Science.gov

Sample records for agent based simulations

  1. Agent Based Simulation Output Analysis

    DTIC Science & Technology

    2011-12-01

    over long periods of time) not to have a steady state, but apparently does. These simulation models are available free from sigmawiki.com 2.1...are used in computer animations and movies (for example, in the movie Jurassic Park) as well as to look for emergent social behavior in groups

  2. Agent-Based Simulations for Project Management

    NASA Technical Reports Server (NTRS)

    White, J. Chris; Sholtes, Robert M.

    2011-01-01

    Currently, the most common approach used in project planning tools is the Critical Path Method (CPM). While this method was a great improvement over the basic Gantt chart technique being used at the time, it now suffers from three primary flaws: (1) task duration is an input, (2) productivity impacts are not considered , and (3) management corrective actions are not included. Today, computers have exceptional computational power to handle complex simulations of task e)(eculion and project management activities (e.g ., dynamically changing the number of resources assigned to a task when it is behind schedule). Through research under a Department of Defense contract, the author and the ViaSim team have developed a project simulation tool that enables more realistic cost and schedule estimates by using a resource-based model that literally turns the current duration-based CPM approach "on its head." The approach represents a fundamental paradigm shift in estimating projects, managing schedules, and reducing risk through innovative predictive techniques.

  3. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  4. Solution of partial differential equations by agent-based simulation

    NASA Astrophysics Data System (ADS)

    Szilagyi, Miklos N.

    2014-01-01

    The purpose of this short note is to demonstrate that partial differential equations can be quickly solved by agent-based simulation with high accuracy. There is no need for the solution of large systems of algebraic equations. This method is especially useful for quick determination of potential distributions and demonstration purposes in teaching electromagnetism.

  5. Agent-based simulation of a financial market

    NASA Astrophysics Data System (ADS)

    Raberto, Marco; Cincotti, Silvano; Focardi, Sergio M.; Marchesi, Michele

    2001-10-01

    This paper introduces an agent-based artificial financial market in which heterogeneous agents trade one single asset through a realistic trading mechanism for price formation. Agents are initially endowed with a finite amount of cash and a given finite portfolio of assets. There is no money-creation process; the total available cash is conserved in time. In each period, agents make random buy and sell decisions that are constrained by available resources, subject to clustering, and dependent on the volatility of previous periods. The model proposed herein is able to reproduce the leptokurtic shape of the probability density of log price returns and the clustering of volatility. Implemented using extreme programming and object-oriented technology, the simulator is a flexible computational experimental facility that can find applications in both academic and industrial research projects.

  6. Simulating cancer growth with multiscale agent-based modeling.

    PubMed

    Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S

    2015-02-01

    There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models.

  7. Validation techniques of agent based modelling for geospatial simulations

    NASA Astrophysics Data System (ADS)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  8. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  9. Agent-based modeling to simulate the dengue spread

    NASA Astrophysics Data System (ADS)

    Deng, Chengbin; Tao, Haiyan; Ye, Zhiwei

    2008-10-01

    In this paper, we introduce a novel method ABM in simulating the unique process for the dengue spread. Dengue is an acute infectious disease with a long history of over 200 years. Unlike the diseases that can be transmitted directly from person to person, dengue spreads through a must vector of mosquitoes. There is still no any special effective medicine and vaccine for dengue up till now. The best way to prevent dengue spread is to take precautions beforehand. Thus, it is crucial to detect and study the dynamic process of dengue spread that closely relates to human-environment interactions where Agent-Based Modeling (ABM) effectively works. The model attempts to simulate the dengue spread in a more realistic way in the bottom-up way, and to overcome the limitation of ABM, namely overlooking the influence of geographic and environmental factors. Considering the influence of environment, Aedes aegypti ecology and other epidemiological characteristics of dengue spread, ABM can be regarded as a useful way to simulate the whole process so as to disclose the essence of the evolution of dengue spread.

  10. Autonomous Agent-Based Simulation of a Model Simulating the Human Air-Threat Assessment Process

    DTIC Science & Technology

    2004-03-01

    multi - agent system (MAS) technology and is implemented in Java programming language. This research is a portion of Red Intent Project whose goal is to ultimately implement a model to predict the intent of any given track in the environment. For any air track in the simulation, two sets of agents are created, one for controlling track actions and one for predicting its identity and intent based on information received from track, the geopolitical situation and intelligence. The simulation is also capable of identifying coordinated actions between air tracks. We

  11. Agent-based modeling: Methods and techniques for simulating human systems

    PubMed Central

    Bonabeau, Eric

    2002-01-01

    Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407

  12. Agent-Based Knowledge Discovery for Modeling and Simulation

    SciTech Connect

    Haack, Jereme N.; Cowell, Andrew J.; Marshall, Eric J.; Fligg, Alan K.; Gregory, Michelle L.; McGrath, Liam R.

    2009-09-15

    This paper describes an approach to using agent technology to extend the automated discovery mechanism of the Knowledge Encapsulation Framework (KEF). KEF is a suite of tools to enable the linking of knowledge inputs (relevant, domain-specific evidence) to modeling and simulation projects, as well as other domains that require an effective collaborative workspace for knowledge-based tasks. This framework can be used to capture evidence (e.g., trusted material such as journal articles and government reports), discover new evidence (covering both trusted and social media), enable discussions surrounding domain-specific topics and provide automatically generated semantic annotations for improved corpus investigation. The current KEF implementation is presented within a semantic wiki environment, providing a simple but powerful collaborative space for team members to review, annotate, discuss and align evidence with their modeling frameworks. The novelty in this approach lies in the combination of automatically tagged and user-vetted resources, which increases user trust in the environment, leading to ease of adoption for the collaborative environment.

  13. Serious games experiment toward agent-based simulation

    USGS Publications Warehouse

    Wein, Anne; Labiosa, William

    2013-01-01

    We evaluate the potential for serious games to be used as a scientifically based decision-support product that supports the United States Geological Survey’s (USGS) mission--to provide integrated, unbiased scientific information that can make a substantial contribution to societal well-being for a wide variety of complex environmental challenges. Serious or pedagogical games are an engaging way to educate decisionmakers and stakeholders about environmental challenges that are usefully informed by natural and social scientific information and knowledge and can be designed to promote interactive learning and exploration in the face of large uncertainties, divergent values, and complex situations. We developed two serious games that use challenging environmental-planning issues to demonstrate and investigate the potential contributions of serious games to inform regional-planning decisions. Delta Skelta is a game emulating long-term integrated environmental planning in the Sacramento-San Joaquin Delta, California, that incorporates natural hazards (flooding and earthquakes) and consequences for California water supplies amidst conflicting water interests. Age of Ecology is a game that simulates interactions between economic and ecologic processes, as well as natural hazards while implementing agent-based modeling. The content of these games spans the USGS science mission areas related to water, ecosystems, natural hazards, land use, and climate change. We describe the games, reflect on design and informational aspects, and comment on their potential usefulness. During the process of developing these games, we identified various design trade-offs involving factual information, strategic thinking, game-winning criteria, elements of fun, number and type of players, time horizon, and uncertainty. We evaluate the two games in terms of accomplishments and limitations. Overall, we demonstrated the potential for these games to usefully represent scientific information

  14. Agent-based Approaches to Dynamic Team Simulation

    DTIC Science & Technology

    2008-09-01

    behavior. The second section reviews agent-based models of teamwork describing work involving both teamwork approaches to design of multiagent systems...there is less direct evidence for teams. Hough (1992), for example, found that ratings on conscientiousness, emotional stability, and agreeableness...Peeters, Rutte, Tuijl, and Reymen (2006) who found agreeableness and emotional stability positively related to satisfaction with the team make

  15. Identifying Evacuees' Demand of Tsunami Shelters using Agent Based Simulation

    NASA Astrophysics Data System (ADS)

    Mas, E.; Adriano, B.; Koshimura, S.; Imamura, F.; Kuroiwa, J.; Yamazaki, F.; Zavala, C.; Estrada, M.

    2012-12-01

    Amongst the lessons learned in tsunami events such as the 2004 Indian Ocean and 2011 Great Tohoku Japan earthquake is that sometimes nature exceeds structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people in plain areas to find sheltering places. The vertical evacuation to multistory buildings is one alternative to provide areas for sheltering in a complex environment of evacuation. However, if the spatial distribution and the available capacity of these structures are not well displayed, conditions of evacuee over-demand or under-demand might be observed in several structures. In this study, we present the integration of the tsunami numerical modeling and the agent based simulation of evacuation as the method to estimate the sheltering demand of evacuees in an emergent behavior approach. The case study is set in La Punta district in Peru. Here, we used in the tsunami simulation a seismic source of slip distribution model (Pulido et.al. ,2011; Chlieh et.al, 2011) for a possible future tsunami scenario in the central Andes. We modeled three alternatives of evacuation. First, the horizontal evacuation scenario was analyzed to support the necessity of the sheltering-in-place option for the district. Second, the vertical evacuation scenario and third, the combination of vertical and horizontal evacuation scenarios of pedestrians and vehicles were conducted. In the last two alternatives, the demand of evacuees were measured at each official tsunami evacuation building and compared to the sheltering capacity of the structure. Results showed that out of twenty tsunami evacuation buildings, thirteen resulted with over-demands and seven were still with available space. Also it is confirmed that in this case the horizontal evacuation might lead to a high number of casualties due to the traffic congestion at the neck of the district. Finally the vertical evacuation would be a suitable solution for this area

  16. A Systematic Review of Agent-Based Modelling and Simulation Applications in the Higher Education Domain

    ERIC Educational Resources Information Center

    Gu, X.; Blackmore, K. L.

    2015-01-01

    This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…

  17. Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Mesgari, M.-S.

    2015-12-01

    During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.

  18. Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor.

    PubMed

    Wu, Xuanjun; Wu, Zhisheng; Han, Shoufa

    2011-11-07

    A chromogenic and fluorogenic detection of a nerve agent simulant was developed based on diethyl chlorophosphate triggered tandem phosphorylation and intramolecular cyclization of N-(rhodamine B)-deoxylactam-2-aminoethanol.

  19. An agent based model for simulating the spread of sexually transmitted infections.

    PubMed

    Rutherford, Grant; Friesen, Marcia R; McLeod, Robert D

    2012-01-01

    This work uses agent-based modelling (ABM) to simulate sexually transmitted infection (STIs) spread within a population of 1000 agents over a 10-year period, as a preliminary investigation of the suitability of ABM methodology to simulate STI spread. The work contrasts compartmentalized mathematical models that fail to account for individual agents, and ABMs commonly applied to simulate the spread of respiratory infections. The model was developed in C++ using the Boost 1.47.0 libraries for the normal distribution and OpenGL for visualization. Sixteen agent parameters interact individually and in combination to govern agent profiles and behaviours relative to infection probabilities. The simulation results provide qualitative comparisons of STI mitigation strategies, including the impact of condom use, promiscuity, the form of the friend network, and mandatory STI testing. Individual and population-wide impacts were explored, with individual risk being impacted much more dramatically by population-level behaviour changes as compared to individual behaviour changes.

  20. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass

    PubMed Central

    Sánchez, Jesús M.; Carrera, Álvaro; Iglesias, Carlos Á.; Serrano, Emilio

    2016-01-01

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services. PMID:27563911

  1. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.

    PubMed

    Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio

    2016-08-24

    Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.

  2. Agent Based Simulation Design for Aggregation and Disaggregation

    DTIC Science & Technology

    2011-12-01

    Development of a Generic Data-Driven Simulation.‖ In Proceed- ings of the 2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya ...DARPA, Santa Monica, CA. Davis, P. and R. Hillestad. 1993. ―Families of Models that Cross Levels of Resolution: Issues for Design, Calibration and...Issues, and Prin- ciples.‖ RAND N-3400-DARPA, Santa Monica, CA. Department of Defense. 1995. ―Department of Defense Modeling and Simulation Master

  3. Research on monocentric model of urbanization by agent-based simulation

    NASA Astrophysics Data System (ADS)

    Xue, Ling; Yang, Kaizhong

    2008-10-01

    Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.

  4. iCrowd: agent-based behavior modeling and crowd simulator

    NASA Astrophysics Data System (ADS)

    Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.

    2016-05-01

    Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.

  5. ModelforAnalyzing Human Communication Network Based onAgent-Based Simulation

    NASA Astrophysics Data System (ADS)

    Matsuyama, Shinako; Terano, Takao

    This paper discusses dynamic properties of human communications networks, which appears as a result of informationexchanges among people. We propose agent-based simulation (ABS) to examine implicit mechanisms behind the dynamics. The ABS enables us to reveal the characteristics and the differences of the networks regarding the specific communicationgroups. We perform experiments on the ABS with activity data from questionnaires survey and with virtual data which isdifferent from the activity data. We compare the difference between them and show the effectiveness of the ABS through theexperiments.

  6. Agent Based Modeling and Simulation Framework for Supply Chain Risk Management

    DTIC Science & Technology

    2012-03-01

    timed Petri net based simulation (Tuncel and Alpan 2010), and Monte Carlo (White 1995, Wu and Olson 2008, and Schmitt and Singh 2009). More detail...benefit costs. (Li and Li 2008) 26 Chen, Zhou, and Hu propose an agent-oriented Petri net model for an inventory- scheduling model, with focus on the...problems of analysis and modeling of multi-agent systems. Petri net aims at researching the organization structure and dynamic behavior of a system

  7. [Research on multi-agent based modeling and simulation of hospital system].

    PubMed

    Zhao, Junping; Yang, Hongqiao; Guo, Huayuan; Li, Yi; Zhang, Zhenjiang; Li, Shuzhang

    2010-12-01

    In this paper, the theory of complex adaptive system (CAS) and its modeling method are introduced. The complex characters of the hospital system is analyzed. The agile manufacturing and cell reconstruction technologies are used to reconstruct the hospital system. Then we set forth a research for simulation of hospital system based on the methodology of Multi-Agent technology and high level architecture (HLA). Finally, a simulation framework based on HLA for hospital system is presented.

  8. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  9. An agent-based simulation of extirpation of Ceratitis capitata applied to invasions in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe and validate an Agent-Based Simulation(ABS) of invasive insects and use it to investigate the time to extirpation of Ceratitis capitata using data from seven outbreaks that occurred in California from 2008-2010. Results are compared with the length of intervention and quarantine imposed ...

  10. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach.

  11. A Conceptual Framework for Representing Human Behavior Characteristics in a System of Systems Agent-Based Survivability Simulation

    DTIC Science & Technology

    2010-11-22

    distribution is unlimited. A CONCEPTUAL FRAMEWORK FOR REPRESENTING HUMAN BEHAVIOR CHARACTERISTICS IN A SYSTEM OF SYSTEMS AGENT-BASED SURVIVABILITY...27411 -0001 ABSTRACT A CONCEPTUAL FRAMEWORK FOR REPRESENTING HUMAN BEHAVIOR CHARACTERISTICS IN A SYSTEM OF SYSTEMS AGENT-BASED SURVIVABILITY SIMULATION...TITLE AND SUBTITLE A CONCEPTUAL FRAMEWORK FOR REPRESENTING HUMAN BEHAVIOR CHARACTERISTICS IN A SYSTEM OF SYSTEMS AGENT-BASED SURVIVABILITY

  12. UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis

    DTIC Science & Technology

    2013-06-01

    NPS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS UAV SWARM TACTICS: AN AGENT-BASED SIM ULATION AND MARKOV PROCESS ANALYSIS Thesis...inina; tho d ... _ . aod oompiotinl and ~_i .. tho roIloction of .. form. tion. Sond oommonu fQPrdina; thi!; burdon Mlim. m 0< a ny <>tho< ...,oct...TACTICS : AN AGENT-BASED SIMULATION AND MARKOV PROCESS ANALYSIS 1 So. " NUMBER ’. AU 1 Sd. PROJECT Uwe Gaertner 1 s.. TASK NUMBER 1 sr. WORK UNIT

  13. Applications of agent-based simulation for human socio-cultural behavior modeling.

    PubMed

    Jiang, Hong; Karwowski, Waldemar; Ahram, Tareq Z

    2012-01-01

    Agent-based modeling and simulation (ABMS) has gained wide attention over the past few years. ABMS is a powerful simulation modeling technique that has a number of applications, including applications to real-world business problems [1]. This modeling technique has been used by scientists to analyze complex system-level behavior by simulating the system from the bottom up. The major application of ABMS includes social, political, biology, and economic sciences. This paper provides an overview of ABMS applications with the emphasis on modeling human socio-cultural behavior (HSCB).

  14. Design of a Mobile Agent-Based Adaptive Communication Middleware for Federations of Critical Infrastructure Simulations

    NASA Astrophysics Data System (ADS)

    Görbil, Gökçe; Gelenbe, Erol

    The simulation of critical infrastructures (CI) can involve the use of diverse domain specific simulators that run on geographically distant sites. These diverse simulators must then be coordinated to run concurrently in order to evaluate the performance of critical infrastructures which influence each other, especially in emergency or resource-critical situations. We therefore describe the design of an adaptive communication middleware that provides reliable and real-time one-to-one and group communications for federations of CI simulators over a wide-area network (WAN). The proposed middleware is composed of mobile agent-based peer-to-peer (P2P) overlays, called virtual networks (VNets), to enable resilient, adaptive and real-time communications over unreliable and dynamic physical networks (PNets). The autonomous software agents comprising the communication middleware monitor their performance and the underlying PNet, and dynamically adapt the P2P overlay and migrate over the PNet in order to optimize communications according to the requirements of the federation and the current conditions of the PNet. Reliable communications is provided via redundancy within the communication middleware and intelligent migration of agents over the PNet. The proposed middleware integrates security methods in order to protect the communication infrastructure against attacks and provide privacy and anonymity to the participants of the federation. Experiments with an initial version of the communication middleware over a real-life networking testbed show that promising improvements can be obtained for unicast and group communications via the agent migration capability of our middleware.

  15. Agent-based evacuation simulation for spatial allocation assessment of urban shelters

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Wen, Jiahong; Jiang, Yong

    2015-12-01

    The construction of urban shelters is one of the most important work in urban planning and disaster prevention. The spatial allocation assessment is a fundamental pre-step for spatial location-allocation of urban shelters. This paper introduces a new method which makes use of agent-based technology to implement evacuation simulation so as to conduct dynamic spatial allocation assessment of urban shelters. The method can not only accomplish traditional geospatial evaluation for urban shelters, but also simulate the evacuation process of the residents to shelters. The advantage of utilizing this method lies into three aspects: (1) the evacuation time of each citizen from a residential building to the shelter can be estimated more reasonably; (2) the total evacuation time of all the residents in a region is able to be obtained; (3) the road congestions in evacuation in sheltering can be detected so as to take precautionary measures to prevent potential risks. In this study, three types of agents are designed: shelter agents, government agents and resident agents. Shelter agents select specified land uses as shelter candidates for different disasters. Government agents delimitate the service area of each shelter, in other words, regulate which shelter a person should take, in accordance with the administrative boundaries and road distance between the person's position and the location of the shelter. Resident agents have a series of attributes, such as ages, positions, walking speeds, and so on. They also have several behaviors, such as reducing speed when walking in the crowd, helping old people and children, and so on. Integrating these three types of agents which are correlated with each other, evacuation procedures can be simulated and dynamic allocation assessment of shelters will be achieved. A case study in Jing'an District, Shanghai, China, was conducted to demonstrate the feasibility of the method. A scenario of earthquake disaster which occurs in nighttime

  16. Comparing stochastic differential equations and agent-based modelling and simulation for early-stage cancer.

    PubMed

    Figueredo, Grazziela P; Siebers, Peer-Olaf; Owen, Markus R; Reps, Jenna; Aickelin, Uwe

    2014-01-01

    There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours rather than aggregates and individual memory. In this paper we investigate the potential contribution of agent-based modelling and simulation when contrasted with stochastic versions of ODE models using early-stage cancer examples. We seek answers to the following questions: (1) Does this new stochastic formulation produce similar results to the agent-based version? (2) Can these methods be used interchangeably? (3) Do agent-based models outcomes reveal any benefit when compared to the Gillespie results? To answer these research questions we investigate three well-established mathematical models describing interactions between tumour cells and immune elements. These case studies were re-conceptualised under an agent-based perspective and also converted to the Gillespie algorithm formulation. Our interest in this work, therefore, is to establish a methodological discussion regarding the usability of different simulation approaches, rather than provide further biological insights into the investigated case studies. Our results show that it is possible to obtain equivalent models that implement the same mechanisms; however, the incapacity of the Gillespie algorithm to retain individual memory of past events affects the similarity of some results. Furthermore, the emergent behaviour of ABMS produces extra patters of behaviour in the system, which was not obtained by the Gillespie algorithm.

  17. An Agent-Based Model of New Venture Creation: Conceptual Design for Simulating Entrepreneurship

    NASA Technical Reports Server (NTRS)

    Provance, Mike; Collins, Andrew; Carayannis, Elias

    2012-01-01

    There is a growing debate over the means by which regions can foster the growth of entrepreneurial activity in order to stimulate recovery and growth of their economies. On one side, agglomeration theory suggests the regions grow because of strong clusters that foster knowledge spillover locally; on the other side, the entrepreneurial action camp argues that innovative business models are generated by entrepreneurs with unique market perspectives who draw on knowledge from more distant domains. We will show you the design for a novel agent-based model of new venture creation that will demonstrate the relationship between agglomeration and action. The primary focus of this model is information exchange as the medium for these agent interactions. Our modeling and simulation study proposes to reveal interesting relationships in these perspectives, offer a foundation on which these disparate theories from economics and sociology can find common ground, and expand the use of agent-based modeling into entrepreneurship research.

  18. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE PAGES

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less

  19. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    SciTech Connect

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

  20. A framework for the use of agent based modeling to simulate ...

    EPA Pesticide Factsheets

    Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc

  1. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    SciTech Connect

    Gali, Emmanuel; Eidenbenz, Stephan; Mniszewski, Sue; Cuellar, Leticia; Teuscher, Christof

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  2. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  3. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  4. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  5. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  6. Automated multi-objective calibration of biological agent-based simulations.

    PubMed

    Read, Mark N; Alden, Kieran; Rose, Louis M; Timmis, Jon

    2016-09-01

    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate

  7. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  8. Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.

    2014-12-01

    Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.

  9. An Agent-Based Epidemic Simulation of Social Behaviors Affecting HIV Transmission among Taiwanese Homosexuals

    PubMed Central

    2015-01-01

    Computational simulations are currently used to identify epidemic dynamics, to test potential prevention and intervention strategies, and to study the effects of social behaviors on HIV transmission. The author describes an agent-based epidemic simulation model of a network of individuals who participate in high-risk sexual practices, using number of partners, condom usage, and relationship length to distinguish between high- and low-risk populations. Two new concepts—free links and fixed links—are used to indicate tendencies among individuals who either have large numbers of short-term partners or stay in long-term monogamous relationships. An attempt was made to reproduce epidemic curves of reported HIV cases among male homosexuals in Taiwan prior to using the agent-based model to determine the effects of various policies on epidemic dynamics. Results suggest that when suitable adjustments are made based on available social survey statistics, the model accurately simulates real-world behaviors on a large scale. PMID:25815047

  10. An Agent-Based Labor Market Simulation with Endogenous Skill-Demand

    NASA Astrophysics Data System (ADS)

    Gemkow, S.

    This paper considers an agent-based labor market simulation to examine the influence of skills on wages and unemployment rates. Therefore less and highly skilled workers as well as less and highly productive vacancies are implemented. The skill distribution is exogenous whereas the distribution of the less and highly productive vacancies is endogenous. The different opportunities of the skill groups on the labor market are established by skill requirements. This means that a highly productive vacancy can only be filled by a highly skilled unemployed. Different skill distributions, which can also be interpreted as skill-biased technological change, are simulated by incrementing the skill level of highly skilled persons exogenously. This simulation also provides a microeconomic foundation of the matching function often used in theoretical approaches.

  11. Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation

    SciTech Connect

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2014-01-01

    Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

  12. Physics-Based Modeling of Permeation: Simulation of Low-Volatility Agent Permeation and Aerosol Vapor Liquid Assessment Group Experiments

    DTIC Science & Technology

    2015-06-01

    PHYSICS-BASED MODELING OF PERMEATION: SIMULATION OF LOW-VOLATILITY AGENT PERMEATION AND AEROSOL VAPOR LIQUID...REPORT TYPE Final 3. DATES COVERED (From - To) Jan 2014 – Sep 2014 4. TITLE AND SUBTITLE Physics-Based Modeling of Permeation: Simulation of Low...Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: Physics-based models were developed to predict agent

  13. AN AGENT-BASED SIMULATION STUDY OF A COMPLEX ADAPTIVE COLLABORATION NETWORK

    SciTech Connect

    Ozmen, Ozgur; Smith, Jeffrey; Yilmaz, Levent

    2013-01-01

    One of the most significant problems in organizational scholarship is to discern how social collectives govern, organize, and coordinate the actions of individuals to achieve collective outcomes. The collectives are usually interpreted as complex adaptive systems (CAS). The understanding of CAS is more likely to arise with the help of computer-based simulations. In this tutorial, using agent-based modeling approach, a complex adaptive social communication network model is introduced. The objective is to present the underlying dynamics of the system in a form of computer simulation that enables analyzing the impacts of various mechanisms on network topologies and emergent behaviors. The ultimate goal is to further our understanding of the dynamics in the system and facilitate developing informed policies for decision-makers.

  14. Using an agent-based model to simulate children’s active travel to school

    PubMed Central

    2013-01-01

    Background Despite the multiple advantages of active travel to school, only a small percentage of US children and adolescents walk or bicycle to school. Intervention studies are in a relatively early stage and evidence of their effectiveness over long periods is limited. The purpose of this study was to illustrate the utility of agent-based models in exploring how various policies may influence children’s active travel to school. Methods An agent-based model was developed to simulate children’s school travel behavior within a hypothetical city. The model was used to explore the plausible implications of policies targeting two established barriers to active school travel: long distance to school and traffic safety. The percent of children who walk to school was compared for various scenarios. Results To maximize the percent of children who walk to school the school locations should be evenly distributed over space and children should be assigned to the closest school. In the case of interventions to improve traffic safety, targeting a smaller area around the school with greater intensity may be more effective than targeting a larger area with less intensity. Conclusions Despite the challenges they present, agent based models are a useful complement to other analytical strategies in studying the plausible impact of various policies on active travel to school. PMID:23705953

  15. A Scaffolding Framework to Support Learning of Emergent Phenomena Using Multi-Agent-Based Simulation Environments

    NASA Astrophysics Data System (ADS)

    Basu, Satabdi; Sengupta, Pratim; Biswas, Gautam

    2015-04-01

    Students from middle school to college have difficulties in interpreting and understanding complex systems such as ecological phenomena. Researchers have suggested that students experience difficulties in reconciling the relationships between individuals, populations, and species, as well as the interactions between organisms and their environment in the ecosystem. Multi-agent-based computational models (MABMs) can explicitly capture agents and their interactions by representing individual actors as computational objects with assigned rules. As a result, the collective aggregate-level behavior of the population dynamically emerges from simulations that generate the aggregation of these interactions. Past studies have used a variety of scaffolds to help students learn ecological phenomena. Yet, there is no theoretical framework that supports the systematic design of scaffolds to aid students' learning in MABMs. Our paper addresses this issue by proposing a comprehensive framework for the design, analysis, and evaluation of scaffolding to support students' learning of ecology in a MABM. We present a study in which middle school students used a MABM to investigate and learn about a desert ecosystem. We identify the different types of scaffolds needed to support inquiry learning activities in this simulation environment and use our theoretical framework to demonstrate the effectiveness of our scaffolds in helping students develop a deep understanding of the complex ecological behaviors represented in the simulation..

  16. Modeling and simulation of virtual human's coordination based on multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Wen, Jing-Hua; Zhang, Zu-Xuan; Zhang, Jian-Qing

    2006-10-01

    The difficulties and hotspots researched in current virtual geographic environment (VGE) are sharing space and multiusers operation, distributed coordination and group decision-making. The theories and technologies of MAS provide a brand-new environment for analysis, design and realization of distributed opening system. This paper takes cooperation among virtual human in VGE which multi-user participate in as main researched object. First we describe theory foundation truss of VGE, and present the formalization description of Multi-Agent System (MAS). Then we detailed analyze and research arithmetic of collectivity operating behavior learning of virtual human based on best held Genetic Algorithm(GA), and establish dynamics action model which Multi-Agents and object interact dynamically and colony movement strategy. Finally we design a example which shows how 3 evolutional Agents cooperate to complete the task of colony pushing column box, and design a virtual world prototype of virtual human pushing box collectively based on V-Realm Builder 2.0, moreover we make modeling and dynamic simulation with Simulink 6.

  17. Physics-based agent to simulant correlations for vapor phase mass transport.

    PubMed

    Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A

    2013-12-15

    Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.

  18. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    NASA Astrophysics Data System (ADS)

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-08-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high school students' understandings of complex systems components and whether an agent-based simulation could improve their understandings. Pretest and posttest essays were coded for changes in six components to determine whether students showed more expert thinking about the complex system of the Chesapeake Bay watershed. Results showed significant improvement for the components Emergence ( r = .26, p = .03), Order ( r = .37, p = .002), and Tradeoffs ( r = .44, p = .001). Implications include that the experiential nature of the simulation has the potential to support conceptual change for some complex systems components, presenting a promising option for complex systems instruction.

  19. Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.

    PubMed

    Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle

    2016-02-01

    This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.

  20. An agent-based simulation model to study accountable care organizations.

    PubMed

    Liu, Pai; Wu, Shinyi

    2016-03-01

    Creating accountable care organizations (ACOs) has been widely discussed as a strategy to control rapidly rising healthcare costs and improve quality of care; however, building an effective ACO is a complex process involving multiple stakeholders (payers, providers, patients) with their own interests. Also, implementation of an ACO is costly in terms of time and money. Immature design could cause safety hazards. Therefore, there is a need for analytical model-based decision-support tools that can predict the outcomes of different strategies to facilitate ACO design and implementation. In this study, an agent-based simulation model was developed to study ACOs that considers payers, healthcare providers, and patients as agents under the shared saving payment model of care for congestive heart failure (CHF), one of the most expensive causes of sometimes preventable hospitalizations. The agent-based simulation model has identified the critical determinants for the payment model design that can motivate provider behavior changes to achieve maximum financial and quality outcomes of an ACO. The results show nonlinear provider behavior change patterns corresponding to changes in payment model designs. The outcomes vary by providers with different quality or financial priorities, and are most sensitive to the cost-effectiveness of CHF interventions that an ACO implements. This study demonstrates an increasingly important method to construct a healthcare system analytics model that can help inform health policy and healthcare management decisions. The study also points out that the likely success of an ACO is interdependent with payment model design, provider characteristics, and cost and effectiveness of healthcare interventions.

  1. Modeling the Information Age Combat Model: An Agent-Based Simulation of Network Centric Operations

    NASA Technical Reports Server (NTRS)

    Deller, Sean; Rabadi, Ghaith A.; Bell, Michael I.; Bowling, Shannon R.; Tolk, Andreas

    2010-01-01

    The Information Age Combat Model (IACM) was introduced by Cares in 2005 to contribute to the development of an understanding of the influence of connectivity on force effectiveness that can eventually lead to quantitative prediction and guidelines for design and employment. The structure of the IACM makes it clear that the Perron-Frobenius Eigenvalue is a quantifiable metric with which to measure the organization of a networked force. The results of recent experiments presented in Deller, et aI., (2009) indicate that the value of the Perron-Frobenius Eigenvalue is a significant measurement of the performance of an Information Age combat force. This was accomplished through the innovative use of an agent-based simulation to model the IACM and represents an initial contribution towards a new generation of combat models that are net-centric instead of using the current platform-centric approach. This paper describes the intent, challenges, design, and initial results of this agent-based simulation model.

  2. Simulating the elimination of sleeping sickness with an agent-based model

    PubMed Central

    Grébaut, Pascal; Girardin, Killian; Fédérico, Valentine; Bousquet, François

    2016-01-01

    Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci. PMID:28008825

  3. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  4. Agent-based computer simulation and sirs: building a bridge between basic science and clinical trials.

    PubMed

    An, G

    2001-10-01

    The management of Systemic Inflammatory Response Syndrome (SIRS)/Multiple Organ Failure (MOF) remains the greatest challenge in the field of critical care. There has been uniform difficulty in translating the results of basic science research into effective therapeutic regimes. We propose that this is due in part to a failure to account for the complex, nonlinear nature of the inflammatory process of which SIRS/MOF represents a disordered state. Attempts to manipulate this process without an understanding of the dynamics of the system may potentially produce unintended consequences. Agent-Based Computer Simulation (ABCS) provides a means to synthesize the information acquired from the linear analysis of basic science into a model that preserves the complexity of the inflammatory system. We have constructed an abstracted version of the inflammatory process using an ABCS that is based at the cellular level. Despite its abstraction, the simulation produces non-linear behavior and reproduces the dynamic structure of the inflammatory response. Furthermore, adjustment of the simulation to model one of the unsuccessful initial anti-inflammatory trials of the 1990's demonstrates the adverse outcome that was observed in those clinical trials. It must be emphasized that the current model is extremely abstract and simplified. However, it is hoped that future ABCSs of sufficient sophistication eventually may provide an important bridging tool to translate basic science discoveries into clinical applications. Creating these simulations will require a large collaborative effort, and it is hoped that this paper will stimulate interest in this form of analysis.

  5. Incorporating fault tolerance in distributed agent based systems by simulating bio-computing model of stress pathways

    NASA Astrophysics Data System (ADS)

    Bansal, Arvind K.

    2006-05-01

    Bio-computing model of 'Distributed Multiple Intelligent Agents Systems' (BDMIAS) models agents as genes, a cooperating group of agents as operons - commonly regulated groups of genes, and the complex task as a set of interacting pathways such that the pathways involve multiple cooperating operons. The agents (or groups of agents) interact with each other using message passing and pattern based bindings that may reconfigure agent's function temporarily. In this paper, a technique has been described for incorporating fault tolerance in BDMIAS. The scheme is based upon simulating BDMIAS, exploiting the modeling of biological stress pathways, integration of fault avoidance, and distributed fault recovery of the crashed agents. Stress pathways are latent pathways in biological system that gets triggered very quickly, regulate the complex biological system by temporarily regulating or inactivating the undesirable pathways, and are essential to avoid catastrophic failures. Pattern based interaction between messages and agents allow multiple agents to react concurrently in response to single condition change represented by a message broadcast. The fault avoidance exploits the integration of the intelligent processing rate control using message based loop feedback and temporary reconfiguration that alters the data flow between functional modules within an agent, and may alter. The fault recovery exploits the concept of semi passive shadow agents - one on the local machine and other on the remote machine, dynamic polling of machines, logically time stamped messages to avoid message losses, and distributed archiving of volatile part of agent state on distributed machines. Various algorithms have been described.

  6. An Agent-based Model Simulation of Multiple Collaborating Mobile Ad Hoc Networks (MANET)

    DTIC Science & Technology

    2011-06-01

    RESULTS: Agent Learning Profiles Discounted Positive Reinforcement Learning Learning and Forgetting Forgetting is triggered by task conditions that...disable rational and deliberate mental models –forcing the agent to ignore (or forget) routine processes. Positive reinforcement is earned by an...deliberate behavior of agents as rational entities (model-based functions). 6.Experiment with positive reinforcement learning (with incremental gain over

  7. Evaluation of wholesale electric power market rules and financial risk management by agent-based simulations

    NASA Astrophysics Data System (ADS)

    Yu, Nanpeng

    As U.S. regional electricity markets continue to refine their market structures, designs and rules of operation in various ways, two critical issues are emerging. First, although much experience has been gained and costly and valuable lessons have been learned, there is still a lack of a systematic platform for evaluation of the impact of a new market design from both engineering and economic points of view. Second, the transition from a monopoly paradigm characterized by a guaranteed rate of return to a competitive market created various unfamiliar financial risks for various market participants, especially for the Investor Owned Utilities (IOUs) and Independent Power Producers (IPPs). This dissertation uses agent-based simulation methods to tackle the market rules evaluation and financial risk management problems. The California energy crisis in 2000-01 showed what could happen to an electricity market if it did not go through a comprehensive and rigorous testing before its implementation. Due to the complexity of the market structure, strategic interaction between the participants, and the underlying physics, it is difficult to fully evaluate the implications of potential changes to market rules. This dissertation presents a flexible and integrative method to assess market designs through agent-based simulations. Realistic simulation scenarios on a 225-bus system are constructed for evaluation of the proposed PJM-like market power mitigation rules of the California electricity market. Simulation results show that in the absence of market power mitigation, generation company (GenCo) agents facilitated by Q-learning are able to exploit the market flaws and make significantly higher profits relative to the competitive benchmark. The incorporation of PJM-like local market power mitigation rules is shown to be effective in suppressing the exercise of market power. The importance of financial risk management is exemplified by the recent financial crisis. In this

  8. Changing crops in response to climate: virtual Nang Rong, Thailand in an agent based simulation.

    PubMed

    Malanson, George P; Verdery, Ashton M; Walsh, Stephen J; Sawangdee, Yothin; Heumann, Benjamin W; McDaniel, Philip M; Frizzelle, Brian G; Williams, Nathalie E; Yao, Xiaozheng; Entwisle, Barbara; Rindfuss, Ronald R

    2014-09-01

    The effects of extended climatic variability on agricultural land use were explored for the type of system found in villages of northeastern Thailand. An agent based model developed for the Nang Rong district was used to simulate land allotted to jasmine rice, heavy rice, cassava, and sugar cane. The land use choices in the model depended on likely economic outcomes, but included elements of bounded rationality in dependence on household demography. The socioeconomic dynamics are endogenous in the system, and climate changes were added as exogenous drivers. Villages changed their agricultural effort in many different ways. Most villages reduced the amount of land under cultivation, primarily with reduction in jasmine rice, but others did not. The variation in responses to climate change indicates potential sensitivity to initial conditions and path dependence for this type of system. The differences between our virtual villages and the real villages of the region indicate effects of bounded rationality and limits on model applications.

  9. Agent-based simulation as a tool for the built environment.

    PubMed

    Gaudiano, Paolo

    2013-08-01

    There is a growing need to increase the performance of the built environment through a combination of improved design, retrofitting of existing structures, and behavioral and policy change. Increased performance includes decreasing construction and operational costs, improving efficiency, reducing energy consumption and overall carbon footprint, and increasing the health, safety, and comfort of building occupants. Data collection and analysis are central to ongoing efforts in performance improvement. The growth of sensor and monitoring technologies, coupled with the proliferation of building automation systems, is quickly leading to an explosion in the amount, quality, and format of building performance data. What is needed are methodologies for extracting viable information from these data and using the results to effect meaningful change. Furthermore, occupant behavior and attitudes must be taken into account. This paper summarizes agent-based simulation and describes its potential as an approach to support analysis, design, and performance improvements in the built environment.

  10. Changing crops in response to climate: virtual Nang Rong, Thailand in an agent based simulation

    PubMed Central

    Malanson, George P.; Verdery, Ashton M.; Walsh, Stephen J.; Sawangdee, Yothin; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Williams, Nathalie E.; Yao, Xiaozheng; Entwisle, Barbara; Rindfuss, Ronald R.

    2014-01-01

    The effects of extended climatic variability on agricultural land use were explored for the type of system found in villages of northeastern Thailand. An agent based model developed for the Nang Rong district was used to simulate land allotted to jasmine rice, heavy rice, cassava, and sugar cane. The land use choices in the model depended on likely economic outcomes, but included elements of bounded rationality in dependence on household demography. The socioeconomic dynamics are endogenous in the system, and climate changes were added as exogenous drivers. Villages changed their agricultural effort in many different ways. Most villages reduced the amount of land under cultivation, primarily with reduction in jasmine rice, but others did not. The variation in responses to climate change indicates potential sensitivity to initial conditions and path dependence for this type of system. The differences between our virtual villages and the real villages of the region indicate effects of bounded rationality and limits on model applications. PMID:25061240

  11. Agent-Based Spatiotemporal Simulation of Biomolecular Systems within the Open Source MASON Framework

    PubMed Central

    Pérez-Rodríguez, Gael; Pérez-Pérez, Martín; Glez-Peña, Daniel; Azevedo, Nuno F.; Lourenço, Anália

    2015-01-01

    Agent-based modelling is being used to represent biological systems with increasing frequency and success. This paper presents the implementation of a new tool for biomolecular reaction modelling in the open source Multiagent Simulator of Neighborhoods framework. The rationale behind this new tool is the necessity to describe interactions at the molecular level to be able to grasp emergent and meaningful biological behaviour. We are particularly interested in characterising and quantifying the various effects that facilitate biocatalysis. Enzymes may display high specificity for their substrates and this information is crucial to the engineering and optimisation of bioprocesses. Simulation results demonstrate that molecule distributions, reaction rate parameters, and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of realistic cell environments. While higher percentage of collisions with occurrence of reaction increases the affinity of the enzyme to the substrate, a faster reaction (i.e., turnover number) leads to a smaller number of time steps. Slower diffusion rates and molecular crowding (physical hurdles) decrease the collision rate of reactants, hence reducing the reaction rate, as expected. Also, the random distribution of molecules affects the results significantly. PMID:25874228

  12. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    NASA Astrophysics Data System (ADS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd2+ ions and complexity of tracking of individual atoms of Cd at the same time.

  13. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  14. Impact of urban planning on household's residential decisions: An agent-based simulation model for Vienna☆

    PubMed Central

    Gaube, Veronika; Remesch, Alexander

    2013-01-01

    Interest in assessing the sustainability of socio-ecological systems of urban areas has increased notably, with additional attention generated due to the fact that half the world's population now lives in cities. Urban areas face both a changing urban population size and increasing sustainability issues in terms of providing good socioeconomic and environmental living conditions. Urban planning has to deal with both challenges. Households play a major role by being affected by urban planning decisions on the one hand and by being responsible – among many other factors – for the environmental performance of a city (e.g. energy use). We here present an agent-based decision model referring to the city of Vienna, the capital of Austria, with a population of about 1.7 million (2.3 million within the metropolitan area, the latter being more than 25% of Austria's total population). Since the early 1990s, after decades of negative population growth, Vienna has been experiencing a steady increase in population, mainly driven by immigration. The aim of the agent-based decision model is to simulate new residential patterns of different household types based on demographic development and migration scenarios. Model results were used to assess spatial patterns of energy use caused by different household types in the four scenarios (1) conventional urban planning, (2) sustainable urban planning, (3) expensive centre and (4) no green area preference. Outcomes show that changes in preferences of households relating to the presence of nearby green areas have the most important impact on the distribution of households across the small-scaled city area. Additionally, the results demonstrate the importance of the distribution of different household types regarding spatial patterns of energy use. PMID:27667962

  15. Impact of urban planning on household's residential decisions: An agent-based simulation model for Vienna.

    PubMed

    Gaube, Veronika; Remesch, Alexander

    2013-07-01

    Interest in assessing the sustainability of socio-ecological systems of urban areas has increased notably, with additional attention generated due to the fact that half the world's population now lives in cities. Urban areas face both a changing urban population size and increasing sustainability issues in terms of providing good socioeconomic and environmental living conditions. Urban planning has to deal with both challenges. Households play a major role by being affected by urban planning decisions on the one hand and by being responsible - among many other factors - for the environmental performance of a city (e.g. energy use). We here present an agent-based decision model referring to the city of Vienna, the capital of Austria, with a population of about 1.7 million (2.3 million within the metropolitan area, the latter being more than 25% of Austria's total population). Since the early 1990s, after decades of negative population growth, Vienna has been experiencing a steady increase in population, mainly driven by immigration. The aim of the agent-based decision model is to simulate new residential patterns of different household types based on demographic development and migration scenarios. Model results were used to assess spatial patterns of energy use caused by different household types in the four scenarios (1) conventional urban planning, (2) sustainable urban planning, (3) expensive centre and (4) no green area preference. Outcomes show that changes in preferences of households relating to the presence of nearby green areas have the most important impact on the distribution of households across the small-scaled city area. Additionally, the results demonstrate the importance of the distribution of different household types regarding spatial patterns of energy use.

  16. An agent-based simulation of extirpation of Ceratitis capitata applied to invasions in California.

    PubMed

    Manoukis, Nicholas C; Hoffman, Kevin

    2014-01-01

    We present an agent-based simulation (ABS) of Ceratitis capitata ("Medfly") developed for estimating the time to extirpation of this pest in areas where quarantines and eradication treatments were immediately imposed. We use the ABS, implemented in the program MED-FOES, to study seven different outbreaks that occurred in Southern California from 2008 to 2010. Results are compared with the length of intervention and quarantine imposed by the State, based on a linear developmental model (thermal unit accumulation, or "degree-day"). MED-FOES is a useful tool for invasive species managers as it incorporates more information from the known biology of the Medfly, and includes the important feature of being demographically explicit, providing significant improvements over simple degree-day calculations. While there was general agreement between the length of quarantine by degree-day and the time to extirpation indicated by MED-FOES, the ABS suggests that the margin of safety varies among cases and that in two cases the quarantine may have been excessively long. We also examined changes in the number of individuals over time in MED-FOES and conducted a sensitivity analysis for one of the outbreaks to explore the role of various input parameters on simulation outcomes. While our implementation of the ABS in this work is motivated by C. capitata and takes extirpation as a postulate, the simulation is very flexible and can be used to study a variety of questions on the invasion biology of pest insects and methods proposed to manage or eradicate such species.

  17. Semantic Agent-Based Service Middleware and Simulation for Smart Cities.

    PubMed

    Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid

    2016-12-21

    With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design.

  18. Semantic Agent-Based Service Middleware and Simulation for Smart Cities

    PubMed Central

    Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid

    2016-01-01

    With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design. PMID:28009818

  19. Investigating the role of water in the Diffusion of Cholera using Agent-Based simulation

    NASA Astrophysics Data System (ADS)

    Augustijn, Ellen-Wien; Doldersum, Tom; Augustijn, Denie

    2014-05-01

    Traditionally, cholera was considered to be a waterborne disease. Currently we know that many other factors can contribute to the spread of this disease including human mobility and human behavior. However, the hydrological component in cholera diffusion is significant. The interplay between cholera and water includes bacteria (V. cholera) that survive in the aquatic environment, the possibility that run-off water from dumpsites carries the bacteria to surface water (rivers and lakes), and when the bacteria reach streams they can be carried downstream to infect new locations. Modelling is a very important tool to build theory on the interplay between different types of transmission mechanisms that together are responsible for the spread of Cholera. Agent-based simulation models are very suitable to incorporate behavior at individual level and to reproduce emergence. However, it is more difficult to incorporate the hydrological components in this type of model. In this research we present the hydrological component of an Agent-Based Cholera model developed to study a Cholera epidemic in Kumasi (Ghana) in 2005. The model was calibrated on the relative contribution of each community to the distributed pattern of cholera rather than the absolute number of incidences. Analysis of the results shows that water plays an important role in the diffusion of cholera: 75% of the cholera cases were infected via river water that was contaminated by runoff from the dumpsites. To initiate infections upstream, the probability of environment-to-human transmission seemed to be overestimated compared to what may be expected from literature. Scenario analyses show that there is a strong relation between the epidemic curve and the rainfall. Removing dumpsites that are situated close to the river resulted in a strong decrease in the number of cholera cases. Results are sensitive to the scheduling of the daily activities and the survival time of the cholera bacteria.

  20. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models

    SciTech Connect

    Paul M. Torrens; Atsushi Nara; Xun Li; Haojie Zhu; William A. Griffin; Scott B. Brown

    2012-01-01

    Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be 'good enough' for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.

  1. Can human-like Bots control collective mood: agent-based simulations of online chats

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Šuvakov, Milovan

    2013-10-01

    Using an agent-based modeling approach, in this paper, we study self-organized dynamics of interacting agents in the presence of chat Bots. Different Bots with tunable ‘human-like’ attributes, which exchange emotional messages with agents, are considered, and the collective emotional behavior of agents is quantitatively analyzed. In particular, using detrended fractal analysis we determine persistent fluctuations and temporal correlations in time series of agent activity and statistics of avalanches carrying emotional messages of agents when Bots favoring positive/negative affects are active. We determine the impact of Bots and identify parameters that can modulate that impact. Our analysis suggests that, by these measures, the emotional Bots induce collective emotion among interacting agents by suitably altering the fractal characteristics of the underlying stochastic process. Positive emotion Bots are slightly more effective than negative emotion Bots. Moreover, Bots which periodically alternate between positive and negative emotion can enhance fluctuations in the system, leading to avalanches of agent messages that are reminiscent of self-organized critical states.

  2. An Agent-Based Simulation for Investigating the Impact of Stereotypes on Task-Oriented Group Formation

    NASA Astrophysics Data System (ADS)

    Maghami, Mahsa; Sukthankar, Gita

    In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.

  3. Deriving effective vaccine allocation strategies for pandemic influenza: Comparison of an agent-based simulation and a compartmental model

    PubMed Central

    Dalgıç, Özden O.; Özaltın, Osman Y.; Ciccotelli, William A.; Erenay, Fatih S.

    2017-01-01

    Individuals are prioritized based on their risk profiles when allocating limited vaccine stocks during an influenza pandemic. Computationally expensive but realistic agent-based simulations and fast but stylized compartmental models are typically used to derive effective vaccine allocation strategies. A detailed comparison of these two approaches, however, is often omitted. We derive age-specific vaccine allocation strategies to mitigate a pandemic influenza outbreak in Seattle by applying derivative-free optimization to an agent-based simulation and also to a compartmental model. We compare the strategies derived by these two approaches under various infection aggressiveness and vaccine coverage scenarios. We observe that both approaches primarily vaccinate school children, however they may allocate the remaining vaccines in different ways. The vaccine allocation strategies derived by using the agent-based simulation are associated with up to 70% decrease in total cost and 34% reduction in the number of infections compared to the strategies derived by using the compartmental model. Nevertheless, the latter approach may still be competitive for very low and/or very high infection aggressiveness. Our results provide insights about potential differences between the vaccine allocation strategies derived by using agent-based simulations and those derived by using compartmental models. PMID:28222123

  4. Biophysically realistic filament bending dynamics in agent-based biological simulation.

    PubMed

    Alberts, Jonathan B

    2009-01-01

    An appealing tool for study of the complex biological behaviors that can emerge from networks of simple molecular interactions is an agent-based, computational simulation that explicitly tracks small-scale local interactions--following thousands to millions of states through time. For many critical cell processes (e.g. cytokinetic furrow specification, nuclear centration, cytokinesis), the flexible nature of cytoskeletal filaments is likely to be critical. Any computer model that hopes to explain the complex emergent behaviors in these processes therefore needs to encode filament flexibility in a realistic manner. Here I present a numerically convenient and biophysically realistic method for modeling cytoskeletal filament flexibility in silico. Each cytoskeletal filament is represented by a series of rigid segments linked end-to-end in series with a variable attachment point for the translational elastic element. This connection scheme allows an empirically tuning, for a wide range of segment sizes, viscosities, and time-steps, that endows any filament species with the experimentally observed (or theoretically expected) static force deflection, relaxation time-constant, and thermal writhing motions. I additionally employ a unique pair of elastic elements--one representing the axial and the other the bending rigidity- that formulate the restoring force in terms of single time-step constraint resolution. This method is highly local -adjacent rigid segments of a filament only interact with one another through constraint forces-and is thus well-suited to simulations in which arbitrary additional forces (e.g. those representing interactions of a filament with other bodies or cross-links / entanglements between filaments) may be present. Implementation in code is straightforward; Java source code is available at www.celldynamics.org.

  5. Agent-based modeling of the spread of influenza-like illness in an emergency department: a simulation study.

    PubMed

    Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D

    2011-11-01

    The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.

  6. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  7. A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant.

    PubMed

    Wu, Zhisheng; Wu, Xuanjun; Yang, Yuhui; Wen, Ting-bin; Han, Shoufa

    2012-10-15

    N-(rhodamine B)-deoxylactam-5-amino-1-pentanol (dRB-APOH) was designed and prepared as the chromo-fluorogenic sensor for detection of a nerve agent simulant via analyte triggered tandem phosphorylation and opening of the intramolecular deoxylactam. The successful detection of diethyl chlorophosphate suggests the utility of rhodamine-deoxylactams as the chromo-fluorogenic signal reporting platform for design of sensors targeting reactive chemical species via various chemistries.

  8. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  9. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  10. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    SciTech Connect

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease states in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.

  11. Collaborative Multi-Agent Based Simulations: Stakeholder-Focused Innovation in Water Resources Management and Decision-Support Modeling

    NASA Astrophysics Data System (ADS)

    Kock, B. E.

    2006-12-01

    The combined use of multi-agent based simulations and collaborative modeling approaches is emerging as a highly effective tool for representing complex coupled social-biophysical water resource systems. A collaboratively-designed, multi-agent based simulation can be used both as a decision-support tool and as a didactic method for improving stakeholder understanding and engagement with water resources policymaking and management. Major technical and non-technical obstacles remain to the efficient and effective development of multi-agent models of human society, to integrating these models with GIS and other numerical models, and to building a process for engaging stakeholders with model design, implementation and use. It is proposed here to tackle some of these obstacles through a collaborative multi-agent based simulation process framework, intended for practical use in resolving disputes and environmental challenges over sustainable irrigated agriculture in the Western United States. A practical implementation of this framework will be conducted in collaboration with a diverse stakeholder group representing farmers and local, state and federal water managers. Through the use of simulation gaming, interviewing and computer-based knowledge elicitation, a multi-agent model representing local and regional social dynamics will be developed to support the acceptable and sustainable implementation of management alternatives for reducing regional problems of salinization and high selenium concentrations in soils and irrigation water. The development of a socially and scientifically credible simulation platform in this setting can make a significant contribution to ensuring the non-adversarial use of high quality science, enhance the engagement of stakeholders with policymaking, and help meet the challenges of integrating dynamic models of human society with more traditional biophysical systems models.

  12. Linking Bayesian and Agent-Based Models to Simulate Complex Social-Ecological Systems in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Pope, A.; Gimblett, R.

    2013-12-01

    Interdependencies of ecologic, hydrologic, and social systems challenge traditional approaches to natural resource management in semi-arid regions. As a complex social-ecological system, water demands in the Sonoran Desert from agricultural and urban users often conflicts with water needs for its ecologically-significant riparian corridors. To explore this system, we developed an agent-based model to simulate complex feedbacks between human decisions and environmental conditions. Cognitive mapping in conjunction with stakeholder participation produced a Bayesian model of conditional probabilities of local human decision-making processes resulting to changes in water demand. Probabilities created in the Bayesian model were incorporated into the agent-based model, so that each agent had a unique probability to make a positive decision based on its perceived environment at each point in time and space. By using a Bayesian approach, uncertainty in the human decision-making process could be incorporated. The spatially-explicit agent-based model simulated changes in depth-to-groundwater by well pumping based on an agent's water demand. Depth-to-groundwater was then used as an indicator of unique vegetation guilds within the riparian corridor. Each vegetation guild provides varying levels of ecosystem services, the changes of which, along with changes in depth-to-groundwater, feedback to influence agent behavior. Using this modeling approach allowed us to examine resilience of semi-arid riparian corridors and agent behavior under various scenarios. The insight provided by the model contributes to understanding how specific interventions may alter the complex social-ecological system in the future.

  13. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    PubMed

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.

  14. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    PubMed Central

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  15. Agent-based modeling to simulate contamination events and evaluate threat management strategies in water distribution systems.

    PubMed

    Zechman, Emily M

    2011-05-01

    In the event of contamination of a water distribution system, decisions must be made to mitigate the impact of the contamination and to protect public health. Making threat management decisions while a contaminant spreads through the network is a dynamic and interactive process. Response actions taken by the utility managers and water consumption choices made by the consumers will affect the hydraulics, and thus the spread of the contaminant plume, in the network. A modeling framework that allows the simulation of a contamination event under the effects of actions taken by utility managers and consumers will be a useful tool for the analysis of alternative threat mitigation and management strategies. This article presents a multiagent modeling framework that combines agent-based, mechanistic, and dynamic methods. Agents select actions based on a set of rules that represent an individual's autonomy, goal-based desires, and reaction to the environment and the actions of other agents. Consumer behaviors including ingestion, mobility, reduction of water demands, and word-of-mouth communication are simulated. Management strategies are evaluated, including opening hydrants to flush the contaminant and broadcasts. As actions taken by consumer agents and utility operators affect demands and flows in the system, the mechanistic model is updated. Management strategies are evaluated based on the exposure of the population to the contaminant. The framework is designed to consider the typical issues involved in water distribution threat management and provides valuable analysis of threat containment strategies for water distribution system contamination events.

  16. Simulating Land-Use Change using an Agent-Based Land Transaction Model

    NASA Astrophysics Data System (ADS)

    Bakker, M. M.; van Dijk, J.; Alam, S. J.

    2013-12-01

    In the densely populated cultural landscapes of Europe, the vast majority of all land is owned by private parties, be it farmers (the majority), nature organizations, property developers, or citizens. Therewith, the vast majority of all land-use change arises from land transactions between different owner types: successful farms expand at the expense of less successful farms, and meanwhile property developers, individual citizens, and nature organizations also actively purchase land. These land transactions are driven by specific properties of the land, by governmental policies, and by the (economic) motives of both buyers and sellers. Climate/global change can affect these drivers at various scales: at the local scale changes in hydrology can make certain land less or more desirable; at the global scale the agricultural markets will affect motives of farmers to buy or sell land; while at intermediate (e.g. provincial) scales property developers and nature conservationists may be encouraged or discouraged to purchase land. The cumulative result of all these transactions becomes manifest in changing land-use patterns, and consequent environmental responses. Within the project Climate Adaptation for Rural Areas an agent-based land-use model was developed that explores the future response of individual land users to climate change, within the context of wider global change (i.e. policy and market change). It simulates the exchange of land among farmers and between farmers and nature organizations and property developers, for a specific case study area in the east of the Netherlands. Results show that local impacts of climate change can result in a relative stagnation in the land market in waterlogged areas. Furthermore, the increase in dairying at the expense of arable cultivation - as has been observed in the area in the past - is slowing down as arable produce shows a favourable trend in the agricultural world market. Furthermore, budgets for nature managers are

  17. An Empirical Agent-Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework.

    PubMed

    Kandiah, Venu; Binder, Andrew R; Berglund, Emily Z

    2017-01-11

    Water reuse can serve as a sustainable alternative water source for urban areas. However, the successful implementation of large-scale water reuse projects depends on community acceptance. Because of the negative perceptions that are traditionally associated with reclaimed water, water reuse is often not considered in the development of urban water management plans. This study develops a simulation model for understanding community opinion dynamics surrounding the issue of water reuse, and how individual perceptions evolve within that context, which can help in the planning and decision-making process. Based on the social amplification of risk framework, our agent-based model simulates consumer perceptions, discussion patterns, and their adoption or rejection of water reuse. The model is based on the "risk publics" model, an empirical approach that uses the concept of belief clusters to explain the adoption of new technology. Each household is represented as an agent, and parameters that define their behavior and attributes are defined from survey data. Community-level parameters-including social groups, relationships, and communication variables, also from survey data-are encoded to simulate the social processes that influence community opinion. The model demonstrates its capabilities to simulate opinion dynamics and consumer adoption of water reuse. In addition, based on empirical data, the model is applied to investigate water reuse behavior in different regions of the United States. Importantly, our results reveal that public opinion dynamics emerge differently based on membership in opinion clusters, frequency of discussion, and the structure of social networks.

  18. Autonomous Agent-Based Simulation of an AEGIS Cruiser Combat Information Center Performing Battle Group Air Defense Commander Operations

    DTIC Science & Technology

    2003-03-01

    objects from O. • Operations with the task of representing the application of these operations and the reaction of the world to this attempt at... clickable ) (4) Simulation Interface: Tactical Display Contact Icons. • Contact Attributes (specific to the contact) 52 (5...Icon (6) Simulation Interface: CIC Agent Display • CIC Agent Icons ( clickable ) • CIC Equipment Icons ( clickable ) (7) Simulation Interface

  19. Gas sensor based on nano ZSM-5 zeolite films for the nerve agent simulant dimethylmethylphosphonate detection

    NASA Astrophysics Data System (ADS)

    Xie, Haifen; Ting, Yu; Sun, Xiaoxiang; Jia, Zhou; Huang, Yiping

    2004-12-01

    The piezoelectric sensor device coated with nanosize ZSM-5 zeolite films has beem fabricated. The Nerve agent simulant Dimethylmethylphosphonate has been tested with this piezoelectric sensor devices. The frequency shifts to time at 1 ppm, 5ppm and 20ppm DMMP are examined respectively. The minimum detection concentration of 1ppm DMMP has been obtained in the N2 at 293K. 1 ppm is lower than the EC50 concentration value (where EC50 is the airborne concentration sufficient to induce severe effects in 50% of those exposed for 30 min). The frequency sensitivity was found to be about 60HZ / ppm. The effect of acetone on the ZSM-5 zeolite film was also investigated for the selectivity test. Using principle component analysis (PCA), we can qualify and quantify these testing gases.

  20. The effects of social interactions on fertility decline in nineteenth-century France: an agent-based simulation experiment.

    PubMed

    González-Bailón, Sandra; Murphy, Tommy E

    2013-07-01

    We built an agent-based simulation, incorporating geographic and demographic data from nineteenth-century France, to study the role of social interactions in fertility decisions. The simulation made experimentation possible in a context where other empirical strategies were precluded by a lack of data. We evaluated how different decision rules, with and without interdependent decision-making, caused variations in population growth and fertility levels. The analyses show that incorporating social influence into the model allows empirically observed behaviour to be mimicked, especially at a national level. These findings shed light on individual-level mechanisms through which the French demographic transition may have developed.

  1. Multi-Agent Based Simulation of Optimal Urban Land Use Allocation in the Middle Reaches of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Huang, W.; Jin, W.; Li, S.

    2016-06-01

    The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.

  2. The application of dynamic micro-simulation model of urban planning based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Xu, J.; Shiming, W.

    2012-12-01

    The dynamic micro-simulation model of urban planning based on multi-agent, is mainly used to measure and predict the impact of the policy on urban land use, employment opportunities and the price of real estate. The representation of the supply and characteristics of land and of real estate development, at a spatial scale. The use of real estate markets as a central organizing focus, with consumer choices and supplier choices explicitly represented, as well as the resulting effects on real estate prices. The relationship of agents to real estate tied to specific locations provided a clean accounting of space and its use. Finally, it will produce a map composited with the dynamic demographic distribution and the dynamic employment transfer by the geographic spatial data. With the data produced by the urban micro-simulation model, it can provide the favorable forecast reference for the scientific urban land use.

  3. Impact of Different Policies on Unhealthy Dietary Behaviors in an Urban Adult Population: An Agent-Based Simulation Model

    PubMed Central

    Giabbanelli, Philippe J.; Arah, Onyebuchi A.; Zimmerman, Frederick J.

    2014-01-01

    Objectives. Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. Methods. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Results. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Conclusions. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems. PMID:24832414

  4. The contribution of agent-based simulations to conservation management on a Natura 2000 site.

    PubMed

    Dupont, Hélène; Gourmelon, Françoise; Rouan, Mathias; Le Viol, Isabelle; Kerbiriou, Christian

    2016-03-01

    The conservation of biodiversity today must include the participation and support of local stakeholders. Natura 2000 can be considered as a conservation system that, in its application in most EU countries, relies on the participation of local stakeholders. Our study proposes a scientific method for participatory modelling, with the aim of contributing to the conservation management of habitats and species at a Natura 2000 site (Crozon Peninsula, Bretagne, France) that is representative of in landuse changes in coastal areas. We make use of companion modelling and its associated tools (scenario-planning, GIS, multi-agent modelling and simulations) to consider possible futures through the co-construction of management scenarios and the understanding of their consequences on different indicators of biodiversity status (habitats, avifauna, flora). The maintenance of human activities as they have been carried out since the creation of the Natura 2000s zone allows the biodiversity values to remain stable. Extensive agricultural activities have been shown to be essential to this maintenance, whereas management sustained by the multiplication of conservation actions brings about variable results according to the indicators. None of the scenarios has a positive incidence on the set of indicators. However, an understanding of the modelling system and the results of the simulations allow for the refining of the selection of conservation actions in relation to the species to be preserved.

  5. Applying GIS and high performance agent-based simulation for managing an Old World Screwworm fly invasion of Australia.

    PubMed

    Welch, M C; Kwan, P W; Sajeev, A S M

    2014-10-01

    Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised.

  6. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks.

    PubMed

    Plonka, Anna M; Wang, Qi; Gordon, Wesley O; Balboa, Alex; Troya, Diego; Guo, Weiwei; Sharp, Conor H; Senanayake, Sanjaya D; Morris, John R; Hill, Craig L; Frenkel, Anatoly I

    2017-01-18

    Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.

  7. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  8. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    SciTech Connect

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; Balboa, Alex; Troya, Diego; Guo, Weiwei; Sharp, Conor H.; Senanayake, Sanjaya D.; Morris, John R.; Hill, Craig L.; Frenkel, Anatoly I.

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.

  9. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2016-01-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed. PMID:27547508

  10. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department

    PubMed Central

    Kittipittayakorn, Cholada

    2016-01-01

    Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries' healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES) and agent-based simulation (ABS) to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department. PMID:27195606

  11. On-lattice agent-based simulation of populations of cells within the open-source Chaste framework.

    PubMed

    Figueredo, Grazziela P; Joshi, Tanvi V; Osborne, James M; Byrne, Helen M; Owen, Markus R

    2013-04-06

    Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction-diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction-diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the 'what if' scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system.

  12. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2017-04-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  13. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2016-11-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  14. An agent-based simulation model of patient choice of health care providers in accountable care organizations.

    PubMed

    Alibrahim, Abdullah; Wu, Shinyi

    2016-10-04

    Accountable care organizations (ACO) in the United States show promise in controlling health care costs while preserving patients' choice of providers. Understanding the effects of patient choice is critical in novel payment and delivery models like ACO that depend on continuity of care and accountability. The financial, utilization, and behavioral implications associated with a patient's decision to forego local health care providers for more distant ones to access higher quality care remain unknown. To study this question, we used an agent-based simulation model of a health care market composed of providers able to form ACO serving patients and embedded it in a conditional logit decision model to examine patients capable of choosing their care providers. This simulation focuses on Medicare beneficiaries and their congestive heart failure (CHF) outcomes. We place the patient agents in an ACO delivery system model in which provider agents decide if they remain in an ACO and perform a quality improving CHF disease management intervention. Illustrative results show that allowing patients to choose their providers reduces the yearly payment per CHF patient by $320, reduces mortality rates by 0.12 percentage points and hospitalization rates by 0.44 percentage points, and marginally increases provider participation in ACO. This study demonstrates a model capable of quantifying the effects of patient choice in a theoretical ACO system and provides a potential tool for policymakers to understand implications of patient choice and assess potential policy controls.

  15. A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP.

    PubMed

    Mahapatra, Ajit Kumar; Maiti, Kalipada; Manna, Saikat Kumar; Maji, Rajkishor; Mondal, Sanchita; Das Mukhopadhyay, Chitrangada; Sahoo, Prithidipa; Mandal, Debasish

    2015-06-14

    The first ratiometric fluorescent probe for the detection of a nerve agent simulant was developed based on tandem phosphorylation and intramolecular cyclization, by which high sensitivity as well as large emission shift could be achieved.

  16. Modelling Temporal Schedule of Urban Trains Using Agent-Based Simulation and NSGA2-BASED Multiobjective Optimization Approaches

    NASA Astrophysics Data System (ADS)

    Sahelgozin, M.; Alimohammadi, A.

    2015-12-01

    Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  17. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    NASA Astrophysics Data System (ADS)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  18. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  19. Agent-Based Simulations of Malaria Transmissions with Applications to a Study Site in Thailand

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Zollner, Gabriela E.; Coleman, Russell E.

    2006-01-01

    The dynamics of malaria transmission are driven by environmental, biotic and socioeconomic factors. Because of the geographic dependency of these factors and the complex interactions among them, it is difficult to generalize the key factors that perpetuate or intensify malaria transmission. Methods: Discrete event simulations were used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. Meteorological and environmental parameters may be derived from satellite data. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results were compared with mosquito vector and human malaria data acquired over 4.5 years (June 1999 - January 2004) in Kong Mong Tha, a remote village in Kanchanaburi Province, western Thailand. Results: Three years of transmissions of vivax and falciparum malaria were simulated for a hypothetical hamlet with approximately 1/7 of the study site population. The model generated results for a number of scenarios, including applications of larvicide and insecticide, asymptomatic cases receiving or not receiving treatment, blocking malaria transmission in mosquito vectors, and increasing the density of farm (host) animals in the hamlet. Transmission characteristics and trends in the simulated results are comparable to actual data collected at the study site.

  20. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies.

    PubMed

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M; Zamir, Mair

    2017-03-10

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.

  1. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    PubMed Central

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair

    2017-01-01

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445

  2. A Parallel Sliding Region Algorithm to Make Agent-Based Modeling Possible for a Large-Scale Simulation: Modeling Hepatitis C Epidemics in Canada.

    PubMed

    Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla

    2016-11-01

    Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.

  3. Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate

    PubMed Central

    Zhang, Le; Strouthos, Costas G.; Wang, Zhihui; Deisboeck, Thomas S.

    2008-01-01

    We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells’ phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model’s biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell ‘search precisions’. The in silico results show that microscopic tumor heterogeneity can impact the tumor system’s multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed. PMID:20047002

  4. Agent Based Computing Machine

    DTIC Science & Technology

    2005-12-09

    coordinates as in cellular automata systems. But using biology as a model suggests that the most general systems must provide for partial, but constrained...17. SECURITY CLASSIFICATION OF 118. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRA REPORT THIS PAGE ABSTRACT...system called an "agent based computing" machine (ABC Machine). The ABC Machine is motivated by cellular biochemistry and it is based upon a concept

  5. An agent-based model to simulate tsetse fly distribution and control techniques: a case study in Nguruman, Kenya

    PubMed Central

    Lin, Shengpan; DeVisser, Mark H.; Messina, Joseph P.

    2015-01-01

    Background African trypanosomiasis, also known as “sleeping sickness” in humans and “nagana” in livestock is an important vector-borne disease in Sub-Saharan Africa. Control of trypanosomiasis has focused on eliminating the vector, the tsetse fly (Glossina, spp.). Effective tsetse fly control planning requires models to predict tsetse population and distribution changes over time and space. Traditional planning models have used statistical tools to predict tsetse distributions and have been hindered by limited field survey data. Methodology/Results We developed an Agent-Based Model (ABM) to provide timing and location information for tsetse fly control without presence/absence training data. The model is driven by daily remotely-sensed environment data. The model provides a flexible tool linking environmental changes with individual biology to analyze tsetse control methods such as aerial insecticide spraying, wild animal control, releasing irradiated sterile tsetse males, and land use and cover modification. Significance This is a bottom-up process-based model with freely available data as inputs that can be easily transferred to a new area. The tsetse population simulation more closely approximates real conditions than those using traditional statistical models making it a useful tool in tsetse fly control planning. PMID:26309347

  6. Multiobjective Decision Making Policies and Coordination Mechanisms in Hierarchical Organizations: Results of an Agent-Based Simulation

    PubMed Central

    2014-01-01

    This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926

  7. Agent based simulation on the process of human flesh search-From perspective of knowledge and emotion

    NASA Astrophysics Data System (ADS)

    Zhu, Hou; Hu, Bin

    2017-03-01

    Human flesh search as a new net crowed behavior, on the one hand can help us to find some special information, on the other hand may lead to privacy leaking and offending human right. In order to study the mechanism of human flesh search, this paper proposes a simulation model based on agent-based model and complex networks. The computational experiments show some useful results. Discovered information quantity and involved personal ratio are highly correlated, and most of net citizens will take part in the human flesh search or will not take part in the human flesh search. Knowledge quantity does not influence involved personal ratio, but influences whether HFS can find out the target human. When the knowledge concentrates on hub nodes, the discovered information quantity is either perfect or almost zero. Emotion of net citizens influences both discovered information quantity and involved personal ratio. Concretely, when net citizens are calm to face the search topic, it will be hardly to find out the target; But when net citizens are agitated, the target will be found out easily.

  8. Modeling the 2014 Ebola Virus Epidemic - Agent-Based Simulations, Temporal Analysis and Future Predictions for Liberia and Sierra Leone.

    PubMed

    Siettos, Constantinos; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2015-03-09

    We developed an agent-based model to investigate the epidemic dynamics of Ebola virus disease (EVD) in Liberia and Sierra Leone from May 27 to December 21, 2014. The dynamics of the agent-based simulator evolve on small-world transmission networks of sizes equal to the population of each country, with adjustable densities to account for the effects of public health intervention policies and individual behavioral responses to the evolving epidemic. Based on time series of the official case counts from the World Health Organization (WHO), we provide estimates for key epidemiological variables by employing the so-called Equation-Free approach. The underlying transmission networks were characterized by rather random structures in the two countries with densities decreasing by ~19% from the early (May 27-early August) to the last period (mid October-December 21). Our estimates for the values of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate, are very close to the ones reported by the WHO Ebola response team during the early period of the epidemic (until September 14) that were calculated based on clinical data. Specifically, regarding the effective reproductive number Re, our analysis suggests that until mid October, Re was above 2.3 in both countries; from mid October to December 21, Re dropped well below unity in Liberia, indicating a saturation of the epidemic, while in Sierra Leone it was around 1.9, indicating an ongoing epidemic. Accordingly, a ten-week projection from December 21 estimated that the epidemic will fade out in Liberia in early March; in contrast, our results flashed a note of caution for Sierra Leone since the cumulative number of cases could reach as high as 18,000, and the number of deaths might exceed 5,000, by early March 2015. However, by processing the reported data of the very last period (December 21, 2014-January 18, 2015), we obtained more optimistic estimates indicative of a remission of

  9. Agent Frameworks for Discrete Event Social Simulations

    DTIC Science & Technology

    2010-03-01

    of a general modeling approach to social simulation that embeds a multi - agent system within a DES framework, and propose several reusable agent... agent system to simulate changes in the beliefs, values, and interests (BVIs) of large social groups (Alt, Jackson, Hudak, & Steven Lieberman, 2010...to events from A. 2.3 Cultural Geography Model The Cultural Geography (CG) Model is an implementation of a DESS that uses an embedded multi

  10. Rural-urban migration including formal and informal workers in the urban sector: an agent-based numerical simulation study

    NASA Astrophysics Data System (ADS)

    Branco, Nilton; Oliveira, Tharnier; Silveira, Jaylson

    2012-02-01

    The goal of this work is to study rural-urban migration in the early stages of industrialization. We use an agent-based model and take into account the existence of informal and formal workers on the urban sector and possible migration movements, dependent on the agents' social and private utilities. Our agents are place on vertices of a square lattice, such that each vertex has only one agent. Rural, urban informal and urban formal workers are represented by different states of a three-state Ising model. At every step, a fraction a of the agents may change sectors or migrate. The total utility of a given agent is then calculated and compared to a random utility, in order to check if this agent turns into an actual migrant or changes sector. The dynamics is carried out until an equilibrium state is reached and equilibrium variables are then calculated and compared to available data. We find that a generalized Harris-Todaro condition is satisfied [1] on these equilibrium regimes, i.e, the ratio between expected wages between any pair of sectors reach a constant value. [4pt] [1] J. J. Silveira, A. L. Esp'indola and T. J. Penna, Physica A, 364, 445 (2006).

  11. Autonomous-Agent Based Simulation of Anti- Submarine Warfare Operations with the Goal of Protecting a High Value Unit

    DTIC Science & Technology

    2004-03-01

    Multi Agent System (MAS) technique. The simulation interface is a Horizontal Display Center (HDC) which is very similar to a MEKQ2OO class Frigate Combat Information Center’s (CIC) HDC. The program uses Extensible Markup Language (XML) files for reading data for program scenarios; parameters are initialized before each run time begins. The simulation also provides all the output data at the end of run time for analysis purposes. The program user’s goal, and the purpose of the program, is to decrease the number of successful attacks against surface

  12. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  13. Computational Spectrum of Agent Model Simulation

    SciTech Connect

    Perumalla, Kalyan S

    2010-01-01

    The study of human social behavioral systems is finding renewed interest in military, homeland security and other applications. Simulation is the most generally applied approach to studying complex scenarios in such systems. Here, we outline some of the important considerations that underlie the computational aspects of simulation-based study of human social systems. The fundamental imprecision underlying questions and answers in social science makes it necessary to carefully distinguish among different simulation problem classes and to identify the most pertinent set of computational dimensions associated with those classes. We identify a few such classes and present their computational implications. The focus is then shifted to the most challenging combinations in the computational spectrum, namely, large-scale entity counts at moderate to high levels of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases are outlined. A case study of large-scale agent simulation is provided in simulating large numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent computational results are identified that highlight the potential of modern high-end computing platforms to push the envelope with respect to speed, scale and fidelity of social system simulations. Finally, the problem of shielding the modeler or domain expert from the complex computational aspects is discussed and a few potential solution approaches are identified.

  14. Multi-agent Simulation about Urban Dynamics Based on a Hypothetical Relationship between Individuals' Travel Behavior and Residential Choice Behavior

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Takahashi, Yusuke

    In this paper, we proposed a simple urban model including individuals' travel behavior and residential choice behavior. Multi-agent simulation framework is described. We performed several experiments to evaluate political measures which will solve problems about motorization. As a result, drastic mobility management scheme increased the number of travelers using a train, and the distribution of residences became compact. However, it also increased many agents' total costs of living because of high rent and several kinds of cost including time cost and fatigue cost to reach a station. On the other hand, raising gas price made CO2 emission less and kept total cost of living lower than the drastic mobility management measure. This suggests that to have people use train or bus by changing their attitude might be socially more expensive than to make people chose whether they use car or not under the condition that gas price is raised.

  15. Simulating the time series of a selected gene expression profile in an agent-based tumor model

    NASA Astrophysics Data System (ADS)

    Mansury, Yuri; Deisboeck, Thomas S.

    2004-09-01

    To elucidate the role of environmental conditions in molecular-level dynamics and to study their impact on macroscopic brain tumor growth patterns, the expression of the genes Tenascin C and PCNA in a 2D agent-based model for the migratory trait is calibrated using experimental data from the literature, while the expression of these genes for the proliferative trait is obtained as the model output. Numerical results confirm that the gene expression of Tenascin C is indeed consistently higher in the migratory glioma cell phenotype and show that the expression of PCNA is consistently higher among proliferating tumor cells. Intriguingly, the time series of the tumor cells’ gene expression exhibit a sudden change in behavior during the invasion of the tumor into a nutrient-abundant region, showing a robust positive correlation between the expression of Tenascin C and the tumor’s diameter, yet a strong negative correlation between the expression of PCNA and the diameter. These molecular-level dynamics correspond to the emergence of a structural asymmetry in the form of a bulging tumor rim in the nutrient-abundant region. The simulated time series thus supports the critical role of the migratory cell phenotype during both the tumor system’s overall macroscopic expansion and the evolvement of regional growth patterns, particularly in the later stages. Furthermore, detrended fluctuation analysis (DFA) suggests that for prediction purposes, the simulated gene expression profiles of Tenascin C and PCNA that were determined separately for the migrating and proliferating phenotypes exhibit lesser predictability than those of the phenotypic mixture combining all viable tumor cells typically found in clinical biopsies. Finally, partitioning the tumor into distinct geographic regions of interest (ROI) reveals that the gene expression profile of tumor cells in the quadrant close to the nutrient-abundant region is representative for the entire tumor whereas the expression

  16. An Economic Analysis of Strategies to Control Clostridium Difficile Transmission and Infection Using an Agent-Based Simulation Model

    PubMed Central

    Nelson, Richard E.; Jones, Makoto; Leecaster, Molly; Samore, Matthew H.; Ray, William; Huttner, Angela; Huttner, Benedikt; Khader, Karim; Stevens, Vanessa W.; Gerding, Dale; Schweizer, Marin L.; Rubin, Michael A.

    2016-01-01

    Background A number of strategies exist to reduce Clostridium difficile (C. difficile) transmission. We conducted an economic evaluation of “bundling” these strategies together. Methods We constructed an agent-based computer simulation of nosocomial C. difficile transmission and infection in a hospital setting. This model included the following components: interactions between patients and health care workers; room contamination via C. difficile shedding; C. difficile hand carriage and removal via hand hygiene; patient acquisition of C. difficile via contact with contaminated rooms or health care workers; and patient antimicrobial use. Six interventions were introduced alone and "bundled" together: (a) aggressive C. difficile testing; (b) empiric isolation and treatment of symptomatic patients; (c) improved adherence to hand hygiene and (d) contact precautions; (e) improved use of soap and water for hand hygiene; and (f) improved environmental cleaning. Our analysis compared these interventions using values representing 3 different scenarios: (1) base-case (BASE) values that reflect typical hospital practice, (2) intervention (INT) values that represent implementation of hospital-wide efforts to reduce C. diff transmission, and (3) optimal (OPT) values representing the highest expected results from strong adherence to the interventions. Cost parameters for each intervention were obtained from published literature. We performed our analyses assuming low, normal, and high C. difficile importation prevalence and transmissibility of C. difficile. Results INT levels of the “bundled” intervention were cost-effective at a willingness-to-pay threshold of $100,000/quality-adjusted life-year in all importation prevalence and transmissibility scenarios. OPT levels of intervention were cost-effective for normal and high importation prevalence and transmissibility scenarios. When analyzed separately, hand hygiene compliance, environmental decontamination, and empiric

  17. Use of an agent-based simulation model to evaluate a mobile-based system for supporting emergency evacuation decision making.

    PubMed

    Tian, Yu; Zhou, Tian-Shu; Yao, Qin; Zhang, Mao; Li, Jing-Song

    2014-12-01

    Recently, mass casualty incidents (MCIs) have been occurring frequently and have gained international attention. There is an urgent need for scientifically proven and effective emergency responses to MCIs, particularly as the severity of incidents is continuously increasing. The emergency response to MCIs is a multi-dimensional and multi-participant dynamic process that changes in real-time. The evacuation decisions that assign casualties to different hospitals in a region are very important and impact both the results of emergency treatment and the efficiency of medical resource utilization. Previously, decisions related to casualty evacuation were made by an incident commander with emergency experience and in accordance with macro emergency guidelines. There are few decision-supporting tools available to reduce the difficulty and psychological pressure associated with the evacuation decisions an incident commander must make. In this study, we have designed a mobile-based system to collect medical and temporal data produced during an emergency response to an MCI. Using this information, our system's decision-making model can provide personal evacuation suggestions that improve the overall outcome of an emergency response. The effectiveness of our system in reducing overall mortality has been validated by an agent-based simulation model established to simulate an emergency response to an MCI.

  18. Agent-Based Modeling and Simulation: Proposal for Department of Defense Support to the Whole of Government Approach In Afghanistan

    DTIC Science & Technology

    2012-05-11

    the civil-military cooperation that is the subject of agreement in the ICMCP. A wholistic approach to use of A-B M&S could lead to an aggregate...another than they are naturally. Great care must be taken in the A-B M&S process to build proper distinctions in the rules of agents with different...the primary decision maker for security. A critical analysis of the VMASC model follows: The VMASC model was based on a premise that because

  19. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems: A Case Study on Vocal Fold Inflammation and Healing.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2016-05-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.

  20. Numerical Simulation of Evacuation Process in Malaysia By Using Distinct-Element-Method Based Multi-Agent Model

    NASA Astrophysics Data System (ADS)

    Abustan, M. S.; Rahman, N. A.; Gotoh, H.; Harada, E.; Talib, S. H. A.

    2016-07-01

    In Malaysia, not many researches on crowd evacuation simulation had been reported. Hence, the development of numerical crowd evacuation process by taking into account people behavioral patterns and psychological characteristics is crucial in Malaysia. On the other hand, tsunami disaster began to gain attention of Malaysian citizens after the 2004 Indian Ocean Tsunami that need quick evacuation process. In relation to the above circumstances, we have conducted simulations of tsunami evacuation process at the Miami Beach of Penang Island by using Distinct Element Method (DEM)-based crowd behavior simulator. The main objectives are to investigate and reproduce current conditions of evacuation process at the said locations under different hypothetical scenarios for the efficiency study of the evacuation. The sim-1 is initial condition of evacuation planning while sim-2 as improvement of evacuation planning by adding new evacuation area. From the simulation result, sim-2 have a shorter time of evacuation process compared to the sim-1. The evacuation time recuded 53 second. The effect of the additional evacuation place is confirmed from decreasing of the evacuation completion time. Simultaneously, the numerical simulation may be promoted as an effective tool in studying crowd evacuation process.

  1. Thread Group Multithreading: Accelerating the Computation of an Agent-Based Power System Modeling and Simulation Tool -- C GridLAB-D

    SciTech Connect

    Jin, Shuangshuang; Chassin, David P.

    2014-01-06

    GridLAB-DTM is an open source next generation agent-based smart-grid simulator that provides unprecedented capability to model the performance of smart grid technologies. Over the past few years, GridLAB-D has been used to conduct important analyses of smart grid concepts, but it is still quite limited by its computational performance. In order to break through the performance bottleneck to meet the need for large scale power grid simulations, we develop a thread group mechanism to implement highly granular multithreaded computation in GridLAB-D. We achieve close to linear speedups on multithreading version compared against the single-thread version of the same code running on general purpose multi-core commodity for a benchmark simple house model. The performance of the multithreading code shows favorable scalability properties and resource utilization, and much shorter execution time for large-scale power grid simulations.

  2. Who's your neighbor? neighbor identification for agent-based modeling.

    SciTech Connect

    Macal, C. M.; Howe, T. R.; Decision and Information Sciences; Univ. of Chicago

    2006-01-01

    Agent-based modeling and simulation, based on the cellular automata paradigm, is an approach to modeling complex systems comprised of interacting autonomous agents. Open questions in agent-based simulation focus on scale-up issues encountered in simulating large numbers of agents. Specifically, how many agents can be included in a workable agent-based simulation? One of the basic tenets of agent-based modeling and simulation is that agents only interact and exchange locally available information with other agents located in their immediate proximity or neighborhood of the space in which the agents are situated. Generally, an agent's set of neighbors changes rapidly as a simulation proceeds through time and as the agents move through space. Depending on the topology defined for agent interactions, proximity may be defined by spatial distance for continuous space, adjacency for grid cells (as in cellular automata), or by connectivity in social networks. Identifying an agent's neighbors is a particularly time-consuming computational task and can dominate the computational effort in a simulation. Two challenges in agent simulation are (1) efficiently representing an agent's neighborhood and the neighbors in it and (2) efficiently identifying an agent's neighbors at any time in the simulation. These problems are addressed differently for different agent interaction topologies. While efficient approaches have been identified for agent neighborhood representation and neighbor identification for agents on a lattice with general neighborhood configurations, other techniques must be used when agents are able to move freely in space. Techniques for the analysis and representation of spatial data are applicable to the agent neighbor identification problem. This paper extends agent neighborhood simulation techniques from the lattice topology to continuous space, specifically R2. Algorithms based on hierarchical (quad trees) or non-hierarchical data structures (grid cells) are

  3. Little by Little Does the Trick: Design and Construction of a Discrete Event Agent-Based Simulation Framework

    DTIC Science & Technology

    2007-12-01

    been shown to be “Turing complete.” More simple and extensible than other constructs used in DES, such as Petri Nets , it makes an ideal tool for...the effects of homogeneity (or non-homogeneity) in a group of agents, be it a group of villagers or a special-forces platoon . When an agent is

  4. A Large Scale, High Resolution Agent-Based Insurgency Model

    DTIC Science & Technology

    2013-09-30

    for understanding and analyzing human behavior in a civil violence paradigm. This model employed two types of agents: an agent that can become...cognitions and behaviors. Unlike previous agent-based models of civil violence , this work includes the use of a hidden Markov process for simulating...these models can portray real insurgent environments. Keywords simulation · agent based model · insurgency · civil violence · graphics processing

  5. Simulation of Pedestrian Agent Crowds, with Crisis

    NASA Astrophysics Data System (ADS)

    Lyell, M.; Flo, R.; Mejia-Tellez, M.

    Multiple application areas have an interest in pedestrian dynamics. These range from urban design of public areas to evacuation dynamics to effective product placement within a store. In Hoogendoorn et al [Hoogendoorn 2002] multiple abstractions utilized in simulations or calculations involving pedestrian agents include (1) cost models for selected route choice, (2) macroscopic pedestrian operations, and (3) microscopic behavior. A variety of mathematical and computational techniques have been used in studying aspects of pedestrian behavior, including regression models, queuing models that describe pedestrian movement from one node to another, macroscopic models that make use of Boltzmann-like equations, and microscopic approaches. Microscopic approaches include social force models and cellular automata models. The `social force' models can involve ad hoc analogies to physical forces. For example, a floor may be viewed as having a `repulsive' or `attractive' force, depending on the amount of previous pedestrian traffic. Cellular automata models are based on pedestrian walking rules that have been gleaned from observations, such as those developed from Blue and [2000].

  6. Simulation of Pedestrian Agent Crowds, with Crisis

    NASA Astrophysics Data System (ADS)

    Lyell, M.; Flo, R.; Mejia-Tellez, M.

    Multiple application areas have an interest in pedestrian dynamics. These range from urban design of public areas to evacuation dynamics to effective product placement within a store. In Hoogendoorn et al [Hoogendoorn 2002] multiple abstractions utilized in simulations or calculations involving pedestrian agents include (1) cost models for selected route choice, (2) macroscopic pedestrian operations, and (3) microscopic behavior. A variety of mathematical and computational techniques have been used in studying aspects of pedestrian behavior, including regression models, queuing models that describe pedestrian movement from one node to another, macroscopic models that make use of Boltzmann-like equations, and microscopic approaches. Microscopic approaches include social force models and cellular automata models. The 'social force' models can involve ad hoc analogies to physical forces. For example, a floor may be viewed as having a 'repulsive' or 'attractive' force, depending on the amount of previous pedestrian traffic. Cellular automata models are based on pedestrian walking rules that have been gleaned from observations, such as those developed from Blue and [2000].

  7. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  8. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations

    PubMed Central

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061

  9. Intelligent Agent Supported Training in Virtual Simulations

    DTIC Science & Technology

    2009-10-01

    Security, and Safety P.O. Box 23, 3769 ZG Soesterberg, the Netherlands 8 . PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...THIS PAGE unclassified Standard Form 298 (Rev. 8 -98) Prescribed by ANSI Std Z39-18 Intelligent Agent Supported Training in Virtual Simulations...of plans. A plan is a recipe for achieving a goal, given particular preconditions. The plan library may contain multiple plans for the achievement

  10. Ideal free distribution or dynamic game? An agent-based simulation study of trawling strategies with varying information

    NASA Astrophysics Data System (ADS)

    Beecham, J. A.; Engelhard, G. H.

    2007-10-01

    An ecological economic model of trawling is presented to demonstrate the effect of trawling location choice strategy on net input (rate of economic gain of fish caught per time spent less costs). Fishing location choice is considered to be a dynamic process whereby trawlers chose from among a repertoire of plastic strategies that they modify if their gains fall below a fixed proportion of the mean gains of the fleet as a whole. The distribution of fishing across different areas of a fishery follows an approximate ideal free distribution (IFD) with varying noise due to uncertainty. The least-productive areas are not utilised because initial net input never reaches the mean yield of better areas subject to competitive exploitation. In cases, where there is a weak temporal autocorrelation between fish stocks in a specific location, a plastic strategy of local translocation between trawls mixed with longer-range translocation increases realised input. The trawler can change its translocation strategy in the light of information about recent trawling success compared to its long-term average but, in contrast to predictions of the Marginal Value Theorem (MVT) model, does not know for certain what it will find by moving, so may need to sample new patches. The combination of the two types of translocation mirrored beam-trawling strategies used by the Dutch fleet and the resultant distribution of trawling effort is confirmed by analysis of historical effort distribution of British otter trawling fleets in the North Sea. Fisheries exploitation represents an area where dynamic agent-based adaptive models may be a better representation of the economic dynamics of a fleet than classically inspired optimisation models.

  11. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    PubMed

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-07

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  12. NISAC Agent Based Laboratory for Economics

    SciTech Connect

    Downes, Paula; Davis, Chris; Eidson, Eric; Ehlen, Mark; Gieseler, Charles; Harris, Richard

    2006-10-11

    The software provides large-scale microeconomic simulation of complex economic and social systems (such as supply chain and market dynamics of businesses in the US economy) and their dependence on physical infrastructure systems. The system is based on Agent simulation, where each entity of inteest in the system to be modeled (for example, a Bank, individual firms, Consumer households, etc.) is specified in a data-driven sense to be individually repreented by an Agent. The Agents interact using rules of interaction appropriate to their roles, and through those interactions complex economic and social dynamics emerge. The software is implemented in three tiers, a Java-based visualization client, a C++ control mid-tier, and a C++ computational tier.

  13. An Immune Agent for Web-Based AI Course

    ERIC Educational Resources Information Center

    Gong, Tao; Cai, Zixing

    2006-01-01

    To overcome weakness and faults of a web-based e-learning course such as Artificial Intelligence (AI), an immune agent was proposed, simulating a natural immune mechanism against a virus. The immune agent was built on the multi-dimension education agent model and immune algorithm. The web-based AI course was comprised of many files, such as HTML…

  14. Agent-based forward analysis

    SciTech Connect

    Kerekes, Ryan A.; Jiao, Yu; Shankar, Mallikarjun; Potok, Thomas E.; Lusk, Rick M.

    2008-01-01

    We propose software agent-based "forward analysis" for efficient information retrieval in a network of sensing devices. In our approach, processing is pushed to the data at the edge of the network via intelligent software agents rather than pulling data to a central facility for processing. The agents are deployed with a specific query and perform varying levels of analysis of the data, communicating with each other and sending only relevant information back across the network. We demonstrate our concept in the context of face recognition using a wireless test bed comprised of PDA cell phones and laptops. We show that agent-based forward analysis can provide a significant increase in retrieval speed while decreasing bandwidth usage and information overload at the central facility. n

  15. The Agent-Based Simulation (ABS) Verification, validation and Accreditation (VV&A) Study Phase 2 - Joint/DoD

    DTIC Science & Technology

    2008-09-15

    investigation. This phenomenon typically manifests itself as a redesign of the scorecard after the game has been played, or an expression of the result in...a source of confidence given the lack of empirical data. One audience member suggested conducting some wargaming to support validation. If game ...Terrain Features ( Mobility – Protection – Height) Concealment Pythagoras offers the ability to characterize agents in a variety of ways (e.g

  16. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  17. A framework for the use of agent based modeling to simulate inter- and intraindividual variation in human behaviors

    EPA Science Inventory

    Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an ag...

  18. EPOCHS: A Platform for Agent-Based Electric Power and Communication Simulation Built from Commercial Off-The-Shelf Components

    DTIC Science & Technology

    2005-04-01

    to simplify the development of EMTDC scenarios. PSCAD is produced by the Manitoba HVDC Research Centre [25]. EMTDC simulates power scenarios in...Manitoba HVDC Research Centre, PSCAD/EMTDC Manual Getting Started. Winnipeg, Manitoba, Canada, 1998. [26] General Electric, "PSLF Manual," vol. 2003

  19. Development Approaches Coupled with Verification and Validation Methodologies for Agent-Based Mission-Level Analytical Combat Simulations

    DTIC Science & Technology

    2004-03-01

    Where Computers Meet Biology, Vintage Books, a division of Random House, Inc.: New York NY. 117. Liu, Bing, Siew-Hwee Choo , Shee-Ling Lok, Sing-Meng...Simpkins, Scott D., Eugene P. Paulo, , and Lyn R. Whitaker (2001) “Case Study in Modeling and Simulation Validation Methodology”. Proceedings of

  20. Simulation of economic agents interaction in a trade chain

    NASA Astrophysics Data System (ADS)

    Gimanova, I. A.; Dulesov, A. S.; Litvin, N. V.

    2017-01-01

    The mathematical model of economic agents interaction is offered in the work. It allowsconsidering the change of price and sales volumesin dynamics according to the process of purchase and sale in the single-product market of the trade and intermediary network. The description of data-flow processes is based on the use of the continuous dynamic market model. The application of ordinary differential equations during the simulation allows one to define areas of coefficients - characteristics of agents - and to investigate their interaction in a chain on stability.

  1. Agent-Based Modeling in Systems Pharmacology.

    PubMed

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  2. Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer.

    PubMed

    Zhang, Le; Athale, Chaitanya A; Deisboeck, Thomas S

    2007-01-07

    Experimental evidence suggests that epidermal growth factor receptor (EGFR)-mediated activation of the signaling protein phospholipase Cgamma plays a critical role in a cancer cell's phenotypic decision to either proliferate or to migrate at a given point in time. Here, we present a novel three-dimensional multiscale agent-based model to simulate this cellular decision process in the context of a virtual brain tumor. Each tumor cell is equipped with an EGFR gene-protein interaction network module that also connects to a simplified cell cycle description. The simulation results show that over time proliferative and migratory cell populations not only oscillate but also directly impact the spatio-temporal expansion patterns of the entire cancer system. The percentage change in the concentration of the sub-cellular interaction network's molecular components fluctuates, and, for the 'proliferation-to-migration' switch we find that the phenotype triggering molecular profile to some degree varies as the tumor system grows and the microenvironment changes. We discuss potential implications of these findings for experimental and clinical cancer research.

  3. Dynamic Exploration of Helicopter Reconnaissance Through Agent-Based Modeling

    DTIC Science & Technology

    2000-09-01

    Multi - Agent System modeling to develop a simulation of tactical helicopter performance while conducting armed reconnaissance. It focuses on creating a model to support planning for the Test and Evaluation phas of the Comanche helicopter acquisition cycle. The model serves as an initial simulation laboratory for scenario planning, requirements forecasting, and platform comparison analyses. The model implements adaptive tactical movement with agent sensory and weaponry system characteristics. Agents are able to determine their movement direction and paths based on

  4. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  5. Effect of Food Simulating Agents on the Hardness and Bond Strength of a Silicone Soft Liner to a Denture Base Acrylic Resin

    PubMed Central

    Khaledi, A.A.R.; Bahrani, M.; Shirzadi, S.

    2015-01-01

    Statement of the Problem: Bonding failure between acrylic resin and soft liner material and also gradual loss of soft liner resiliency over time are two impending challenges frequently recognized with a denture base embraced with a resilient liner. Since patients drink various beverages, it is crucial to assess the influences of these beverages on physical characteristics of soft liners. Purpose: This in vitro study envisioned to assess the influence of food simulating agents (FSA) on the hardness of a silicone soft liner by employing a Shore A durometer test and also evaluate its bond strength to a denture base resin by using tensile bond strength test. Materials and Methods: To test the hardness of samples, 50 rectangular samples (40 mm × 10 mm × 3 mm) were prepared from a heat-polymerized polymethyl methacrylate (Meliodent). Mollosil, a commercially available silicone resilient liner, was provided and applied on the specimens following the manufacturer’s directions. In order to test tensile bond strength, 100 cylindrical specimens (30 mm × 10 mm) were fabricated. The liners were added between specimens with the thicknesses of 3 mm. The specimens were divided into 5 groups (n=10) and immersed in distilled water, heptane, citric acid, and 50% ethanol. For each test, we used 10 specimens as a baseline measurement; control group. All specimens were kept in dispersed containers at 37ºC for 12 days and all solutions were changed every day. The hardness was verified using a Shore A durometer and the tensile bond strength was examined by an Instron testing machine at a cross-head speed of 5 mm/min. The records were analyzed employing one-way ANOVA, Tukey’s HSD, and LSD tests. Results: The mean tensile bond strength ± standard deviation (SD) for Mollosil was as follows for each group: 3.1 ± 0.4 (water), 1.8 ± 0.4 (citric acid), 3.0 ± 0.4 (heptane), 1.2 ± 0.3 (50% ethanol), and 3.8 ± 0.4 (control). The hardness values for each group were: 28.7 ± 2.11 (water

  6. Agent Based Intelligence in a Tetrahedral Rover

    NASA Technical Reports Server (NTRS)

    Phelps, Peter; Truszkowski, Walt

    2007-01-01

    A tetrahedron is a 4-node 6-strut pyramid structure which is being used by the NASA - Goddard Space Flight Center as the basic building block for a new approach to robotic motion. The struts are extendable; it is by the sequence of activities: strut-extension, changing the center of gravity and falling that the tetrahedron "moves". Currently, strut-extension is handled by human remote control. There is an effort underway to make the movement of the tetrahedron autonomous, driven by an attempt to achieve a goal. The approach being taken is to associate an intelligent agent with each node. Thus, the autonomous tetrahedron is realized as a constrained multi-agent system, where the constraints arise from the fact that between any two agents there is an extendible strut. The hypothesis of this work is that, by proper composition of such automated tetrahedra, robotic structures of various levels of complexity can be developed which will support more complex dynamic motions. This is the basis of the new approach to robotic motion which is under investigation. A Java-based simulator for the single tetrahedron, realized as a constrained multi-agent system, has been developed and evaluated. This paper reports on this project and presents a discussion of the structure and dynamics of the simulator.

  7. An Agent-Based Cockpit Task Management System

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1997-01-01

    An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.

  8. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  9. Agent-based modelling in synthetic biology

    PubMed Central

    2016-01-01

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. PMID:27903820

  10. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    PubMed

    Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Yaroshenko, Andre; Müller, Mark; Paprottka, Philipp; Ingrisch, Michael; Cyran, Clemens C; Auweter, Sigrid D; Nikolaou, Konstantin; Reiser, Maximilian F; Pfeiffer, Franz

    2015-01-01

    The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.

  11. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  12. Nanoparticle-based theranostic agents

    PubMed Central

    Xie, Jin; Lee, Seulki; Chen, Xiaoyuan

    2010-01-01

    Theranostic nanomedicine is emerging as a promising therapeutic paradigm. It takes advantage of the high capacity of nanoplatforms to ferry cargo and loads onto them both imaging and therapeutic functions. The resulting nanosystems, capable of diagnosis, drug delivery and monitoring of therapeutic response, are expected to play a significant role in the dawning era of personalized medicine, and much research effort has been devoted toward that goal. A convenience in constructing such function-integrated agents is that many nanoplatforms are already, themselves, imaging agents. Their well developed surface chemistry makes it easy to load them with pharmaceutics and promote them to be theranostic nanosystems. Iron oxide nanoparticles, quantum dots, carbon nanotubes, gold nanoparticles and silica nanoparticles, have been previously well investigated in the imaging setting and are candidate nanoplatforms for building up nanoparticle-based theranostics. In the current article, we will outline the progress along this line, organized by the category of the core materials. We will focus on construction strategies and will discuss the challenges and opportunities associated with this emerging technology. PMID:20691229

  13. Virtual agents in a simulated virtual training environment

    NASA Technical Reports Server (NTRS)

    Achorn, Brett; Badler, Norman L.

    1993-01-01

    A drawback to live-action training simulations is the need to gather a large group of participants in order to train a few individuals. One solution to this difficulty is the use of computer-controlled agents in a virtual training environment. This allows a human participant to be replaced by a virtual, or simulated, agent when only limited responses are needed. Each agent possesses a specified set of behaviors and is capable of limited autonomous action in response to its environment or the direction of a human trainee. The paper describes these agents in the context of a simulated hostage rescue training session, involving two human rescuers assisted by three virtual (computer-controlled) agents and opposed by three other virtual agents.

  14. Fate of Nerve Agent Simulants on Concrete

    DTIC Science & Technology

    2005-10-01

    2.0 µL range was detected. INTRODUCTION The rate of decomposition of chemical warfare agents on substrates commonly present in a...Edgewood Chemical Biological Center (ECBC) ABSTRACT The nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonothiolate) has...from Aldrich Chemical Company and used as received. 31P NMR of the starting materials indicated that it was the correct compound. Concrete samples

  15. Agent-based enterprise integration

    SciTech Connect

    N. M. Berry; C. M. Pancerella

    1998-12-01

    The authors are developing and deploying software agents in an enterprise information architecture such that the agents manage enterprise resources and facilitate user interaction with these resources. The enterprise agents are built on top of a robust software architecture for data exchange and tool integration across heterogeneous hardware and software. The resulting distributed multi-agent system serves as a method of enhancing enterprises in the following ways: providing users with knowledge about enterprise resources and applications; accessing the dynamically changing enterprise; locating enterprise applications and services; and improving search capabilities for applications and data. Furthermore, agents can access non-agents (i.e., databases and tools) through the enterprise framework. The ultimate target of the effort is the user; they are attempting to increase user productivity in the enterprise. This paper describes their design and early implementation and discusses the planned future work.

  16. Agent-based enterprise integration

    SciTech Connect

    N. M. Berry; C. M. Pancerella

    1999-05-01

    The authors are developing and deploying software agents in an enterprise information architecture such that the agents manage enterprise resources and facilitate user interaction with these resources. Their enterprise agents are built on top of a robust software architecture for data exchange and tool integration across heterogeneous hardware and software. The resulting distributed multi-agent system serves as a method of enhancing enterprises in the following ways: providing users with knowledge about enterprise resources and applications; accessing the dynamically changing enterprise; intelligently locating enterprise applications and services; and improving search capabilities for applications and data. Furthermore, agents can access non-agents (i.e., databases and tools) through the enterprise framework. The ultimate target of their effort is the user; they are attempting to increase user productivity in the enterprise. This paper describes their design and early implementation and discusses their planned future work.

  17. Estimation of the age-specific per-contact probability of Ebola virus transmission in Liberia using agent-based simulations

    NASA Astrophysics Data System (ADS)

    Siettos, Constantinos I.; Anastassopoulou, Cleo; Russo, Lucia; Grigoras, Christos; Mylonakis, Eleftherios

    2016-06-01

    Based on multiscale agent-based computations we estimated the per-contact probability of transmission by age of the Ebola virus disease (EVD) that swept through Liberia from May 2014 to March 2015. For the approximation of the epidemic dynamics we have developed a detailed agent-based model with small-world interactions between individuals categorized by age. For the estimation of the structure of the evolving contact network as well as the per-contact transmission probabilities by age group we exploited the so called Equation-Free framework. Model parameters were fitted to official case counts reported by the World Health Organization (WHO) as well as to recently published data of key epidemiological variables, such as the mean time to death, recovery and the case fatality rate.

  18. Flexible carbon nanotube sensors for nerve agent simulants

    NASA Astrophysics Data System (ADS)

    Cattanach, Kyle; Kulkarni, Rashmi D.; Kozlov, Mikhail; Manohar, Sanjeev K.

    2006-08-01

    Chemiresistor-based vapour sensors made from network films of single-walled carbon nanotube (SWNT) bundles on flexible plastic substrates (polyethylene terephthalate, PET) can be used to detect chemical warfare agent simulants for the nerve agents Sarin (diisopropyl methylphosphonate, DIMP) and Soman (dimethyl methylphosphonate, DMMP). Large, reproducible resistance changes (75-150%), are observed upon exposure to DIMP or DMMP vapours, and concentrations as low as 25 ppm can be detected. Robust sensor response to simulant vapours is observed even in the presence of large equilibrium concentrations of interferent vapours commonly found in battle-space environments, such as hexane, xylene and water (10 000 ppm each), suggesting that both DIMP and DMMP vapours are capable of selectively displacing other vapours from the walls of the SWNTs. Response to these interferent vapours can be effectively filtered out by using a 2 µm thick barrier film of the chemoselective polymer polyisobutylene (PIB) on the SWNT surface. These network films are composed of a 1-2 µm thick non-woven mesh of SWNT bundles (15-30 nm diameter), whose sensor response is qualitatively and quantitatively different from previous studies on individual SWNTs, or a network of individual SWNTs, suggesting that vapour sorption at interbundle sites could be playing an important role. This study also shows that the line patterning method used in device fabrication to obtain any desired pattern of films of SWNTs on flexible substrates can be used to rapidly screen simulants at high concentrations before developing more complicated sensor systems.

  19. Development of a persistent chemical agent simulation system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A Persistent Chemical Agent Simulation System was developed (PCASS) to simulate, for force-on-force training exercises, the field environment produced by the presence of persistent chemical agents. Such a simulant system must satisfy several requirements to be of value as a training aid. Specifically, it must provide for realistic training which will generate competency in at least the following areas: (1) detection of the persistent agent presence; (2) proper use of protective equipment and procedures; (3) determination of the extent of contamination; and (4) decontamination of equipment and personnel.

  20. A hybrid agent-based approach for modeling microbiological systems.

    PubMed

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  1. CATS-based Agents That Err

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.

  2. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    PubMed

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the

  3. Evolution of cooperative behavior in simulation agents

    SciTech Connect

    Stroud, P.D.

    1998-04-01

    A simulated automobile factory paint shop is used as a testbed for exploring the emulation of human decision making behavior. A discrete events simulation of the paint shop as a collection of interacting Java actors is described. An evolutionary cognitive architecture is under development for building software actors to emulate humans in simulations of human dominated complex systems. In this paper, the cognitive architecture is extended by implementing a persistent population of trial behaviors with an incremental fitness valuation update strategy, and by allowing a group of cognitive actors to share information. A proof of principle demonstration is presented.

  4. Evolution of cooperative behavior in simulation agents

    NASA Astrophysics Data System (ADS)

    Stroud, Phillip D.

    1998-03-01

    A simulated automobile factory paint shop is used as a testbed for exploring the emulation of human decision-making behavior. A discrete-events simulation of the paint shop as a collection of interacting Java actors is described. An evolutionary cognitive architecture is under development for building software actors to emulate humans in simulations of human- dominated complex systems. In this paper, the cognitive architecture is extended by implementing a persistent population of trial behaviors with an incremental fitness valuation update strategy, and by allowing a group of cognitive actors to share information. A proof-of-principle demonstration is presented.

  5. Adding ecosystem function to agent-based land use models

    PubMed Central

    Yadav, V.; Del Grosso, S.J.; Parton, W.J.; Malanson, G.P.

    2015-01-01

    The objective of this paper is to examine issues in the inclusion of simulations of ecosystem functions in agent-based models of land use decision-making. The reasons for incorporating these simulations include local interests in land fertility and global interests in carbon sequestration. Biogeochemical models are needed in order to calculate such fluxes. The Century model is described with particular attention to the land use choices that it can encompass. When Century is applied to a land use problem the combinatorial choices lead to a potentially unmanageable number of simulation runs. Century is also parameter-intensive. Three ways of including Century output in agent-based models, ranging from separately calculated look-up tables to agents running Century within the simulation, are presented. The latter may be most efficient, but it moves the computing costs to where they are most problematic. Concern for computing costs should not be a roadblock. PMID:26191077

  6. Laser-based instrumentation for the detection of chemical agents

    SciTech Connect

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures.

  7. Evaluating the STORE Reputation System in Multi-Agent Simulations

    NASA Astrophysics Data System (ADS)

    Andrulis, Jonas; Haller, Jochen; Weinhardt, Christof; Karabulut, Yuecel

    In recent global business environments, collaborations among organisations raise an increased demand for swift establishment. Such collaborations are formed between organisations entering Virtual Organizations (VOs), crossing geographic borders and frequently without prior experience of the other partner’s previous performance. In VOs, every participant risks engaging with partners who may exhibit unexpected fraudulent or otherwise untrusted behaviour. In order to cope with this risk, the STochastic REputation system (STORE) was designed to provide swift, automated decision support for selecting partner organisations in the early stages of the VO’s formation. The contribution of this paper first consists of a multi-agent simulation framework design and implementation to evaluate the STORE reputation system. This framework is able to simulate dynamic agent behaviour, agents hereby representing organisations, and to capture the business context of different VO application scenarios. A configuration of agent classes is a powerful tool to obtain not only well or badly performing agents for simulation scenarios, but also agents which are specialized in particular VO application domains or even malicious agents, attacking the VO community. The second contribution comprises of STORE’s evaluation in two simulation scenarios, set in the VO application domains of Collaborative Engineering and Ad-hoc Service provisioning. Besides the ability to clearly distinguish between agents of different classes according to their reputation, the results prove STORE’s ability to take an agent’s dynamic behaviour into account. The simulation results show, that STORE solves the difficult task of selecting the most trustworthy partner for a particular VO application domain from a set of honest agents that are specialized in a wide spread of VO application domains.

  8. Calculated infrared spectra of nerve agents and simulants

    NASA Astrophysics Data System (ADS)

    Mott, Adam J.; Rez, Peter

    2012-06-01

    Since organophosphorus nerve agents are among the most toxic known chemical warfare agents, it is desirable to have a way to distinguish between one and another. Infrared spectroscopy is a common tool for identifying molecules. Given the difficulty in handling these chemicals, calculated IR spectra can be useful. Calculated IR spectra are presented for G agents, V agents, and simulants. Quantum chemistry calculations were performed using the Gaussian 03 package at the B3LYP/6-31+G(d,p) level of theory. The most prominent IR lines are due to vibrations of Psbnd Osbnd C and Pdbnd O groups within the molecules. It should be possible to distinguish between the G-series and V-series agents using IR spectroscopy, but unique identification of individual chemical agents is unlikely.

  9. An agent based model of genotype editing

    SciTech Connect

    Rocha, L. M.; Huang, C. F.

    2004-01-01

    This paper presents our investigation on an agent-based model of Genotype Editing. This model is based on several characteristics that are gleaned from the RNA editing system as observed in several organisms. The incorporation of editing mechanisms in an evolutionary agent-based model provides a means for evolving agents with heterogenous post-transcriptional processes. The study of this agent-based genotype-editing model has shed some light into the evolutionary implications of RNA editing as well as established an advantageous evolutionary computation algorithm for machine learning. We expect that our proposed model may both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in agent-based optimization.

  10. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  11. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  12. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations.

  13. Simulated Environments with Animated Agents: Effects on Visual Attention, Emotion, Performance, and Perception

    ERIC Educational Resources Information Center

    Romero-Hall, E.; Watson, G. S.; Adcock, A.; Bliss, J.; Adams Tufts, K.

    2016-01-01

    This research assessed how emotive animated agents in a simulation-based training affect the performance outcomes and perceptions of the individuals interacting in real time with the training application. A total of 56 participants consented to complete the study. The material for this investigation included a nursing simulation in which…

  14. Assurance in Agent-Based Systems

    SciTech Connect

    Gilliom, Laura R.; Goldsmith, Steven Y.

    1999-05-10

    Our vision of the future of information systems is one that includes engineered collectives of software agents which are situated in an environment over years and which increasingly improve the performance of the overall system of which they are a part. At a minimum, the movement of agent and multi-agent technology into National Security applications, including their use in information assurance, is apparent today. The use of deliberative, autonomous agents in high-consequence/high-security applications will require a commensurate level of protection and confidence in the predictability of system-level behavior. At Sandia National Laboratories, we have defined and are addressing a research agenda that integrates the surety (safety, security, and reliability) into agent-based systems at a deep level. Surety is addressed at multiple levels: The integrity of individual agents must be protected by addressing potential failure modes and vulnerabilities to malevolent threats. Providing for the surety of the collective requires attention to communications surety issues and mechanisms for identifying and working with trusted collaborators. At the highest level, using agent-based collectives within a large-scale distributed system requires the development of principled design methods to deliver the desired emergent performance or surety characteristics. This position paper will outline the research directions underway at Sandia, will discuss relevant work being performed elsewhere, and will report progress to date toward assurance in agent-based systems.

  15. Agent-based models of financial markets

    NASA Astrophysics Data System (ADS)

    Samanidou, E.; Zschischang, E.; Stauffer, D.; Lux, T.

    2007-03-01

    This review deals with several microscopic ('agent-based') models of financial markets which have been studied by economists and physicists over the last decade: Kim-Markowitz, Levy-Levy-Solomon, Cont-Bouchaud, Solomon-Weisbuch, Lux-Marchesi, Donangelo-Sneppen and Solomon-Levy-Huang. After an overview of simulation approaches in financial economics, we first give a summary of the Donangelo-Sneppen model of monetary exchange and compare it with related models in economics literature. Our selective review then outlines the main ingredients of some influential early models of multi-agent dynamics in financial markets (Kim-Markowitz, Levy-Levy-Solomon). As will be seen, these contributions draw their inspiration from the complex appearance of investors' interactions in real-life markets. Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work before 1998 or so) a perspective in terms of the universal statistical features of financial time series. In fact, awareness of a set of such regularities (power-law tails of the distribution of returns, temporal scaling of volatility) only gradually appeared over the nineties. With the more precise description of the formerly relatively vague characteristics (e.g. moving from the notion of fat tails to the more concrete one of a power law with index around three), it became clear that financial market dynamics give rise to some kind of universal scaling law. Showing similarities with scaling laws for other systems with many interacting sub-units, an exploration of financial markets as multi-agent systems appeared to be a natural consequence. This topic has been pursued by quite a number of contributions appearing in both the physics and economics literature since the late nineties. From the wealth of different flavours of multi-agent models that have appeared up to now, we discuss the Cont

  16. Ecology Based Decentralized Agent Management System

    NASA Technical Reports Server (NTRS)

    Peysakhov, Maxim D.; Cicirello, Vincent A.; Regli, William C.

    2004-01-01

    The problem of maintaining a desired number of mobile agents on a network is not trivial, especially if we want a completely decentralized solution. Decentralized control makes a system more r e bust and less susceptible to partial failures. The problem is exacerbated on wireless ad hoc networks where host mobility can result in significant changes in the network size and topology. In this paper we propose an ecology-inspired approach to the management of the number of agents. The approach associates agents with living organisms and tasks with food. Agents procreate or die based on the abundance of uncompleted tasks (food). We performed a series of experiments investigating properties of such systems and analyzed their stability under various conditions. We concluded that the ecology based metaphor can be successfully applied to the management of agent populations on wireless ad hoc networks.

  17. Agent based modeling of the coevolution of hostility and pacifism

    NASA Astrophysics Data System (ADS)

    Dalmagro, Fermin; Jimenez, Juan

    2015-01-01

    We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.

  18. Techniques and Issues in Agent-Based Modeling Validation

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui

    2012-01-01

    Validation of simulation models is extremely important. It ensures that the right model has been built and lends confidence to the use of that model to inform critical decisions. Agent-based models (ABM) have been widely deployed in different fields for studying the collective behavior of large numbers of interacting agents. However, researchers have only recently started to consider the issues of validation. Compared to other simulation models, ABM has many differences in model development, usage and validation. An ABM is inherently easier to build than a classical simulation, but more difficult to describe formally since they are closer to human cognition. Using multi-agent models to study complex systems has attracted criticisms because of the challenges involved in their validation [1]. In this report, we describe the challenge of ABM validation and present a novel approach we recently developed for an ABM system.

  19. Modeling and simulating human teamwork behaviors using intelligent agents

    NASA Astrophysics Data System (ADS)

    Fan, Xiaocong; Yen, John

    2004-12-01

    Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human-agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork-shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.

  20. Agent 2003 Conference on Challenges in Social Simulation

    SciTech Connect

    Margaret Clemmons, ed.

    2003-01-01

    Welcome to the Proceedings of the fourth in a series of agent simulation conferences cosponsored by Argonne National Laboratory and The University of Chicago. Agent 2003 is the second conference in which three Special Interest Groups from the North American Association for Computational Social and Organizational Science (NAACSOS) have been involved in planning the program--Computational Social Theory; Simulation Applications; and Methods, Toolkits and Techniques. The theme of Agent 2003, Challenges in Social Simulation, is especially relevant, as there seems to be no shortage of such challenges. Agent simulation has been applied with increasing frequency to social domains for several decades, and its promise is clear and increasingly visible. Like any nascent scientific methodology, however, it faces a number of problems or issues that must be addressed in order to progress. These challenges include: (1) Validating models relative to the social settings they are designed to represent; (2) Developing agents and interactions simple enough to understand but sufficiently complex to do justice to the social processes of interest; (3) Bridging the gap between empirically spare artificial societies and naturally occurring social phenomena; (4) Building multi-level models that span processes across domains; (5) Promoting a dialog among theoretical, qualitative, and empirical social scientists and area experts, on the one hand, and mathematical and computational modelers and engineers, on the other; (6) Using that dialog to facilitate substantive progress in the social sciences; and (7) Fulfilling the aspirations of users in business, government, and other application areas, while recognizing and addressing the preceding challenges. Although this list hardly exhausts the challenges the field faces, it does identify topics addressed throughout the presentations of Agent 2003. Agent 2003 is part of a much larger process in which new methods and techniques are applied to

  1. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    NASA Astrophysics Data System (ADS)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  2. Agent-Based Cooperative Control

    DTIC Science & Technology

    2005-12-01

    518. [91] A. Robertson, G. Inalhan, J. P. How, “ Formation control strategies for a separated spacecraft interferometer,” in Proc. of the 1999...100] M. Tillerson and J. P. How, “Advanced guidance algorithms for spacecraft formation -keeping,” in Proc. of the 2002 American Control Conference...based nonlinear control theory. Potential Field Addresses: issues of desired interaction such as coordination, formation , and collision

  3. Design and Engineering of a Multi-Target (Multiplex) DNA Simulant to Evaluate Nulceic Acid Based Assays for Detection of Biological Threat Agents

    DTIC Science & Technology

    2006-11-01

    Using the actual bio-threat agents for testing is impractical since producing a number of different threat bacteria and viruses, isolating and...Brucella species are recognized as potential agricultural, civilian, and military bioterrorism agents. Rickettsia are classified into two groups; the...spotted fever group (SFG), which includes R. conorii, R. sibirica, and R. rickettsii , and the typhus group (TG), which includes R. prowazekii and R

  4. Applications of Agent Based Approaches in Business (A Three Essay Dissertation)

    ERIC Educational Resources Information Center

    Prawesh, Shankar

    2013-01-01

    The goal of this dissertation is to investigate the enabling role that agent based simulation plays in business and policy. The aforementioned issue has been addressed in this dissertation through three distinct, but related essays. The first essay is a literature review of different research applications of agent based simulation in various…

  5. Interactive simulation of local interactions in dense crowds using elliptical agents

    NASA Astrophysics Data System (ADS)

    Narang, Sahil; Best, Andrew; Manocha, Dinesh

    2017-03-01

    We present a practical approach for interactive crowd simulation based on elliptical agents. Our formulation uses a biomechanically accurate pedestrian representation to simulate different local interactions, including backpedaling, side-stepping, and shoulder-twisting. We present an efficient algorithm for local navigation and collision avoidance among multiple elliptical agents using velocity obstacles. Furthermore, we describe techniques to link the orientation of each elliptical agent to its velocity to automatically generate turning and lateral movements. In practice, our approach can simulate dense crowds of hundreds of pedestrians at interactive rates on a single CPU core. We highlight the performance in complex scenarios and validate our simulation results by comparing with real-world crowd videos and experiments.

  6. A Computational Model and Multi-Agent Simulation for Information Assurance

    DTIC Science & Technology

    2002-06-01

    simulation is presented that introduces several innovations in multi - agent systems including iconnectors, a biologically inspired visual language and...198 14. SUBJECT TERMS information assurance, information security, computer security, security model, modeling, agents, multi - agent system , multi...adaptive behavior in an IA environment. A multi-agent simulation is presented that introduces several innovations in multi - agent systems including

  7. Selection of an averaging technique by simulation study of a DIAL system for toxic agents monitoring

    NASA Astrophysics Data System (ADS)

    Dudeja, Jai Paul; Jindal, Mukesh Kumar; Veerabuthiran, S.

    2007-10-01

    Differential Absorption Lidar (DIAL) is a very effective technique for standoff detection of various toxic agents in the atmosphere. The Lidar backscattered signal received usually has poor signal to noise (SNR) ratio. In order to improve the SNR, statistical averaging over a number of laser pulses is employed. The aim of the present work is to select a particular statistical averaging technique, which is most suitable in removing the noise in Lidar return signals. The DIAL system considered here uses laser transmitters based on OPO based (2-5 μm) and TEA CO2 (9-11μm) lasers. Eight commonly used chemical warfare agents including five nerve agents and three blister agents have been considered here as examples of toxic agents. A Graphical User Interface (GUI) software has been developed in LabVIEW to simulate return signals mixed with the expected noise levels. A toxic agent cloud with a given thickness and concentration has been assumed to be detected in the ambient atmospheric conditions at various ranges up to 5 Km. Data for 200 pulses per agent was stored in the computer memory. Various known statistical averaging techniques were used and number concentrations of particular agent have been computed and compared with ideal Lidar return signal values. This exercise was repeated for all the eight agents and based on the results obtained; the most suitable averaging technique has been selected.

  8. Multi-Agent Flight Simulation with Robust Situation Generation

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.; Hansman, R. John, Jr.

    1994-01-01

    A robust situation generation architecture has been developed that generates multi-agent situations for human subjects. An implementation of this architecture was developed to support flight simulation tests of air transport cockpit systems. This system maneuvers pseudo-aircraft relative to the human subject's aircraft, generating specific situations for the subject to respond to. These pseudo-aircraft maneuver within reasonable performance constraints, interact in a realistic manner, and make pre-recorded voice radio communications. Use of this system minimizes the need for human experimenters to control the pseudo-agents and provides consistent interactions between the subject and the pseudo-agents. The achieved robustness of this system to typical variations in the subject's flight path was explored. It was found to successfully generate specific situations within the performance limitations of the subject-aircraft, pseudo-aircraft, and the script used.

  9. Synthesized Population Databases: A US Geospatial Database for Agent-Based Models.

    PubMed

    Wheaton, William D; Cajka, James C; Chasteen, Bernadette M; Wagener, Diane K; Cooley, Philip C; Ganapathi, Laxminarayana; Roberts, Douglas J; Allpress, Justine L

    2009-05-01

    Agent-based models simulate large-scale social systems. They assign behaviors and activities to "agents" (individuals) within the population being modeled and then allow the agents to interact with the environment and each other in complex simulations. Agent-based models are frequently used to simulate infectious disease outbreaks, among other uses.RTI used and extended an iterative proportional fitting method to generate a synthesized, geospatially explicit, human agent database that represents the US population in the 50 states and the District of Columbia in the year 2000. Each agent is assigned to a household; other agents make up the household occupants.For this database, RTI developed the methods for generating synthesized households and personsassigning agents to schools and workplaces so that complex interactions among agents as they go about their daily activities can be taken into accountgenerating synthesized human agents who occupy group quarters (military bases, college dormitories, prisons, nursing homes).In this report, we describe both the methods used to generate the synthesized population database and the final data structure and data content of the database. This information will provide researchers with the information they need to use the database in developing agent-based models.Portions of the synthesized agent database are available to any user upon request. RTI will extract a portion (a county, region, or state) of the database for users who wish to use this database in their own agent-based models.

  10. An Agent Based Model for Social Class Emergence

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxiang; Rodriguez Segura, Daniel; Lin, Fei; Mazilu, Irina

    We present an open system agent-based model to analyze the effects of education and the society-specific wealth transactions on the emergence of social classes. Building on previous studies, we use realistic functions to model how years of education affect the income level. Numerical simulations show that the fraction of an individual's total transactions that is invested rather than consumed can cause wealth gaps between different income brackets in the long run. In an attempt to incorporate the network effects, we also explore how the probability of interactions among agents depending on the spread of their income brackets affects wealth distribution.

  11. Agent-Based Automated Algorithm Generator

    DTIC Science & Technology

    2010-01-12

    Detection and Isolation Agent (FDIA), Prognostic Agent (PA), Fusion Agent (FA), and Maintenance Mining Agent (MMA). FDI agents perform diagnostics...manner and loosely coupled). The library of D/P algorithms will be hosted in server-side agents, consisting of four types of major agents: Fault

  12. Development of a Persistent Chemical Agent Simulator System (PCASS)

    NASA Technical Reports Server (NTRS)

    Mcginness, W. G.

    1983-01-01

    The development of a persistent chemical agent simulation system (PCASS) is described. This PCASS is to be used for the military training of troops to simulate actual chemical warfare. The purpose of this system is to facilitate in the determination of chemical contamination and effectiveness of decontamination for training purposes. The fluorescent tracer employed has no daylight activation, but yet is easily removed with a decontaminate solution or water and surfactants. Also employed is a time delayed color developing system. When an individual is subjected to the PCASS and does not decontaminate adequately, red blotches or red coloration will develop as a function of time and temperature. The intent of this is to simulate the delayed chemical reaction of mustard contaminates.

  13. FIPA agent based network distributed control system

    SciTech Connect

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  14. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  15. Agent-based modeling of host–pathogen systems: The successes and challenges

    PubMed Central

    Bauer, Amy L.; Beauchemin, Catherine A.A.; Perelson, Alan S.

    2009-01-01

    Agent-based models have been employed to describe numerous processes in immunology. Simulations based on these types of models have been used to enhance our understanding of immunology and disease pathology. We review various agent-based models relevant to host–pathogen systems and discuss their contributions to our understanding of biological processes. We then point out some limitations and challenges of agent-based models and encourage efforts towards reproducibility and model validation. PMID:20161146

  16. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data.

    PubMed

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data.

  17. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

    PubMed Central

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589

  18. Evaluating Water Demand Using Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  19. Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate.

    PubMed

    Han, Shoufa; Xue, Zhongwei; Wang, Zhen; Wen, Ting Bin

    2010-11-28

    A visual and fluorogenic detection method for a nerve agent simulant was developed based on a Lossen rearrangement of rhodamine-hydroxamate, in the presence of diethyl chlorophosphate, under alkaline conditions.

  20. Use of Multi-Criteria Decision Making for Selecting Chemical Agent Simulants for Testing

    DTIC Science & Technology

    2008-06-01

    Protection Specific Test Application -Swatch, Chamber, and Field Testing -Swatch Permeation Agents of Interest, and form of dissemination...Use of Multi-Criteria Decision Making for Selecting Chemical Agent Simulants for Testing Presentation to the 76th MORS Symposium Working Group 2...could be potential simulants • Information Sources used: – Chemical Databases ( Agent /Simulant Knowledgebase [ASK], Beilstein) – Previous test

  1. A framework for service enterprise workflow simulation with multi-agents cooperation

    NASA Astrophysics Data System (ADS)

    Tan, Wenan; Xu, Wei; Yang, Fujun; Xu, Lida; Jiang, Chuanqun

    2013-11-01

    Process dynamic modelling for service business is the key technique for Service-Oriented information systems and service business management, and the workflow model of business processes is the core part of service systems. Service business workflow simulation is the prevalent approach to be used for analysis of service business process dynamically. Generic method for service business workflow simulation is based on the discrete event queuing theory, which is lack of flexibility and scalability. In this paper, we propose a service workflow-oriented framework for the process simulation of service businesses using multi-agent cooperation to address the above issues. Social rationality of agent is introduced into the proposed framework. Adopting rationality as one social factor for decision-making strategies, a flexible scheduling for activity instances has been implemented. A system prototype has been developed to validate the proposed simulation framework through a business case study.

  2. Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants

    NASA Astrophysics Data System (ADS)

    Kullander, F.; Landström, L.; Lundén, H.; Wästerby, Pär.

    2015-05-01

    Laser induced Raman scattering from the commonly used chemical warfare agent simulants dimethyl sulfoxide, tributyl phosphate, triethyl phosphonoacetate was measured at excitation wavelengths ranging from 210 to 410 nm using a pulsed laser based spectrometer system with a probing distance of 1.4 m and with a field of view on the target of less than 1mm. For the purpose of comparison with well explored reference liquids the Raman scattering from simulants was measured in the form of an extended liquid surface layer on top of a silicon wafer. This way of measuring enabled direct comparison to the Raman scattering strength from cyclohexane. The reference Raman spectra were used to validate the signal strength of the simulants and the calibration of the experimental set up. Measured UV absorbance functions were used to calculate Raman cross sections. Established Raman cross sections of the simulants make it possible to use them as reference samples when measuring on chemical warfare agents in droplet form.

  3. Multiscale agent-based consumer market modeling.

    SciTech Connect

    North, M. J.; Macal, C. M.; St. Aubin, J.; Thimmapuram, P.; Bragen, M.; Hahn, J.; Karr, J.; Brigham, N.; Lacy, M. E.; Hampton, D.; Decision and Information Sciences; Procter & Gamble Co.

    2010-05-01

    Consumer markets have been studied in great depth, and many techniques have been used to represent them. These have included regression-based models, logit models, and theoretical market-level models, such as the NBD-Dirichlet approach. Although many important contributions and insights have resulted from studies that relied on these models, there is still a need for a model that could more holistically represent the interdependencies of the decisions made by consumers, retailers, and manufacturers. When the need is for a model that could be used repeatedly over time to support decisions in an industrial setting, it is particularly critical. Although some existing methods can, in principle, represent such complex interdependencies, their capabilities might be outstripped if they had to be used for industrial applications, because of the details this type of modeling requires. However, a complementary method - agent-based modeling - shows promise for addressing these issues. Agent-based models use business-driven rules for individuals (e.g., individual consumer rules for buying items, individual retailer rules for stocking items, or individual firm rules for advertizing items) to determine holistic, system-level outcomes (e.g., to determine if brand X's market share is increasing). We applied agent-based modeling to develop a multi-scale consumer market model. We then conducted calibration, verification, and validation tests of this model. The model was successfully applied by Procter & Gamble to several challenging business problems. In these situations, it directly influenced managerial decision making and produced substantial cost savings.

  4. Effect of iodine contrast agent concentration on cerebrovascular dose for synchrotron radiation microangiography based on a simple mouse head model and a voxel mouse head phantom by Monte Carlo simulation.

    PubMed

    Lin, Hui; Jing, Jia; Lu, Yi-Fan; Xie, Cong; Lin, Xiao-Jie; Yang, Guo-Yuan

    2016-01-01

    Effective setting strategies using Monte Carlo simulation are presented to mitigate the irradiation damage in synchrotron radiation microangiography (SRA). A one-dimensional mouse head model and a segmented voxel phantom mouse head were simulated using the EGSnrc/DOSXYZnrc code to investigate the dose enhancement effect of an iodine contrast agent irradiated by a monochromatic synchrotron radiation source. The influence of the iodine concentration, vessel width and depth, protection with and without the skull layer, and various incident X-ray energies were all simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. The dose enhancement ratio depended little on the irradiation depth, but strongly and linearly increasing on iodine concentration. The protection given by the skull layer cannot be ignored in SRA because a 700 µm-thick skull can decrease the dose by 10%. The incident X-ray energy can affect the dose significantly. Compared with a dose of 33.2 keV for 50 mgI ml(-1), a dose of 32.7 keV decreased by 38%, whereas a dose of 33.7 keV increased by 69.2% and the variation strengthened more with enhanced iodine concentration. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depended little on the iodine voxel volume ratio but strongly on the iodine concentration. To decrease the damage caused by the dose in SRA, a high-Z contrast agent should be used as little as possible and irradiation of the injection site of the contrast agent should be avoided immediately after the injection. The fragile vessel containing iodine should avoid being closely irradiated. Avoiding irradiating through a thin (or no) skull region, or attaching a thin equivalent material on the outside for protection are better methods. An incident X-ray energy as low as possible should be used as long as the SRA image quality is ensured

  5. Multi-Agent simulation of generation capacity expansion decisions.

    SciTech Connect

    Botterud, A.; Mahalik, M.; Conzelmann, G.; Silva, R.; Vilela, S.; Pereira, R.

    2008-01-01

    In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenario analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.

  6. High performance computing for three-dimensional agent-based molecular models.

    PubMed

    Pérez-Rodríguez, G; Pérez-Pérez, M; Fdez-Riverola, F; Lourenço, A

    2016-07-01

    Agent-based simulations are increasingly popular in exploring and understanding cellular systems, but the natural complexity of these systems and the desire to grasp different modelling levels demand cost-effective simulation strategies and tools. In this context, the present paper introduces novel sequential and distributed approaches for the three-dimensional agent-based simulation of individual molecules in cellular events. These approaches are able to describe the dimensions and position of the molecules with high accuracy and thus, study the critical effect of spatial distribution on cellular events. Moreover, two of the approaches allow multi-thread high performance simulations, distributing the three-dimensional model in a platform independent and computationally efficient way. Evaluation addressed the reproduction of molecular scenarios and different scalability aspects of agent creation and agent interaction. The three approaches simulate common biophysical and biochemical laws faithfully. The distributed approaches show improved performance when dealing with large agent populations while the sequential approach is better suited for small to medium size agent populations. Overall, the main new contribution of the approaches is the ability to simulate three-dimensional agent-based models at the molecular level with reduced implementation effort and moderate-level computational capacity. Since these approaches have a generic design, they have the major potential of being used in any event-driven agent-based tool.

  7. Modelling Agent-Environment Interaction in Multi-Agent Simulations with Affordances

    DTIC Science & Technology

    2010-04-01

    behaviours. In related work, Doyle and Hayes- Roth [39, 38] present the concept of agents in annotated virtual worlds. The idea is based on the concept of...knowledge in the world”. Doyle and Hayes- Roth argue that if a virtual environment can be annotated with appropriate labels and annotations that explain...Italy, 2002. 213 DSTO–RR–0349 38. Patrick Doyle and Barbara Hayes- Roth . Guided exploration of virtual worlds. Tech- nical Report KSL 97-04, Knowledge

  8. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    NASA Technical Reports Server (NTRS)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  9. A Conceptual Framework for Representing Human Behavior Characteristics in a System of Systems Agent-based Survivability Simulation-Intelligent Networks

    DTIC Science & Technology

    2014-10-17

    of their similarity. In equation 11, a node awareness of other nodes in a MANET is the negation of cooperation in the sense that it is the fuzzy...Khatibi, S. & Rohani, R. ( ). Quorum -Based Neighbor Discovery in Self-Organized Cognitive MANET 21st Annual IEEE International Symposium on

  10. Improving Agent Based Models and Validation through Data Fusion

    PubMed Central

    Laskowski, Marek; Demianyk, Bryan C.P.; Friesen, Marcia R.; McLeod, Robert D.; Mukhi, Shamir N.

    2011-01-01

    This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level. PMID:23569606

  11. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.

  12. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis

    PubMed Central

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  13. A water market simulator considering pair-wise trades between agents

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Erfani, T.; Harou, J. J.

    2012-04-01

    In many basins in England no further water abstraction licences are available. Trading water between water rights holders has been recognized as a potentially effective and economically efficient strategy to mitigate increasing scarcity. A screening tool that could assess the potential for trade through realistic simulation of individual water rights holders would help assess the solution's potential contribution to local water management. We propose an optimisation-driven water market simulator that predicts pair-wise trade in a catchment and represents its interaction with natural hydrology and engineered infrastructure. A model is used to emulate licence-holders' willingness to engage in short-term trade transactions. In their simplest form agents are represented using an economic benefit function. The working hypothesis is that trading behaviour can be partially predicted based on differences in marginal values of water over space and time and estimates of transaction costs on pair-wise trades. We discuss the further possibility of embedding rules, norms and preferences of the different water user sectors to more realistically represent the behaviours, motives and constraints of individual licence holders. The potential benefits and limitations of such a social simulation (agent-based) approach is contrasted with our simulator where agents are driven by economic optimization. A case study based on the Dove River Basin (UK) demonstrates model inputs and outputs. The ability of the model to suggest impacts of water rights policy reforms on trading is discussed.

  14. A Comparison of QSAR Based Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected Traditional Chemical Warfare Agents and Simulants

    DTIC Science & Technology

    2014-07-01

    software packages were available, including EPI Suite, ACD Labs, ChemAxon’s Marvin, Vega , and ADF COSMO-RS. EPI Suite’s KOWWIN is a QSAR based model ... QSARs are a well established method of property prediction first demonstrated for petroleum components. QSARs are simple mathematical regression models ...Validation and error assessment of the QSAR model is performed with the remaining laboratory measurements that were not included in the original

  15. A Two-Stage Multi-Agent Based Assessment Approach to Enhance Students' Learning Motivation through Negotiated Skills Assessment

    ERIC Educational Resources Information Center

    Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan

    2015-01-01

    In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…

  16. A novel alignment repulsion algorithm for flocking of multi-agent systems based on the number of neighbours per agent

    NASA Astrophysics Data System (ADS)

    Kahani, R.; Sedigh, A. K.; Mahjani, M. Gh.

    2015-12-01

    In this paper, an energy-based control methodology is proposed to satisfy the Reynolds three rules in a flock of multiple agents. First, a control law is provided that is directly derived from the passivity theorem. In the next step, the Number of Neighbours Alignment/Repulsion algorithm is introduced for a flock of agents which loses the cohesion ability and uniformly joint connectivity condition. With this method, each agent tries to follow the agents which escape its neighbourhood by considering the velocity of escape time and number of neighbours. It is mathematically proved that the motion of multiple agents converges to a rigid and uncrowded flock if the group is jointly connected just for an instant. Moreover, the conditions for collision avoidance are guaranteed during the entire process. Finally, simulation results are presented to show the effectiveness of the proposed methodology.

  17. Error Generation in CATS-Based Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd

    2003-01-01

    This research presents a methodology for generating errors from a model of nominally preferred correct operator activities, given a particular operational context, and maintaining an explicit link to the erroneous contextual information to support analyses. It uses the Crew Activity Tracking System (CATS) model as the basis for error generation. This report describes how the process works, and how it may be useful for supporting agent-based system safety analyses. The report presents results obtained by applying the error-generation process and discusses implementation issues. The research is supported by the System-Wide Accident Prevention Element of the NASA Aviation Safety Program.

  18. Investigating biocomplexity through the agent-based paradigm

    PubMed Central

    Kaul, Himanshu

    2015-01-01

    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines—or agents—to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex. PMID:24227161

  19. Lipid-based antifungal agents: current status.

    PubMed

    Arikan, S; Rex, J H

    2001-03-01

    Immunocompromised patients are well known to be predisposed to developing invasive fungal infections. These infections are usually difficult to diagnose and more importantly, the resulting mortality rate is high. The limited number of antifungal agents available and their high rate of toxicity are the major factors complicating the issue. However, the development of lipid-based formulations of existing antifungal agents has opened a new era in antifungal therapy. The best examples are the lipid-based amphotericin B preparations, amphotericin B lipid complex (ABLC; Abelcet), amphotericin B colloidal dispersion (ABCD; Amphotec or Amphocil), and liposomal amphotericin B (AmBisome). These formulations have shown that antifungal activity is maintained while toxicity is reduced. This progress is followed by the incorporation of nystatin into liposomes. Liposomal nystatin formulation is under development and studies of it have provided encouraging data. Finally, lipid-based formulations of hamycin, miconazole, and ketoconazole have been developed but remain experimental. Advances in technology of liposomes and other lipid formulations have provided promising new tools for management of fungal infections.

  20. An agent-based microsimulation of critical infrastructure systems

    SciTech Connect

    BARTON,DIANNE C.; STAMBER,KEVIN L.

    2000-03-29

    US infrastructures provide essential services that support the economic prosperity and quality of life. Today, the latest threat to these infrastructures is the increasing complexity and interconnectedness of the system. On balance, added connectivity will improve economic efficiency; however, increased coupling could also result in situations where a disturbance in an isolated infrastructure unexpectedly cascades across diverse infrastructures. An understanding of the behavior of complex systems can be critical to understanding and predicting infrastructure responses to unexpected perturbation. Sandia National Laboratories has developed an agent-based model of critical US infrastructures using time-dependent Monte Carlo methods and a genetic algorithm learning classifier system to control decision making. The model is currently under development and contains agents that represent the several areas within the interconnected infrastructures, including electric power and fuel supply. Previous work shows that agent-based simulations models have the potential to improve the accuracy of complex system forecasting and to provide new insights into the factors that are the primary drivers of emergent behaviors in interdependent systems. Simulation results can be examined both computationally and analytically, offering new ways of theorizing about the impact of perturbations to an infrastructure network.

  1. Multi-agent simulation of generation expansion in electricity markets.

    SciTech Connect

    Botterud, A; Mahalik, M. R.; Veselka, T. D.; Ryu, H.-S.; Sohn, K.-W.; Decision and Information Sciences; Korea Power Exchange

    2007-06-01

    We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo's assumed expectations about their competitors investment decisions.

  2. Selective Real-time Detection of Gaseous Nerve Agent Simulants Using Multiwavelength Photoacoustics

    DTIC Science & Technology

    2012-08-15

    Selective real-time detection of gaseous nerve agent simulants using multiwavelength photoacoustics Kristan P. Gurton,* Melvin Felton, and Richard...concentrations. The technique is based on a modified version of conventional laser photoacoustic (PA) spectroscopy, in which optical absorption is typically...spec- troscopic approach [1–4]. One of the more direct methods to implement in prac- tice (without sacrificing sensitivity) is laser photoacoustic

  3. Intelligent Agent Feasibility Study. Volume 1: Agent-based System Technology

    DTIC Science & Technology

    1998-02-01

    ambitious in its scope. In OAA (Moran, Cheyer, Julia , Martin, 10 & Park, 1997), agents can operate on multiple platforms across a network, new agents can be...find the source and best price for a given item. This area of electronic commerce has been an active area for research in agent-based systems ( Chavez ...D. (1993). Towards a taxonomy of multi-agent systems. International Journal of Man-Machine Studies 36, 689-704. Chavez , A., Dreilinger, D., Guttman, R

  4. A Hybrid Sensitivity Analysis Approach for Agent-based Disease Spread Models

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui

    2012-01-01

    Agent-based models (ABM) have been widely deployed in different fields for studying the collective behavior of large numbers of interacting agents. Of particular interest lately is the application of agent-based and hybrid models to epidemiology, specifically Agent-based Disease Spread Models (ABDSM). Validation (one aspect of the means to achieve dependability) of ABDSM simulation models is extremely important. It ensures that the right model has been built and lends confidence to the use of that model to inform critical decisions. In this report, we describe our preliminary efforts in ABDSM validation by using hybrid model fusion technology.

  5. Demeter, persephone, and the search for emergence in agent-based models.

    SciTech Connect

    North, M. J.; Howe, T. R.; Collier, N. T.; Vos, J. R.; Decision and Information Sciences; Univ. of Chicago; PantaRei Corp.; Univ. of Illinois

    2006-01-01

    In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent or potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.

  6. Agent-based model to rural urban migration analysis

    NASA Astrophysics Data System (ADS)

    Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.

    2006-05-01

    In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.

  7. When Do We Simulate Non-Human Agents? Dissociating Communicative and Non-Communicative Actions

    ERIC Educational Resources Information Center

    Liepelt, Roman; Prinz, Wolfgang; Brass, Marcel

    2010-01-01

    There is strong evidence that we automatically simulate observed behavior in our motor system. Previous research suggests that this simulation process depends on whether we observe a human or a non-human agent. Measuring a motor priming effect, this study investigated the question of whether agent-sensitivity of motor simulation depends on the…

  8. Adaptive BCI based on software agents.

    PubMed

    Castillo-Garcia, Javier; Cotrina, Anibal; Benevides, Alessandro; Delisle-Rodriguez, Denis; Longo, Berthil; Caicedo, Eduardo; Ferreira, Andre; Bastos, Teodiano

    2014-01-01

    The selection of features is generally the most difficult field to model in BCIs. Therefore, time and effort are invested in individual feature selection prior to data set training. Another great difficulty regarding the model of the BCI topology is the brain signal variability between users. How should this topology be in order to implement a system that can be used by large number of users with an optimal set of features? The proposal presented in this paper allows for obtaining feature reduction and classifier selection based on software agents. The software agents contain Genetic Algorithms (GA) and a cost function. GA used entropy and mutual information to choose the number of features. For the classifier selection a cost function was defined. Success rate and Cohen's Kappa coefficient are used as parameters to evaluate the classifiers performance. The obtained results allow finding a topology represented as a neural model for an adaptive BCI, where the number of the channels, features and the classifier are interrelated. The minimal subset of features and the optimal classifier were obtained with the adaptive BCI. Only three EEG channels were needed to obtain a success rate of 93% for the BCI competition III data set IVa.

  9. Agent-based modeling in ecological economics.

    PubMed

    Heckbert, Scott; Baynes, Tim; Reeson, Andrew

    2010-01-01

    Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.

  10. Agent Based Model of Livestock Movements

    NASA Astrophysics Data System (ADS)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  11. Towards strength and stability : agent-based modeling of infrastructure markets.

    SciTech Connect

    North, M. J.; Decision and Information Sciences

    2001-01-01

    Complex Adaptive Systems (CASs) can be applied to investigate complex infrastructures and infrastructure interdependencies. Agent-based modeling (ABM) is a new CAS-based approach to the construction of models. The CAS agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) ABMs allow investigation of the electric power infrastructure, the natural gas infrastructure, and their interdependencies. The Swarm-based SMART models use sets of agents and interconnections to represent electric power and natural gas systems. A prototype virtual reality (VR) interface has also been constructed for a version of the SMART model. This tool is intended to explore the use of advanced interactive three-dimensional visualization in agent-based modeling. The Java-based FAST model is currently under construction. FAST is a complete redesign of the SMART models that includes improvements in the modeling environment, model detail, and representational fidelity. Developing ABMs is difficult but can be rewarding.

  12. From Agents to Continuous Change via Aesthetics: Learning Mechanics with Visual Agent-Based Computational Modeling

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Farris, Amy Voss; Wright, Mason

    2012-01-01

    Novice learners find motion as a continuous process of change challenging to understand. In this paper, we present a pedagogical approach based on agent-based, visual programming to address this issue. Integrating agent-based programming, in particular, Logo programming, with curricular science has been shown to be challenging in previous research…

  13. Agent based modeling in tactical wargaming

    NASA Astrophysics Data System (ADS)

    James, Alex; Hanratty, Timothy P.; Tuttle, Daniel C.; Coles, John B.

    2016-05-01

    Army staffs at division, brigade, and battalion levels often plan for contingency operations. As such, analysts consider the impact and potential consequences of actions taken. The Army Military Decision-Making Process (MDMP) dictates identification and evaluation of possible enemy courses of action; however, non-state actors often do not exhibit the same level and consistency of planned actions that the MDMP was originally designed to anticipate. The fourth MDMP step is a particular challenge, wargaming courses of action within the context of complex social-cultural behaviors. Agent-based Modeling (ABM) and its resulting emergent behavior is a potential solution to model terrain in terms of the human domain and improve the results and rigor of the traditional wargaming process.

  14. Multi-agent system for the short and long-term power market simulations.

    SciTech Connect

    Wang, J.; Botterud, A.; Conzelmann, G.; Koritarov, V.

    2009-04-01

    In this paper we give an overview of the Electricity Market Complex Adaptive System (EMCAS) model. EMCAS uses the agent-based modeling and simulation (ABMS) technique to model the market participants in electricity markets as different agents with different strategies, risk preferences, and objectives. The complex operations of an electricity market can be simulated across several time horizons from day-ahead scheduling to long-term expansion planning. The methodology used in the model is discussed and a central European case is utilized to illustrate how EMCAS can be used to analyze a power system's operation under various assumptions. The results show the effectiveness of the model, and how the ABMS approach allows the testing of different market conditions.

  15. Multi-agent system for short and long-term power market simulations.

    SciTech Connect

    Wang, J.; Botterud, A.; Conzelmann, G.; Koritarov, V.

    2009-04-01

    In this paper we give an overview of the Electricity Market Complex Adaptive System (EMCAS) model. EMCAS uses the agent-based modeling and simulation (ABMS) technique to model the market participants in electricity markets as different agents with different strategies, risk preferences, and objectives. The complex operations of an electricity market can be simulated across several time horizons from day-ahead scheduling to long-term expansion planning. The methodology used in the model is discussed and a central European case is utilized to illustrate how EMCAS can be used to analyze a power system's operation under various assumptions. The results show the effectiveness of the model, and how the ABMS approach allows the testing of different market conditions.

  16. Multi-agent simulation of the von Thunen model formation mechanism

    NASA Astrophysics Data System (ADS)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  17. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  18. A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission

    PubMed Central

    Parker, Jon; Epstein, Joshua M.

    2013-01-01

    The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120

  19. Agent-Based Negotiation in Uncertain Environments

    NASA Astrophysics Data System (ADS)

    Debenham, John; Sierra, Carles

    An agent aims to secure his projected needs by attempting to build a set of (business) relationships with other agents. A relationship is built by exchanging private information, and is characterised by its intimacy — degree of closeness — and balance — degree of fairness. Each argumentative interaction between two agents then has two goals: to satisfy some immediate need, and to do so in a way that develops the relationship in a desired direction. An agent's desire to develop each relationship in a particular way then places constraints on the argumentative utterances. The form of negotiation described is argumentative interaction constrained by a desire to develop such relationships.

  20. An investigation of the evolutionary origin of reciprocal communication using simulated autonomous agents.

    PubMed

    Tuci, Elio

    2009-09-01

    How does communication originates in a population of originally non-communicating individuals? Providing an answer to this question from a neo-Darwinian epistemological perspective is not a trivial task. The reason is that, for non-communicating agents, the capabilities of emitting signals and responding to them are both adaptively neutral traits if they are not simultaneously present. Research studies based on rather general and theoretically oriented evolutionary simulation models have, so far, demonstrated that at least two different processes can account for the origin of communication. On the one hand, communicative behaviour may first evolve in a non-communicative context and only subsequently acquire its adaptive function.On the other hand, communication may originate thanks to cognitive constraints; that is, communication may originate thanks to the existence of neural substrates that are common to the signalling and categorising capabilities. This article provides a proof-of-concept demonstration of the origin of communication in a novel-simulated scenario in which groups of two homogeneous (i.e. genetically identical) agents exploit reciprocal communication to develop common perceptual categories nd to perform a collective task. In particular, in circumstances in which communication is evolutionarily advantageous, simulated agents evolve from scratch social behaviour through acoustic interactions.We look into the phylogeny of successful communication protocol, and we describe the evolutionary phenomena that, in early evolutionary stages, paved the way for the subsequent development of reciprocal communication, categorisation capabilities and successful cooperative strategies.

  1. Integrated control of lateral and vertical vehicle dynamics based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia

    2014-03-01

    The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.

  2. Modelling of robotic work cells using agent based-approach

    NASA Astrophysics Data System (ADS)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  3. An Agent-Based Data Mining System for Ontology Evolution

    NASA Astrophysics Data System (ADS)

    Hadzic, Maja; Dillon, Darshan

    We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.

  4. Validating agent based models through virtual worlds.

    SciTech Connect

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  5. Tests of Level A Suits - Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary

    DTIC Science & Technology

    1998-06-01

    Tests of Level A Suits – Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary Richard B. Belmonte...AND SUBTITLE Test Results of Level A Suits – Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary 5. FUNDING...words) Twelve Level A protective suits were tested for GB and HD permeation swatch testing using modified procedures of TOP

  6. Novel reversible and selective nerve agent simulant detection in conjunction with superoxide "turn-on" probing.

    PubMed

    Jang, Yoon Jeong; Murale, Dhiraj P; Churchill, David G

    2014-04-07

    Herein, we present fluorescein as a reversible fluorescent sensor for nerve agent simulants diethylchlorophosphate (DCP), diethyl methylphosphonate (DEMP), and diethyl cyanophosphonate (DECP). The superoxide allows for an "off-on" mechanism to regenerate fluorescein. The order of decrease in fluorescence intensity for nerve agent simulants is DCP > DEMP ≫ DECP.

  7. Space Situational Awareness using Market Based Agents

    NASA Astrophysics Data System (ADS)

    Sullivan, C.; Pier, E.; Gregory, S.; Bush, M.

    2012-09-01

    Space surveillance for the DoD is not limited to the Space Surveillance Network (SSN). Other DoD-owned assets have some existing capabilities for tasking but have no systematic way to work collaboratively with the SSN. These are run by diverse organizations including the Services, other defense and intelligence agencies and national laboratories. Beyond these organizations, academic and commercial entities have systems that possess SSA capability. Most all of these assets have some level of connectivity, security, and potential autonomy. Exploiting them in a mutually beneficial structure could provide a more comprehensive, efficient and cost effective solution for SSA. The collection of all potential assets, providers and consumers of SSA data comprises a market which is functionally illiquid. The development of a dynamic marketplace for SSA data could enable would-be providers the opportunity to sell data to SSA consumers for monetary or incentive based compensation. A well-conceived market architecture could drive down SSA data costs through increased supply and improve efficiency through increased competition. Oceanit will investigate market and market agent architectures, protocols, standards, and incentives toward producing high-volume/low-cost SSA.

  8. Tests of Level B Suits - Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary

    DTIC Science & Technology

    1999-04-01

    Tests of Level B Suits – Protection Against Chemical and Biological Warfare Agents and Simulants: Executive Summary Robert S. Lindsay April...Final; Jan 98 – Jun 98 4. TITLE AND SUBTITLE Tests of Level B Suits – Protection Against Chemical and Biological Warfare Agents and Simulants...Occupational Safety and Health Level B∗ suit designs were tested to assess their capability to protect in a chemical warfare agent

  9. Agent Based Velocity Control of Highway Systems

    DTIC Science & Technology

    1997-09-01

    the vector of behavior functions, C" is the behavior modification function for the i-th agent, and ai is the command action issued by the i-th agent...in a Lie-Taylor series [10]. In particular, we can express the change in the behavior modification functions C" due to the flow over the interval...the model formulated in expression (13). At time t and at point p G M the behavior modification function of agent i is given by: Crip, t) = Cf (p

  10. A Multi-agent Simulation Tool for Micro-scale Contagion Spread Studies

    SciTech Connect

    Koch, Daniel B

    2016-01-01

    Within the disaster preparedness and emergency response community, there is interest in how contagions spread person-to-person at large gatherings and if mitigation strategies can be employed to reduce new infections. A contagion spread simulation module was developed for the Incident Management Preparedness and Coordination Toolkit that allows a user to see how a geographically accurate layout of the gathering space helps or hinders the spread of a contagion. The results can inform mitigation strategies based on changing the physical layout of an event space. A case study was conducted for a particular event to calibrate the underlying simulation model. This paper presents implementation details of the simulation code that incorporates agent movement and disease propagation. Elements of the case study are presented to show how the tool can be used.

  11. Adaptivity in Agent-Based Routing for Data Networks

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan

    2000-01-01

    Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.

  12. Agent-based model for rural-urban migration: A dynamic consideration

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid

    2015-10-01

    This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.

  13. Epistemology of knowledge based simulation

    SciTech Connect

    Reddy, R.

    1987-04-01

    Combining artificial intelligence concepts, with traditional simulation methodologies yields a powerful design support tool known as knowledge based simulation. This approach turns a descriptive simulation tool into a prescriptive tool, one which recommends specific goals. Much work in the area of general goal processing and explanation of recommendations remains to be done.

  14. Agent Based Modeling of Collaboration and Work Practices Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Acquisti, Alessandro; Sierhuis, Maarten; Clancey, William J.; Bradshaw, Jeffrey M.; Shaffo, Mike (Technical Monitor)

    2002-01-01

    The International Space Station is one the most complex projects ever, with numerous interdependent constraints affecting productivity and crew safety. This requires planning years before crew expeditions, and the use of sophisticated scheduling tools. Human work practices, however, are difficult to study and represent within traditional planning tools. We present an agent-based model and simulation of the activities and work practices of astronauts onboard the ISS based on an agent-oriented approach. The model represents 'a day in the life' of the ISS crew and is developed in Brahms, an agent-oriented, activity-based language used to model knowledge in situated action and learning in human activities.

  15. 3DGIS-Based Multi-Agent Geosimulation and Visualization of Building Evacuation Using GAMA Platform

    NASA Astrophysics Data System (ADS)

    Macatulad, E. G.; Blanco, A. C.

    2014-11-01

    Recent GIS applications have already extended analyses from the traditional 2-2.5D environment (x,y,attributes) to 3D space (x,y,z,attributes). Coupled with agent-based modeling (ABM), available 3DGIS data can be used to develop simulation models for improved analysis of spatial data and spatial processes. One such application is on building evacuation for which ABM is integrated with 3D indoor spatial data to model human behavior during evacuation events and simulate evacuation scenarios visualized in 3D. The research presented in this paper develops a multi-agent geosimulation model for building evacuation, integrating 3DGIS dataset of the case study building as input in ABM using the GAMA simulation platform. This model is intended to complement and improve traditional approaches in building evacuation planning and management such as earthquake and fire drills. The initial model developed includes PEOPLE agents to model the building occupants, and FLOORS, ROOMS, INDOOR_PATHS and EXIT_POINTS agents, which are modeled from the 3DGIS layers. The INDOOR_PATHS and EXIT_POINTS agents influence the movement of PEOPLE agents. Test simulations were performed involving PEOPLE agents placed in rooms of the building based on potential number of occupants computed based from the floor area of each room. The PEOPLE agents are programmed to find the shortest path along the INDOOR_PATHS towards the EXIT_POINTS instance designated for each room of the building. The simulation computes for the total time it takes for all PEOPLE agents to exit the building.

  16. A Multi-Agent Approach to the Simulation of Robotized Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banaś, W.

    2016-08-01

    The recent years of eventful industry development, brought many competing products, addressed to the same market segment. The shortening of a development cycle became a necessity if the company would like to be competitive. Because of switching to the Intelligent Manufacturing model the industry search for new scheduling algorithms, while the traditional ones do not meet the current requirements. The agent-based approach has been considered by many researchers as an important way of evolution of modern manufacturing systems. Due to the properties of the multi-agent systems, this methodology is very helpful during creation of the model of production system, allowing depicting both processing and informational part. The complexity of such approach makes the analysis impossible without the computer assistance. Computer simulation still uses a mathematical model to recreate a real situation, but nowadays the 2D or 3D virtual environments or even virtual reality have been used for realistic illustration of the considered systems. This paper will focus on robotized manufacturing system and will present the one of possible approaches to the simulation of such systems. The selection of multi-agent approach is motivated by the flexibility of this solution that offers the modularity, robustness and autonomy.

  17. Wireless Hazard Badges to Detect Nerve-Agent Simulants.

    PubMed

    Zhu, Rong; Azzarelli, Joseph M; Swager, Timothy M

    2016-08-08

    Human exposure to hazardous chemicals can have adverse short- and long-term health effects. In this Communication, we have developed a single-use wearable hazard badge that dosimetrically detects diethylchlorophosphate (DCP), a model organophosphorous cholinesterase inhibitor simulant. Improved chemically actuated resonant devices (CARDs) are fabricated in a single step and unambiguously relate changes in chemiresistance to a wireless readout. To provide selective and readily manufacturable sensor elements for this platform, we developed an ionic-liquid-mediated single walled carbon nanotube based chemidosimetric scheme with DCP limits of detection of 28 ppb. As a practical demonstration, an 8 h workday time weighted average equivalent exposure of 10 ppb DCP effects an irreversible change in smartphone readout.

  18. Simulation-based surgical education.

    PubMed

    Evgeniou, Evgenios; Loizou, Peter

    2013-09-01

    The reduction in time for training at the workplace has created a challenge for the traditional apprenticeship model of training. Simulation offers the opportunity for repeated practice in a safe and controlled environment, focusing on trainees and tailored to their needs. Recent technological advances have led to the development of various simulators, which have already been introduced in surgical training. The complexity and fidelity of the available simulators vary, therefore depending on our recourses we should select the appropriate simulator for the task or skill we want to teach. Educational theory informs us about the importance of context in professional learning. Simulation should therefore recreate the clinical environment and its complexity. Contemporary approaches to simulation have introduced novel ideas for teaching teamwork, communication skills and professionalism. In order for simulation-based training to be successful, simulators have to be validated appropriately and integrated in a training curriculum. Within a surgical curriculum, trainees should have protected time for simulation-based training, under appropriate supervision. Simulation-based surgical education should allow the appropriate practice of technical skills without ignoring the clinical context and must strike an adequate balance between the simulation environment and simulators.

  19. Molecular Rotors for the Detection of Chemical Warfare Agent Simulants.

    PubMed

    Kim, Tae-Il; Maity, Shubhra Bikash; Bouffard, Jean; Kim, Youngmi

    2016-09-20

    The fluorogenic probe o-OH is able to detect and quantify organophosphorus nerve agent mimics in solution and in the vapor phase following immobilization on a solid substrate, making the system a suitable candidate for the field detection of chemical warfare agents. Detection is achieved by the suppression of internal rotation upon phosphorylation of a reactive phenolate, resulting in a large fluorescence "turn-on" response.

  20. Multi-Agent Simulations of the Immune Response to Hiv during the Acute Stage of Infection

    NASA Astrophysics Data System (ADS)

    Walshe, R.; Ruskin, H. J.; Callaghan, A.

    Results of multi-agent based simulations of the immune response to HIV during the acute phase of infection are presented here. The model successfully recreates the viral dynamics associated with the acute phase of infection, i.e., a rapid rise in viral load followed by a sharp decline to what is often referred to as a "set point", a result of T-cell response and emergence of HIV neutralizing antibodies. The results indicate that sufficient T Killer cell response is the key factor in controlling viral growth during this phase with antibody levels of critical importance only in the absence of a sufficient T Killer response.

  1. An agent-based approach to financial stylized facts

    NASA Astrophysics Data System (ADS)

    Shimokawa, Tetsuya; Suzuki, Kyoko; Misawa, Tadanobu

    2007-06-01

    An important challenge of the financial theory in recent years is to construct more sophisticated models which have consistencies with as many financial stylized facts that cannot be explained by traditional models. Recently, psychological studies on decision making under uncertainty which originate in Kahneman and Tversky's research attract a lot of interest as key factors which figure out the financial stylized facts. These psychological results have been applied to the theory of investor's decision making and financial equilibrium modeling. This paper, following these behavioral financial studies, would like to propose an agent-based equilibrium model with prospect theoretical features of investors. Our goal is to point out a possibility that loss-averse feature of investors explains vast number of financial stylized facts and plays a crucial role in price formations of financial markets. Price process which is endogenously generated through our model has consistencies with, not only the equity premium puzzle and the volatility puzzle, but great kurtosis, asymmetry of return distribution, auto-correlation of return volatility, cross-correlation between return volatility and trading volume. Moreover, by using agent-based simulations, the paper also provides a rigorous explanation from the viewpoint of a lack of market liquidity to the size effect, which means that small-sized stocks enjoy excess returns compared to large-sized stocks.

  2. A Model of the joint motion of agents with a three-level hierarchy based on a cellular automaton

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.

    2017-02-01

    The collective interaction of agents for jointly overcoming (negotiating) obstacles is simulated. The simulation uses a cellular automaton. The automaton's cells are filled with agents and obstacles of various complexity. The agents' task is to negotiate the obstacles while moving to a prescribed target point. Each agent is assigned to one of three levels, which specifies a hierarchy of subordination between the agents. The complexity of an obstacle is determined by the amount of time needed to overcome it. The proposed model is based on the probabilities of going from one cell to another.

  3. Bridging the gap: simulations meet knowledge bases

    NASA Astrophysics Data System (ADS)

    King, Gary W.; Morrison, Clayton T.; Westbrook, David L.; Cohen, Paul R.

    2003-09-01

    Tapir and Krill are declarative languages for specifying actions and agents, respectively, that can be executed in simulation. As such, they bridge the gap between strictly declarative knowledge bases and strictly executable code. Tapir and Krill components can be combined to produce models of activity which can answer questions about mechanisms and processes using conventional inference methods and simulation. Tapir was used in DARPA's Rapid Knowledge Formation (RKF) project to construct models of military tactics from the Army Field Manual FM3-90. These were then used to build Courses of Actions (COAs) which could be critiqued by declarative reasoning or via Monte Carlo simulation. Tapir and Krill can be read and written by non-knowledge engineers making it an excellent vehicle for Subject Matter Experts to build and critique knowledge bases.

  4. Modeling the transport of chemical warfare agents and simulants in polymeric substrates for reactive decontamination

    NASA Astrophysics Data System (ADS)

    Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew

    2014-03-01

    Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.

  5. An Extension Dynamic Model Based on BDI Agent

    NASA Astrophysics Data System (ADS)

    Yu, Wang; Feng, Zhu; Hua, Geng; WangJing, Zhu

    this paper's researching is based on the model of BDI Agent. Firstly, This paper analyze the deficiencies of the traditional BDI Agent model, Then propose an extension dynamic model of BDI Agent based on the traditional ones. It can quickly achieve the internal interaction of the tradition model of BDI Agent, deal with complex issues under dynamic and open environment and achieve quick reaction of the model. The new model is a natural and reasonable model by verifying the origin of civilization using the model of monkeys to eat sweet potato based on the design of the extension dynamic model. It is verified to be feasible by comparing the extended dynamic BDI Agent model with the traditional BDI Agent Model uses the SWARM, it has important theoretical significance.

  6. Climate Shocks and Migration: An Agent-Based Modeling Approach.

    PubMed

    Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-09-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.

  7. Multi-agent-based Order Book Model of financial markets

    NASA Astrophysics Data System (ADS)

    Preis, T.; Golke, S.; Paul, W.; Schneider, J. J.

    2006-08-01

    We introduce a simple model for simulating financial markets, based on an order book, in which several agents trade one asset at a virtual exchange continuously. For a stationary market the structure of the model, the order flow rates of the different kinds of order types and the used price time priority matching algorithm produce only a diffusive price behavior. We show that a market trend, i.e. an asymmetric order flow of any type, leads to a non-trivial Hurst exponent for the price development, but not to "fat-tailed" return distributions. When one additionally couples the order entry depth to the prevailing trend, also the stylized empirical fact of "fat tails" can be reproduced by our Order Book Model.

  8. Situation Awareness-Based Agent Transparency

    DTIC Science & Technology

    2014-04-01

    Initiative. 15. SUBJECT TERMS human-robot interaction, autonomous systems, transparency, trust, situation awareness (SA) 16. SECURITY...11 5. Example: Autonomous Squad Member 13 5.1 SAT Level 1...5 1 1. Introduction Autonomous agents have been increasingly used for military operations (e.g., casualty extraction

  9. Competency Based Curriculum for Real Estate Agent.

    ERIC Educational Resources Information Center

    McCloy, Robert J.

    This publication is a curriculum and teaching guide for preparing real estate agents in the state of West Virginia. The guide contains 30 units, or lessons. Each lesson is designed to cover three to five hours of instruction time. Competencies provided for each lesson are stated in terms of what the student should be able to do as a result of the…

  10. Fingerprinting malathion vapor: a simulant for VX nerve agent

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Ding, Yujie J.; Zotova, Ioulia B.

    2008-04-01

    Being motivated by the possibility of fingerprinting and detecting VX nerve agent, we have investigated its stimulant, i.e. malathion vapor, which is less toxic and commercially available, in the far-infrared/THz transition region and THz frequency range. Such a spectroscopic study was carried out by using Fourier transform infrared spectroscopy (FTIR). Our intention is to obtain a specific spectroscopic signature of VX nerve agent as a chemical warfare agent. Following our experimental result, we have successfully observed eleven new absorption peaks from malathion vapor in the spectral ranges from 15 cm -1 to 68 cm -1 and from 75 cm -1 to 640 cm -1. Specifically, in the far-infrared/THz transition region, we have observed eight peaks and whereas in the THz region we have identified three relatively weak transition peaks. In addition, we have investigated the dependence of the absorption spectra on temperature in the range from room temperature to 60°C. In both of the frequency ranges, we have found that absorption coefficients significantly increase with increasing temperature. By comparing the transition peaks in the two frequency ranges, we have concluded that the frequency range of 400-640cm -1 is an optimal range for fingerprinting this chemical specie. We have designated two peaks for effectively and accurately identifying the VX nerve agents and one peak for differentiating between malathion and VX nerve agent.

  11. Coordination of multi-agent systems under switching topologies via disturbance observer-based approach

    NASA Astrophysics Data System (ADS)

    Tang, Yutao

    2016-12-01

    In this paper, a leader-following coordination problem of heterogeneous multi-agent systems is considered under switching topologies where each agent is subject to some local (unbounded) disturbances. While these unknown disturbances may disrupt the performance of agents, a disturbance observer-based approach is employed to estimate and reject them. Varying communication topologies are also taken into consideration, and their byproduct difficulties are overcome by using common Lyapunov function techniques. According to the available information in difference cases, two disturbance observer-based protocols are proposed to solve this problem. Their effectiveness is verified by simulations.

  12. A versatile simulation software for performance analysis of DIAL system for the detection of toxic agents

    NASA Astrophysics Data System (ADS)

    Jindal, Mukesh K.; Veerabuthiran, S.; Dudeja, Jai Paul; Dubey, Deepak K.

    2006-12-01

    Simulation studies have been carried out to analyze the performance of a Differential Absorption Lidar (DIAL) system for the remote detection of a large variety of toxic agents in the 2-5 μm and 9-11 μm spectral bands. Stand-alone Graphical User Interface (GUI) software has been developed in the MATLAB platform to perform the simulation operations. It takes various system inputs from the user and computes the required laser energy to be transmitted, backscattered signal strengths, signal-to-noise ratio and minimum detectable concentrations for various agents from different ranges for the given system parameters. It has the flexibility of varying any of the system parameters for computation in order to provide inputs for the required design of proposed DIAL system. This software has the advantage of optimizing system parameters in the design of Lidar system. As a case study, the DIAL system with specified pulse energy of OPO based laser transmitter (2-5 μm) and a TEA CO II laser transmitter (9-11μm) has been considered. The proposed system further consists of a 500-mm diameter Newtonian telescope, 0.5-mm diameter detector and 10-MHz digitizer. A toxic agent cloud with given thickness and concentration has been assumed to be detected in the ambient atmospheric conditions at various ranges between 0.2 and 5 km. For a given set of system parameters, the required energy of laser transmitter, power levels of the return signals, signal-to-noise ratio and minimum detectable concentrations from different ranges have been calculated for each of these toxic agents.

  13. Measure of Landscape Heterogeneity by Agent-Based Methodology

    NASA Astrophysics Data System (ADS)

    Wirth, E.; Szabó, Gy.; Czinkóczky, A.

    2016-06-01

    With the rapid increase of the world's population, the efficient food production is one of the key factors of the human survival. Since biodiversity and heterogeneity is the basis of the sustainable agriculture, the authors tried to measure the heterogeneity of a chosen landscape. The EU farming and subsidizing policies (EEA, 2014) support landscape heterogeneity and diversity, nevertheless exact measurements and calculations apart from statistical parameters (standard deviation, mean), do not really exist. In the present paper the authors' goal is to find an objective, dynamic method that measures landscape heterogeneity. It is achieved with the so called agent-based modelling, where randomly dispatched dynamic scouts record the observed land cover parameters and sum up the features of a new type of land. During the simulation the agents collect a Monte Carlo integral as a diversity landscape potential which can be considered as the unit of the `greening' measure. As a final product of the ABM method, a landscape potential map is obtained that can serve as a tool for objective decision making to support agricultural diversity.

  14. An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard W.

    This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.

  15. Multi-agent simulations of the electricity market in central Europe.

    SciTech Connect

    Botterud, A.; Koritarov, V.; Thimmapuram, P. R.; Decision and Information Sciences

    2006-01-01

    Researchers use agent-based modeling and simulation (ABMS) and applications in electricity markets in Central Europe. They look at production cost, impact of CO{sub 2} emission allowances, strategic bidding in Germany and demand response. Advantages of using ABMS for market power analysis are more realistic market behavior than equilibrium models and detailed representation of physical system and market rules. Some challenges with ABMS are complex process to analyze results which makes it often necessary to run a high number of simulations and it is difficult to draw general conclusions. The case study looked at CO{sub 2} scheme that increases price and GenCo profits and reduces CO{sub 2} emissions. Price responsive demand an important countermeasure to market power.

  16. Reactively and Anticipatory Behaving Agents for Artificial Life Simulations

    NASA Astrophysics Data System (ADS)

    Kohout, Karel; Nahodil, Pavel

    2010-11-01

    Reactive behavior is still considered and the exact opposite for the anticipatory one. Despite the advances on the field of anticipation there are little thoughts on relation with the reactive behavior, the similarities and where the boundary is. In this article we will present our viewpoint and we will try to show that reactive and anticipatory behavior can be combined. This is the basic ground of our unified theory for anticipatory behavior architecture. We still miss such compact theory, which would integrate multiple aspects of anticipation. My multi-level anticipatory behavior approach is based on the current understanding of anticipation from both the artificial intelligence and biology point of view. As part of the explanation we will also elaborate on the topic of weak and strong artificial life. Anticipation is not matter of a single mechanism in a living organism. It was noted already that it happens on many different levels even in the very simple creatures. What we consider to be important for our work and what is our original though is that it happens even without voluntary control. We believe that this is novelty though for the anticipation theory. Naturally research of anticipation was in the beginning of this decade focused on the anticipatory principles bringing advances on the field itself. This allowed us to build on those, look at them from higher perspective, and use not one but multiple levels of anticipation in a creature design. This presents second original though and that is composition of the agent architecture that has anticipation built in almost every function. In this article we will focus only on first two levels within the 8-factor anticipation framework. We will introduce them as defined categories of anticipation and describe them from theory and implementation algorithm point of view. We will also present an experiment conducted, however this experiment serves more as explanatory example. These first two levels may seem trivial

  17. Standoff lidar simulation for biological warfare agent detection, tracking, and classification

    NASA Astrophysics Data System (ADS)

    Jönsson, Erika; Steinvall, Ove; Gustafsson, Ove; Kullander, Fredrik; Jonsson, Per

    2010-04-01

    Lidar has been identified as a promising sensor for remote detection of biological warfare agents (BWA). Elastic IR lidar can be used for cloud detection at long ranges and UV laser induced fluorescence can be used for discrimination of BWA against naturally occurring aerosols. This paper will describe a simulation tool which enables the simulation of lidar for detection, tracking and classification of aerosol clouds. The cloud model was available from another project and has been integrated into the model. It takes into account the type of aerosol, type of release (plume or puff), amounts of BWA, winds, height above the ground and terrain roughness. The model input includes laser and receiver parameters for both the IR and UV channels as well as the optical parameters of the background, cloud and atmosphere. The wind and cloud conditions and terrain roughness are specified for the cloud simulation. The search area including the angular sampling resolution together with the IR laser pulse repetition frequency defines the search conditions. After cloud detection in the elastic mode, the cloud can be tracked using appropriate algorithms. In the tracking mode the classification using fluorescence spectral emission is simulated and tested using correlation against known spectra. Other methods for classification based on elastic backscatter are also discussed as well as the determination of particle concentration. The simulation estimates and displays the lidar response, cloud concentration as well as the goodness of fit for the classification using fluorescence.

  18. An agent-based model of collective emotions in online communities

    NASA Astrophysics Data System (ADS)

    Schweitzer, F.; Garcia, D.

    2010-10-01

    We develop an agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agent’s individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent’s arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.

  19. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.

    PubMed

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2010-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.

  20. Models of multi-agent behavior: a simulation and Expert Environment approach

    SciTech Connect

    Lounamaa, P.H.M.

    1985-01-01

    The goal of this thesis is to improve our understanding of behavioral phenomena in multi-agent decision making via modeling. A secondary goal is to develop a powerful simulation methodology for analyzing dynamic systems. A research question is the relevance of artificial intelligence techniques. A Simulation and Expert Environment (SEE), developed in LISP, integrates difference equation simulation with object-oriented programming and rule-based reasoning. The object-oriented approach offers a method for managing variants of the models. Ways to integrate rule-based reasoning and simulation are demonstrated, but the former's computational inefficiency limits usefulness. The system provides fast runaround between defining a model and obtaining results, which increases the productivity of the modeler, and encourages experimental modeling, leading to novel formulations and results. SEE is used to study the impact of biases, attribution heuristics, and trust on decision making in a team whose members are myopic and altruistic. The theme of this study is trust as a counter-bias. Using experimental modeling and the tools in SEE for exploring parametric solutions, behaviorally substantial results are obtained.

  1. A spatial web/agent-based model to support stakeholders' negotiation regarding land development.

    PubMed

    Pooyandeh, Majeed; Marceau, Danielle J

    2013-11-15

    Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second

  2. Fluorescence cross section measurements of biological agent simulants

    SciTech Connect

    Stephens, J.R.

    1996-11-01

    Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

  3. Towards an agent-oriented programming language based on Scala

    NASA Astrophysics Data System (ADS)

    Mitrović, Dejan; Ivanović, Mirjana; Budimac, Zoran

    2012-09-01

    Scala and its multi-threaded model based on actors represent an excellent framework for developing purely reactive agents. This paper presents an early research on extending Scala with declarative programming constructs, which would result in a new agent-oriented programming language suitable for developing more advanced, BDI agent architectures. The main advantage the new language over many other existing solutions for programming BDI agents is a natural and straightforward integration of imperative and declarative programming constructs, fitted under a single development framework.

  4. Access Control for Agent-based Computing: A Distributed Approach.

    ERIC Educational Resources Information Center

    Antonopoulos, Nick; Koukoumpetsos, Kyriakos; Shafarenko, Alex

    2001-01-01

    Discusses the mobile software agent paradigm that provides a foundation for the development of high performance distributed applications and presents a simple, distributed access control architecture based on the concept of distributed, active authorization entities (lock cells), any combination of which can be referenced by an agent to provide…

  5. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  6. E-laboratories : agent-based modeling of electricity markets.

    SciTech Connect

    North, M.; Conzelmann, G.; Koritarov, V.; Macal, C.; Thimmapuram, P.; Veselka, T.

    2002-05-03

    Electricity markets are complex adaptive systems that operate under a wide range of rules that span a variety of time scales. These rules are imposed both from above by society and below by physics. Many electricity markets are undergoing or are about to undergo a transition from centrally regulated systems to decentralized markets. Furthermore, several electricity markets have recently undergone this transition with extremely unsatisfactory results, most notably in California. These high stakes transitions require the introduction of largely untested regulatory structures. Suitable laboratories that can be used to test regulatory structures before they are applied to real systems are needed. Agent-based models can provide such electronic laboratories or ''e-laboratories.'' To better understand the requirements of an electricity market e-laboratory, a live electricity market simulation was created. This experience helped to shape the development of the Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential as an e-laboratory, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.

  7. Agent-based modeling supporting the migration of registry systems to grid based architectures.

    PubMed

    Cryer, Martin E; Frey, Lewis

    2009-03-01

    With the increasing age and cost of operation of the existing NCI SEER platform core technologies, such essential resources in the fight against cancer as these will eventually have to be migrated to Grid based systems. In order to model this migration, a simulation is proposed based upon an agent modeling technology. This modeling technique allows for simulation of complex and distributed services provided by a large scale Grid computing platform such as the caBIG(™) project's caGRID. In order to investigate such a migration to a Grid based platform technology, this paper proposes using agent-based modeling simulations to predict the performance of current and Grid configurations of the NCI SEER system integrated with the existing translational opportunities afforded by caGRID. The model illustrates how the use of Grid technology can potentially improve system response time as systems under test are scaled. In modeling SEER nodes accessing multiple registry silos, we show that the performance of SEER applications re-implemented in a Grid native manner exhibits a nearly constant user response time with increasing numbers of distributed registry silos, compared with the current application architecture which exhibits a linear increase in response time for increasing numbers of silos.

  8. A new model for international relationship based on multi-agent

    NASA Astrophysics Data System (ADS)

    He, Defu; Huang, Gang; Su, Xisheng

    2011-12-01

    Analysis and simulate international relationship by using high-tech cluster of information technology is important and meaningful to the modern research of strategic work and the strategic decision-making. This paper use Multi-Agents system to model the international relationship with macrocosmic level and microcosmic level. For the microcosmic level shows activities and the rules of correlative activities of countries, propose a reinforcement learning algorithm to improve cooperative efficiency among agents, which based on common goal and joint rewards to insure agents to learn cooperative behavior. A prototype and an experiment were given.

  9. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  10. Pain expressiveness and altruistic behavior: an exploration using agent-based modeling.

    PubMed

    de C Williams, Amanda C; Gallagher, Elizabeth; Fidalgo, Antonio R; Bentley, Peter J

    2016-03-01

    Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.

  11. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents.

    PubMed

    Garnier, Laurence; Gaudin, Jean-Christophe; Bensadoun, Paul; Rebillat, Isabelle; Morel, Yannick

    2009-03-01

    Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant "simulant" microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per microl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies.

  12. Plume base flow simulation technology

    NASA Technical Reports Server (NTRS)

    Roberts, B. B.; Wallace, R. O.; Sims, J. L.

    1983-01-01

    A combined analytical/empirical approach was studied in an effort to define the plume simulation parameters for base flow. For design purposes, rocket exhaust simulation (i.e., plume simulation) is determined by wind tunnel testing. Cold gas testing was concluded to be a cost and schedule effective data base of substantial scope. The results fell short of the target, although work conducted was conclusive and advanced the state of the art. Comparisons of wind tunnel predictions with Space Transportation System (STS) flight data showed considerable differences. However, a review of the technology program data base has yielded an additional parameter that may correlate flight and cold gas test data. Data from the plume technology program and the NASA test flights are presented to substantiate the proposed simulation parameters.

  13. Large-scale multi-agent transportation simulations

    NASA Astrophysics Data System (ADS)

    Cetin, Nurhan; Nagel, Kai; Raney, Bryan; Voellmy, Andreas

    2002-08-01

    It is now possible to microsimulate the traffic of whole metropolitan areas with 10 million travelers or more, "micro" meaning that each traveler is resolved individually as a particle. In contrast to physics or chemistry, these particles have internal intelligence; for example, they know where they are going. This means that a transportation simulation project will have, besides the traffic microsimulation, modules which model this intelligent behavior. The most important modules are for route generation and for demand generation. Demand is generated by each individual in the simulation making a plan of activities such as sleeping, eating, working, shopping, etc. If activities are planned at different locations, they obviously generate demand for transportation. This however is not enough since those plans are influenced by congestion which initially is not known. This is solved via a relaxation method, which means iterating back and forth between the activities/routes generation and the traffic simulation.

  14. Agent-based method for distributed clustering of textual information

    DOEpatents

    Potok, Thomas E [Oak Ridge, TN; Reed, Joel W [Knoxville, TN; Elmore, Mark T [Oak Ridge, TN; Treadwell, Jim N [Louisville, TN

    2010-09-28

    A computer method and system for storing, retrieving and displaying information has a multiplexing agent (20) that calculates a new document vector (25) for a new document (21) to be added to the system and transmits the new document vector (25) to master cluster agents (22) and cluster agents (23) for evaluation. These agents (22, 23) perform the evaluation and return values upstream to the multiplexing agent (20) based on the similarity of the document to documents stored under their control. The multiplexing agent (20) then sends the document (21) and the document vector (25) to the master cluster agent (22), which then forwards it to a cluster agent (23) or creates a new cluster agent (23) to manage the document (21). The system also searches for stored documents according to a search query having at least one term and identifying the documents found in the search, and displays the documents in a clustering display (80) of similarity so as to indicate similarity of the documents to each other.

  15. Semantic Extension of Agent-Based Control: The Packing Cell Case Study

    NASA Astrophysics Data System (ADS)

    Vrba, Pavel; Radakovič, Miloslav; Obitko, Marek; Mařík, Vladimír

    The paper reports on the latest R&D activities in the field of agent-based manufacturing control systems. It is documented that this area becomes strongly influenced by the advancements of semantic technologies like the Web Ontology Language. The application of ontologies provides the agents with much more effective means for handling, exchanging and reasoning about the knowledge. The ontology dedicated for semantic description of orders, production processes and material handling tasks in discrete manufacturing domain has been developed. In addition, the framework for integration of this ontology in distributed, agent-based control solutions is given. The Manufacturing Agent Simulation Tool (MAST) is used as a base for pilot implementation of the ontology-powered multiagent control system; the packing cell environment is selected as a case study.

  16. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  17. Pattern-oriented modeling of agent-based complex systems: lessons from ecology.

    PubMed

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M; Railsback, Steven F; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L

    2005-11-11

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  18. Knowledge-based reasoning to annotate noncoding RNA using multi-agent system.

    PubMed

    Arruda, Wosley C; Souza, Daniel S; Ralha, Célia G; Walter, Maria Emilia M T; Raiol, Tainá; Brigido, Marcelo M; Stadler, Peter F

    2015-12-01

    Noncoding RNAs (ncRNAs) have been focus of intense research over the last few years. Since characteristics and signals of ncRNAs are not entirely known, researchers use different computational tools together with their biological knowledge to predict putative ncRNAs. In this context, this work presents ncRNA-Agents, a multi-agent system to annotate ncRNAs based on the output of different tools, using inference rules to simulate biologists' reasoning. Experiments with data from the fungus Saccharomyces cerevisiae allowed to measure the performance of ncRNA-Agents, with better sensibility, when compared to Infernal, a widely used tool for annotating ncRNA. Besides, data of the Schizosaccharomyces pombe and Paracoccidioides brasiliensis fungi identified novel putative ncRNAs, which demonstrated the usefulness of our approach. NcRNA-Agents can be be found at: http://www.biomol.unb.br/ncrna-agents.

  19. Study on the E-commerce platform based on the agent

    NASA Astrophysics Data System (ADS)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  20. Observer-based distributed consensus for general nonlinear multi-agent systems with interval control inputs

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Liu, Yang

    2016-01-01

    In this paper, observer-based distributed consensus for general nonlinear multi-agent systems with interval control inputs under strongly connected balanced topology is encountered when the relative states of agents are unavailable or undesirable. Theoretical analysis method is further extended to the case of general nonlinear multi-agent systems under switching setting. Moreover, tracking problem on the leader-follower scenario is also explicitly investigated under a mutual assumption that the communication graph, which represents the interaction among agents, contains a directed spanning tree with the leader as its root. It is shown that the consensus for underlying considered multi-agent systems can be desirable as long as the data missing rate does not exceed a certain threshold. Finally, simulation examples are presented to effectively corroborate the analytical findings.

  1. Agent-Based Modeling of Growth Processes

    ERIC Educational Resources Information Center

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  2. AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*

    PubMed Central

    Bruch, Elizabeth; Atwell, Jon

    2014-01-01

    Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351

  3. Protocol for determination of chemical warfare agent simulant movement through porous media

    SciTech Connect

    Jenkins, R.A.; Buchanan, M.V.; Merriweather, R.; Ilgner, R.H.; Gayle, T.M.; Moneyhun, J.H.; Watson, A.P.

    1992-07-01

    In the event of an unplanned release of chemical warfare agent during any phase of the Chemical Stockpile Disposal Program (CSDP), a (small) potential exists for contamination of buildings and materials used in their construction. Guidelines for unrestricted access to potentially agent-contaminated private and public property are presently undefined due to uncertainties regarding the adequacy of decontaminating porous surfaces such as wood, masonry and gypsum wall board. Persistent agents such as VX or mustard are particularly problematic. The report which follows documents a measurement protocol developed in a scoping investigation characterizing the permeation of chemical warfare agent simulants [diisopropylmethyl phosphonate (DIMP) for warfare agent GB, dimethylmethyl phosphonate (DMMP) for warfare agent VX and chlorethylethyl sulfide (CEES) for warfare agent sulfur mustard] through several, common porous, construction materials. The ``porous media`` selected for examination were wood, brick, cinder block, and gypsum wall board. Simulants were tested rather than actual warfare agents because of their low toxicity, commercial availability, and the lack of surety capability at Oak Ridge National Laboratory (ORNL). The present work is considered a protocol for confirmation testing with ``live`` agents.

  4. Protocol for determination of chemical warfare agent simulant movement through porous media

    SciTech Connect

    Jenkins, R.A.; Buchanan, M.V.; Merriweather, R.; Ilgner, R.H.; Gayle, T.M.; Moneyhun, J.H.; Watson, A.P.

    1992-07-01

    In the event of an unplanned release of chemical warfare agent during any phase of the Chemical Stockpile Disposal Program (CSDP), a (small) potential exists for contamination of buildings and materials used in their construction. Guidelines for unrestricted access to potentially agent-contaminated private and public property are presently undefined due to uncertainties regarding the adequacy of decontaminating porous surfaces such as wood, masonry and gypsum wall board. Persistent agents such as VX or mustard are particularly problematic. The report which follows documents a measurement protocol developed in a scoping investigation characterizing the permeation of chemical warfare agent simulants (diisopropylmethyl phosphonate (DIMP) for warfare agent GB, dimethylmethyl phosphonate (DMMP) for warfare agent VX and chlorethylethyl sulfide (CEES) for warfare agent sulfur mustard) through several, common porous, construction materials. The porous media'' selected for examination were wood, brick, cinder block, and gypsum wall board. Simulants were tested rather than actual warfare agents because of their low toxicity, commercial availability, and the lack of surety capability at Oak Ridge National Laboratory (ORNL). The present work is considered a protocol for confirmation testing with live'' agents.

  5. The Study on Collaborative Manufacturing Platform Based on Agent

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Qu, Zheng-geng

    To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.

  6. The fractional volatility model: An agent-based interpretation

    NASA Astrophysics Data System (ADS)

    Vilela Mendes, R.

    2008-06-01

    Based on the criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, some features of the model are reviewed and extended to account for leverage effects. Using agent-based models, one tries to find which agent strategies and (or) properties of the financial institutions might be responsible for the features of the fractional volatility model.

  7. Scalable, distributed data mining using an agent based architecture

    SciTech Connect

    Kargupta, H.; Hamzaoglu, I.; Stafford, B.

    1997-05-01

    Algorithm scalability and the distributed nature of both data and computation deserve serious attention in the context of data mining. This paper presents PADMA (PArallel Data Mining Agents), a parallel agent based system, that makes an effort to address these issues. PADMA contains modules for (1) parallel data accessing operations, (2) parallel hierarchical clustering, and (3) web-based data visualization. This paper describes the general architecture of PADMA and experimental results.

  8. Modeling and Simulation of Agents in Resource Strategy Games

    DTIC Science & Technology

    2008-01-01

    of reusable factions for simulations involving the MidEast. The course was taught under the ‘Coop- Coop’ pedagogy in which the students were...brutality. • Moderate Y Followers - Lack of cultural freedom, schools, etc. Mostly rural family members who want own land and autonomy . • Radical Y

  9. An Autonomous Mobile Agent-Based Distributed Learning Architecture: A Proposal and Analytical Analysis

    ERIC Educational Resources Information Center

    Ahmed, Iftikhar; Sadeq, Muhammad Jafar

    2006-01-01

    Current distance learning systems are increasingly packing highly data-intensive contents on servers, resulting in the congestion of network and server resources at peak service times. A distributed learning system based on faded information field (FIF) architecture that employs mobile agents (MAs) has been proposed and simulated in this work. The…

  10. Data Parallel Execution Challenges and Runtime Performance of Agent Simulations on GPUs

    SciTech Connect

    Perumalla, Kalyan S; Aaby, Brandon G

    2008-01-01

    Programmable graphics processing units (GPUs) have emerged as excellent computational platforms for certain general-purpose applications. The data parallel execution capabilities of GPUs specifically point to the potential for effective use in simulations of agent-based models (ABM). In this paper, the computational efficiency of ABM simulation on GPUs is evaluated on representative ABM benchmarks. The runtime speed of GPU-based models is compared to that of traditional CPU-based implementation, and also to that of equivalent models in traditional ABM toolkits (Repast and NetLogo). As expected, it is observed that, GPU-based ABM execution affords excellent speedup on simple models, with better speedup on models exhibiting good locality and fair amount of computation per memory element. Execution is two to three orders of magnitude faster with a GPU than with leading ABM toolkits, but at the cost of decrease in modularity, ease of programmability and reusability. At a more fundamental level, however, the data parallel paradigm is found to be somewhat at odds with traditional model-specification approaches for ABM. Effective use of data parallel execution, in general, seems to require resolution of modeling and execution challenges. Some of the challenges are identified and related solution approaches are described.

  11. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.

    PubMed

    Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko

    2016-01-01

    Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.

  12. Data-driven agent-based modeling, with application to rooftop solar adoption

    DOE PAGES

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...

    2016-01-25

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less

  13. Data-driven agent-based modeling, with application to rooftop solar adoption

    SciTech Connect

    Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; Lakkaraju, Kiran

    2016-01-25

    Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends and provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.

  14. Multi-issue Agent Negotiation Based on Fairness

    NASA Astrophysics Data System (ADS)

    Zuo, Baohe; Zheng, Sue; Wu, Hong

    Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.

  15. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms.

  16. The Unified Behavior Framework for the Simulation of Autonomous Agents

    DTIC Science & Technology

    2015-03-01

    architectures. Brooks built more complex behaviors on top of the lower-level “instincts,” so that the robot could explore by wandering throughout its...time has passed. With this in mind , every entity in the simulation has a method that re-calculates the state of that entity, and is called every time...making, a much more accurate representation of the pilots mind could be obtained with the UBF tree. In addition to the mental model fidelity, complexity

  17. Re-Examining of Moffitt's Theory of Delinquency through Agent Based Modeling.

    PubMed

    Leaw, Jia Ning; Ang, Rebecca P; Huan, Vivien S; Chan, Wei Teng; Cheong, Siew Ann

    2015-01-01

    Moffitt's theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome.

  18. Re-Examining of Moffitt’s Theory of Delinquency through Agent Based Modeling

    PubMed Central

    Leaw, Jia Ning; Ang, Rebecca P.; Huan, Vivien S.; Chan, Wei Teng; Cheong, Siew Ann

    2015-01-01

    Moffitt’s theory of delinquency suggests that at-risk youths can be divided into two groups, the adolescence- limited group and the life-course-persistent group, predetermined at a young age, and social interactions between these two groups become important during the adolescent years. We built an agent-based model based on the microscopic interactions Moffitt described: (i) a maturity gap that dictates (ii) the cost and reward of antisocial behavior, and (iii) agents imitating the antisocial behaviors of others more successful than themselves, to find indeed the two groups emerging in our simulations. Moreover, through an intervention simulation where we moved selected agents from one social network to another, we also found that the social network plays an important role in shaping the life course outcome. PMID:26062022

  19. Agent based simulations in disease modeling Comment on "Towards a unified approach in the modeling of fibrosis: A review with research perspectives" by Martine Ben Amar and Carlo Bianca

    NASA Astrophysics Data System (ADS)

    Pappalardo, Francesco; Pennisi, Marzio

    2016-07-01

    Fibrosis represents a process where an excessive tissue formation in an organ follows the failure of a physiological reparative or reactive process. Mathematical and computational techniques may be used to improve the understanding of the mechanisms that lead to the disease and to test potential new treatments that may directly or indirectly have positive effects against fibrosis [1]. In this scenario, Ben Amar and Bianca [2] give us a broad picture of the existing mathematical and computational tools that have been used to model fibrotic processes at the molecular, cellular, and tissue levels. Among such techniques, agent based models (ABM) can give a valuable contribution in the understanding and better management of fibrotic diseases.

  20. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren

    2004-01-01

    This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.

  1. Terahertz signatures of biological-warfare-agent simulants

    NASA Astrophysics Data System (ADS)

    Globus, Tatiana; Woolard, Dwight L.; Khromova, Tatyana; Partasarathy, Ramakrishnan; Majewski, Alexander; Abreu, Rene; Hesler, Jeffrey L.; Pan, Shing-Kuo; Ediss, Geoff

    2004-09-01

    This work presents spectroscopic characterization results for biological simulant materials measured in the terahertz gap. Signature data have been collected between 3 cm-1 and 10 cm-1 for toxin Ovalbumin, bacteria Erwinia herbicola, Bacillus Subtilis lyophilized cells and RNA MS2 phage, BioGene. Measurements were conducted on a modified Bruker FTIR spectrometer equipped with the noise source developed in the NRAL. The noise source provides two orders of magnitude higher power in comparison with a conventional mercury lamp. Photometric characterization of the instrument performance demonstrates that the expected error for sample characterization inside the interval from 3 to 9.5 cm-1 is less then 1%.

  2. The Development of Sugar-Based Anti-Melanogenic Agents

    PubMed Central

    Bin, Bum-Ho; Kim, Sung Tae; Bhin, Jinhyuk; Lee, Tae Ryong; Cho, Eun-Gyung

    2016-01-01

    The regulation of melanin production is important for managing skin darkness and hyperpigmentary disorders. Numerous anti-melanogenic agents that target tyrosinase activity/stability, melanosome maturation/transfer, or melanogenesis-related signaling pathways have been developed. As a rate-limiting enzyme in melanogenesis, tyrosinase has been the most attractive target, but tyrosinase-targeted treatments still pose serious potential risks, indicating the necessity of developing lower-risk anti-melanogenic agents. Sugars are ubiquitous natural compounds found in humans and other organisms. Here, we review the recent advances in research on the roles of sugars and sugar-related agents in melanogenesis and in the development of sugar-based anti-melanogenic agents. The proposed mechanisms of action of these agents include: (a) (natural sugars) disturbing proper melanosome maturation by inducing osmotic stress and inhibiting the PI3 kinase pathway and (b) (sugar derivatives) inhibiting tyrosinase maturation by blocking N-glycosylation. Finally, we propose an alternative strategy for developing anti-melanogenic sugars that theoretically reduce melanosomal pH by inhibiting a sucrose transporter and reduce tyrosinase activity by inhibiting copper incorporation into an active site. These studies provide evidence of the utility of sugar-based anti-melanogenic agents in managing skin darkness and curing pigmentary disorders and suggest a future direction for the development of physiologically favorable anti-melanogenic agents. PMID:27092497

  3. The Development of Sugar-Based Anti-Melanogenic Agents.

    PubMed

    Bin, Bum-Ho; Kim, Sung Tae; Bhin, Jinhyuk; Lee, Tae Ryong; Cho, Eun-Gyung

    2016-04-16

    The regulation of melanin production is important for managing skin darkness and hyperpigmentary disorders. Numerous anti-melanogenic agents that target tyrosinase activity/stability, melanosome maturation/transfer, or melanogenesis-related signaling pathways have been developed. As a rate-limiting enzyme in melanogenesis, tyrosinase has been the most attractive target, but tyrosinase-targeted treatments still pose serious potential risks, indicating the necessity of developing lower-risk anti-melanogenic agents. Sugars are ubiquitous natural compounds found in humans and other organisms. Here, we review the recent advances in research on the roles of sugars and sugar-related agents in melanogenesis and in the development of sugar-based anti-melanogenic agents. The proposed mechanisms of action of these agents include: (a) (natural sugars) disturbing proper melanosome maturation by inducing osmotic stress and inhibiting the PI3 kinase pathway and (b) (sugar derivatives) inhibiting tyrosinase maturation by blocking N-glycosylation. Finally, we propose an alternative strategy for developing anti-melanogenic sugars that theoretically reduce melanosomal pH by inhibiting a sucrose transporter and reduce tyrosinase activity by inhibiting copper incorporation into an active site. These studies provide evidence of the utility of sugar-based anti-melanogenic agents in managing skin darkness and curing pigmentary disorders and suggest a future direction for the development of physiologically favorable anti-melanogenic agents.

  4. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  5. Agent-Based Distributed Data Mining: A Survey

    NASA Astrophysics Data System (ADS)

    Moemeng, Chayapol; Gorodetsky, Vladimir; Zuo, Ziye; Yang, Yong; Zhang, Chengqi

    Distributed data mining is originated from the need of mining over decentralised data sources. Data mining techniques involving in such complex environment must encounter great dynamics due to changes in the system can affect the overall performance of the system. Agent computing whose aim is to deal with complex systems has revealed opportunities to improve distributed data mining systems in a number of ways. This paper surveys the integration of multi-agent system and distributed data mining, also known as agent-based distributed data mining, in terms of significance, system overview, existing systems, and research trends.

  6. Replication Based on Role Concept for Multi-Agent Systems

    NASA Astrophysics Data System (ADS)

    Bora, Sebnem; Dikenelli, Oguz

    Replication is widely used to improve fault tolerance in distributed and multi-agent systems. In this paper, we present a different point of view on replication in multi-agent systems. The approach we propose is based on role concept. We define a specific "fault tolerant role" which encapsulates all behaviors related to replication-based fault tolerance in this work. Our strategy is mainly focused on replicating instances of critical roles in the agent organization. However, while doing this, we simply transfer the critical role and the fault tolerant role to appropriate agents. Here, the fault tolerant role is responsible for coordination between replicated role instances (replicas). Moreover, our approach is flexible in terms of fault tolerance since it is possible to easily modify existing behaviors of the "fault tolerant" role, remove some of its behaviors, or include new behaviors to it due to its characteristic architecture.

  7. A multi-agent system simulating human splice site recognition.

    PubMed

    Vignal, L; Lisacek, F; Quinqueton, J; d'Aubenton-Carafa, Y; Thermes, C

    1999-06-15

    The present paper describes a method detecting splice sites automatically on the basis of sequence data and models of site/signal recognition supported by experimental evidences. The method is designed to simulate splicing and while doing so, track prediction failures, missing information and possibly test correcting hypotheses. Correlations between nucleotides in the splice site regions and the various elements of the acceptor region are evaluated and combined to assess compensating interactions between elements of the splicing machinery. A scanning model of the acceptor region and a model of interaction between the splicing complexes (exon definition model) are also incorporated in the detection process. Subsets of sites presenting deficiencies of several splice site elements could be identified. Further examination of these sites helps to determine lacking elements and refine models.

  8. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    NASA Technical Reports Server (NTRS)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  9. Detailed investigation of the radical-induced destruction of chemical warfare agent simulants in aqueous solution.

    PubMed

    Abbott, Amberashley; Sierakowski, Tim; Kiddle, James J; Clark, Kristin K; Mezyk, Stephen P

    2010-06-10

    The persistence of delivered chemical warfare agents (CWAs) in a variety of environmental matrices is of serious concern to both the military and civilian populations. Ultimately understanding all of the degradation pathways of the various CWAs in different environmental matrices is essential for determining whether native processes would offer sufficient decontamination of a particular material or if active chemical decontamination is required. Whereas much work on base-promoted chemical degradation has been reported, additional remediation strategies such as the use of advanced oxidation or reduction process free radical treatments may also be a viable option. We have examined here the primary kinetics and reaction mechanisms for an extensive library of chemical warfare agent simulants with the oxidizing hydroxyl radical and reducing hydrated electrons in water. From these values, it is seen that the reductive destruction occurs primarily through a single mechanism, consisting of hydrated electron capture at the phosphorus group with subsequent elimination, whereas hydroxyl radical oxidation shows two separate reaction mechanisms, dependent on the aqueous pK(a) of the leaving group.

  10. Nanochemistry of Protein-Based Delivery Agents.

    PubMed

    Rajendran, Subin R C K; Udenigwe, Chibuike C; Yada, Rickey Y

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  11. Nanochemistry of Protein-Based Delivery Agents

    PubMed Central

    Rajendran, Subin R. C. K.; Udenigwe, Chibuike C.; Yada, Rickey Y.

    2016-01-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior. PMID:27489854

  12. Nanochemistry of protein-based delivery agents

    NASA Astrophysics Data System (ADS)

    Rajendran, Subin; Udenigwe, Chibuike; Yada, Rickey

    2016-07-01

    The past decade has seen an increased interest in the conversion of food proteins into functional biomaterials, including their use for loading and delivery of physiologically active compounds such as nutraceuticals and pharmaceuticals. Proteins possess a competitive advantage over other platforms for the development of nanodelivery systems since they are biocompatible, amphipathic, and widely available. Proteins also have unique molecular structures and diverse functional groups that can be selectively modified to alter encapsulation and release properties. A number of physical and chemical methods have been used for preparing protein nanoformulations, each based on different underlying protein chemistry. This review focuses on the chemistry of the reorganization and/or modification of proteins into functional nanostructures for delivery, from the perspective of their preparation, functionality, stability and physiological behavior.

  13. Use of Methyl Salicylates As a Trialing Chemical Agent Simulant

    DTIC Science & Technology

    1990-05-01

    sodium salicylate. acetylsalicylic acid ) And may include nausea, vomiting, perspiration, marked thirst and dehydration, occasional diarrhea, acidosis...conditions. Acetylsalicylic acid (aspirin) would give the same metabolic products as the salicylate esters. Therefore, unless the salicylate esters can be...changes in the acid -base balance and electrolyte structure of the plasma. Salicylate stimulation of the respiratory center produces hyperpnea and results

  14. An equation-free approach to agent-based computation: Bifurcation analysis and control of stationary states

    NASA Astrophysics Data System (ADS)

    Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.

    2012-08-01

    We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.

  15. Manganese-based MRI contrast agents: past, present and future

    PubMed Central

    Pan, Dipanjan; Schmieder, Anne H.; Wickline, Samuel A.; Lanza, Gregory M.

    2011-01-01

    Paramagnetic and superparamagnetic metals are used as contrast materials for magnetic resonance (MR) based techniques. Lanthanide metal gadolinium (Gd) has been the most widely explored, predominant paramagnetic contrast agent until the discovery and association of the metal with nephrogenic systemic fibrosis (NSF), a rare but serious side effects in patients with renal or kidney problems. Manganese was one of the earliest reported examples of paramagnetic contrast material for MRI because of its efficient positive contrast enhancement. In this review, manganese based contrast agent approaches are discussed with a particular emphasis on their synthetic approaches. Both small molecules based typical blood pool contrast agents and more recently developed novel nanometer sized materials are reviewed focusing on a number of successful molecular imaging examples. PMID:22043109

  16. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients.

  17. A knowledge base architecture for distributed knowledge agents

    NASA Technical Reports Server (NTRS)

    Riedesel, Joel; Walls, Bryan

    1990-01-01

    A tuple space based object oriented model for knowledge base representation and interpretation is presented. An architecture for managing distributed knowledge agents is then implemented within the model. The general model is based upon a database implementation of a tuple space. Objects are then defined as an additional layer upon the database. The tuple space may or may not be distributed depending upon the database implementation. A language for representing knowledge and inference strategy is defined whose implementation takes advantage of the tuple space. The general model may then be instantiated in many different forms, each of which may be a distinct knowledge agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA model as well as using more well known message passing mechanisms. An implementation of the model is presented describing strategies used to keep inference tractable without giving up expressivity. An example applied to a power management and distribution network for Space Station Freedom is given.

  18. An Agent-Based Intervention to Assist Drivers Under Stereotype Threat: Effects of In-Vehicle Agents' Attributional Error Feedback.

    PubMed

    Joo, Yeon Kyoung; Lee-Won, Roselyn J

    2016-10-01

    For members of a group negatively stereotyped in a domain, making mistakes can aggravate the influence of stereotype threat because negative stereotypes often blame target individuals and attribute the outcome to their lack of ability. Virtual agents offering real-time error feedback may influence performance under stereotype threat by shaping the performers' attributional perception of errors they commit. We explored this possibility with female drivers, considering the prevalence of the "women-are-bad-drivers" stereotype. Specifically, we investigated how in-vehicle voice agents offering error feedback based on responsibility attribution (internal vs. external) and outcome attribution (ability vs. effort) influence female drivers' performance under stereotype threat. In addressing this question, we conducted an experiment in a virtual driving simulation environment that provided moment-to-moment error feedback messages. Participants performed a challenging driving task and made mistakes preprogrammed to occur. Results showed that the agent's error feedback with outcome attribution moderated the stereotype threat effect on driving performance. Participants under stereotype threat had a smaller number of collisions when the errors were attributed to effort than to ability. In addition, outcome attribution feedback moderated the effect of responsibility attribution on driving performance. Implications of these findings are discussed.

  19. Diversity and Community: The Role of Agent-Based Modeling.

    PubMed

    Stivala, Alex

    2017-03-13

    Community psychology involves several dialectics between potentially opposing ideals, such as theory and practice, rights and needs, and respect for human diversity and sense of community. Some recent papers in the American Journal of Community Psychology have examined the diversity-community dialectic, some with the aid of agent-based modeling and concepts from network science. This paper further elucidates these concepts and suggests that research in community psychology can benefit from a useful dialectic between agent-based modeling and the real-world concerns of community psychology.

  20. Emergent Group Level Navigation: An Agent-Based Evaluation of Movement Patterns in a Folivorous Primate

    PubMed Central

    Bonnell, Tyler R.; Campennì, Marco; Chapman, Colin A.; Gogarten, Jan F.; Reyna-Hurtado, Rafael A.; Teichroeb, Julie A.; Wasserman, Michael D.; Sengupta, Raja

    2013-01-01

    The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group’s step length, whereas the type of memory had the highest impact on a group’s path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns. PMID:24205174

  1. Emergent group level navigation: an agent-based evaluation of movement patterns in a folivorous primate.

    PubMed

    Bonnell, Tyler R; Campennì, Marco; Chapman, Colin A; Gogarten, Jan F; Reyna-Hurtado, Rafael A; Teichroeb, Julie A; Wasserman, Michael D; Sengupta, Raja

    2013-01-01

    The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.

  2. A standard protocol for describing individual-based and agent-based models

    USGS Publications Warehouse

    Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen, Sigrunn; Ginot, Vincent; Giske, Jarl; Goss-Custard, John; Grand, Tamara; Heinz, Simone K.; Huse, Geir; Huth, Andreas; Jepsen, Jane U.; Jorgensen, Christian; Mooij, Wolf M.; Muller, Birgit; Pe'er, Guy; Piou, Cyril; Railsback, Steven F.; Robbins, Andrew M.; Robbins, Martha M.; Rossmanith, Eva; Ruger, Nadja; Strand, Espen; Souissi, Sami; Stillman, Richard A.; Vabo, Rune; Visser, Ute; DeAngelis, Donald L.

    2006-01-01

    Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers.

  3. Thermal Excitation of Gadolinium-Based Contrast Agents Using Spin Resonance

    PubMed Central

    Fridjhon, Peter; Rubin, David M.

    2016-01-01

    Theoretical and experimental investigations into the thermal excitation of liquid paramagnetic contrast agents using the spin resonance relaxation mechanism are presented. The electronic spin-lattice relaxation time τ1e of gadolinium-based contrast agents, which is estimated at 0.1 ns, is ten orders of magnitude faster than the relaxation time of protons in water. The shorter relaxation time is found to significantly increase the rate of thermal energy deposition. To the authors’ knowledge this is the first study of gadolinium based contrast agents in a liquid state used as thermal agents. Analysis shows that when τ1e and other experimental parameters are optimally selected, a maximum theoretical heating rate of 29.4 °C.s−1 could be achieved which would suffice for clinical thermal ablation of neoplasms. The experimental results show a statistically significant thermal response for two out of the four contrast agents tested. The results are compared to the simulated estimates via analysis of a detailed model of the system. While these experimentally determined temperature rises are small and thus of no clinical utility, their presence supports the theoretical analysis and strongly suggests that the chemical structure of the selected compounds plays an important role in this mechanism of heat deposition. There exists an opportunity for the development of alternative gadolinium-based compounds with an order of magnitude longer τ1e in a diluted form to be used as an efficient hyperthermia agent for clinical use. PMID:27341338

  4. Test Results of Level A Suits to Challenge by Chemical and Biological Warfare Agents and Simulants: Summary Report

    DTIC Science & Technology

    1998-06-01

    Agent Permeation of GB and HD Through 25-Mil Chemical Protective Glove 30 3.3 System Test (Aerosol Simulant) 3.3.1 System Test (Aerosol Simulant... Chemical Protective Glove GB Permeation 176 Appendix Q: Commander Brigade F91 Table Q - 3: Commander Brigade F91: System Test (Vapor Simulant) Results No...capability to protect in a chemical agent or biological agent environment. Each

  5. Inversion based on computational simulations

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-09-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.

  6. A fluorescent sensing of nerve agent simulant with dual emissions at wide pH range in aqueous solution.

    PubMed

    Kim, Youngsam; Jang, Yoon Jeong; Mulay, Sandip V; Nguyen, Thuy-Tien T; Churchill, David G

    2017-03-23

    A new 1,8-naphthalimide-based fluorescent probe for the detection of diethyl cyanophosphonate, a very common nerve agent simulant, was designed, synthesized and characterized fully. The probe showed around 50-fold enhancement of fluorescence intensity over other nerve agent simulants. Importantly, the probe is able to work under aqueous conditions at wide pH range. Two reactive groups, the oxime and phenol, allowed a dual emission with different kinetic reaction. The reaction of diethyl cyanophosphonate with the oxime group occurred in advance; the resulting time-response of fluorescence enhancement was observed within ~30 s. After the oxime underwent reaction, then phenol also underwent substitution reaction with diethyl cyanophosphate resulting blue emission. To show real application of this new probe, silica plate assays for the detection of diethyl cyanophosphonate in gas and liquid phase through dual emissions channel were carried out.

  7. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    PubMed

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  8. Using Model Replication to Improve the Reliability of Agent-Based Models

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  9. A Consensus-Based Grouping Algorithm for Multi-agent Cooperative Task Allocation with Complex Requirements.

    PubMed

    Hunt, Simon; Meng, Qinggang; Hinde, Chris; Huang, Tingwen

    2014-01-01

    This paper looks at consensus algorithms for agent cooperation with unmanned aerial vehicles. The foundation is the consensus-based bundle algorithm, which is extended to allow multi-agent tasks requiring agents to cooperate in completing individual tasks. Inspiration is taken from the cognitive behaviours of eusocial animals for cooperation and improved assignments. Using the behaviours observed in bees and ants inspires decentralised algorithms for groups of agents to adapt to changing task demand. Further extensions are provided to improve task complexity handling by the agents with added equipment requirements and task dependencies. We address the problems of handling these challenges and improve the efficiency of the algorithm for these requirements, whilst decreasing the communication cost with a new data structure. The proposed algorithm converges to a conflict-free, feasible solution of which previous algorithms are unable to account for. Furthermore, the algorithm takes into account heterogeneous agents, deadlocking and a method to store assignments for a dynamical environment. Simulation results demonstrate reduced data usage and communication time to come to a consensus on multi-agent tasks.

  10. Selective real-time detection of gaseous nerve agent simulants using multiwavelength photoacoustics.

    PubMed

    Gurton, Kristan P; Felton, Melvin; Tober, Richard

    2012-08-15

    An optical detection method is presented that is designed to detect and identify the presence of macromolecular gas species (e.g., organophosphate-based nerve agent simulants) at trace level concentrations. The technique is based on a modified version of conventional laser photoacoustic (PA) spectroscopy, in which optical absorption is typically measured using a single laser source. We demonstrate the ability to simultaneously measure multiple absorption-related parameters that serve as a concentration-independent identifier. Three continuous wave mid-infrared laser sources, operating at 8.68, 9.29, and 10.35 μm, are combined and propagated axially through a specially designed flow through PA cell. Each laser is modulated at a different frequency and the resultant acoustic signal(s) are detected and deconvolved using a PC-based 24 bit dynamic signal acquisition device. Species detection and identification is achieved by tabulating independent ratios of the acoustic response for each laser source. Quantitative absorption measured is verified using a Fourier transform infrared spectrometer. Results show good detection and species separation/identification at moderately low ppm concentrations.

  11. Fluorogenic and chromogenic probe for rapid detection of a nerve agent simulant DCP.

    PubMed

    Wu, Wei-hui; Dong, Jun-jun; Wang, Xin; Li, Jian; Sui, Shao-hui; Chen, Gao-yun; Liu, Ji-wei; Zhang, Ming

    2012-07-21

    A fluorogenic and visual probe was devised to detect diethyl chlorophosphate (DCP), a nerve agent simulant. The probe, N-(rhodamine B)-lactam-2-aminoethanol (RB-AE), undergoes oxazoline formation following phosphorylation in the presence of DCP, which gives rapid and clear fluorescence and color change in the assay solutions.

  12. Metal organic frameworks (MOFs) for degradation of nerve agent simulant parathion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parathion, a simulant of nerve agent VX, has been studied for degradation on Fe3+, Fe2+ and zerovalent iron supported on chitosan. Chitosan, a naturally occurring biopolymer derivative of chitin, is a very good adsorbent for many chemicals including metals. Chitosan is used as supporting biopolymer ...

  13. Metal organic frameworks (MOFs) for degrdation of nerve agent simulant parathion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parathion, a simulant of nerve agent VX, has been studied for degradation on Fe3+, Fe2+ and zerovalent iron supported on chitosan. Chitosan, a naturally occurring biopolymer derivative of chitin, is a very good adsorbent for many chemicals including metals. Chitosan is used as supporting biopolymer ...

  14. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    SciTech Connect

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  15. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  16. Laser-induced Mg production from magnesium oxide using Si-based agents and Si-based agents recycling

    NASA Astrophysics Data System (ADS)

    Liao, S. H.; Yabe, T.; Mohamed, M. S.; Baasandash, C.; Sato, Y.; Fukushima, C.; Ichikawa, M.; Nakatsuka, M.; Uchida, S.; Ohkubo, T.

    2011-01-01

    We succeeded in laser-induced magnesium (Mg) production from magnesium oxide (MgO) using Si-based agents, silicon (Si) and silicon monoxide (SiO). In these experiments, a cw CO2 laser irradiated a mixture of Mg and Si-based agents. Both experimental studies and theoretical analysis help not only understand the function of reducing agents but also optimize Mg extraction in laser-induced Mg production. The optimal energy efficiencies 12.1 mg/kJ and 4.5 mg/kJ of Mg production were achieved using Si and SiO, respectively. Besides, the possibility of recycling Si and SiO was preliminarily investigated without reducing agents but only with laser-irradiation. As for the Si-based agents recycling, we succeed in removing 36 mol % of oxygen fraction from SiO2 , obtaining 0.7 mg/kJ of Si production efficiency as well as 15.6 mg/kJ of SiO one at the same time. In addition, the laser irradiation to MgO-SiO mixture produced 24 mg/kJ of Si with more than 99% purity.

  17. A task-oriented modular and agent-based collaborative design mechanism for distributed product development

    NASA Astrophysics Data System (ADS)

    Liu, Jinfei; Chen, Ming; Wang, Lei; Wu, Qidi

    2014-05-01

    The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complicated, neither unified task decomposition and allocation methodology nor Agent-based network management platform can satisfy the increasing demands. In this paper, to meet requirements of PCD for distributed product development, a collaborative design mechanism based on the thought of modularity and the Agent technology is presented. First, the top-down 4-tier process model based on task-oriented modular and Agent is constructed for PCD after analyzing the mapping relationships between requirements and functions in the collaborative design. Second, on basis of sub-task decomposition for PCD based on a mixed method, the mathematic model of task-oriented modular based on multi-objective optimization is established to maximize the module cohesion degree and minimize the module coupling degree, while considering the module executable degree as a restriction. The mathematic model is optimized and simulated by the modified PSO, and the decomposed modules are obtained. Finally, the Agent structure model for collaborative design is put forward, and the optimism matching Agents are selected by using similarity algorithm to implement different task-modules by the integrated reasoning and decision-making mechanism with the behavioral model of collaborative design Agents. With the results of experimental studies for automobile collaborative design, the feasibility and efficiency of this methodology of task-oriented modular and Agent-based collaborative design in the distributed heterogeneous environment are verified. On this basis, an integrative automobile collaborative R&D platform is developed. This research provides an effective platform for automobile manufacturing enterprises to achieve PCD, and helps to promote product numeralization collaborative R&D and

  18. Investigating mathematical models of immuno-interactions with early-stage cancer under an agent-based modelling perspective

    PubMed Central

    2013-01-01

    Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena. PMID:23734575

  19. Investigating mathematical models of immuno-interactions with early-stage cancer under an agent-based modelling perspective.

    PubMed

    Figueredo, Grazziela P; Siebers, Peer-Olaf; Aickelin, Uwe

    2013-01-01

    Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena.

  20. The Uniframe Mobile Agent Based Resource Discovery Service

    DTIC Science & Technology

    2004-06-28

    ABSTRACT see report 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18 . NUMBER OF PAGES 251...Prescribed by ANSI Std Z39- 18 THE UNIFRAME MOBILE AGENT BASED RESOURCE DISCOVERY SERVICE A Technical Report Report Number TR-CIS... 18 2.1.2.3 The UniFrame System Level Generative Programming Framework (USGPF

  1. An Agent-based Framework for Web Query Answering.

    ERIC Educational Resources Information Center

    Wang, Huaiqing; Liao, Stephen; Liao, Lejian

    2000-01-01

    Discusses discrepancies between user queries on the Web and the answers provided by information sources; proposes an agent-based framework for Web mining tasks; introduces an object-oriented deductive data model and a flexible query language; and presents a cooperative mechanism for query answering. (Author/LRW)

  2. Modeling civil violence: An agent-based computational approach

    PubMed Central

    Epstein, Joshua M.

    2002-01-01

    This article presents an agent-based computational model of civil violence. Two variants of the civil violence model are presented. In the first a central authority seeks to suppress decentralized rebellion. In the second a central authority seeks to suppress communal violence between two warring ethnic groups. PMID:11997450

  3. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  4. Architectural considerations for agent-based national scale policy models : LDRD final report.

    SciTech Connect

    Backus, George A.; Strip, David R.

    2007-09-01

    The need to anticipate the consequences of policy decisions becomes ever more important as the magnitude of the potential consequences grows. The multiplicity of connections between the components of society and the economy makes intuitive assessments extremely unreliable. Agent-based modeling has the potential to be a powerful tool in modeling policy impacts. The direct mapping between agents and elements of society and the economy simplify the mapping of real world functions into the world of computation assessment. Our modeling initiative is motivated by the desire to facilitate informed public debate on alternative policies for how we, as a nation, provide healthcare to our population. We explore the implications of this motivation on the design and implementation of a model. We discuss the choice of an agent-based modeling approach and contrast it to micro-simulation and systems dynamics approaches.

  5. Understanding Group/Party Affiliation Using Social Networks and Agent-Based Modeling

    NASA Technical Reports Server (NTRS)

    Campbell, Kenyth

    2012-01-01

    The dynamics of group affiliation and group dispersion is a concept that is most often studied in order for political candidates to better understand the most efficient way to conduct their campaigns. While political campaigning in the United States is a very hot topic that most politicians analyze and study, the concept of group/party affiliation presents its own area of study that producers very interesting results. One tool for examining party affiliation on a large scale is agent-based modeling (ABM), a paradigm in the modeling and simulation (M&S) field perfectly suited for aggregating individual behaviors to observe large swaths of a population. For this study agent based modeling was used in order to look at a community of agents and determine what factors can affect the group/party affiliation patterns that are present. In the agent-based model that was used for this experiment many factors were present but two main factors were used to determine the results. The results of this study show that it is possible to use agent-based modeling to explore group/party affiliation and construct a model that can mimic real world events. More importantly, the model in the study allows for the results found in a smaller community to be translated into larger experiments to determine if the results will remain present on a much larger scale.

  6. A design and application of a multi-agent system for simulation of multi-actor spatial planning.

    PubMed

    Ligtenberg, Arend; Wachowicz, Monica; Bregt, Arnold K; Beulens, Adrie; Kettenis, Dirk L

    2004-08-01

    Multi-agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. The main goal is to explore the use of MAS to simulate spatial scenarios based on modelling multi-actor decision-making within a spatial planning process. We demonstrate MAS that consists of agents representing organizations and interest groups involved in an urban allocation problem during a land use planning process. The multi-actor based decision-making is modelled by generating beliefs and preferences of actors about the location of and relation between spatial objects. This allows each agent to confront these beliefs and preferences with it's own desires and with that of other agents. The MAS loosely resembles belief, desire and intentions architecture. Based on a case study for a hypothetical land use planning situation in a study area in the Netherlands we discuss the potential and limitations of the MAS to build models that enable spatial planners to include the 'actor factor' in their analysis and design of spatial scenarios. In addition, our experiments revealed the need for further research on the representation of spatial objects and reasoning, learning and communication about allocation problems using MAS.

  7. Linking MODFLOW with an agent-based land-use model to support decision making

    USGS Publications Warehouse

    Reeves, H.W.; Zellner, M.L.

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  8. Linking MODFLOW with an agent-based land-use model to support decision making.

    PubMed

    Reeves, Howard W; Zellner, Moira L

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time.

  9. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    SciTech Connect

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  10. Efficient Agent-Based Models for Non-Genomic Evolution

    NASA Technical Reports Server (NTRS)

    Gupta, Nachi; Agogino, Adrian; Tumer, Kagan

    2006-01-01

    Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.

  11. Agent-based reasoning for distributed multi-INT analysis

    NASA Astrophysics Data System (ADS)

    Inchiosa, Mario E.; Parker, Miles T.; Perline, Richard

    2006-05-01

    Fully exploiting the intelligence community's exponentially growing data resources will require computational approaches differing radically from those currently available. Intelligence data is massive, distributed, and heterogeneous. Conventional approaches requiring highly structured and centralized data will not meet this challenge. We report on a new approach, Agent-Based Reasoning (ABR). In NIST evaluations, the use of ABR software tripled analysts' solution speed, doubled accuracy, and halved perceived difficulty. ABR makes use of populations of fine-grained, locally interacting agents that collectively reason about intelligence scenarios in a self-organizing, "bottom-up" process akin to those found in biological and other complex systems. Reproduction rules allow agents to make inferences from multi-INT data, while movement rules organize information and optimize reasoning. Complementary deterministic and stochastic agent behaviors enhance reasoning power and flexibility. Agent interaction via small-world networks - such as are found in nervous systems, social networks, and power distribution grids - dramatically increases the rate of discovering intelligence fragments that usefully connect to yield new inferences. Small-world networks also support the distributed processing necessary to address intelligence community data challenges. In addition, we have found that ABR pre-processing can boost the performance of commercial text clustering software. Finally, we have demonstrated interoperability with Knowledge Engineering systems and seen that reasoning across diverse data sources can be a rich source of inferences.

  12. Fluctuation complexity of agent-based financial time series model by stochastic Potts system

    NASA Astrophysics Data System (ADS)

    Hong, Weijia; Wang, Jun

    2015-03-01

    Financial market is a complex evolved dynamic system with high volatilities and noises, and the modeling and analyzing of financial time series are regarded as the rather challenging tasks in financial research. In this work, by applying the Potts dynamic system, a random agent-based financial time series model is developed in an attempt to uncover the empirical laws in finance, where the Potts model is introduced to imitate the trading interactions among the investing agents. Based on the computer simulation in conjunction with the statistical analysis and the nonlinear analysis, we present numerical research to investigate the fluctuation behaviors of the proposed time series model. Furthermore, in order to get a robust conclusion, we consider the daily returns of Shanghai Composite Index and Shenzhen Component Index, and the comparison analysis of return behaviors between the simulation data and the actual data is exhibited.

  13. Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    PubMed Central

    Niazi, Muaz A.

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135

  14. Emergence of a snake-like structure in mobile distributed agents: an exploratory agent-based modeling approach.

    PubMed

    Niazi, Muaz A

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems.

  15. A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    DTIC Science & Technology

    2011-03-01

    for a new, self-organized, multi agent, flow-based intrusion detection system; and 2 ) a network simulation envi- ronment suitable for evaluating an...six years of service in the Air Force, and I am indebted to him for his efforts. I also thank Dr. Gilbert Peterson and Dr. Barry Mullins for valuable...1 1.1 The Generic Intrusion Detection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Scope of Investigative Domain

  16. Agent Based Study of Surprise Attacks:. Roles of Surveillance, Prompt Reaction and Intelligence

    NASA Astrophysics Data System (ADS)

    Shanahan, Linda; Sen, Surajit

    Defending a confined territory from a surprise attack is seldom possible. We use molecular dynamics and statistical physics inspired agent-based simulations to explore the evolution and outcome of such attacks. The study suggests robust emergent behavior, which emphasizes the importance of accurate surveillance, automated and powerful attack response, building layout, and sheds light on the role of communication restrictions in defending such territories.

  17. Effectiveness of dynamic rescheduling in agent-based flexible manufacturing systems

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf; Biswas, Gautam; Kawamura, Kazuhiko; Johnson, Eric M.

    1997-12-01

    This work has been developed within the framework of agent- based decentralized scheduling for flexible manufacturing systems. In this framework, all workcells comprising the manufacturing system, and the products to be generated, are modeled via intelligent software agents. These agents interact dynamically using a bidding production reservation (BPRS) scheme, based on the Contract Net Protocol, to devise the production schedule for each product unit. Simulation studies of a job shop have demonstrated the gains in performance achieved by this approach over heuristic dispatching rules commonly used in industry. Manufacturing environments are also prone to operational uncertainties such as variations in processing times and machine breakdowns. In order to cope with these uncertainties, the BPRS algorithm has been extended for dynamic rescheduling to also occur in a fully decentralized manner. The resulting multi-agent rescheduling scheme results in decentralized control of flexible manufacturing systems that are capable of responding dynamically to such operational uncertainties, thereby enhancing the robustness and fault tolerance of the proposed scheduling approach. This paper also presents the effects of the proposed agent-based decentralized scheduling approach on the performance of the underlying flexible manufacturing system under a variety of production and scheduling scenarios, including forward and backward scheduling. Future directions for this work include applying the proposed scheduling approach to other advanced manufacturing areas such as agile and holonic manufacturing.

  18. An agent-based model of signal transduction in bacterial chemotaxis.

    PubMed

    Miller, Jameson; Parker, Miles; Bourret, Robert B; Giddings, Morgan C

    2010-05-13

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  19. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  20. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  1. Formation control and collision avoidance for multi-agent systems based on position estimation.

    PubMed

    Xia, Yuanqing; Na, Xitai; Sun, Zhongqi; Chen, Jing

    2016-03-01

    In this paper, formation control strategies based on position estimation for double-integrator systems are investigated. Firstly, an optimal control formation control strategy is derived based on the estimator. It is proven that the control inputs are able to drive the agents to the predefined formation and the controller is optimal even based on the estimation law if the estimator has converged to stable. Secondly, a consensus law based on the estimator is presented, which enables the agents converge to the formation in a cooperative manner. The stability can be guaranteed by proper parameters. Thirdly, extra control input for inter collision avoidance is added into the derived consensus control strategy, and efficacy analysis are provided in detail. Finally, the effectiveness of the strategies proposed are shown by simulation and experiment results.

  2. Fiber-optic-based surface plasmon resonance (SPR) sensors for the detection of toxic nerve agents

    NASA Astrophysics Data System (ADS)

    Prakash, Anna M. C.; Kim, Yoon-Chang; Banerji, Soame; Masson, Jean-Francois; Booksh, Karl S.

    2004-03-01

    Analytical instruments capable of detecting nerve agents in battlefield conditions where speed, accuracy and ease of operation are a must in today's military. Fast detection and decontamination of nerve agents in very low concentrations is the primary focus of our research. The method presented here focuses on optimizing polymer stabilized sensing elements on the surface of SPR fiber-optic probes. A number of polymers & polymer supported metal complexes capable of reversibly binding to the species of interest & which have robust operation in hostile environments are incorporated with the fiber optic sensing elements. An optical technique, such as Surface Plasmon Resonance (SPR), better suited to rapid data collection without sample pretreatment is employed. The approach using polymer-based optical fibers with off-the-shelf SPR system components has been tested for the detection of Pinacolyl methylphosphonate (PMP), a simulant for nerve agent Soman. Surface initiated polymeric sensors have higher sensitivity toward detecting PMP than bulk-polymerized sensors.

  3. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  4. Measurement of drug facilitated sexual assault agents in simulated sweat by ion mobility spectrometry.

    PubMed

    Demoranville, Leonard T; Verkouteren, Jennifer R

    2013-03-15

    Ion mobility spectrometry has found widespread use for the detection of explosives and illicit drugs. The technique offers rapid results with high sensitivity and little sample preparation. As such, it is well suited for field deployed screening settings. Here the response of ion mobility spectrometers for three drug-facilitated sexual assault (DFSA) agents - flunitrazepam, ketamine, and MDMA - and related metabolites has been studied in the presence of a simulated sweat. While all three DFSA agents present certain challenges for qualitative identification, IMS can provide useful information to guide the early treatment and investigation of sexual assault cases. Used as a presumptive test, the identification of DFSA agents would later require confirmatory analysis by other techniques.

  5. Engineering large-scale agent-based systems with consensus

    NASA Technical Reports Server (NTRS)

    Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.

    1994-01-01

    The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.

  6. Model-Drive Architecture for Agent-Based Systems

    NASA Technical Reports Server (NTRS)

    Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.

    2004-01-01

    The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.

  7. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  8. Phosphoramidate-based Peptidomimetic Prostate Cancer PET Imaging Agents

    DTIC Science & Technology

    2013-07-01

    develop a PET imaging agent based on modifying the peptidomimetic PSMA inhibitor which will result in improved tumor uptake and clearance mechanism...Different fluorination approaches were attempted with PSMA module compounds such as direct labeling, cupper free chemistry and the use of...labeling approaches are established, and then the labeling of the modified PSMA inhibitor analogues will be investigated in vitro as well as in vivo. 15

  9. Phosphoramidate-based Peptidomimetic Prostate Cancer PET Imaging Agents

    DTIC Science & Technology

    2013-11-01

    goal is to develop a PET imaging agent based on modifying the peptidomimetic PSMA inhibitor which will result in improved tumor uptake and clearance...mechanism. Different fluorination approaches were attempted with PSMA module compounds such as direct labeling, cupper free chemistry and the use of...the labeling approaches are established, and then the labeling of the modified PSMA inhibitor analogues will be investigated in vitro as well as in

  10. Thrombin-Based Hemostatic Agent in Primary Total Knee Arthroplasty.

    PubMed

    Fu, Xin; Tian, Peng; Xu, Gui-Jun; Sun, Xiao-Lei; Ma, Xin-Long

    2017-02-01

    The present meta-analysis pooled the results from randomized controlled trials (RCTs) to identify and assess the efficacy and safety of thrombin-based hemostatic agent in primary total knee arthroplasty (TKA). Potential academic articles were identified from the Cochrane Library, Medline (1966-2015.5), PubMed (1966-2015.5), Embase (1980-2015.5), and ScienceDirect (1966-2015.5). Relevant journals and the recommendations of expert panels were also searched by using Google search engine. RCTs assessing the efficacy and safety of thrombin-based hemostatic agent in primary TKA were included. Pooling of data was analyzed by RevMan 5.1 (The Cochrane Collaboration, Oxford, UK). A total of four RCTs met the inclusion criteria. The meta-analysis revealed significant differences in postoperative hemoglobin decline (p < 0.00001), total blood loss (p < 0.00001), drainage volume (p = 0.01), and allogenic blood transfusion (p = 0.01) between the treatment group and the control group. No significant differences were found regarding incidence of infection (p = 0.45) and deep vein thrombosis (DVT; p = 0.80) between the groups. Meta-analysis indicated that the application of thrombin-based hemostatic agent before wound closure decreased postoperative hemoglobin decline, drainage volume, total blood loss, and transfusion rate and did not increase the risk of infection, DVT, or other complications. Therefore, the reviewers believe that thrombin-based hemostatic agent is effective and safe in primary TKA.

  11. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  12. Survey: Destruction of chemical agent simulants in supercritical water oxidation. Master's thesis

    SciTech Connect

    Blank, M.R.

    1992-07-01

    The supercritical water oxidation (SCWO) process exhibits distinct advantages for destruction of toxic wastes. Examples of these wastes are two chemical agent simulants, dimethyl methylphosphonate (DMMP) and thiodiglycol (2,2'-thiodiethanol). DMMP is similar to the nerve agent GB Sarin in structure, and thiodiglycol is a hydrolysis product of the blister agent HD Sulfur Mustard. Both simulants are miscible in water and relatively non-toxic in comparison to the actual chemical agents. Using a Laboratory-scale, batch three temperatures were investigated: 425 deg C, 450 deg C, and 500 deg C with an initial concentration of one percent by volume, 11,450 mg/L for DMMP and 12,220 mg/L for thiodiglycol. Residence times investigated were: 1, 2, 3, 6, and 8 minutes. Reactor beat-up (H.U.) was determined to be one minute. Both pyrolysis and oxidation tests were conducted. Oxygen levels were uniformly set at 200% of stoichiometric requirements for the parent compounds.

  13. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  14. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy

    PubMed Central

    Martin, Kyle S.; Peirce, Shayn M.

    2015-01-01

    Skeletal muscle is highly responsive to use. In particular, muscle atrophy attributable to decreased activity is a common problem among the elderly and injured/immobile. However, each muscle does not respond the same way. We developed an agent-based model that generates a tissue-level skeletal muscle response to disuse/immobilization. The model incorporates tissue-specific muscle fiber architecture parameters and simulates changes in muscle fiber size as a result of disuse-induced atrophy that are consistent with published experiments. We created simulations of 49 forelimb and hindlimb muscles of the rat by incorporating eight fiber-type and size parameters to explore how these parameters, which vary widely across muscles, influence sensitivity to disuse-induced atrophy. Of the 49 muscles modeled, the soleus exhibited the greatest atrophy after 14 days of simulated immobilization (51% decrease in fiber size), whereas the extensor digitorum communis atrophied the least (32%). Analysis of these simulations revealed that both fiber-type distribution and fiber-size distribution influence the sensitivity to disuse atrophy even though no single tissue architecture parameter correlated with atrophy rate. Additionally, software agents representing fibroblasts were incorporated into the model to investigate cellular interactions during atrophy. Sensitivity analyses revealed that fibroblast agents have the potential to affect disuse-induced atrophy, albeit with a lesser effect than fiber type and size. In particular, muscle atrophy elevated slightly with increased initial fibroblast population and increased production of TNF-α. Overall, the agent-based model provides a novel framework for investigating both tissue adaptations and cellular interactions in skeletal muscle during atrophy. PMID:25722379

  15. The noncontact detection of nerve agent simulants on U.S. military CARC

    NASA Astrophysics Data System (ADS)

    Petryk, Michael W. P.

    2009-05-01

    The non-contact detection of chemical warfare agent simulants is achieved in the condensed phase using polarization modulation infrared reflection-absorption spectroscopy (PMIRRAS). The G-series nerve agent simulants, trimethyl phosphate (TMP) and triethyl phosphate (TEP), are detected on US military chemical agent resistant coating (CARC) using PMIRRAS. Optimal detector angles for PMIRRAS are determined, as are absorption features which can be used to distinguish between the spectral contributions of the substrate (CARC) and the analyte (TMP or TEP). Ab initio calculations carried out at the B3LYP / 6-31G(d,p) level of theory and basis set are used to predict the most stable simulant conformations, and their harmonic (unscaled) vibrational frequencies. Ab initio vibrational frequency data is used to explain the existence of both upward-oriented and downward-oriented PMIRRAS absorption features in terms of molecular orientation at a surface and the orientation of the dipole derivative vector of a given vibrational mode.

  16. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry.

  17. The Evolution of ICT Markets: An Agent-Based Model on Complex Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li

    Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.

  18. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    PubMed

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  19. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  20. Domination and evolution in agent based model of an economy

    NASA Astrophysics Data System (ADS)

    Kazmi, Syed S.

    We introduce Agent Based Model of a pure exchange economy and a simple economy that includes production, consumption and distributions. Markets are described by Edgeworth Exchange in both models. Trades are binary bilateral trades at prices that are set in each trade. We found that the prices converge over time to a value that is not the standard Equilibrium value given by the Walrasian Tattonement fiction. The average price, and the distributions of Wealth, depends on the degree of Domination (persuasive power) we introduced based on differentials in trading "leverage" due to wealth differences. The full economy model is allowed to evolve by replacement of agents that do not survive with agents having random properties. We found that, depending upon the average productivity compared to the average consumption, very different kinds of behavior emerged. The Economy as a whole reaches a steady state by the population adapting to the conditions of productivity and consumption. Correlations develop in a population between what would be for each individual a random assignment of Productivity, Labor power, Wealth, and Preferences. The population adapts to the economic environment by development of these Correlations and without any learning process. We see signs of emerging social structure as a result of necessity of survival.

  1. Agent-based modeling: case study in cleavage furrow models.

    PubMed

    Mogilner, Alex; Manhart, Angelika

    2016-11-07

    The number of studies in cell biology in which quantitative models accompany experiments has been growing steadily. Roughly, mathematical and computational techniques of these models can be classified as "differential equation based" (DE) or "agent based" (AB). Recently AB models have started to outnumber DE models, but understanding of AB philosophy and methodology is much less widespread than familiarity with DE techniques. Here we use the history of modeling a fundamental biological problem-positioning of the cleavage furrow in dividing cells-to explain how and why DE and AB models are used. We discuss differences, advantages, and shortcomings of these two approaches.

  2. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  3. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  4. Agent-based modeling of noncommunicable diseases: a systematic review.

    PubMed

    Nianogo, Roch A; Arah, Onyebuchi A

    2015-03-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application.

  5. Agent-Based Modeling of Noncommunicable Diseases: A Systematic Review

    PubMed Central

    Arah, Onyebuchi A.

    2015-01-01

    We reviewed the use of agent-based modeling (ABM), a systems science method, in understanding noncommunicable diseases (NCDs) and their public health risk factors. We systematically reviewed studies in PubMed, ScienceDirect, and Web of Sciences published from January 2003 to July 2014. We retrieved 22 relevant articles; each had an observational or interventional design. Physical activity and diet were the most-studied outcomes. Often, single agent types were modeled, and the environment was usually irrelevant to the studied outcome. Predictive validation and sensitivity analyses were most used to validate models. Although increasingly used to study NCDs, ABM remains underutilized and, where used, is suboptimally reported in public health studies. Its use in studying NCDs will benefit from clarified best practices and improved rigor to establish its usefulness and facilitate replication, interpretation, and application. PMID:25602871

  6. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents

    PubMed Central

    Wang, Fenglin; Li, Chengyao; Cheng, Jing; Yuan, Zhiqin

    2016-01-01

    Inorganic nanoparticles have been widely investigated as therapeutic agents for cancer treatments in biomedical fields due to their unique physical/chemical properties, versatile synthetic strategies, easy surface functionalization and excellent biocompatibility. This review focuses on the discussion of several types of inorganic nanoparticle-based cancer therapeutic agents, including gold nanoparticles, magnetic nanoparticles, upconversion nanoparticles and mesoporous silica nanoparticles. Several cancer therapy techniques are briefly introduced at the beginning. Emphasis is placed on how these inorganic nanoparticles can provide enhanced therapeutic efficacy in cancer treatment through site-specific accumulation, targeted drug delivery and stimulated drug release, with elaborations on several examples to highlight the respective strategies adopted. Finally, a brief summary and future challenges are included. PMID:27898016

  7. Statistical Agent Based Modelization of the Phenomenon of Drug Abuse

    NASA Astrophysics Data System (ADS)

    di Clemente, Riccardo; Pietronero, Luciano

    2012-07-01

    We introduce a statistical agent based model to describe the phenomenon of drug abuse and its dynamical evolution at the individual and global level. The agents are heterogeneous with respect to their intrinsic inclination to drugs, to their budget attitude and social environment. The various levels of drug use were inspired by the professional description of the phenomenon and this permits a direct comparison with all available data. We show that certain elements have a great importance to start the use of drugs, for example the rare events in the personal experiences which permit to overcame the barrier of drug use occasionally. The analysis of how the system reacts to perturbations is very important to understand its key elements and it provides strategies for effective policy making. The present model represents the first step of a realistic description of this phenomenon and can be easily generalized in various directions.

  8. Deterministic Agent-Based Path Optimization by Mimicking the Spreading of Ripples.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Di Paolo, Ezequiel A; Liu, Hao

    2016-01-01

    Inspirations from nature have contributed fundamentally to the development of evolutionary computation. Learning from the natural ripple-spreading phenomenon, this article proposes a novel ripple-spreading algorithm (RSA) for the path optimization problem (POP). In nature, a ripple spreads at a constant speed in all directions, and the node closest to the source is the first to be reached. This very simple principle forms the foundation of the proposed RSA. In contrast to most deterministic top-down centralized path optimization methods, such as Dijkstra's algorithm, the RSA is a bottom-up decentralized agent-based simulation model. Moreover, it is distinguished from other agent-based algorithms, such as genetic algorithms and ant colony optimization, by being a deterministic method that can always guarantee the global optimal solution with very good scalability. Here, the RSA is specifically applied to four different POPs. The comparative simulation results illustrate the advantages of the RSA in terms of effectiveness and efficiency. Thanks to the agent-based and deterministic features, the RSA opens new opportunities to attack some problems, such as calculating the exact complete Pareto front in multiobjective optimization and determining the kth shortest project time in project management, which are very difficult, if not impossible, for existing methods to resolve. The ripple-spreading optimization principle and the new distinguishing features and capacities of the RSA enrich the theoretical foundations of evolutionary computation.

  9. Agent-based power sharing scheme for active hybrid power sources

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua

    The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.

  10. SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate's surface modification.

    PubMed

    Zhao, Qian; Liu, Guangqiang; Zhang, Hongwen; Zhou, Fei; Li, Yue; Cai, Weiping

    2017-02-15

    Highly efficient detection of the organicphosphor nerve agents such as sarin and soman, based on surface enhanced Raman scattering (SERS) effect, has been in challenge due to their weak adsorption property on coin metals. In this paper, a new strategy is presented to achieve the SERS-based ultrasensitive detection of sarin-simulated agent methanephosphonic acid (MPA) via the surface modification of SERS-substrates. The Au-coated Si nanocone array is surface-modified with 2-aminoethanethiol and used as SERS-substrate for detection of MPA. It has been shown that the modified substrate could preferentially capture MPA molecules in the solution with coupling agent and induce amidation reaction. The reaction products are still bound or anchor on the substrate's surface. The MPA molecules can thus be detected by Raman spectral measurement of the solution-soaked SERS-substrate. The minimum detection level is down to ∼1ppb. The Raman peak intensity versus the MPA concentration is subject to a linear double logarithmic relation from ∼1ppb to ∼1000ppm, which is attributed to Freundlich adsorption of MPA on the surface-modified SERS substrate. This study provides a new way for the highly efficient SERS-based detection of the organophosphorus nerve agents and some other target molecules weakly interacted with metal substrates.

  11. Chemical agent simulants for testing transparent materials. Contractor report, September 1987-January 1988

    SciTech Connect

    Lewis, R.E.; Liebman, S.A.; Isaacson, L.; Grasso, P.S.; Sarver, E.W.

    1988-05-01

    Transparent polymeric materials undergo physical changes when exposed to chemical warfare agents. The object of this task was to: 1) select candidate liquids to simulate GB, VX and HD effects (three each) and 2) perform three point bend tests to determine critical strain values for cracking/crazing for simulant/transparent-polymer materials combinations. The critical-strain tests were accomplished using ASTM method D790-80 for stress crazing. The method was modified and enhanced to detect stress crazing via changes in reflection/diffraction patterns produced with a helium-neon (He-Ne) laser. Four transparent-polymer materials were tested; namely, as cast polymethyl methacrylate (PMMA), biaxially stretched PMMA, polycarbonate and polyurethane GAC-590. The critical-strain values obtained for the simulant/polymer combinations are presented as a four-by-nine map that allows easy comparisons as a function of material or simulant. Comparison with actual agent data is possible using this four-by-nine map.

  12. Stylized facts from a threshold-based heterogeneous agent model

    NASA Astrophysics Data System (ADS)

    Cross, R.; Grinfeld, M.; Lamba, H.; Seaman, T.

    2007-05-01

    A class of heterogeneous agent models is investigated where investors switch trading position whenever their motivation to do so exceeds some critical threshold. These motivations can be psychological in nature or reflect behaviour suggested by the efficient market hypothesis (EMH). By introducing different propensities into a baseline model that displays EMH behaviour, one can attempt to isolate their effects upon the market dynamics. The simulation results indicate that the introduction of a herding propensity results in excess kurtosis and power-law decay consistent with those observed in actual return distributions, but not in significant long-term volatility correlations. Possible alternatives for introducing such long-term volatility correlations are then identified and discussed.

  13. Addressing the translational dilemma: dynamic knowledge representation of inflammation using agent-based modeling.

    PubMed

    An, Gary; Christley, Scott

    2012-01-01

    Given the panoply of system-level diseases that result from disordered inflammation, such as sepsis, atherosclerosis, cancer, and autoimmune disorders, understanding and characterizing the inflammatory response is a key target of biomedical research. Untangling the complex behavioral configurations associated with a process as ubiquitous as inflammation represents a prototype of the translational dilemma: the ability to translate mechanistic knowledge into effective therapeutics. A critical failure point in the current research environment is a throughput bottleneck at the level of evaluating hypotheses of mechanistic causality; these hypotheses represent the key step toward the application of knowledge for therapy development and design. Addressing the translational dilemma will require utilizing the ever-increasing power of computers and computational modeling to increase the efficiency of the scientific method in the identification and evaluation of hypotheses of mechanistic causality. More specifically, development needs to focus on facilitating the ability of non-computer trained biomedical researchers to utilize and instantiate their knowledge in dynamic computational models. This is termed "dynamic knowledge representation." Agent-based modeling is an object-oriented, discrete-event, rule-based simulation method that is well suited for biomedical dynamic knowledge representation. Agent-based modeling has been used in the study of inflammation at multiple scales. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggest that this modeling framework is well suited for addressing the translational dilemma. This review describes agent-based modeling, gives examples of its applications in the study of inflammation, and introduces a proposed general expansion of the use of modeling and simulation to augment the generation and evaluation of knowledge

  14. Protection of autonomous microgrids using agent-based distributed communication

    SciTech Connect

    Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.

    2016-04-06

    This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoid pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.

  15. Agent-based modelling of consumer energy choices

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Henry, Adam Douglas

    2016-06-01

    Strategies to mitigate global climate change should be grounded in a rigorous understanding of energy systems, particularly the factors that drive energy demand. Agent-based modelling (ABM) is a powerful tool for representing the complexities of energy demand, such as social interactions and spatial constraints. Unlike other approaches for modelling energy demand, ABM is not limited to studying perfectly rational agents or to abstracting micro details into system-level equations. Instead, ABM provides the ability to represent behaviours of energy consumers -- such as individual households -- using a range of theories, and to examine how the interaction of heterogeneous agents at the micro-level produces macro outcomes of importance to the global climate, such as the adoption of low-carbon behaviours and technologies over space and time. We provide an overview of ABM work in the area of consumer energy choices, with a focus on identifying specific ways in which ABM can improve understanding of both fundamental scientific and applied aspects of the demand side of energy to aid the design of better policies and programmes. Future research needs for improving the practice of ABM to better understand energy demand are also discussed.

  16. Finding shared decisions in stakeholder networks: An agent-based approach

    NASA Astrophysics Data System (ADS)

    Le Pira, Michela; Inturri, Giuseppe; Ignaccolo, Matteo; Pluchino, Alessandro; Rapisarda, Andrea

    2017-01-01

    We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations' results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.

  17. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  18. Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents.

    PubMed

    Zhang, Hong-ping; Lu, Xiong; Leng, Yang; Fang, Liming; Qu, Shuxin; Feng, Bo; Weng, Jie; Wang, Jianxin

    2009-05-01

    Molecular dynamics (MD) simulations were employed to study hydroxyapatite/biopolymer interface interactions in composites for biomedical applications. The study analyzed the binding energies between hydroxyapatite (HA) and three polymers: polyethylene (PE), polyamide (PA) and polylactic acid (PLA). The interactions of polymers on HA crystallographic planes (001), (100) and (110) were simulated. The effects of the silane coupling agent (A174) on interfacial binding energies were also examined. The results show that HA (110) has the highest binding energy with these polymers because of its higher planar atom density than that of HA (001) and (100). The binding energies of PA/HA and PLA/HA are much higher than that of PE/HA, which might be attributed to large number of polar groups in PA and PLA chains. The silane coupling agent A174 increases the binding energy between PE and HA, but not for the PA/HA and PLA/HA systems. The MD results can be used to guide the design of polymer/HA composites and to select proper coupling agents.

  19. Agent-Based Computing in Distributed Adversarial Planning

    DTIC Science & Technology

    2010-08-09

    agents, P3 represents games with 3 agents; value of BF represents the branching factors for the agents in fixed order (each digit for one agent...and M. Wooldridge. Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica , 75(1):125–157

  20. Agent-based Modeling Methodology for Analyzing Weapons Systems

    DTIC Science & Technology

    2015-03-26

    Air Force Research Laboratory’s Sweep Mission Scenario for the Spartacus Study (Geaslen & Panson, 2014). 59 Figure 28: AFSIM Simulation...Reactive Technology for an Advanced Combat Utility System ( SPARTACUS ) Air Combat Development Scenario. Wright Patterson Air Force Base OH: Air Force

  1. Empirical Data Sets for Agent Based Modeling of Crowd Scenarios

    DTIC Science & Technology

    2009-08-06

    Conclusion 2UNCLASSIFIED- Approved for Public Release Crowd Research • Large numbers • Heterogeneous • Individual Actors • Interdependence • Language ... Barriers • Empirical testing is difficult • Simulations require models based on real data, otherwise they are fiction 3UNCLASSIFIED- Approved for

  2. Ontology-based, multi-agent support of production management

    NASA Astrophysics Data System (ADS)

    Meridou, Despina T.; Inden, Udo; Rückemann, Claus-Peter; Patrikakis, Charalampos Z.; Kaklamani, Dimitra-Theodora I.; Venieris, Iakovos S.

    2016-06-01

    Over the recent years, the reported incidents on failed aircraft ramp-ups or the delayed production in small-lots have increased substantially. In this paper, we present a production management platform that combines agent-based techniques with the Service Oriented Architecture paradigm. This platform takes advantage of the functionality offered by the semantic web language OWL, which allows the users and services of the platform to speak a common language and, at the same time, facilitates risk management and decision making.

  3. An Agent-Based Model of Farmer Decision Making in Jordan

    NASA Astrophysics Data System (ADS)

    Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim

    2016-04-01

    We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.

  4. RELAP5 based engineering simulator

    SciTech Connect

    Charlton, T.R.; Laats, E.T.; Burtt, J.D.

    1990-01-01

    The INEL Engineering Simulation Center was established in 1988 to provide a modern, flexible, state-of-the-art simulation facility. This facility and two of the major projects which are part of the simulation center, the Advance Test Reactor (ATR) engineering simulator project and the Experimental Breeder Reactor II (EBR-II) advanced reactor control system, have been the subject of several papers in the past few years. Two components of the ATR engineering simulator project, RELAP5 and the Nuclear Plant Analyzer (NPA), have recently been improved significantly. This paper will present an overview of the INEL Engineering Simulation Center, and discuss the RELAP5/MOD3 and NPA/MOD1 codes, specifically how they are being used at the INEL Engineering Simulation Center. It will provide an update on the modifications to these two codes and their application to the ATR engineering simulator project, as well as, a discussion on the reactor system representation, control system modeling, two phase flow and heat transfer modeling. It will also discuss how these two codes are providing desktop, stand-alone reactor simulation. 12 refs., 2 figs.

  5. Agent-based modeling of the immune system: NetLogo, a promising framework.

    PubMed

    Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

  6. Agent-Based Modeling of the Immune System: NetLogo, a Promising Framework

    PubMed Central

    Chiacchio, Ferdinando; Russo, Giulia; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms. PMID:24864263

  7. Nanocellulose-based composites and bioactive agents for food packaging.

    PubMed

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2014-01-01

    Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging.

  8. Physics-Based Simulator for NEO Exploration Analysis & Simulation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Cameron, J.; Jain, A.; Kline, H.; Lim, C.; Mazhar, H.; Myint, S.; Nayar, H.; Patton, R.; Pomerantz, M.; Quadrelli, M.; Shakkotai, P.; Tso, K.

    2011-01-01

    As part of the Space Exploration Analysis and Simulation (SEAS) task, the National Aeronautics and Space Administration (NASA) is using physics-based simulations at NASA's Jet Propulsion Laboratory (JPL) to explore potential surface and near-surface mission operations at Near Earth Objects (NEOs). The simulator is under development at JPL and can be used to provide detailed analysis of various surface and near-surface NEO robotic and human exploration concepts. In this paper we describe the SEAS simulator and provide examples of recent mission systems and operations concepts investigated using the simulation. We also present related analysis work and tools developed for both the SEAS task as well as general modeling, analysis and simulation capabilites for asteroid/small-body objects.

  9. The Emergence of Agent-Based Technology as an Architectural Component of Serious Games

    NASA Technical Reports Server (NTRS)

    Phillips, Mark; Scolaro, Jackie; Scolaro, Daniel

    2010-01-01

    The evolution of games as an alternative to traditional simulations in the military context has been gathering momentum over the past five years, even though the exploration of their use in the serious sense has been ongoing since the mid-nineties. Much of the focus has been on the aesthetics of the visuals provided by the core game engine as well as the artistry provided by talented development teams to produce not only breathtaking artwork, but highly immersive game play. Consideration of game technology is now so much a part of the modeling and simulation landscape that it is becoming difficult to distinguish traditional simulation solutions from game-based approaches. But games have yet to provide the much needed interactive free play that has been the domain of semi-autonomous forces (SAF). The component-based middleware architecture that game engines provide promises a great deal in terms of options for the integration of agent solutions to support the development of non-player characters that engage the human player without the deterministic nature of scripted behaviors. However, there are a number of hard-learned lessons on the modeling and simulation side of the equation that game developers have yet to learn, such as: correlation of heterogeneous systems, scalability of both terrain and numbers of non-player entities, and the bi-directional nature of simulation to game interaction provided by Distributed Interactive Simulation (DIS) and High Level Architecture (HLA).

  10. Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes.

    PubMed

    Candel, Inmaculada; Bernardos, Andrea; Climent, Estela; Marcos, M Dolores; Martínez-Máñez, Ramón; Sancenón, Félix; Soto, Juan; Costero, Ana; Gil, Salvador; Parra, Margarita

    2011-08-07

    A hybrid nanoscopic capped mesoporous material, that is selectively opened in the presence of nerve agent simulants, has been prepared and used as a probe for the chromo-fluorogenic detection of these chemicals.

  11. A Novel Framework for Characterizing Exposure-Related Behaviors Using Agent-Based Models Embedded with Needs-Based Artificial Intelligence (CSSSA2016)

    EPA Science Inventory

    Descriptions of where and how individuals spend their time are important for characterizing exposures to chemicals in consumer products and in indoor environments. Herein we create an agent-based model (ABM) that is able to simulate longitudinal patterns in behaviors. By basing o...

  12. Router Agent Technology for Policy-Based Network Management

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  13. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units

    PubMed Central

    2011-01-01

    Multiscale agent-based modeling (MABM) has been widely used to simulate Glioblastoma Multiforme (GBM) and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa). At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU)-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated. PMID:22176732

  14. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    PubMed

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results.

  15. Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2002-01-01

    Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…

  16. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents.

    PubMed

    Cinti, Stefano; Minotti, Clarissa; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2017-07-15

    Paper-based microfluidic devices are gaining large popularity because of their uncontested advantages of simplicity, cost-effectiveness, limited necessity of laboratory infrastructure and skilled personnel. Moreover, these devices require only small volumes of reagents and samples, provide rapid analysis, and are portable and disposable. Their combination with electrochemical detection offers additional benefits of high sensitivity, selectivity, simplicity of instrumentation, portability, and low cost of the total system. Herein, we present the first example of an integrated paper-based screen-printed electrochemical biosensor device able to quantify nerve agents. The principle of this approach is based on dual electrochemical measurements, in parallel, of butyrylcholinesterase (BChE) enzyme activity towards butyrylthiocholine with and without exposure to contaminated samples. The sensitivity of this device is largely improved using a carbon black/Prussian Blue nanocomposite as a working electrode modifier. The proposed device allows an entirely reagent-free analysis. A strip of a nitrocellulose membrane, that contains the substrate, is integrated with a paper-based test area that holds a screen-printed electrode and BChE. Paraoxon, chosen as nerve agent simulant, is linearly detected down to 3µg/L. The use of extremely affordable manufacturing techniques provides a rapid, sensitive, reproducible, and inexpensive tool for in situ assessment of nerve agent contamination. This represents a powerful approach for use by non-specialists, that can be easily broadened to other (bio)systems.

  17. Consensus-based distributed estimation in multi-agent systems with time delay

    NASA Astrophysics Data System (ADS)

    Abdelmawgoud, Ahmed

    During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.

  18. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling.

    PubMed

    Witkowski, Olaf; Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds' boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other's signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents' ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals.

  19. Computational energetic model of morphogenesis based on multi-agent Cellular Potts Model.

    PubMed

    Tripodi, Sébastien; Ballet, Pascal; Rodin, Vincent

    2010-01-01

    The Cellular Potts Model (CPM) is a cellular automaton (CA), developed by Glazier and Graner in 1992, to model the morphogenesis. In this model, the entities are the cells. It has already been improved in many ways; however, a key point in biological systems, not defined in CPM, is energetic exchange between entities. We integrate this energetic concept inside the CPM. We simulate a cell differentiation inside a growing cell tissue. The results are the emergence of dynamic patterns coming from the consumption and production of energy. A model described by CA is less scalable than one described by a multi-agent system (MAS). We have developed a MAS based on the CPM, where a cell agent is implemented from the cell of CPM together with several behaviours, in particular the consumption and production of energy from the consumption of molecules.

  20. An adaptive scheduling model for a multi-agent based VEPR data collection actions.

    PubMed

    Vieira-Marques, Pedro; Jácome, Jorge; Hilário-Patriarca, José; Cruz-Correia, Ricardo

    2015-01-01

    With the purpose of improving the access to departmental legacy information systems, a multi agent based Virtual Electronic Patient Record (VEPR) was deployed at a major Portuguese Hospital. The agent module (MAID) is in charge of identifying new data produced (reports), collecting and making it available through an integrated web interface. The deployed MAID system uses a static interval for checking the existence of new data, however from the gathered data regarding each department data production it is observable a variable rate throughout the day. In order to address this variability an adaptive model was developed and tested in a simulated environment with real data. The model takes in consideration the past report production profiles for determining a variable query frequency in order to reduce the average time to make data available minimizing the number of departmental requests.

  1. Reducing the complexity of an agent-based local heroin market model.

    PubMed

    Heard, Daniel; Bobashev, Georgiy V; Morris, Robert J

    2014-01-01

    This project explores techniques for reducing the complexity of an agent-based model (ABM). The analysis involved a model developed from the ethnographic research of Dr. Lee Hoffer in the Larimer area heroin market, which involved drug users, drug sellers, homeless individuals and police. The authors used statistical techniques to create a reduced version of the original model which maintained simulation fidelity while reducing computational complexity. This involved identifying key summary quantities of individual customer behavior as well as overall market activity and replacing some agents with probability distributions and regressions. The model was then extended to allow external market interventions in the form of police busts. Extensions of this research perspective, as well as its strengths and limitations, are discussed.

  2. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  3. An agent-based hydroeconomic model to evaluate water policies in Jordan

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Gorelick, S.

    2014-12-01

    Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.

  4. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

    2015-04-01

    This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

  5. Simulation-based medical teaching and learning.

    PubMed

    Al-Elq, Abdulmohsen H

    2010-01-01

    One of the most important steps in curriculum development is the introduction of simulation- based medical teaching and learning. Simulation is a generic term that refers to an artificial representation of a real world process to achieve educational goals through experiential learning. Simulation based medical education is defined as any educational activity that utilizes simulation aides to replicate clinical scenarios. Although medical simulation is relatively new, simulation has been used for a long time in other high risk professions such as aviation. Medical simulation allows the acquisition of clinical skills through deliberate practice rather than an apprentice style of learning. Simulation tools serve as an alternative to real patients. A trainee can make mistakes and learn from them without the fear of harming the patient. There are different types and classification of simulators and their cost vary according to the degree of their resemblance to the reality, or 'fidelity'. Simulation- based learning is expensive. However, it is cost-effective if utilized properly. Medical simulation has been found to enhance clinical competence at the undergraduate and postgraduate levels. It has also been found to have many advantages that can improve patient safety and reduce health care costs through the improvement of the medical provider's competencies. The objective of this narrative review article is to highlight the importance of simulation as a new teaching method in undergraduate and postgraduate education.

  6. A Harris-Todaro Agent-Based Model to Rural-Urban Migration

    NASA Astrophysics Data System (ADS)

    Espíndola, Aquino L.; Silveira, Jaylson J.; Penna, T. J. P.

    2006-09-01

    The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.

  7. Agent-Based Mediation and Cooperative Information Systems

    SciTech Connect

    PHILLIPS, LAURENCE R.; LINK, HAMILTON E.; GOLDSMITH, STEVEN Y.

    2002-06-02

    This report describes the results of research and development in the area of communication among disparate species of software agents. The two primary elements of the work are the formation of ontologies for use by software agents and the means by which software agents are instructed to carry out complex tasks that require interaction with other agents. This work was grounded in the areas of commercial transport and cybersecurity.

  8. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants.

    PubMed

    Dong, Jing; Hu, Jufang; Chi, Yingnan; Lin, Zhengguo; Zou, Bo; Yang, Song; Hill, Craig L; Hu, Changwen

    2017-03-21

    A novel double-anion complex, H13 [(CH3 )4 N]12 [PNb12 O40 (V(V) O)2 ⋅(V(IV)4 O12 )2 ]⋅22 H2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H2 O2 with a turnover frequency (TOF) of 16 000 h(-1) . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed.

  9. Naturally Occurring Wound Healing Agents: An Evidence-Based Review.

    PubMed

    Karapanagioti, E G; Assimopoulou, A N

    2016-01-01

    Nature constitutes a pool of medicines for thousands of years. Nowadays, trust in nature is increasingly growing, as many effective medicines are naturally derived. Over the last decades, the potential of plants as wound healing agents is being investigated. Wounds and ulcers affect the patients' life quality and often lead to amputations. Approximately 43,000,000 patients suffer from diabetic foot ulcers worldwide. Annually, $25 billion are expended for the treatment of chronic wounds, with the number growing due to aging population and increased incidents of diabetes and obesity. Therefore a timely, orderly and effective wound management and treatment is crucial. This paper aims to systematically review natural products, mainly plants, with scientifically well documented wound healing activity, focusing on articles based on animal and clinical studies performed worldwide and approved medicinal products. Moreover, a brief description of the wound healing mechanism is presented, to provide a better understanding. Although a plethora of natural products are in vitro and in vivo evaluated for wound healing activity, only a few go through clinical trials and even fewer launch the market as approved medicines. Most of them rely on traditional medicine, indicating that ethnopharmacology is a successful strategy for drug development. Since only 6% of plants have been systematically investigated pharmacologically, more intensified efforts and emerging advancements are needed to exploit the potentials of nature for the development of novel medicines. This paper aims to provide a reliable database and matrix for thorough further investigation towards the discovery of wound healing agents.

  10. Recent progress on pyrazole scaffold-based antimycobacterial agents.

    PubMed

    Keri, Rangappa S; Chand, Karam; Ramakrishnappa, Thippeswamy; Nagaraja, Bhari Mallanna

    2015-05-01

    New and reemerging infectious diseases will continue to pose serious global health threats well into the 21st century and according to the World Health Organization report, these are still the leading cause of death among humans worldwide. Among infectious diseases, tuberculosis claims approximately 2 million deaths per year worldwide. Also, agents that reduce the duration and complexity of the current therapy would have a major impact on the overall cure rate. Due to the development of resistance to conventional antibiotics there is a need for new therapeutic strategies to combat Mycobacterium tuberculosis. Subsequently, there is an urgent need for the development of new drug candidates with newer targets and alternative mechanism of action. In this perspective, pyrazole, one of the most important classes of heterocycles, has been the topic of research for thousands of researchers all over the world because of its wide spectrum of biological activities. To pave the way for future research, there is a need to collect the latest information in this promising area. In the present review, we have collated published reports on the pyrazole core to provide an insight so that its full therapeutic potential can be utilized for the treatment of tuberculosis. In this article, the possible structure-activity relationship of pyrazole analogs for designing better antituberculosis (anti-TB) agents has been discussed and is also helpful for new thoughts in the quest for rational designs of more active and less toxic pyrazole-based anti-TB drugs.

  11. Modelica-based TCP simulation

    NASA Astrophysics Data System (ADS)

    Velieva, T. R.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastianov, L. A.

    2017-01-01

    For the study and verification of our mathematical model of telecommunication systems a discrete simulation model and a continuous analytical model were developed. However, for various reasons, these implementations are not entirely satisfactory. It is necessary to develop a more adequate simulation model, possibly using a different modeling paradigm. In order to modeling of the TCP source it is proposed to use a hybrid (continuous-discrete) approach. For computer implementation of the model the physical modeling language Modelica is used. The hybrid approach allows us to take into account the transitions between different states in the continuous model of the TCP protocol. The considered approach allowed to obtain a simple simulation model of TCP source. This model has great potential for expansion. It is possible to implement different types of TCP.

  12. Understanding agent-based models of financial markets: A bottom-up approach based on order parameters and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lye, Ribin; Tan, James Peng Lung; Cheong, Siew Ann

    2012-11-01

    We describe a bottom-up framework, based on the identification of appropriate order parameters and determination of phase diagrams, for understanding progressively refined agent-based models and simulations of financial markets. We illustrate this framework by starting with a deterministic toy model, whereby N independent traders buy and sell M stocks through an order book that acts as a clearing house. The price of a stock increases whenever it is bought and decreases whenever it is sold. Price changes are updated by the order book before the next transaction takes place. In this deterministic model, all traders based their buy decisions on a call utility function, and all their sell decisions on a put utility function. We then make the agent-based model more realistic, by either having a fraction fb of traders buy a random stock on offer, or a fraction fs of traders sell a random stock in their portfolio. Based on our simulations, we find that it is possible to identify useful order parameters from the steady-state price distributions of all three models. Using these order parameters as a guide, we find three phases: (i) the dead market; (ii) the boom market; and (iii) the jammed market in the phase diagram of the deterministic model. Comparing the phase diagrams of the stochastic models against that of the deterministic model, we realize that the primary effect of stochasticity is to eliminate the dead market phase.

  13. Highly selective detection of nerve-agent simulants with BODIPY dyes.

    PubMed

    Barba-Bon, Andrea; Costero, Ana M; Gil, Salvador; Harriman, Anthony; Sancenón, Félix

    2014-05-19

    Two chromo-fluorogenic probes, each based on the boron dipyrromethene core, have been developed for the detection of nerve-agent mimics. These chemosensors display both a color change and a significant enhancement of fluorescence in the presence of diethylcyanophosphonate (DCNP) and diisopropylfluorophosphate (DFP). No interference from other organophosphorus compounds or acids has been observed. Two portable chemosensor kits have been developed and tested to demonstrate its practical application in real-time monitoring.

  14. A knowledge-based agent prototype for Chinese address geocoding

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Zhang, Xuehu; Ding, Linfang; Ma, Haoming; Li, Qi

    2009-10-01

    Chinese address geocoding is a difficult problem to deal with due to intrinsic complexities in Chinese address systems and a lack of standards in address assignments and usages. In order to improve existing address geocoding algorithm, a spatial knowledge-based agent prototype aimed at validating address geocoding results is built to determine the spatial accuracies as well as matching confidence. A portion of human's knowledge of judging the spatial closeness of two addresses is represented via first order logic and the corresponding algorithms are implemented with the Prolog language. Preliminary tests conducted using addresses matching result in Beijing area showed that the prototype can successfully assess the spatial closeness between the matching address and the query address with 97% accuracy.

  15. On agent-based modeling and computational social science

    PubMed Central

    Conte, Rosaria; Paolucci, Mario

    2014-01-01

    In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS. PMID:25071642

  16. On agent-based modeling and computational social science.

    PubMed

    Conte, Rosaria; Paolucci, Mario

    2014-01-01

    In the first part of the paper, the field of agent-based modeling (ABM) is discussed focusing on the role of generative theories, aiming at explaining phenomena by growing them. After a brief analysis of the major strengths of the field some crucial weaknesses are analyzed. In particular, the generative power of ABM is found to have been underexploited, as the pressure for simple recipes has prevailed and shadowed the application of rich cognitive models. In the second part of the paper, the renewal of interest for Computational Social Science (CSS) is focused upon, and several of its variants, such as deductive, generative, and complex CSS, are identified and described. In the concluding remarks, an interdisciplinary variant, which takes after ABM, reconciling it with the quantitative one, is proposed as a fundamental requirement for a new program of the CSS.

  17. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  18. The origin of digital species: The evolution of autonomous agents and lineages in a simulated ecosystem

    NASA Astrophysics Data System (ADS)

    Earon, Ernest J. P.

    As mobile robotics technology continues to advance, the manual development of algorithms and controllers for these systems will become less feasible, if possible at all. As such, it will become increasingly necessary to turn to techniques that allow the automatic design of such systems, both in software and indeed in hardware. Evolutionary methods can provide powerful tools for automatic design as is evidenced by the abundance of diverse natural systems from the simple to the massively sophisticated and coupled. One of the fundamental features, and one of the lesser understood phenomena, in biology is that of speciation. In order to better understand the development and creation of species, and their role in evolution, a method for tracking speciation in simulation is presented. While there is much dispute in the field of biology as to the precise definition of the term species, there is little debate that the natural world is full of distinct subpopulations. Each of these populations has developed unique features for, and solutions to, the problem of surviving in an incredibly complex world. The power of investigating species over individual agents arises from improved robustness of a grouping of like individuals as opposed to single entities more sensitive to very local conditions and interactions. In essence, a species is a more complete view of the fitness and survivability of a genome than a single agent. A simulation engine is presented which allows the study of evolution from a species point of view. Results from simulations offer insight into the role of genetic neutrality in evolution as well as the effect of this neutrality on mechanisms such as mutation pressure. Several results are presented which provide insight into these features which can serve as analogs for similar biological effects as well as features such as genetic cross drift (or convergent evolution of species). Some insight into the such as solution bloating are also detailed. The

  19. Protection of autonomous microgrids using agent-based distributed communication

    DOE PAGES

    Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.

    2016-04-06

    This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less

  20. A New Approach To Secure Federated Information Bases Using Agent Technology.

    ERIC Educational Resources Information Center

    Weippi, Edgar; Klug, Ludwig; Essmayr, Wolfgang

    2003-01-01

    Discusses database agents which can be used to establish federated information bases by integrating heterogeneous databases. Highlights include characteristics of federated information bases, including incompatible database management systems, schemata, and frequently changing context; software agent technology; Java agents; system architecture;…

  1. The Impact of a Peer-Learning Agent Based on Pair Programming in a Programming Course

    ERIC Educational Resources Information Center

    Han, Keun-Woo; Lee, EunKyoung; Lee, YoungJun

    2010-01-01

    This paper analyzes the educational effects of a peer-learning agent based on pair programming in programming courses. A peer-learning agent system was developed to facilitate the learning of a programming language through the use of pair programming strategies. This system is based on the role of a peer-learning agent from pedagogical and…

  2. Agent-Based Computational Modeling of Cell Culture ...

    EPA Pesticide Factsheets

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  3. A heterogeneous graph-based recommendation simulator

    SciTech Connect

    Yeonchan, Ahn; Sungchan, Park; Lee, Matt Sangkeun; Sang-goo, Lee

    2013-01-01

    Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.

  4. Simulation Platform: a cloud-based online simulation environment.

    PubMed

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software.

  5. SAL: a language for developing an agent-based architecture for mobile robots

    NASA Astrophysics Data System (ADS)

    Lim, Willie Y.; Verzulli, Joe

    1993-05-01

    SAL (the SmartyCat Agent Language) is a language being developed for programming SmartyCat, our mobile robot. SmartyCat's underlying software architecture is agent-based. At the lowest level, the robot sensors and actuators are controlled by agents (viz., the sensing and acting agents, respectively). SAL provides the constructs for organizing these agents into many structures. In particular, SAL supports the subsumption architecture approach. At higher levels of abstraction, SAL can be used for writing programs based on Minsky's Society of Mind paradigm. Structurally, a SAL program is a graph, where the nodes are software modules called agents, and the arcs represent abstract communication links between agents. In SAL, an agent is a CLOS object with input and output ports. Input ports are used for presenting data from the outside world (i.e., other agents) to the agent. Data are presented to the outside world by the agent through its output ports. The main body of the SAL code for the agent specifies the computation or the action performed by the agent. This paper describes how SAL is being used for implementing the agent-based SmartyCat software architecture on a Cybermotion K2A platform.

  6. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    PubMed

    Florent, Querini; Enrico, Benetto

    2015-02-03

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents.

  7. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate.

    PubMed

    Du, Ling-Ran; Lu, Xiao-Jing; Guan, Hai-Tao; Yang, Yong-Jie; Gu, Meng-Jie; Zheng, Zhuo-Zhao; Lv, Tian-Shi; Yan, Zi-Guang; Song, Li; Zou, Ying-Hua; Fu, Nai-Qi; Qi, Xian-Rong; Fan, Tian-Yuan

    2014-08-25

    New type of liquid embolic agents based on a liquid crystalline material of glyceryl monooleate (GMO) was developed and evaluated in this study. Ternary phase diagram of GMO, water and ethanol was constructed and three isotropic liquids (ILs, GMO:ethanol:water=49:21:30, 60:20:20 and 72:18:10 (w/w/w)) were selected as potential liquid embolic agents, which could spontaneously form viscous gel cast when contacting with water or physiological fluid. The ILs exhibited excellent microcatheter deliverability due to low viscosity, and were proved to successfully block the saline flow when performed in a device to simulate embolization in vitro. The ILs also showed good cytocompatibility on L929 mouse fibroblast cell line. The embolization of ILs to rabbit kidneys was performed successfully under monitoring of digital subtraction angiography (DSA), and embolic degree was affected by the initial formulation composition and used volume. At 5th week after embolization, DSA and computed tomography (CT) confirmed the renal arteries embolized with IL did not recanalize in follow-up period, and an obvious atrophy of the embolized kidney was observed. Therefore, the GMO-based liquid embolic agents showed feasible and effective to embolize, and potential use in clinical interventional embolization therapy.

  8. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    SciTech Connect

    Boring, Ronald Laurids; Shirley, Rachel Elizabeth; Joe, Jeffrey Clark; Mandelli, Diego

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  9. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery

    PubMed Central

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526

  10. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    PubMed

    Sakamoto, Takuto

    2016-01-01

    Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  11. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  12. Extended-state-observer-based adaptive control for synchronisation of multi-agent systems with unknown nonlinearities

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; You, Xiu; Liu, Zhixin; Sun, Fuchun

    2015-10-01

    This paper studies the problem of synchronisation to a desired trajectory for non-linear multi-agent systems. By introducing extended state observer approach, decentralised adaptive controllers are designed for distributed systems which have non-identical unknown non-linear dynamics. The non-identical unknown non-linear dynamics allows for a tracked command dynamics which is also non-linear and unknown. State variables of agents can be obtained only in the case where leader agent and the network communication topology for multi-agent systems is strongly connected digraph network structures. A Lyapunov-function-based approach is given to show that the tracking error is ultimately bounded. Some simulation results are given to demonstrate the effectiveness of the developed techniques in this paper.

  13. Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations

    NASA Technical Reports Server (NTRS)

    Seah, Chin; Sierhuis, Maarten; Clancey, William J.

    2005-01-01

    A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.

  14. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    NASA Astrophysics Data System (ADS)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-06-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.

  15. Holistic flood risk assessment using agent-based modelling: the case of Sint Maarten Island

    NASA Astrophysics Data System (ADS)

    Abayneh Abebe, Yared; Vojinovic, Zoran; Nikolic, Igor; Hammond, Michael; Sanchez, Arlex; Pelling, Mark

    2015-04-01

    Floods in coastal regions are regarded as one of the most dangerous and harmful disasters. Though commonly referred to as natural disasters, coastal floods are also attributable to various social, economic, historical and political issues. Rapid urbanisation in coastal areas combined with climate change and poor governance can lead to a significant increase in the risk of pluvial flooding coinciding with fluvial and coastal flooding posing a greater risk of devastation in coastal communities. Disasters that can be triggered by hydro-meteorological events are interconnected and interrelated with both human activities and natural processes. They, therefore, require holistic approaches to help understand their complexity in order to design and develop adaptive risk management approaches that minimise social and economic losses and environmental impacts, and increase resilience to such events. Being located in the North Atlantic Ocean, Sint Maarten is frequently subjected to hurricanes. In addition, the stormwater catchments and streams on Sint Maarten have several unique characteristics that contribute to the severity of flood-related impacts. Urban environments are usually situated in low-lying areas, with little consideration for stormwater drainage, and as such are subject to flash flooding. Hence, Sint Maarten authorities drafted policies to minimise the risk of flood-related disasters on the island. In this study, an agent-based model is designed and applied to understand the implications of introduced policies and regulations, and to understand how different actors' behaviours influence the formation, propagation and accumulation of flood risk. The agent-based model built for this study is based on the MAIA meta-model, which helps to decompose, structure and conceptualize socio-technical systems with an agent-oriented perspective, and is developed using the NetLogo simulation environment. The agents described in this model are households and businesses, and

  16. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling

    PubMed Central

    Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds’ boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other’s signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents’ ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals. PMID:27119340

  17. BMD Agents: An Agent-Based Framework to Model Ballistic Missile Defense Strategies

    DTIC Science & Technology

    2005-06-01

    process of launching, canceling and holding fire as three decimal values in the interval [0,1] referred to as Dl , Dc and Dh. Capability: Capability is...Eiter, F. Ozcan, and R. Ross. Heterogeneous Agent Systems. MIT Press, June 2000. [13] D. B. Weller, D. C. Boger , and J. B. Michael. Command structure

  18. Network Interventions on Physical Activity in an Afterschool Program: An Agent-Based Social Network Study

    PubMed Central

    Zhang, Jun; Shoham, David A.; Tesdahl, Eric

    2015-01-01

    Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202

  19. Agent-based modeling of osteogenic differentiation of mesenchymal stem cells in porous biomaterials.

    PubMed

    Bayrak, Elif S; Mehdizadeh, Hamidreza; Akar, Banu; Somo, Sami I; Brey, Eric M; Cinar, Ali

    2014-01-01

    Mesenchymal stem cells (MSC) have shown promise in tissue engineering applications due to their potential for differentiating into mesenchymal tissues such as osteocytes, chondrocytes, and adipocytes and releasing proteins to promote tissue regeneration. One application involves seeding MSCs in biomaterial scaffolds to promote osteogenesis in the repair of bone defects following implantation. However, predicting in vivo survival and differentiation of MSCs in biomaterials is challenging. Rapid and stable vascularization of scaffolds is required to supply nutrients and oxygen that MSCs need to survive as well as to go through osteogenic differentiation. The objective of this study is to develop an agent-based model and simulator that can be used to investigate the effects of using gradient growth factors on survival and differentiation of MSCs seeded in scaffolds. An agent-based model is developed to simulate the MSC behavior. The effect of vascular endothelial growth factor (VEGF) and bone morphogenic protein-2 (BMP-2) on both survival and osteogenic differentiation is studied. Results showed that the survival ratio of MSCs can be enhanced by increasing VEGF concentration. BMP-2 caused a slight increase on survival ratio. Osteogenesis strongly depends on the VEGF concentration as well because of its effect on vascularization. BMP-2 increased the osteogenic differentiation of MSCs.

  20. Study of the attractor structure of an agent-based sociological model

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2011-03-01

    The Sznajd model is a sociophysics model that is based in the Potts model, and used for describing opinion propagation in a society. It employs an agent-based approach and interaction rules favouring pairs of agreeing agents. It has been successfully employed in modeling some properties and scale features of both proportional and majority elections (see for instance the works of A. T. Bernardes and R. N. Costa Filho), but its stationary states are always consensus states. In order to explain more complicated behaviours, we have modified the bounded confidence idea (introduced before in other opinion models, like the Deffuant model), with the introduction of prejudices and biases (we called this modification confidence rules), and have adapted it to the discrete Sznajd model. This generalized Sznajd model is able to reproduce almost all of the previous versions of the Sznajd model, by using appropriate choices of parameters. We solved the attractor structure of the resulting model in a mean-field approach and made Monte Carlo simulations in a Barabási-Albert network. These simulations show great similarities with the mean-field, for the tested cases of 3 and 4 opinions. The dynamical systems approach that we devised allows for a deeper understanding of the potential of the Sznajd model as an opinion propagation model and can be easily extended to other models, like the voter model. Our modification of the bounded confidence rule can also be readily applied to other opinion propagation models.