Aviation Safety Program.

  19. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2012-01-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  20. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2011-12-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  1. Towards a genetics-based adaptive agent to support flight testing

    NASA Astrophysics Data System (ADS)

    Cribbs, Henry Brown, III

    Although the benefits of aircraft simulation have been known since the late 1960s, simulation almost always entails interaction with a human test pilot. This "pilot-in-the-loop" simulation process provides useful evaluative information to the aircraft designer and provides a training tool to the pilot. Emulation of a pilot during the early phases of the aircraft design process might provide designers a useful evaluative tool. Machine learning might emulate a pilot in a simulated aircraft/cockpit setting. Preliminary work in the application of machine learning techniques, such as reinforcement learning, to aircraft maneuvering have shown promise. These studies used simplified interfaces between machine learning agent and the aircraft simulation. The simulations employed low order equivalent system models. High-fidelity aircraft simulations exist, such as the simulations developed by NASA at its Dryden Flight Research Center. To expand the applicational domain of reinforcement learning to aircraft designs, this study presents a series of experiments that examine a reinforcement learning agent in the role of test pilot. The NASA X-31 and F-106 high-fidelity simulations provide realistic aircraft for the agent to maneuver. The approach of the study is to examine an agent possessing a genetic-based, artificial neural network to approximate long-term, expected cost (Bellman value) in a basic maneuvering task. The experiments evaluate different learning methods based on a common feedback function and an identical task. The learning methods evaluated are: Q-learning, Q(lambda)-learning, SARSA learning, and SARSA(lambda) learning. Experimental results indicate that, while prediction error remain quite high, similar, repeatable behaviors occur in both aircraft. Similar behavior exhibits portability of the agent between aircraft with different handling qualities (dynamics). Besides the adaptive behavior aspects of the study, the genetic algorithm used in the agent is shown to

  2. Designing Agent Collectives For Systems With Markovian Dynamics

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Lawson, John W.

    2004-01-01

    The Collective Intelligence (COIN) framework concerns the design of collectives of agents so that as those agents strive to maximize their individual utility functions, their interaction causes a provided world utility function concerning the entire collective to be also maximized. Here we show how to extend that framework to scenarios having Markovian dynamics when no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. Our approach transforms the (time-extended) argument of each agent's utility function before evaluating that function. This transformation has benefits in scenarios not involving Markovian dynamics of an agent's utility function are observable. We investigate this transformation in simulations involving both hear and quadratic (nonlinear) dynamics. In addition, we find that a certain subset of these transformations, which result in utilities that have low opacity (analogous to having high signal to noise) but are not factored (analogous to not being incentive compatible), reliably improve performance over that arising with factored utilities. We also present a Taylor Series method for the fully general nonlinear case.

  3. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  4. Modelling Temporal Schedule of Urban Trains Using Agent-Based Simulation and NSGA2-BASED Multiobjective Optimization Approaches

    NASA Astrophysics Data System (ADS)

    Sahelgozin, M.; Alimohammadi, A.

    2015-12-01

    Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  5. Modelling brain emergent behaviours through coevolution of neural agents.

    PubMed

    Maniadakis, Michail; Trahanias, Panos

    2006-06-01

    Recently, many research efforts focus on modelling partial brain areas with the long-term goal to support cognitive abilities of artificial organisms. Existing models usually suffer from heterogeneity, which constitutes their integration very difficult. The present work introduces a computational framework to address brain modelling tasks, emphasizing on the integrative performance of substructures. Moreover, implemented models are embedded in a robotic platform to support its behavioural capabilities. We follow an agent-based approach in the design of substructures to support the autonomy of partial brain structures. Agents are formulated to allow the emergence of a desired behaviour after a certain amount of interaction with the environment. An appropriate collaborative coevolutionary algorithm, able to emphasize both the speciality of brain areas and their cooperative performance, is employed to support design specification of agent structures. The effectiveness of the proposed approach is illustrated through the implementation of computational models for motor cortex and hippocampus, which are successfully tested on a simulated mobile robot.

  6. Adding ecosystem function to agent-based land use models

    USDA-ARS?s Scientific Manuscript database

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeoche...

  7. Can human-like Bots control collective mood: agent-based simulations of online chats

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Šuvakov, Milovan

    2013-10-01

    Using an agent-based modeling approach, in this paper, we study self-organized dynamics of interacting agents in the presence of chat Bots. Different Bots with tunable ‘human-like’ attributes, which exchange emotional messages with agents, are considered, and the collective emotional behavior of agents is quantitatively analyzed. In particular, using detrended fractal analysis we determine persistent fluctuations and temporal correlations in time series of agent activity and statistics of avalanches carrying emotional messages of agents when Bots favoring positive/negative affects are active. We determine the impact of Bots and identify parameters that can modulate that impact. Our analysis suggests that, by these measures, the emotional Bots induce collective emotion among interacting agents by suitably altering the fractal characteristics of the underlying stochastic process. Positive emotion Bots are slightly more effective than negative emotion Bots. Moreover, Bots which periodically alternate between positive and negative emotion can enhance fluctuations in the system, leading to avalanches of agent messages that are reminiscent of self-organized critical states.

  8. Restful API Architecture Based on Laravel Framework

    NASA Astrophysics Data System (ADS)

    Chen, Xianjun; Ji, Zhoupeng; Fan, Yu; Zhan, Yongsong

    2017-10-01

    Web service has been an industry standard tech for message communication and integration between heterogeneous systems. RESTFUL API has become mainstream web service development paradigm after SOAP, how to effectively construct RESTFUL API remains a research hotspots. This paper presents a development model of RESTFUL API construction based on PHP language and LARAVEL framework. The key technical problems that need to be solved during the construction of RESTFUL API are discussed, and implementation details based on LARAVEL are given.

  9. Examining the Impact of the Walking School Bus With an Agent-Based Model

    PubMed Central

    Diez-Roux, Ana; Evenson, Kelly R.; Colabianchi, Natalie

    2014-01-01

    We used an agent-based model to examine the impact of the walking school bus (WSB) on children’s active travel to school. We identified a synergistic effect of the WSB with other intervention components such as an educational campaign designed to improve attitudes toward active travel to school. Results suggest that to maximize active travel to school, children should arrive on time at “bus stops” to allow faster WSB walking speeds. We also illustrate how an agent-based model can be used to identify the location of routes maximizing the effects of the WSB on active travel. Agent-based models can be used to examine plausible effects of the WSB on active travel to school under various conditions and to identify ways of implementing the WSB that maximize its effectiveness. PMID:24832410

  10. A Two-Stage Multi-Agent Based Assessment Approach to Enhance Students' Learning Motivation through Negotiated Skills Assessment

    ERIC Educational Resources Information Center

    Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan

    2015-01-01

    In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…

  11. Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water-Stable Zinc-Based Metal-Organic Framework.

    PubMed

    Altaf, Muhammad; Sohail, Manzar; Mansha, Muhammad; Iqbal, Naseer; Sher, Muhammad; Fazal, Atif; Ullah, Nisar; Isab, Anvarhusein A

    2018-02-09

    Metal-organic frameworks (MOFs) are class of porous materials that can be assembled in a modular manner by using different metal ions and organic linkers. Owing to their tunable structural properties, these materials are found to be useful for gas storage and separation technologies, as well as for catalytic applications. A cost-effective zinc-based MOF ([Zn(bpcda)(bdc)] n ) is prepared by using N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine [N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine] and benzenedicarboxylic acid (bdc) linkers. This new material exhibits remarkable photoelectrochemical (PEC) catalytic activity in water splitting for the evolution of oxygen. Notably, this non-noble metal-based MOF, without requiring immobilization on other supports or containing metal particles, produced a highest photocurrent density of 31 μA cm -2 at 0.9 V, with appreciable stability and negligible photocorrosion. Advantageously for the oxygen evolution process, no external reagents or sacrificial agents are required in the aqueous electrolyte solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A motion sensing-based framework for robotic manipulation.

    PubMed

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  13. Agent-based human-robot interaction of a combat bulldozer

    NASA Astrophysics Data System (ADS)

    Granot, Reuven; Feldman, Maxim

    2004-09-01

    A small-scale supervised autonomous bulldozer in a remote site was developed to experience agent based human intervention. The model is based on Lego Mindstorms kit and represents combat equipment, whose job performance does not require high accuracy. The model enables evaluation of system response for different operator interventions, as well as for a small colony of semiautonomous dozers. The supervising human may better react than a fully autonomous system to unexpected contingent events, which are a major barrier to implement full autonomy. The automation is introduced as improved Man Machine Interface (MMI) by developing control agents as intelligent tools to negotiate between human requests and task level controllers as well as negotiate with other elements of the software environment. Current UGVs demand significant communication resources and constant human operation. Therefore they will be replaced by semi-autonomous human supervisory controlled systems (telerobotic). For human intervention at the low layers of the control hierarchy we suggest a task oriented control agent to take care of the fluent transition between the state in which the robot operates and the one imposed by the human. This transition should take care about the imperfections, which are responsible for the improper operation of the robot, by disconnecting or adapting them to the new situation. Preliminary conclusions from the small-scale experiments are presented.

  14. Agent-based Model for the Coupled Human-Climate System

    NASA Astrophysics Data System (ADS)

    Zvoleff, A.; Werner, B.

    2006-12-01

    Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.

  15. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.

    PubMed

    Lu, Weiguo

    2010-12-07

    We present a novel framework that enables very large scale intensity-modulated radiation therapy (IMRT) planning in limited computation resources with improvements in cost, plan quality and planning throughput. Current IMRT optimization uses a voxel-based beamlet superposition (VBS) framework that requires pre-calculation and storage of a large amount of beamlet data, resulting in large temporal and spatial complexity. We developed a non-voxel-based broad-beam (NVBB) framework for IMRT capable of direct treatment parameter optimization (DTPO). In this framework, both objective function and derivative are evaluated based on the continuous viewpoint, abandoning 'voxel' and 'beamlet' representations. Thus pre-calculation and storage of beamlets are no longer needed. The NVBB framework has linear complexities (O(N(3))) in both space and time. The low memory, full computation and data parallelization nature of the framework render its efficient implementation on the graphic processing unit (GPU). We implemented the NVBB framework and incorporated it with the TomoTherapy treatment planning system (TPS). The new TPS runs on a single workstation with one GPU card (NVBB-GPU). Extensive verification/validation tests were performed in house and via third parties. Benchmarks on dose accuracy, plan quality and throughput were compared with the commercial TomoTherapy TPS that is based on the VBS framework and uses a computer cluster with 14 nodes (VBS-cluster). For all tests, the dose accuracy of these two TPSs is comparable (within 1%). Plan qualities were comparable with no clinically significant difference for most cases except that superior target uniformity was seen in the NVBB-GPU for some cases. However, the planning time using the NVBB-GPU was reduced many folds over the VBS-cluster. In conclusion, we developed a novel NVBB framework for IMRT optimization. The continuous viewpoint and DTPO nature of the algorithm eliminate the need for beamlets and lead to better plan

  16. Re-Examining of Moffitt’s Theory of Delinquency through Agent Based Modeling

    PubMed Central

    Leaw, Jia Ning; Ang, Rebecca P.; Huan, Vivien S.; Chan, Wei Teng; Cheong, Siew Ann

    2015-01-01

    Moffitt’s theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome. PMID:26062022

  17. Adaptivity in Agent-Based Routing for Data Networks

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan

    2000-01-01

    Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.

  18. An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard W.

    This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.

  19. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.

    PubMed

    Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander

    2017-08-07

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.

  20. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications

    PubMed Central

    Longo, Dario Livio; Aime, Silvio

    2017-01-01

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106

  1. Agent-based user-adaptive service provision in ubiquitous systems

    NASA Astrophysics Data System (ADS)

    Saddiki, H.; Harroud, H.; Karmouch, A.

    2012-11-01

    With the increasing availability of smartphones, tablets and other computing devices, technology consumers have grown accustomed to performing all of their computing tasks anytime, anywhere and on any device. There is a greater need to support ubiquitous connectivity and accommodate users by providing software as network-accessible services. In this paper, we propose a MAS-based approach to adaptive service composition and provision that automates the selection and execution of a suitable composition plan for a given service. With agents capable of autonomous and intelligent behavior, the composition plan is selected in a dynamic negotiation driven by a utility-based decision-making mechanism; and the composite service is built by a coalition of agents each providing a component necessary to the target service. The same service can be built in variations for catering to dynamic user contexts and further personalizing the user experience. Also multiple services can be grouped to satisfy new user needs.

  2. Nanostructured thermites based on iodine pentoxide for bio agent defeat systems.

    NASA Astrophysics Data System (ADS)

    Hobosyan, Mkhitar; Kazansky, Alexander; Martirosyan, Karen

    2011-10-01

    The risk for bioterrorist events involving the intentional airborne release of contagious agents has led to development of new approaches for bio agent defeat technologies both indoors and outdoors. Novel approaches to defeat harmful biological agents have generated a strong demand for new active materials. The preferred solutions are to neutralize the biological agents within the immediate target area by using aerosolized biocidal substances released in situ by high energetic reactions. By using nano-thermite reactions, with energy release up to 25 kJ/cc, based on I2O5/Al nanoparticles we intend to generate high quantity of vaporized iodine for spatial deposition onto harmful bacteria for their destruction. In this report, the effect of reaction product on growth and survival of Escherichia coli (E-coli) expressing GFP (Green Fluorescent Protein) was investigated. Moreover, we developed an approach to increase sensitivity of the detection. The study has shown that I2O5/Al nanosystem is extremely effective to disinfect harmful biological agents such (E-coli) bacteria in seconds.

  3. Resilient distributed control in the presence of misbehaving agents in networked control systems.

    PubMed

    Zeng, Wente; Chow, Mo-Yuen

    2014-11-01

    In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.

  4. Online Bahavior Aquisition of an Agent based on Coaching as Learning Assistance

    NASA Astrophysics Data System (ADS)

    Hirokawa, Masakazu; Suzuki, Kenji

    This paper describes a novel methodology, namely ``Coaching'', which allows humans to give a subjective evaluation to an agent in an iterative manner. This is an interactive learning method to improve the reinforcement learning by modifying a reward function dynamically according to given evaluations by a trainer and the learning situation of the agent. We demonstrate that the agent can learn different reward functions by given instructions such as ``good or bad'' by human's observation, and can also obtain a set of behavior based on the learnt reward functions through several experiments.

  5. Story-Based Pedagogical Agents: A Scaffolding Design Approach for the Process of Historical Inquiry in a Web-Based Self-Learning Environment

    ERIC Educational Resources Information Center

    Fujimoto, Toru

    2010-01-01

    The purpose of this research was to design and evaluate a web-based self-learning environment for historical inquiry embedded with different types of instructional support featuring story-based pedagogical agents. This research focused on designing a learning environment by integrating story-based instruction and pedagogical agents as a means to…

  6. BASE-CATALYZED DESTRUCTION OF PCBS-NEW DONORS, NEW TRANSFER AGENTS/CATALYSTS

    EPA Science Inventory

    The use of hydrogen transfer agents and catalysts to improve the base-catalyzed decomposition of polychlorinated biphenyls (PCBs) was investigated. The reaction proceeded only in the presence of base, but the rate of PCB disappearance increased with increasing amount of hydrogen ...

  7. Framework of distributed coupled atmosphere-ocean-wave modeling system

    NASA Astrophysics Data System (ADS)

    Wen, Yuanqiao; Huang, Liwen; Deng, Jian; Zhang, Jinfeng; Wang, Sisi; Wang, Lijun

    2006-05-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed. The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  8. Derivation of Continuum Models from An Agent-based Cancer Model: Optimization and Sensitivity Analysis.

    PubMed

    Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank

    2017-01-01

    Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. ModelforAnalyzing Human Communication Network Based onAgent-Based Simulation

    NASA Astrophysics Data System (ADS)

    Matsuyama, Shinako; Terano, Takao

    This paper discusses dynamic properties of human communications networks, which appears as a result of informationexchanges among people. We propose agent-based simulation (ABS) to examine implicit mechanisms behind the dynamics. The ABS enables us to reveal the characteristics and the differences of the networks regarding the specific communicationgroups. We perform experiments on the ABS with activity data from questionnaires survey and with virtual data which isdifferent from the activity data. We compare the difference between them and show the effectiveness of the ABS through theexperiments.

  10. Context-Based Pedagogy: A Framework From Experience.

    PubMed

    Kantar, Lina D

    2016-07-01

    Attempts to transform teaching practice are inadvertently subjected to several hurdles, mostly attributed to the lack of a guiding framework. This study aimed at unraveling the conceptual underpinnings of the context-based pedagogy, being perceived the pedagogy that prepares professionals for future practice. Through focus group interviews, data were collected from 16 nursing students who had case studies as the main instructional format in three major courses. The participants were divided into three focus groups, and interview questions were based on three educational parameters: the learning environment, instructional format, and instructional process. Initial findings revealed an array of classroom activities that characterize each parameter. An in-depth analysis of these activities converged on four concepts: (a) dynamic learning environment, (b) realism, (c) thinking dispositions, and (d) professional formation. These concepts improvise a beginning framework for educators and curriculum leaders that can be used to integrate cases in the curriculum and to facilitate the contextualization of knowledge. [J Nurs Educ. 2016;55(7):391-395.]. Copyright 2016, SLACK Incorporated.

  11. Thiophene-based covalent organic frameworks

    PubMed Central

    Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea

    2013-01-01

    We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656

  12. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  13. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  14. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents.

    PubMed

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-11-25

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included.

  15. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    NASA Astrophysics Data System (ADS)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  16. Using Model Replication to Improve the Reliability of Agent-Based Models

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  17. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Dixon

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less

  18. An enhanced performance through agent-based secure approach for mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Bisen, Dhananjay; Sharma, Sanjeev

    2018-01-01

    This paper proposes an agent-based secure enhanced performance approach (AB-SEP) for mobile ad hoc network. In this approach, agent nodes are selected through optimal node reliability as a factor. This factor is calculated on the basis of node performance features such as degree difference, normalised distance value, energy level, mobility and optimal hello interval of node. After selection of agent nodes, a procedure of malicious behaviour detection is performed using fuzzy-based secure architecture (FBSA). To evaluate the performance of the proposed approach, comparative analysis is done with conventional schemes using performance parameters such as packet delivery ratio, throughput, total packet forwarding, network overhead, end-to-end delay and percentage of malicious detection.

  19. Quantifying human behavior uncertainties in a coupled agent-based model for water resources management

    NASA Astrophysics Data System (ADS)

    Hyun, J. Y.; Yang, Y. C. E.; Tidwell, V. C.; Macknick, J.

    2017-12-01

    Modeling human behaviors and decisions in water resources management is a challenging issue due to its complexity and uncertain characteristics that affected by both internal (such as stakeholder's beliefs on any external information) and external factors (such as future policies and weather/climate forecast). Stakeholders' decision regarding how much water they need is usually not entirely rational in the real-world cases, so it is not quite suitable to model their decisions with a centralized (top-down) approach that assume everyone in a watershed follow the same order or pursue the same objective. Agent-based modeling (ABM) uses a decentralized approach (bottom-up) that allow each stakeholder to make his/her own decision based on his/her own objective and the belief of information acquired. In this study, we develop an ABM which incorporates the psychological human decision process by the theory of risk perception. The theory of risk perception quantifies human behaviors and decisions uncertainties using two sequential methodologies: the Bayesian Inference and the Cost-Loss Problem. The developed ABM is coupled with a regulation-based water system model: Riverware (RW) to evaluate different human decision uncertainties in water resources management. The San Juan River Basin in New Mexico (Figure 1) is chosen as a case study area, while we define 19 major irrigation districts as water use agents and their primary decision is to decide the irrigated area on an annual basis. This decision will be affected by three external factors: 1) upstream precipitation forecast (potential amount of water availability), 2) violation of the downstream minimum flow (required to support ecosystems), and 3) enforcement of a shortage sharing plan (a policy that is currently undertaken in the region for drought years). Three beliefs (as internal factors) that correspond to these three external factors will also be considered in the modeling framework. The objective of this study is

  20. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.

    PubMed

    Chen, Liyan; Wu, Di; Yoon, Juyoung

    2018-01-26

    The extreme toxicity and ready accessibility of nerve agents and phosgene has caused an increase in the demand to develop effective systems for the detection of these substances. Among the traditional platforms utilized for this purpose, chemosensors including surface acoustic wave (SAW) sensors, enzymes, carbon nanotubes, nanoparticles, and chromophore based sensors have attracted increasing attention. In this review, we describe in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene. This review comprises two sections focusing on studies of the development of chemosensors for nerve agents (mimic) and phosgene. In each of the sections, the discussion follows a format which concentrates on different reaction sites/mechanisms involved in the sensing processes. Finally, chemosensors uncovered in these efforts are compared with those based on other sensing methods and challenges facing the design of more effective chemosensors for the detection of nerve agents (mimic) and phosgene are discussed.

  1. Agent-based game theory modeling for driverless vehicles at intersections.

    DOT National Transportation Integrated Search

    2013-02-01

    This report presents three research efforts that were published in various journals. The first research effort presents a reactive-driving agent based algorithm for modeling driver left turn gap acceptance behavior at signalized intersections. This m...

  2. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  3. A Watershed-Scale Agent-Based Model Incorporating Agent Learning and Interaction of Farmers' Decisions Subject to Carbon and Miscanthus Prices

    NASA Astrophysics Data System (ADS)

    Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.

    2010-12-01

    Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of

  4. Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances

    NASA Astrophysics Data System (ADS)

    Zhang, Jiancheng; Zhu, Fanglai

    2018-03-01

    In this paper, the output consensus of a class of linear heterogeneous multi-agent systems with unmatched disturbances is considered. Firstly, based on the relative output information among neighboring agents, we propose an asymptotic sliding-mode based consensus control scheme, under which, the output consensus error can converge to zero by removing the disturbances from output channels. Secondly, in order to reach the consensus goal, we design a novel high-order unknown input observer for each agent. It can estimate not only each agent's states and disturbances, but also the disturbances' high-order derivatives, which are required in the control scheme aforementioned above. The observer-based consensus control laws and the convergence analysis of the consensus error dynamics are given. Finally, a simulation example is provided to verify the validity of our methods.

  5. Exploration of agent of change’s role in biodiesel energy transition process using agent-based model

    NASA Astrophysics Data System (ADS)

    Hidayatno, A.; Vicky, L. R.; Destyanto, A. R.

    2017-11-01

    As the world’s largest Crude Palm Oil (CPO) producer, Indonesia uses CPO as raw material for biodiesel. A number of policies have been designed by the Indonesian government to support adoption of biodiesel. However, the role of energy alternatives faced complex problems. Agent-based modeling can be applied to predict the impact of policies on the actors in the business process to acquire a rich discernment of the behavior and decision making by the biodiesel industries. This study evaluates government policy by attending at the adoption of the biodiesel industry in the tender run by a government with the intervention of two policy options biodiesel energy utilization by developing an agent-based model. The simulation result show that the policy of adding the biodiesel plant installed capacity has a good impact in increasing the production capacity and vendor adoption in the tender. Even so, the government should consider the cost to be incurred and the profits for vendors, so the biodiesel production targets can be successfully fulfilled.

  6. Going beyond the unitary curve: incorporating richer cognition into agent-based water resources models

    NASA Astrophysics Data System (ADS)

    Kock, B. E.

    2008-12-01

    The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.

  7. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.

  8. Multi-agent coordination in directed moving neighbourhood random networks

    NASA Astrophysics Data System (ADS)

    Shang, Yi-Lun

    2010-07-01

    This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents interact with each other through random unidirectional information flow when they coincide in the underlying network at a given instant. For such a framework, we present sufficient conditions for almost sure asymptotic consensus. Numerical examples are taken to show the effectiveness of the obtained results.

  9. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  10. SEM: A Cultural Change Agent

    ERIC Educational Resources Information Center

    Barnes, Bradley; Bourke, Brian

    2015-01-01

    The authors advance the concept that institutional culture is a purposeful framework by which to view SEM's utility, particularly as a cultural change agent. Through the connection of seemingly independent functions of performance and behavior, implications emerge that deepen the understanding of the influence of culture on performance outcomes…

  11. Agent-Based Phytoplankton Models of Cellular and Population Processes: Fostering Individual-Based Learning in Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Berges, J. A.; Raphael, T.; Rafa Todd, C. S.; Bate, T. C.; Hellweger, F. L.

    2016-02-01

    Engaging undergraduate students in research projects that require expertise in multiple disciplines (e.g. cell biology, population ecology, and mathematical modeling) can be challenging because they have often not developed the expertise that allows them to participate at a satisfying level. Use of agent-based modeling can allow exploration of concepts at more intuitive levels, and encourage experimentation that emphasizes processes over computational skills. Over the past several years, we have involved undergraduate students in projects examining both ecological and cell biological aspects of aquatic microbial biology, using the freely-downloadable, agent-based modeling environment NetLogo (https://ccl.northwestern.edu/netlogo/). In Netlogo, actions of large numbers of individuals can be simulated, leading to complex systems with emergent behavior. The interface features appealing graphics, monitors, and control structures. In one example, a group of sophomores in a BioMathematics program developed an agent-based model of phytoplankton population dynamics in a pond ecosystem, motivated by observed macroscopic changes in cell numbers (due to growth and death), and driven by responses to irradiance, temperature and a limiting nutrient. In a second example, junior and senior undergraduates conducting Independent Studies created a model of the intracellular processes governing stress and cell death for individual phytoplankton cells (based on parameters derived from experiments using single-cell culturing and flow cytometry), and then this model was embedded in the agents in the pond ecosystem model. In our experience, students with a range of mathematical abilities learned to code quickly and could use the software with varying degrees of sophistication, for example, creation of spatially-explicit two and three-dimensional models. Skills developed quickly and transferred readily to other platforms (e.g. Matlab).

  12. A conceptual data model and modelling language for fields and agents

    NASA Astrophysics Data System (ADS)

    de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown

  13. Strategies for Optimizing Water-Exchange Rates of Lanthanide-Based Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Siriwardena-Mahanama, Buddhima N.; Allen, Matthew J.

    2013-01-01

    This review describes recent advances in strategies for tuning the water-exchange rates of contrast agents for magnetic resonance imaging (MRI). Water-exchange rates play a critical role in determining the efficiency of contrast agents; consequently, optimization of water-exchange rates, among other parameters, is necessary to achieve high efficiencies. This need has resulted in extensive research efforts to modulate water-exchange rates by chemically altering the coordination environments of the metal complexes that function as contrast agents. The focus of this review is coordination-chemistry-based strategies used to tune the water-exchange rates of lanthanide(III)-based contrast agents for MRI. Emphasis will be given to results published in the 21st century, as well as implications of these strategies on the design of contrast agents. PMID:23921796

  14. Trust Management Considerations For the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Cooperative Infrastructure Defense (CID) is a hierarchical, agent-based, adaptive, cyber-security framework designed to collaboratively protect multiple enclaves or organizations participating in a complex infrastructure. CID employs a swarm of lightweight, mobile agents called Sensors designed to roam hosts throughout a security enclave to find indications of anomalies and report them to host-based Sentinels. The Sensors’ findings become pieces of a larger puzzle, which the Sentinel puts together to determine the problem and respond per policy as given by the enclave-level Sergeant agent. Horizontally across multiple enclaves and vertically within each enclave, authentication and access control technologies are necessary but insufficientmore » authorization mechanisms to ensure that CID agents continue to fulfill their roles in a trustworthy manner. Trust management fills the gap, providing mechanisms to detect malicious agents and offering more robust mechanisms for authorization. This paper identifies the trust relationships throughout the CID hierarchy, the types of trust evidence that could be gathered, and the actions that the CID system could take if an entity is determined to be untrustworthy.« less

  15. Combining patient journey modelling and visual multi-agent computer simulation: a framework to improving knowledge translation in a healthcare environment.

    PubMed

    Curry, Joanne; Fitzgerald, Anneke; Prodan, Ante; Dadich, Ann; Sloan, Terry

    2014-01-01

    This article focuses on a framework that will investigate the integration of two disparate methodologies: patient journey modelling and visual multi-agent simulation, and its impact on the speed and quality of knowledge translation to healthcare stakeholders. Literature describes patient journey modelling and visual simulation as discrete activities. This paper suggests that their combination and their impact on translating knowledge to practitioners are greater than the sum of the two technologies. The test-bed is ambulatory care and the goal is to determine if this approach can improve health services delivery, workflow, and patient outcomes and satisfaction. The multidisciplinary research team is comprised of expertise in patient journey modelling, simulation, and knowledge translation.

  16. A Mechanism to Avoid Collusion Attacks Based on Code Passing in Mobile Agent Systems

    NASA Astrophysics Data System (ADS)

    Jaimez, Marc; Esparza, Oscar; Muñoz, Jose L.; Alins-Delgado, Juan J.; Mata-Díaz, Jorge

    Mobile agents are software entities consisting of code, data, state and itinerary that can migrate autonomously from host to host executing their code. Despite its benefits, security issues strongly restrict the use of code mobility. The protection of mobile agents against the attacks of malicious hosts is considered the most difficult security problem to solve in mobile agent systems. In particular, collusion attacks have been barely studied in the literature. This paper presents a mechanism that avoids collusion attacks based on code passing. Our proposal is based on a Multi-Code agent, which contains a different variant of the code for each host. A Trusted Third Party is responsible for providing the information to extract its own variant to the hosts, and for taking trusted timestamps that will be used to verify time coherence.

  17. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    NASA Astrophysics Data System (ADS)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  18. Modeling asset price processes based on mean-field framework

    NASA Astrophysics Data System (ADS)

    Ieda, Masashi; Shiino, Masatoshi

    2011-12-01

    We propose a model of the dynamics of financial assets based on the mean-field framework. This framework allows us to construct a model which includes the interaction among the financial assets reflecting the market structure. Our study is on the cutting edge in the sense of a microscopic approach to modeling the financial market. To demonstrate the effectiveness of our model concretely, we provide a case study, which is the pricing problem of the European call option with short-time memory noise.

  19. Application of Mobile Agents in Web-Based Learning Environment.

    ERIC Educational Resources Information Center

    Hong Hong, Kinshuk; He, Xiaoqin; Patel, Ashok; Jesshope, Chris

    Web-based learning environments are strongly driven by the information revolution and the Internet, but they have a number of common deficiencies, such as slow access, no adaptivity to the individual student, limitation by bandwidth, and more. This paper outlines the benefits of mobile agents technology, and describes its application in Web-based…

  20. A Framework for Assessing Collaborative Capacity in Community-Based Public Forest Management

    NASA Astrophysics Data System (ADS)

    Cheng, Antony S.; Sturtevant, Victoria E.

    2012-03-01

    Community-based collaborative groups involved in public natural resource management are assuming greater roles in planning, project implementation, and monitoring. This entails the capacity of collaborative groups to develop and sustain new organizational structures, processes, and strategies, yet there is a lack of understanding what constitutes collaborative capacity. In this paper, we present a framework for assessing collaborative capacities associated with community-based public forest management in the US. The framework is inductively derived from case study research and observations of 30 federal forest-related collaborative efforts. Categories were cross-referenced with literature on collaboration across a variety of contexts. The framework focuses on six arenas of collaborative action: (1) organizing, (2) learning, (3) deciding, (4) acting, (5) evaluating, and (6) legitimizing. Within each arena are capacities expressed through three levels of social agency: individuals, the collaborative group itself, and participating or external organizations. The framework provides a language and set of organizing principles for understanding and assessing collaborative capacity in the context of community-based public forest management. The framework allows groups to assess what capacities they already have and what more is needed. It also provides a way for organizations supporting collaboratives to target investments in building and sustaining their collaborative capacities. The framework can be used by researchers as a set of independent variables against which to measure collaborative outcomes across a large population of collaborative efforts.