Sample records for agent mycobacterium tuberculosis

  1. Polymorphisms of twenty regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans or animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and the other members o...

  2. Evaluation of the Sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents.

    PubMed

    Hall, Leslie; Jude, Kurt P; Clark, Shirley L; Dionne, Kim; Merson, Ryan; Boyer, Ana; Parrish, Nicole M; Wengenack, Nancy L

    2012-11-01

    The Sensititre MycoTB plate (TREK Diagnostic Systems, Cleveland, OH) uses a microtiter plate MIC format for susceptibility testing of Mycobacterium tuberculosis complex isolates against first- and second-line antituberculosis agents. Categorical agreement versus the agar proportion method for 122 M. tuberculosis complex isolates was 94% to 100%.

  3. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis.

    PubMed

    Riojas, Marco A; McGough, Katya J; Rider-Riojas, Cristin J; Rastogi, Nalin; Hazbón, Manzour Hernando

    2018-01-01

    The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37Rv T were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37Rv T . Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2 %, ANI: 99.21-99.92 %), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37Rv T (dDDH: 83.5-100 %). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.

  4. Novel Mycobacterium tuberculosis complex pathogen, M. mungi.

    PubMed

    Alexander, Kathleen A; Laver, Pete N; Michel, Anita L; Williams, Mark; van Helden, Paul D; Warren, Robin M; Gey van Pittius, Nicolaas C

    2010-08-01

    Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown.

  5. Mycobacterium bovis and Other Uncommon Members of the Mycobacterium tuberculosis Complex.

    PubMed

    Esteban, Jaime; Muñoz-Egea, Maria-Carmen

    2016-12-01

    Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.

  6. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.

    PubMed

    Liu, Yishuang; Zhou, Shuang; Deng, Qi; Li, Xinghua; Meng, Jianzhou; Guan, Yan; Li, Chuanyou; Xiao, Chunling

    2016-03-01

    Screen and identify novel inhibitors of isocitrate lyase (ICL) as potent antitubercular agents against Mycobacterium tuberculosis and determine their inhibitory characteristics, antitubercular activities and mechanisms of action. Recombinant ICL of M. tuberculosis was expressed and purified, which was used for high-throughput screening (HTS) and the following experiments. A total of 71,765 compounds were screened to identify ICL inhibitors which were then evaluated for their roles as potent antitubercular agents. To determine the inhibitory characteristics of the agents against latent M. tuberculosis in persistent infections, a macrophage model (mouse J774A.1 cell) infected with Mycobacterium marinum BAA-535 strain was built and assessed. The potent antitubercular agents were identified using the macrophage model. Then, the inhibitory intensity and mode of the agents that exhibit on ICL protein of M. tuberculosis were analyzed, and the interaction mechanisms were preliminarily clarified according to the parameters of enzyme kinetics, circular dichroism experiments, fluorescence quenching assay, and molecular docking. The previously established ICL inhibitor screening model was evaluated to be suitable for HTS assay. Of the 71,765 compounds, 13 of them were identified to inhibit ICL effectively and stably. IMBI-3 demonstrated the most significant inhibitory activity with IC50 of 30.9 μmol/L. Its minimum inhibitory concentration (MIC) for M. tuberculosis, including extensively drug-resistant tuberculosis (XDR-TB) and multidrug-resistant tuberculosis (MDR-TB), were determined in the range of 0.25-1 μg/mL. When IMBI-3 is used in combination with isoniazid, the colony-forming units (CFU) counting of latent M. tuberculosis in J774A.1 macrophage cells decreased significantly as IMBI-3 concentration increased. The inhibition mode of IMBI-3 on ICL was probably competitive inhibition with an inhibition constant (Ki) of approximate 1.85 μmol/L. The interaction between IMBI

  7. Dataset of potential targets for Mycobacterium tuberculosis H37Rv through comparative genome analysis.

    PubMed

    Asif, Siddiqui M; Asad, Amir; Faizan, Ahmad; Anjali, Malik S; Arvind, Arya; Neelesh, Kapoor; Hirdesh, Kumar; Sanjay, Kumar

    2009-12-31

    Mycobacterium tuberculosis is the causative agent of the disease, tuberculosis and H37Rv is the most studied clinical strain. We use comparative genome analysis of Mycobacterium tuberculosis H37Rv and human for the identification of potential targets dataset. We used DEG (Database of Essential Genes) to identify essential genes in the H37Rv strain. The analysis shows that 628 of the 3989 genes in Mycobacterium tuberculosis H37Rv were found to be essential of which 324 genes lack similarity to the human genome. Subsequently hypothetical proteins were removed through manual curation. This further resulted in a dataset of 135 proteins with essential function and no homology to human.

  8. Polymorphisms of 20 regulatory proteins between Mycobacterium tuberculosis and Mycobacterium bovis.

    PubMed

    Bigi, María M; Blanco, Federico Carlos; Araújo, Flabio R; Thacker, Tyler C; Zumárraga, Martín J; Cataldi, Angel A; Soria, Marcelo A; Bigi, Fabiana

    2016-08-01

    Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non-synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species-specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia-related genes between M. bovis and M. tuberculosis. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  9. Therapeutic drug monitoring of antitubercular agents for disseminated Mycobacterium tuberculosis during intermittent haemodialysis and continuous venovenous haemofiltration.

    PubMed

    Sin, J H; Elshaboury, R H; Hurtado, R M; Letourneau, A R; Gandhi, R G

    2018-04-01

    There is a lack of data regarding therapeutic drug monitoring (TDM) of antitubercular agents in the setting of continuous venovenous haemofiltration (CVVH). We describe TDM results of numerous antitubercular agents in a critically ill patient during CVVH and haemodialysis. A 49-year-old man was initiated on treatment for disseminated Mycobacterium tuberculosis. During hospital admission, the patient developed critical illness and required renal replacement therapy. TDM results and pharmacokinetic calculations showed adequate serum concentrations of rifampin, ethambutol and amikacin during CVVH and of rifampin, pyrazinamide, ethambutol and levofloxacin during intermittent haemodialysis. The presence of critical illness and renal replacement therapy can induce pharmacokinetic changes that may warrant vigilant TDM to ensure optimal therapy. To our knowledge, this is the first report to describe TDM for several antitubercular agents during CVVH in a critically patient with disseminated M. tuberculosis. © 2017 John Wiley & Sons Ltd.

  10. Immune Responses in Cattle Inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii

    USDA-ARS?s Scientific Manuscript database

    Cattle were inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii to compare antigen-specific immune responses to varied patterns of mycobacterial disease. Disease expression ranged from colonization with associated pathology (M. bovis), colonization without path...

  11. Mycobacterium tuberculosis is the causative agent of tuberculosis in the southern ecological zones of Cameroon, as shown by genetic analysis

    PubMed Central

    2013-01-01

    Background Tuberculosis (TB) is a major cause of mortality and suffering worldwide, with over 95% of TB deaths occurring in low- and middle-income countries. In recent years, molecular typing methods have been widely used in epidemiological studies to aid the control of TB, but this usage has not been the case with many African countries, including Cameroon. The aims of the present investigation were to identify and evaluate the diversity of the Mycobacterium tuberculosis complex (MTBC) isolates circulating in two ecological zones of Cameroon, seven years after the last studies in the West Region, and after the re-organization of the National TB Control Program (NTBCP). These were expected to shed light also on the transmission of TB in the country. The study was conducted from February to July 2009. During this period, 169 patients with symptomatic disease and with sputum cultures that were positive for MTBC were randomly selected for the study from amongst 964 suspected patients in the savannah mosaic zone (West and North West regions) and the tropical rainforest zone (Central region). After culture and diagnosis, DNA was extracted from each of the MTBC isolates and transported to the BecA-ILRI Hub in Nairobi, Kenya for molecular analysis. Methods Genetic characterization was done by mycobacterial interspersed repetitive unit–variable number tandem repeat typing (MIRU-VNTR) and Spoligotyping. Results Molecular analysis showed that all TB cases reported in this study were caused by infections with Mycobacterium tuberculosis (98.8%) and Mycobacterium africanum (M. africanum) (1.2%) respectively. We did not detect any M. bovis. Comparative analyses using spoligotyping revealed that the majority of isolates belong to major clades of M. tuberculosis: Haarlem (7.6%), Latin American-Mediterranean (34.4%) and T clade (26.7%); the remaining isolates (31.3%) where distributed among the minor clades. The predominant group of isolates (34.4%) corresponded to spoligotype 61

  12. Evolution of Mycobacterium tuberculosis.

    PubMed

    Behr, Marcel A

    2013-01-01

    Genomic studies have provided a refined understanding of the genetic diversity within the Mycobacterium genus, and more specifically within Mycobacterium tuberculosis. These results have informed a new perspective on the macro- and micro-evolution of the tubercle bacillus. In the first step, a M. kansasii-like opportunistic pathogen acquired new genes, through horizontal gene transfer, that enabled it to better exploit an intracellular niche and ultimately evolve into a professional pathogen. In the second step, different subspecies and strains of the M. tuberculosis complex emerged through mutation and deletion of unnecessary DNA. Understanding the differences between M. tuberculosis and related less pathogenic mycobacteria is expected to reveal key bacterial virulence mechanisms and provide opportunities to understand host resistance to mycobacterial infection. Understanding differences within the M. tuberculosis complex and the evolutionary forces shaping these differences is important for investigating the basis of its success as both a symbiont and a pathogen.

  13. Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in Eastern Cape, South Africa.

    PubMed

    Famewo, Elizabeth B; Clarke, Anna M; Wiid, Ian; Ngwane, Andile; van Helden, Paul; Afolayan, Anthony J

    2017-09-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis has become a global public health problem. Polyherbal medicines offer great hope for developing alternative drugs for the treatment of tuberculosis. To evaluate the anti-tubercular activity of polyherbal medicines used for the treatment of tuberculosis. The remedies were screened against Mycobacterium tuberculosis H37Rv using Middlebrook 7H9 media and MGIT BACTEC 960 system. They were liquid preparations from King Williams Town site A (KWTa), King Williams Town site B (KWTb), King Williams Town site C (KWTc), Hogsback first site (HBfs), Hogsback second site (HBss), Hogsback third site (HBts), East London (EL), Alice (AL) and Fort Beaufort (FB). The susceptibility testing revealed that all the remedies contain anti-tubercular activity with KWTa, KWTb, KWTc, HBfs, HBts, AL and FB exhibiting more activity at a concentration below 25 µl/ml. Furthermore, MIC values exhibited inhibitory activity with the most active remedies from KWTa, HBfs and HBts at 1.562 µg/ml. However, isoniazid showed more inhibitory activity against M. tuberculosis at 0.05 µg/ml when compare to the polyherbal remedies. This study has indicated that these remedies could be potential sources of new anti-mycobacterial agents against M. tuberculosis . However, the activity of these preparations and their active principles still require in vivo study in order to assess their future as new anti-tuberculosis agents.

  14. Mycobacterium tuberculosis Infection of Domesticated Asian Elephants, Thailand

    PubMed Central

    Angkawanish, Taweepoke; Sirimalaisuwan, Anucha; Kaewsakhorn, Thattawan; Boonsri, Kittikorn; Rutten, Victor P.M.G.

    2010-01-01

    Four Asian elephants were confirmed to be infected with Mycobacterium tuberculosis by bacterial culture, other diagnostic procedures, and sequencing of 16S–23S rDNA internal transcribed spacer region, 16S rRNA, and gyrase B gene sequences. Genotyping showed that the infectious agents originated from 4 sources in Thailand. To identify infections, a combination of diagnostic assays is essential. PMID:21122228

  15. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  16. Detection of Drug-Resistant Mycobacterium tuberculosis.

    PubMed

    Engström, Anna; Juréen, Pontus

    2015-01-01

    Tuberculosis (TB) remains a global health problem. The increasing prevalence of drug-resistant Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate diagnosis of the pathogen and its drug susceptibility pattern is essential for timely initiation of optimal treatment, and, ultimately, control of the disease. We have developed a molecular method for detection of first- and second-line drug resistance in M. tuberculosis by Pyrosequencing(®). The method consists of seven Pyrosequencing assays for the detection of mutations in the genes or promoter regions, which are most commonly responsible for resistance to the drugs rifampicin, isoniazid, ethambutol, amikacin, kanamycin, capreomycin, and fluoroquinolones. The method was validated on clinical isolates and it was shown that the sensitivity and specificity of the method were comparable to those of Sanger sequencing. In the protocol in this chapter we describe the steps necessary for setting up and performing Pyrosequencing for M. tuberculosis. The first part of the protocol describes the assay development and the second part of the protocol describes utilization of the method.

  17. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  18. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  19. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard

    2003-01-01

    The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522

  20. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    PubMed

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  1. Mycobacterium tuberculosis Metabolism

    PubMed Central

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  2. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment

    PubMed Central

    JACOBS, WILLIAM R.

    2016-01-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research. “I had to know my enemy in order to prevail against him.”Nelson Mandela PMID:26105819

  3. Mycobacterium tuberculosis causing tuberculous lymphadenitis in Maputo, Mozambique.

    PubMed

    Viegas, Sofia Omar; Ghebremichael, Solomon; Massawo, Leguesse; Alberto, Matos; Fernandes, Fabíola Couto; Monteiro, Eliane; Couvin, David; Matavele, José Maiane; Rastogi, Nalin; Correia-Neves, Margarida; Machado, Adelina; Carrilho, Carla; Groenheit, Ramona; Källenius, Gunilla; Koivula, Tuija

    2015-11-21

    The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98%) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7%) cases, was the main cause of TBLN and 66.7% of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n = 19; 43.2%). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.

  4. Torticollis in Mice Intravenously Infected with Mycobacterium tuberculosis

    PubMed Central

    Magden, Elizabeth R; Weiner, Cristina M; Gilliland, Janet C; DeGroote, Mary Ann; Lenaerts, Anne J; Kendall, Lon V

    2011-01-01

    Female BALB/cAnNCrl (n = 170; age, 6 to 9 wk) mice were infected by intravenous inoculation of 5 × 106 cfu Mycobacterium tuberculosis strain Erdman (ATCC 35801). Between day 52 and 5 mo after infection, 10 of the 170 mice infected according to this protocol developed torticollis, including mice in treatment groups that received combination antibiotic therapy of rifampin–pyrazinamide or moxifloxacin–rifampin–pyrazinamide. Torticollis did not develop in mice receiving isoniazid–rifampin–pyrazinamide therapy, nor was it present in the cohort of aerogenically infected mice. Affected mice were euthanized, and complete necropsy evaluation was performed on 4 mice. Gross necropsy evaluation revealed typical tuberculosis lesions in lungs of infected mice. Histologic evaluation of tissues revealed granulomatous otitis media with intralesional acid-fast bacilli consistent with Mycobacterium tuberculosis. These cases represent an unusual finding specific to the intravenous mouse model of Mycobacterium tuberculosis and may represent a model of a similar condition in humans that is known as tuberculous otitis media. PMID:21439219

  5. Torticollis in mice intravenously infected with Mycobacterium tuberculosis.

    PubMed

    Magden, Elizabeth R; Weiner, Cristina M; Gilliland, Janet C; DeGroote, Mary Ann; Lenaerts, Anne J; Kendall, Lon V

    2011-03-01

    Female BALB/cAnNCrl (n = 170; age, 6 to 9 wk) mice were infected by intravenous inoculation of 5 × 10(6) cfu Mycobacterium tuberculosis strain Erdman (ATCC 35801). Between day 52 and 5 mo after infection, 10 of the 170 mice infected according to this protocol developed torticollis, including mice in treatment groups that received combination antibiotic therapy of rifampin-pyrazinamide or moxifloxacin-rifampin-pyrazinamide. Torticollis did not develop in mice receiving isoniazid- rifampin-pyrazinamide therapy, nor was it present in the cohort of aerogenically infected mice. Affected mice were euthanized, and complete necropsy evaluation was performed on 4 mice. Gross necropsy evaluation revealed typical tuberculosis lesions in lungs of infected mice. Histologic evaluation of tissues revealed granulomatous otitis media with intralesional acid-fast bacilli consistent with Mycobacterium tuberculosis. These cases represent an unusual finding specific to the intravenous mouse model of Mycobacterium tuberculosis and may represent a model of a similar condition in humans that is known as tuberculous otitis media.

  6. Mycobacterium tuberculosis infection in cattle from the Eastern Cape Province of South Africa.

    PubMed

    Hlokwe, Tiny Motlatso; Said, Halima; Gcebe, Nomakorinte

    2017-10-10

    Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB) in human and Mycobacterium bovis commonly causes tuberculosis in animals. Transmission of tuberculosis caused by both pathogens can occur from human to animals and vice versa. In the current study, M. tuberculosis, as confirmed by polymerase chain reaction (PCR) using primers targeting 3 regions of difference (RD4, RD9 and RD12) on the genomes, was isolated from cattle originating from two epidemiologically unrelated farms in the Eastern Cape (E.C) Province of South Africa. Although the isolates were genotyped with variable number of tandem repeat (VNTR) typing, no detailed epidemiological investigation was carried out on the respective farms to unequivocally confirm or link humans as sources of TB transmission to cattle, a move that would have embraced the 'One Health' concept. In addition, strain comparison with human M. tuberculosis in the database from the E.C Province and other provinces in the country did not reveal any match. This is the first report of cases of M. tuberculosis infection in cattle in South Africa. The VNTR profiles of the M. tuberculosis strains identified in the current study will form the basis for creating M. tuberculosis VNTR database for animals including cattle for future epidemiological studies. Our findings however, call for urgent reinforcement of collaborative efforts between the veterinary and the public health services of the country.

  7. Consequences of genomic diversity in Mycobacterium tuberculosis

    PubMed Central

    Coscolla, Mireia; Gagneux, Sebastien

    2014-01-01

    The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions. PMID:25453224

  8. Stem bromelain-induced macrophage apoptosis and activation curtail Mycobacterium tuberculosis persistence.

    PubMed

    Mahajan, Sahil; Chandra, Vemika; Dave, Sandeep; Nanduri, Ravikanth; Gupta, Pawan

    2012-08-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, has a remarkable ability to usurp its host's innate immune response, killing millions of infected people annually. One approach to manage infection is prevention through the use of natural agents. In this regard, stem bromelain (SBM), a pharmacologically active member of the sulfhydryl proteolytic enzyme family, obtained from Ananas comosus and possessing a remarkable ability to induce the innate and acquired immune systems, is important. We evaluated SBM's ability to induce apoptosis and free-radical generation in macrophages. We also studied antimycobacterial properties of SBM and its effect on foamy macrophages. SBM treatment of peritoneal macrophages resulted in the upregulation of proapoptotic proteins and downregulation of antiapoptotic proteins. Additionally, SBM treatment activated macrophages, curtailed the levels of free glutathione, and augmented the production of hydrogen peroxide, superoxide anion, peroxynitrite, and nitric oxide. SBM cleaves CD36 and reduced the formation of foam cells, the hallmark of M. tuberculosis infection. These conditions created an environment for the increased clearance of M. tuberculosis. Together these data provide a mechanism for antimycobacterial activity of SBM and provide important insights for the use of cysteine proteases as immunomodulatory agents.

  9. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis.

    PubMed

    Pacl, Hayden T; Reddy, Vineel P; Saini, Vikram; Chinta, Krishna C; Steyn, Adrie J C

    2018-07-01

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.

  10. Comparative genomics of archived pyrazinamide resistant Mycobacterium tuberculosis complex isolates from Uganda

    USDA-ARS?s Scientific Manuscript database

    Bovine tuberculosis is a ‘neglected zoonosis’ and its contribution to the proportion of Mycobacterium tuberculosis complex infections in humans is unknown. A retrospective study on archived Mycobacterium tuberculosis complex (MTC) isolates from a reference laboratory in Uganda was undertaken to iden...

  11. Tuberculosis patients co-infected with Mycobacterium bovis and Mycobacterium tuberculosis in an urban area of Brazil.

    PubMed

    Silva, Marcio Roberto; Rocha, Adalgiza da Silva; da Costa, Ronaldo Rodrigues; de Alencar, Andrea Padilha; de Oliveira, Vania Maria; Fonseca Júnior, Antônio Augusto; Sales, Mariana Lázaro; Issa, Marina de Azevedo; Filho, Paulo Martins Soares; Pereira, Omara Tereza Vianello; dos Santos, Eduardo Calazans; Mendes, Rejane Silva; Ferreira, Angela Maria de Jesus; Mota, Pedro Moacyr Pinto Coelho; Suffys, Philip Noel; Guimarães, Mark Drew Crosland

    2013-05-01

    In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials.

  12. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae.

    PubMed

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G

    2015-09-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae. Copyright © 2015 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  13. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    PubMed

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P < 0.01). All four of these tests showed good specificities: 88.9% for the adenosine deaminase assay and 100% for the remaining three assays. The T-SPOT.TB assay with pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  14. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion

    PubMed Central

    Yang, Xinting; Liu, Zichen; Li, Kun

    2017-01-01

    ABSTRACT Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively (P < 0.01). All four of these tests showed good specificities: 88.9% for the adenosine deaminase assay and 100% for the remaining three assays. The T-SPOT.TB assay with pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS6110 per ml of pleural effusion and showed good accordance of the results between repeated tests (r = 0.978, P = 2.84 × 10−10). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. PMID:28275073

  15. Mycobacterium tuberculosis Infection in a Domesticated Korean Wild Boar ( Sus scrofa coreanus).

    PubMed

    Seo, Min-Goo; Ouh, In-Ohk; Kim, Munki; Lee, Jienny; Kim, Young-Hoan; Do, Jae-Cheul; Kwak, Dongmi

    2017-06-01

    Tuberculosis, a chronic progressive disease, has been reported in bovine, swine, and primate species. Here, we report the first case of Mycobacterium tuberculosis infection in a Korean wild boar ( Sus scrofa coreanus). The owners this domesticated boar brought it to the Gyeongbuk Veterinary Service Laboratory in Korea after it was found dead and severely emaciated. Demarcated yellowish white nodules were found around the larynx and retropharyngeal lymph node during necropsy. The lungs had diffuse fibrinous pleuritis, severe congestion, and scattered nodules. More nodules were found in the spleen. Tuberculosis is characterized by massive macrophage infiltration and central caseous necrosis; both characteristics were found in the lungs. Histopathologic examination revealed that the alveolar lumen had marked fibrosis and exudates. Examination of the fluid revealed extensive macrophage permeation. To confirm a Mycobacterium infection, PCR was performed using two primer sets specific to the rpoB gene of Mycobacterium; Mycobacterium was detected in the lungs and spleen. To identify the species of Mycobacterium, immunohistochemical evaluation was performed using antibodies against Mycobacterium tuberculosis and Mycobacterium bovis . The results revealed immunoreactivity against M. tuberculosis but not against M. bovis . The consumption of undercooked or raw meat from game animals may expose humans and other animals to sylvatic infection. Consequently, Koreans who ingest wild boar may be at risk of a tuberculosis infection. To reduce the risk of foodborne infection and maintain public health, continuous monitoring and control strategies are required.

  16. Revisiting Host Preference in the Mycobacterium tuberculosis Complex: Experimental Infection Shows M. tuberculosis H37Rv to Be Avirulent in Cattle

    PubMed Central

    Whelan, Adam O.; Coad, Michael; Cockle, Paul J.; Hewinson, Glyn; Vordermeier, Martin; Gordon, Stephen V.

    2010-01-01

    Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 106 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-γ and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97–infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis–infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis of host preference

  17. Mycobacterium tuberculosis Infection among Asian Elephants in Captivity.

    PubMed

    Simpson, Gary; Zimmerman, Ralph; Shashkina, Elena; Chen, Liang; Richard, Michael; Bradford, Carol M; Dragoo, Gwen A; Saiers, Rhonda L; Peloquin, Charles A; Daley, Charles L; Planet, Paul; Narachenia, Apurva; Mathema, Barun; Kreiswirth, Barry N

    2017-03-01

    Although awareness of tuberculosis among captive elephants is increasing, antituberculosis therapy for these animals is not standardized. We describe Mycobacterium tuberculosis transmission between captive elephants based on whole genome analysis and report a successful combination treatment. Infection control protocols and careful monitoring of treatment of captive elephants with tuberculosis are warranted.

  18. Mycobacterium tuberculosis Infection among Asian Elephants in Captivity

    PubMed Central

    Simpson, Gary; Zimmerman, Ralph; Shashkina, Elena; Chen, Liang; Richard, Michael; Bradford, Carol M.; Dragoo, Gwen A.; Saiers, Rhonda L.; Peloquin, Charles A.; Daley, Charles L.; Planet, Paul; Narachenia, Apurva; Mathema, Barun

    2017-01-01

    Although awareness of tuberculosis among captive elephants is increasing, antituberculosis therapy for these animals is not standardized. We describe Mycobacterium tuberculosis transmission between captive elephants based on whole genome analysis and report a successful combination treatment. Infection control protocols and careful monitoring of treatment of captive elephants with tuberculosis are warranted. PMID:28221115

  19. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.

    A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis inmore » complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.« less

  20. Lipolytic enzymes in Mycobacterium tuberculosis.

    PubMed

    Côtes, K; Bakala N'goma, J C; Dhouib, R; Douchet, I; Maurin, D; Carrière, F; Canaan, S

    2008-04-01

    Mycobacterium tuberculosis is a bacterial pathogen that can persist for decades in an infected patient without causing a disease. In vivo, the tubercle bacillus present in the lungs store triacylglycerols in inclusion bodies. The same process can be observed in vitro when the bacteria infect adipose tissues. Indeed, before entering in the dormant state, bacteria accumulate lipids originating from the host cell membrane degradation and from de novo synthesis. During the reactivation phase, these lipids are hydrolysed and the infection process occurs. The degradation of both extra and intracellular lipids can be directly related to the presence of lipolytic enzymes in mycobacteria, which have been ignored during a long period particularly due to the difficulties to obtain a high expression level of these enzymes in M. tuberculosis. The completion of the M. tuberculosis genome offered new opportunity to this kind of study. The aim of this review is to focus on the recent results obtained in the field of mycobacterium lipolytic enzymes and although no experimental proof has been shown in vivo, it is tempting to speculate that these enzymes could be involved in the virulence and pathogenicity processes.

  1. Porins Increase Copper Susceptibility of Mycobacterium tuberculosis

    PubMed Central

    Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael

    2013-01-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  2. DNA Replication Fidelity in the Mycobacterium tuberculosis Complex.

    PubMed

    Warner, Digby F; Rock, Jeremy M; Fortune, Sarah M; Mizrahi, Valerie

    2017-01-01

    Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.

  3. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains.

    PubMed

    Mattow, J; Jungblut, P R; Schaible, U E; Mollenkopf, H J; Lamer, S; Zimny-Arndt, U; Hagens, K; Müller, E C; Kaufmann, S H

    2001-08-01

    A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG.

  4. [Differentiation of species within the Mycobacterium tuberculosis complex by molecular techniques].

    PubMed

    Herrera-León, Laura; Pozuelo-Díaz, Rodolfo; Molina Moreno, Tamara; Valverde Cobacho, Azucena; Saiz Vega, Pilar; Jiménez Pajares, María Soledad

    2009-11-01

    The Mycobacterium tuberculosis complex includes the following species: Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium bovis-BCG, Mycobacterium microti, Mycobacterium caprae, Mycobacterium pinnipedii, and Mycobacterium canettii. These species cause tuberculosis in humans and animals. Identification of mycobacterial strains has classically been performed by phenotype study. Over the last years, laboratories have developed several molecular techniques to differentiate between these species. The aim of this study is to evaluate these methods and develop a simple, fast, identification scheme. We analyzed 251 strains randomly obtained from the strains studied in 2004, and 797 strains received by the Reference Laboratory between 2005 and 2007. Phenotype characterization of 4183 strains isolated during that period was done by studying the colony morphology, characteristics in culture, nitrate reduction, niacin accumulation, and growth in the presence of thiophen-2-carboxylic acid hydrazide 10 microg/mL and pyrazinamide 50 microg/mL. The molecular identification scheme designed was as follows: 1) gyrB PCR-RFLP with RsaI, TaqI or SacII and hsp65 RFLP/PCR with HhaI., and 2) multiplex-PCR to determine the presence/absence of the RD9 and RD1 regions. The results showed 100% agreement between phenotype study and the molecular scheme. This molecular identification scheme is a simple and fast method, with 100% sensitivity and specificity, that can be implemented in most clinical laboratories at a low cost.

  5. Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence.

    PubMed

    Willcocks, Sam; Wren, Brendan W

    2014-01-01

    Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.

  6. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.

    PubMed

    Upton, A M; Cho, S; Yang, T J; Kim, Y; Wang, Y; Lu, Y; Wang, B; Xu, J; Mdluli, K; Ma, Z; Franzblau, S G

    2015-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. Copyright © 2015, American

  7. In Vitro and In Vivo Activities of the Nitroimidazole TBA-354 against Mycobacterium tuberculosis

    PubMed Central

    Cho, S.; Yang, T. J.; Kim, Y.; Wang, Y.; Lu, Y.; Wang, B.; Xu, J.; Mdluli, K.; Ma, Z.; Franzblau, S. G.

    2014-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7. In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. PMID:25331696

  8. Mycobacterium tuberculosis TlyA Protein Negatively Regulates T Helper (Th) 1 and Th17 Differentiation and Promotes Tuberculosis Pathogenesis*

    PubMed Central

    Rahman, Md. Aejazur; Sobia, Parveen; Dwivedi, Ved Prakash; Bhawsar, Aakansha; Singh, Dhiraj Kumar; Sharma, Pawan; Moodley, Prashini; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence. PMID:25847237

  9. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production.

    PubMed

    Mahmud, Hafij Al; Seo, Hoonhee; Kim, Sukyung; Islam, Md Imtiazul; Nam, Kung-Woo; Cho, Hyun-Deuk; Song, Ho-Yeon

    2017-05-25

    Human tuberculosis, which is caused by the pathogen Mycobacterium tuberculosis, remains a major public health concern. Increasing drug resistance poses a threat of disease resurgence and continues to cause considerable mortality worldwide, which necessitates the development of new drugs with improved efficacy. Thymoquinone (TQ), an essential compound of Nigella sativa, was previously reported as an active anti-tuberculosis agent. In this study, the effects of TQ on intracellular mycobacterial replication are examined in macrophages. In addition, its effect on mycobacteria-induced NO production and pro-inflammatory responses were investigated in Mycobacterium tuberculosis (MTB)-infected Type II human alveolar and human myeloid cell lines. TQ at concentrations ranging from 12.5 to 25 μg/mL and 6.25 to 12.5 μg/mL reduced intracellular M. tuberculosis H37Rv and extensively drug-resistant tuberculosis (XDR-TB) 72 h post-infection in RAW 264.7 cells. TQ treatment also produced a concentration-dependent reduction in nitric oxide production in both H37Rv and XDR-TB infected RAW 264.7 cells. Furthermore, TQ reduced the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and interlukin-6 (IL-6) in H37Rv-infected cells and eventually reduced pathogen-derived stress in host cells. TQ inhibits intracellular H37Rv and XDR-TB replication and MTB-induced production of NO and pro-inflammatory molecules. Therefore, along with its anti-inflammatory effects, TQ represents a prospective treatment option to combat Mycobacterium tuberculosis infection.

  10. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors.

    PubMed

    Altaf, Mudassar; Miller, Christopher H; Bellows, David S; O'Toole, Ronan

    2010-11-01

    The objective of this study was to measure the efficacy of Mycobacterium smegmatis as a surrogate in vitro model for the detection of compounds which are inhibitory to the growth of Mycobacterium tuberculosis. A chemical screen of the LOPAC library for anti-mycobacterial compounds was performed using M. smegmatis. Parallel screens were conducted with another tuberculosis model, Mycobacterium bovis BCG, and with M. tuberculosis under identical growth conditions and the inhibitors detected across the three species were compared. 50% of compounds that were detected as active against M. tuberculosis were not detected using M. smegmatis compared to 21% of compounds using M. bovis BCG. To examine whether these findings were unique to LOPAC, screens were performed with the NIH Diversity Set and Spectrum Collection. An even higher proportion of M. tuberculosis inhibitors were not detected from the NIH Diversity Set and Spectrum Collection using M. smegmatis compared to M. bovis BCG. These data reveal that a significant proportion of M. tuberculosis inhibitors are missed in library screening with M. smegmatis. The basis of the variation in the inhibitory profiles of M. smegmatis and M. tuberculosis has yet to be fully determined, however, our genomic comparisons indicate that approximately 30% of M. tuberculosis proteins lack conserved orthologues in M. smegmatis compared to 3% being absent in M. bovis BCG. In conclusion, although M. smegmatis offers some technical benefits such as a shorter generation time and negligible risk to laboratory workers, it is significantly less effective in the detection of anti-M. tuberculosis compounds relative to M. bovis BCG. This limitation needs to be taken into consideration when selecting an in vitro screening model for tuberculosis drug discovery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Mycobacterium tuberculosis in Wild Asian Elephants, Southern India.

    PubMed

    Zachariah, Arun; Pandiyan, Jeganathan; Madhavilatha, G K; Mundayoor, Sathish; Chandramohan, Bathrachalam; Sajesh, P K; Santhosh, Sam; Mikota, Susan K

    2017-03-01

    We tested 3 ild Asian elephants (Elephas maximus) in southern India and confirmed infection in 3 animals with Mycobacterium tuberculosis, an obligate human pathogen, by PCR and genetic sequencing. Our results indicate that tuberculosis may be spilling over from humans (reverse zoonosis) and emerging in wild elephants.

  12. High clustering rates of multidrug-resistant Mycobacterium tuberculosis genotypes in Panama

    PubMed Central

    2013-01-01

    Background Tuberculosis continues to be one of the leading causes of death worldwide and in the American region. Although multidrug-resistant tuberculosis (MDR-TB) remains a threat to TB control in Panama, few studies have focused in typing MDR-TB strains. The aim of our study was to characterize MDR Mycobacterium tuberculosis clinical isolates using PCR-based genetic markers. Methods From 2002 to 2004, a total of 231 Mycobacterium tuberculosis isolates from TB cases country-wide were screened for antibiotic resistance, and MDR-TB isolates were further genotyped by double repetitive element PCR (DRE-PCR), (GTG)5-PCR and spoligotyping. Results A total of 37 isolates (0.85%) were resistant to both isoniazid (INH) and rifampicin (RIF). Among these 37 isolates, only two (5.4%) were resistant to all five drugs tested. Dual genotyping using DRE-PCR and (GTG)5-PCR of MDR Mycobacterium tuberculosis isolates revealed eight clusters comprising 82.9% of the MDR-TB strain collection, and six isolates (17.1%) showed unique fingerprints. The spoligotyping of MDR-TB clinical isolates identified 68% as members of the 42 (LAM9) family genotype. Conclusion Our findings suggest that MDR Mycobacterium tuberculosis is highly clustered in Panama’s metropolitan area corresponding to Panama City and Colon City, and our study reveals the genotype distribution across the country. PMID:24053690

  13. Mycobacterium tuberculosis promotes genomic instability in macrophages

    PubMed Central

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-01-01

    BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection. PMID:29412354

  14. Mycobacterium tuberculosis promotes genomic instability in macrophages.

    PubMed

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-03-01

    Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.

  15. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Sean E.; Capodagli, Glenn C.; Deaton, Michelle K.

    Tuberculosis (TB) is a major infectious disease that accounts for over 1.7 million deaths every year. Mycobacterium tuberculosis, the causative agent of tuberculosis, enters the human host by the inhalation of infectious aerosols. Additionally, one third of the world's population is likely to be infected with latent TB. The incidence of TB is on the rise owing in part to the emergence of multidrug-resistant strains. As a result, there is a growing need to focus on novel M. tuberculosis enzyme targets. M. tuberculosis triosephosphate isomerase (MtTPI) is an essential enzyme for gluconeogenetic pathways, making it a potential target for futuremore » therapeutics. In order to determine its structure, the X-ray crystal structure of MtTPI has been determined, as well as that of MtTPI bound with a reaction-intermediate analog. As a result, two forms of the active site were revealed. In conjunction with the kinetic parameters obtained for the MtTPI-facilitated conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (D-GAP), this provides a greater structural and biochemical understanding of this enzyme. Additionally, isothermal titration calorimetry was used to determine the binding constant for a reaction-intermediate analog bound to the active site of MtTPI.« less

  16. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins.

    PubMed

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C; Rutten, Victor

    2016-01-01

    The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis

  17. Transmission of Mycobacterium orygis (M. tuberculosis complex species) from a tuberculosis patient to a dairy cow in New Zealand.

    PubMed

    Dawson, Kara L; Bell, Anita; Kawakami, R Pamela; Coley, Kathryn; Yates, Gary; Collins, Desmond M

    2012-09-01

    Mycobacterium orygis, previously called the oryx bacillus, is a member of the Mycobacterium tuberculosis complex and has been reported only recently as a cause of human tuberculosis in patients of South Asian origin. We present the first case documenting the transmission of this organism from a human to a cow.

  18. Inhibiting Mycobacterium tuberculosis within and without.

    PubMed

    Cole, Stewart T

    2016-11-05

    Tuberculosis remains a scourge of global health with shrinking treatment options due to the spread of drug-resistant strains of Mycobacterium tuberculosis Intensive efforts have been made in the past 15 years to find leads for drug development so that better, more potent drugs inhibiting new targets could be produced and thus shorten treatment duration. Initial attempts focused on repurposing drugs that had been developed for other therapeutic areas but these agents did not meet their goals in clinical trials. Attempts to find new lead compounds employing target-based screens were unsuccessful as the leads were inactive against M. tuberculosis Greater success was achieved using phenotypic screening against live tubercle bacilli and this gave rise to the drugs bedaquiline, pretomanid and delamanid, currently in phase III trials. Subsequent phenotypic screens also uncovered new leads and targets but several of these targets proved to be promiscuous and inhibited by a variety of seemingly unrelated pharmacophores. This setback sparked an interest in alternative screening approaches that mimic the disease state more accurately. Foremost among these were cell-based screens, often involving macrophages, as these should reflect the bacterium's niche in the host more faithfully. A major advantage of this approach is its ability to uncover functions that are central to infection but not necessarily required for growth in vitro For instance, inhibition of virulence functions mediated by the ESX-1 secretion system severely attenuates intracellular M. tuberculosis, preventing intercellular spread and ultimately limiting tissue damage. Cell-based screens have highlighted the druggability of energy production via the electron transport chain and cholesterol metabolism. Here, I review the scientific progress and the pipeline, but warn against over-optimism due to the lack of industrial commitment for tuberculosis drug development and other socio-economic factors.This article is

  19. Total hip replacement infected with Mycobacterium tuberculosis complicated by Addison disease and psoas muscle abscess: a case report.

    PubMed

    De Nardo, Pasquale; Corpolongo, Angela; Conte, Aristide; Gentilotti, Elisa; Narciso, Pasquale

    2012-01-10

    Mycobacterium tuberculosis are unpredictable, especially given the limited literature in this field and the uncertainty of whether medical treatment alone can eradicate the infection without prosthesis removal. Furthermore, this case report raises interesting issues such as the necessity of a follow-up evaluation after treatment based on clinical conditions, the utility of a more standardized length of treatment for periprosthetic tuberculous infection, and the importance of a high diffusion capacity of anti-mycobacterial agents in order to eradicate the infection.

  20. 8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis.

    PubMed

    Shah, Santosh; Dalecki, Alex G; Malalasekera, Aruni P; Crawford, Cameron L; Michalek, Suzanne M; Kutsch, Olaf; Sun, Jim; Bossmann, Stefan H; Wolschendorf, Frank

    2016-10-01

    Copper (Cu) ions are likely the most important immunological metal-related toxin utilized in controlling bacterial infections. Impairment of bacterial Cu resistance reduces viability within the host. Thus, pharmacological enhancement of Cu-mediated antibacterial toxicity may lead to novel strategies in drug discovery and development. Screening for Cu toxicity-enhancing antibacterial molecules identified 8-hydroxyquinoline (8HQ) to be a potent Cu-dependent bactericidal inhibitor of Mycobacterium tuberculosis The MIC of 8HQ in the presence of Cu was 0.16 μM for replicating and nonreplicating M. tuberculosis cells. We found 8HQ's activity to be dependent on the presence of extracellular Cu and to be related to an increase in cell-associated labile Cu ions. Both findings are consistent with 8HQ acting as a Cu ionophore. Accordingly, we identified the 1:1 complex of 8HQ and Cu to be its active form, with Zn, Fe, or Mn neither enhancing nor reducing its Cu-specific action. This is remarkable, considering that the respective metal complexes have nearly identical structures and geometries. Finally, we found 8HQ to kill M. tuberculosis selectively within infected primary macrophages. Given the stark Cu-dependent nature of 8HQ activity, this is the first piece of evidence that Cu ions within macrophages may bestow antibacterial properties to a Cu-dependent inhibitor of M. tuberculosis In conclusion, our findings highlight the metal-binding ability of the 8-hydroxyquinoline scaffold to be a potential focus for future medicinal chemistry and highlight the potential of innate immunity-inspired screening platforms to reveal molecules with novel modes of action against M. tuberculosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Rv2744c Is a PspA Ortholog That Regulates Lipid Droplet Homeostasis and Nonreplicating Persistence in Mycobacterium tuberculosis

    PubMed Central

    Armstrong, Richard M.; Adams, Katherine L.; Zilisch, Joseph E.; Bretl, Daniel J.; Sato, Hiromi; Anderson, David M.

    2016-01-01

    ABSTRACT Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant cause of morbidity and mortality worldwide, despite the availability of a live attenuated vaccine and anti-TB antibiotics. The vast majority of individuals infected with M. tuberculosis develop an asymptomatic latent infection in which the bacterium survives within host-generated granulomatous lesions in a physiologically altered metabolic state of nonreplicating persistence. The granuloma represents an adverse environment, as M. tuberculosis is exposed to various stressors capable of disrupting the essential constituents of the bacterium. In Gram-negative and Gram-positive bacteria, resistance to cell envelope stressors that perturb the plasma membrane is mediated in part by proteins comprising the phage shock protein (Psp) system. PspA is an important component of the Psp system; in the presence of envelope stress, PspA localizes to the inner face of the plasma membrane, homo-oligomerizes to form a large scaffold-like complex, and helps maintain plasma membrane integrity to prevent a loss of proton motive force. M. tuberculosis and other members of the Mycobacterium genus are thought to encode a minimal functional unit of the Psp system, including an ortholog of PspA. Here, we show that Rv2744c possesses structural and physical characteristics that are consistent with its designation as a PspA family member. However, although Rv2744c is upregulated under conditions of cell envelope stress, loss of Rv2744c does not alter resistance to cell envelope stressors. Furthermore, Rv2744c localizes to the surface of lipid droplets in Mycobacterium spp. and regulates lipid droplet number, size, and M. tuberculosis persistence during anaerobically induced dormancy. Collectively, our results indicate that Rv2744c is a bona fide ortholog of PspA that may function in a novel role to regulate lipid droplet homeostasis and nonreplicating persistence (NRP) in M. tuberculosis

  2. Use of Gas Chromatographic Fatty Acid and Mycolic Acid Cleavage Product Determination To Differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis

    PubMed Central

    Chou, S.; Chedore, P.; Kasatiya, S.

    1998-01-01

    Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37°C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content. PMID:9466781

  3. Use of gas chromatographic fatty acid and mycolic acid cleavage product determination to differentiate among Mycobacterium genavense, Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis.

    PubMed

    Chou, S; Chedore, P; Kasatiya, S

    1998-02-01

    Three Mycobacterium genavense strains and three American Type Culture Collection reference strains each of Mycobacterium fortuitum, Mycobacterium simiae, and Mycobacterium tuberculosis were subcultured onto Mycobacteria 7H11 agar (Difco Laboratories, Detroit, Mich.) supplemented with mycobactin J (Allied Laboratories, Fayette, Mo.). After 4 weeks of incubation at 37 degrees C in 10% CO2, the cultures were analyzed by gas-liquid chromatography (GLC) for their fatty acids and mycolic acid cleavage products. M. fortuitum was clearly differentiated from M. genavense by the presence of the specific marker 2-methyloctadecenoic acid in M. fortuitum and by the ratio of tetracosanoic acid to hexacosanoic acid. This ratio was <1 for M. genavense and >3 for M. fortuitum. M. fortuitum also contained docosanoic acid, which was not detected in M. genavense. M. genavense, M. simiae, and M. tuberculosis, which have similar GLC profiles, were also differentiated from each other by the presence of either cis-10-hexadecenoic acid or cis-11-hexadecenoic acid and by tetradecanoic acid content.

  4. Drug resistant Mycobacterium tuberculosis in Mexico.

    PubMed

    Zazueta-Beltran, Jorge; León-Sicairos, Claudia; Canizalez-Roman, Adrián

    2009-04-30

    Tuberculosis (TB) remains a serious public health problem, worsened by an increased frequency of multidrug-resistant (MDR) Mycobacterium tuberculosis strains. The World Health Organization (WHO) and the International Union Against Tuberculosis and Lung Disease (IUATLD) launched the Global Project on Anti-Tuberculosis Drug Resistance Surveillance to measure the prevalence of drug resistance. Data from the global reports on resistance to anti-tuberculosis (anti-TB) drugs have shown that drug resistance still presents worldwide and that MDR-TB is present in almost all the world. Though the Global Project (WHO) has been operating since 1994, very few countries and states have reported new information. Data from repeated surveys employing comparable methodologies over several years are essential to determine with any certainty in which direction the prevalence of drug resistance is moving. Drug-resistant tuberculosis and MDR-TB have been identified in Mexico, even with the existence of a National Tuberculosis Program based on Directly Observed Treatment, Short-course (DOTS). This review discusses available surveillance data on drug susceptibility data for TB in different states of Mexico.

  5. Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins

    PubMed Central

    Gcebe, Nomakorinte; Michel, Anita; Gey van Pittius, Nicolaas C.; Rutten, Victor

    2016-01-01

    The Esx and PE/PPE families of proteins are among the most immunodominant mycobacterial antigens and have thus been the focus of research to develop vaccines and immunological tests for diagnosis of bovine and human tuberculosis, mainly caused by Mycobacterium bovis and Mycobacterium tuberculosis, respectively. In non-tuberculous mycobacteria (NTM), multiple copies of genes encoding homologous proteins have mainly been identified in pathogenic Mycobacterium species phylogenically related to Mycobacterium tuberculosis and Mycobacterium bovis. Only ancestral copies of these genes have been identified in nonpathogenic NTM species like Mycobacterium smegmatis, Mycobacterium sp. KMS, Mycobacterium sp. MCS, and Mycobacterium sp. JLS. In this study we elucidated the genomes of four nonpathogenic NTM species, viz Mycobacterium komanii sp. nov., Mycobacterium malmesburii sp. nov., Mycobacterium nonchromogenicum, and Mycobacterium fortuitum ATCC 6841. These genomes were investigated for genes encoding for the Esx and PE/PPE (situated in the esx cluster) family of proteins as well as adjacent genes situated in the ESX-1 to ESX-5 regions. To identify proteins actually expressed, comparative proteomic analyses of purified protein derivatives from three of the NTM as well as Mycobacterium kansasii ATCC 12478 and the commercially available purified protein derivatives from Mycobacterium bovis and Mycobacterium avium was performed. The genomic analysis revealed the occurrence in each of the four NTM, orthologs of the genes encoding for the Esx family, the PE and PPE family proteins in M. bovis and M. tuberculosis. The identification of genes of the ESX-1, ESX-3, and ESX-4 region including esxA, esxB, ppe68, pe5, and pe35 adds to earlier reports of these genes in nonpathogenic NTM like M. smegmatis, Mycobacterium sp. JLS and Mycobacterium KMS. This report is also the first to identify esxN gene situated within the ESX-5 locus in M. nonchromogenicum. Our proteomics analysis

  6. [Advances in the research of an animal model of wound due to Mycobacterium tuberculosis infection].

    PubMed

    Chen, Ling; Jia, Chiyu

    2015-12-01

    Tuberculosis ranks as the second deadly infectious disease worldwide. The incidence of tuberculosis is high in China. Refractory wound caused by Mycobacterium tuberculosis infection ranks high in misdiagnosis, and it is accompanied by a protracted course, and its pathogenic mechanism is still not so clear. In order to study its pathogenic mechanism, it is necessary to reproduce an appropriate animal model. Up to now the study of the refractory wound caused by Mycobacterium tuberculosis infection is just beginning, and there is still no unimpeachable model for study. This review describes two models which may reproduce a wound similar to the wound caused by Mycobacterium tuberculosis infection, so that they could be used to study the pathogenesis and characteristics of a tuberculosis wound in an animal.

  7. The mimic epitopes of Mycobacterium tuberculosis screened by phage display peptide library have serodiagnostic potential for tuberculosis.

    PubMed

    Wang, Li; Deng, Xiangying; Liu, Haican; Zhao, Lanhua; You, Xiaolong; Dai, Pei; Wan, Kanglin; Zeng, Yanhua

    2016-11-01

    Mycobacterium tuberculosis is an obligate pathogenic bacterial species in the family of Mycobacteriaceae and attracts excessive immune responses which cause pathology of the lungs in active tuberculosis. The lack of more sensitive and effective diagnosis reagents advocates a further recognition for the fast diagnostic and immunological measures for tuberculosis. Here, two 12-mer peptides with core sequences of SVSVGMKPSPRP (CS1) and TMGFTAPRFPHY (CS2) were screened from a phage display random peptide library using the purified mixed tuberculosis-positive serum as a target. Enzyme-linked immunosorbent assay (ELISA) and dot immunobinding assay verified that positive phages exhibited strong binding affinity to mixed tuberculosis-positive serum. BLAST analysis showed that the two sequences may be mimotopes of the Mycobacterium tuberculosis The diagnostic potential for two synthetic mimotope peptides CS1 and CS2 was evaluated using different panels of serum samples (n = 181) by ELISA, and the diagnostic parameters were calculated. CS1 and CS2 achieved sensitivity of 89.41% and 85.88%, and specificities were 90.63% and 87.50%, respectively. We hypothesized that the diagnostic based on CS1 and CS2 may become a promising strategy to enhance the detection of Mycobacterium tuberculosis infection due to higher specificity and sensitivity. Therefore, CS1 and CS2 may possess potentials to provide an experimental basis for the diagnosis of tuberculosis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Tuberculosis in domestic livestock: pathogenesis, transmission, and vaccination

    USDA-ARS?s Scientific Manuscript database

    The Mycobacterium tuberculosis complex includes agents such as M. tuberculosis and M. bovis, the cause of tuberculosis in most animals and a zoonotic pathogen. Mycobacterium bovis has one of the broadest host ranges of any pathogen, infecting most mammals, including humans. Models are used to study ...

  9. Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis.

    PubMed

    Feng, Lipeng; Chen, Zhenkang; Wang, Zhongwei; Hu, Yangbo; Chen, Shiyun

    2016-05-01

    Gene transcription catalysed by RNA polymerase is regulated by transcriptional regulators, which play central roles in the control of gene transcription in both eukaryotes and prokaryotes. In regulating gene transcription, many regulators form dimers that bind to DNA with repeated motifs. However, some regulators function as monomers, but their mechanisms of gene expression control are largely uncharacterized. Here we systematically characterized monomeric versus dimeric regulators in the tuberculosis causative agent Mycobacterium tuberculosis. Of the >160 transcriptional regulators annotated in M. tuberculosis, 154 transcriptional regulators were tested, 22 % probably act as monomers and most are annotated as hypothetical regulators. Notably, all members of the WhiB-like protein family are classified as monomers. To further investigate mechanisms of monomeric regulators, we analysed the actions of these WhiB proteins and found that the majority interact with the principal sigma factor σA, which is also a monomeric protein within the RNA polymerase holoenzyme. Taken together, our study for the first time globally classified monomeric regulators in M. tuberculosis and suggested a mechanism for monomeric regulators in controlling gene transcription through interacting with monomeric sigma factors.

  10. Mycobacterium tuberculosis: approach to development of improved strategies for disease control through vaccination and immunodiagnosis.

    PubMed

    Mirlekar, B; Pathak, S; Pathade, G

    2013-01-01

    Tuberculosis is a major health problem throughout the world causing large number of deaths, more than that from any other single infectious disease. Estimates till date ascertain the fact that Tuberculosis (TB) is continuing to be the leading cause of death worldwide. The infection from single infectious agent Mycobacterium tuberculosis is killing about 3 million individuals every year and accounts for around 18.5% of all deaths in adults between the age group of 15 and 65. An average of 1.79 billion people, which constitutes roughly one-third of the world's population, is infected with the causative agent M. tuberculosis and is at risk of developing the disease. This situation highlights the relative shortcomings of the current treatment and diagnosis strategies for TB and the limited effectiveness of public health systems, particularly in resource-poor countries where the main TB burden lies. The timely identification of persons infected with Mycobacterium tuberculosis and rapid laboratory confirmation of tuberculosis are two key factors for the treatment and prevention of the disease. Novel molecular assays for diagnosis and drug susceptibility testing offer several potential advantages over the above methods including faster turnaround times, very sensitive and specific detection of nucleic acids, and minimal, or possibly no, prior culture. The need for new technologies for rapid diagnosis of tuberculosis is clear. Most studies of mycobacterial immunity attributes focus on proliferation of T cells, production of cytokines and cytolytic activity. A proper vaccine for tuberculosis can be developed by using a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. Development of new vaccines against TB should include some important aspects learned from BCG use such as mucosal routes of immunization; revaccination of BCG immunized subjects, booster immunization and prime-boost strategy with wild-type BCG, and other

  11. Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.

    PubMed

    Gordon, Stephen V; Parish, Tanya

    2018-04-01

    Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.

  12. Evaluation of the results of Mycobacterium tuberculosis direct test (MTD) and Mycobacterial culture in urine samples

    PubMed Central

    Sener, Asli Gamze; Kurultay, Nukhet; Afsar, Ilhan

    2008-01-01

    Tuberculosis remains a public health problem in Turkey. Rapid detection of Mycobacterium tuberculosis plays a key role in control of infection. In this article, the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test (MTD) was evaluated for detection of M. tuberculosis in urine samples. The performance of the MTD was very good and appropriate for routine laboratory diagnosis. PMID:24031287

  13. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    PubMed

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  14. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    PubMed Central

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  15. Use of immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex from liquid culture

    PubMed Central

    Považan, Anika; Vukelić, Anka; Savković, Tijana; Kurucin, Tatjana

    2012-01-01

    A new, simple immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in liquid cultures has been developed. The principle of the assay is binding of the Mycobacterium tuberculosis complex specific antigen to the monoclonal antibody conjugated on the test strip. The aim of this study is evaluation of the performance of immunochromatographic assay in identification of Mycobacterium tuberculosis complex in primary positive liquid cultures of BacT/Alert automated system. A total of 159 primary positive liquid cultures were tested using the immunochromatographic assay (BD MGIT TBc ID) and the conventional subculture, followed by identification using biochemical tests. Of 159 positive liquid cultures, using the conventional method, Mycobacterium tuberculos is was identified in 119 (74.8%), nontuberculous mycobacteria were found in 4 (2.5%), 14 (8.8%) cultures were contaminated and 22 (13.8%) cultures were found to be negative. Using the immunochromatographic assay, Mycobacterium tuberculosis complex was detected in 118 (74.2%) liquid cultures, and 41 (25.8%) tests were negative. Sensitivity, specificity, positive and negative predictive values of the test were 98.3%; 97.5%; 99.15%; 95.12%, respectively. The value of kappa test was 0.950, and McNemar test was 1.00. The immunochromatographic assay is a simple and rapid test which represents a suitable alternative to the conventional subculture method for the primary identification of Mycobacterium tuberculosis complex in liquid cultures of BacT/Alert automated system. PMID:22364301

  16. Detection and discrimination of Mycobacterium tuberculosis complex.

    PubMed

    Issa, Rahizan; Mohd Hassan, Nurul Akma; Abdul, Hatijah; Hashim, Siti Hasmah; Seradja, Valentinus H; Abdul Sani, Athirah

    2012-01-01

    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate

    PubMed Central

    Gouzy, Alexandre; Larrouy-Maumus, Gérald; Wu, Ting-Di; Peixoto, Antonio; Levillain, Florence; Lugo-Villarino, Geanncarlo; Gerquin-Kern, Jean-Luc; de Carvalho, Luiz Pedro Sório; Poquet, Yannick; Neyrolles, Olivier

    2013-01-01

    Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant inactivated in AnsP1 revealed the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus. PMID:24077180

  18. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    PubMed Central

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  19. Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis

    PubMed Central

    Le Chevalier, Fabien; Cascioferro, Alessandro; Frigui, Wafa; Pawlik, Alexandre; Boritsch, Eva C.; Bottai, Daria; Majlessi, Laleh; Herrmann, Jean Louis; Brosch, Roland

    2015-01-01

    Mycobacterium tuberculosis, the agent of human tuberculosis has developed different virulence mechanisms and virulence-associated tools during its evolution to survive and multiply inside the host. Based on previous reports and by analogy with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought to be among these tools. To get deeper insights into the function of PLCs, we investigated their putative involvement in the intracellular lifestyle of M. tuberculosis, with emphasis on phagosomal rupture and virulence, thereby re-visiting a research theme of longstanding interest. Through the construction and use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and control strains, we found that PLCs of M. tuberculosis were not required for induction of phagosomal rupture and only showed marginal, if any, impact on virulence of M. tuberculosis in the cellular and mouse infection models used in this study. In contrast, we found that PLC-encoding genes were strongly upregulated under phosphate starvation and that PLC-proficient M. tuberculosis strains survived better than ΔPLC mutants under conditions where phosphatidylcholine served as sole phosphate source, opening new perspectives for studies on the role of PLCs in the lifecycle of M. tuberculosis. PMID:26603639

  20. [Tuberculosis caused by Mycobacterium bovis in workers of bovine tuberculosis sanitation farms in Antioquia, Boyacá and Cundinamarca].

    PubMed

    Leal-Bohórquez, Andrés F; Castro-Osorio, Claudia M; Wintaco-Martínez, Luz M; Villalobos, Rafael; Puerto-Castro, Gloria M

    2016-01-01

    To perform classic and molecular epidemiological surveillance of human tuberculosis caused by Mycobacterium bovis in bovine supply chains at farms with PPD positive bovines in the departments of Antioquia, Boyacá and Cundinamarca during a one-year period. Livestock farms with PPD positive bovines or buffalos were visited in the study departments according to information obtained in the "Programa Nacional de Tuberculosis bovina" (National program on bovine Tuberculosis) released by ICA (Colombian Agriculture and Livestock Institute). Data on socio-demographic information and tuberculosis risk factors associated to the occupation were collected through a survey applied to all workers at the visited farms. Sputum samples were obtained after informed consent. The sputa underwent microbiological and molecular testing to identify members of the M. tuberculosis complex. Thirty-three livestock farms were visited and information of 164 workers from the bovine supply chain was collected. Staying in a PPD positive farm for more than a year, ignorance about the disease and the presence of possible vectors, like dogs and cats, were identified as possible risk factors for developing tuberculosis. No cases of tuberculosis caused by M. bovis or M. tuberculosis in workers of the visited farms were found. No cases of the disease caused by this zoonotic agent were documented in the departments of Antioquia, Boyacá and Cundinamarca.

  1. Clofazimine drug susceptibility testing for Mycobacterium tuberculosis: the case of using the right diluent.

    PubMed

    Sng, Li-Hwei; Peh, Justine Woei Ling; Lee Kee, Melody Tai; Ya'akob, Nurhazirah Bte Mohd; Ong, Rick Twee-Hee; Wong, Christopher W; Chee, Cynthia Bin Eng; Wang, Yee Tang

    2018-06-08

    Accurate and reliable drug susceptibility testing (DST) is essential for the effective treatment and control of tuberculosis. With the increase in drug-resistant organisms, newer and less conventional antimicrobial agents are used for treatment. Recently, we found an unprecedented rise in the number of clofazimine-resistant Mycobacterium tuberculosis isolates in our laboratory. An investigation found that this phenomenon was due to a change in the method of drug preparation. We performed studies to assess the impact of water and dimethyl sulfoxide (DMSO) as a final diluent for clofazimine drug testing. Based on our findings, the use of DMSO as a solvent for M. tuberculosis DST was optimised using the BACTEC MGIT 960 platform. Copyright © 2018 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  2. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli

    PubMed Central

    Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.

    2018-01-01

    Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774

  3. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide

    PubMed Central

    Samanovic, Marie I.; Tu, Shengjiang; Novák, Ondřej; Iyer, Lakshminarayan M.; McAllister, Fiona E.; Aravind, L.; Gygi, Steven P.; Hubbard, Stevan R.; Strnad, Miroslav; Darwin, K. Heran

    2015-01-01

    Summary One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO-resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homologue of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report for the first time that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO. PMID:25728768

  4. Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii

    PubMed Central

    Wang, Joyce; McIntosh, Fiona; Radomski, Nicolas; Dewar, Ken; Simeone, Roxane; Enninga, Jost; Brosch, Roland; Rocha, Eduardo P.; Veyrier, Frédéric J.; Behr, Marcel A.

    2015-01-01

    By phylogenetic analysis, Mycobacterium kansasii is closely related to Mycobacterium tuberculosis. Yet, although both organisms cause pulmonary disease, M. tuberculosis is a global health menace, whereas M. kansasii is an opportunistic pathogen. To illuminate the differences between these organisms, we have sequenced the genome of M. kansasii ATCC 12478 and its plasmid (pMK12478) and conducted side-by-side in vitro and in vivo investigations of these two organisms. The M. kansasii genome is 6,432,277 bp, more than 2 Mb longer than that of M. tuberculosis H37Rv, and the plasmid contains 144,951 bp. Pairwise comparisons reveal conserved and discordant genes and genomic regions. A notable example of genomic conservation is the virulence locus ESX-1, which is intact and functional in the low-virulence M. kansasii, potentially mediating phagosomal disruption. Differences between these organisms include a decreased predicted metabolic capacity, an increased proportion of toxin–antitoxin genes, and the acquisition of M. tuberculosis-specific genes in the pathogen since their common ancestor. Consistent with their distinct epidemiologic profiles, following infection of C57BL/6 mice, M. kansasii counts increased by less than 10-fold over 6 weeks, whereas M. tuberculosis counts increased by over 10,000-fold in just 3 weeks. Together, these data suggest that M. kansasii can serve as an image of the environmental ancestor of M. tuberculosis before its emergence as a professional pathogen, and can be used as a model organism to study the switch from an environmental opportunistic pathogen to a professional host-restricted pathogen. PMID:25716827

  5. Evidence for the cytotoxic effects of Mycobacterium tuberculosis phospholipase C towards macrophages.

    PubMed

    Bakala N'goma, J C; Schué, M; Carrière, F; Geerlof, A; Canaan, S

    2010-12-01

    Phospholipase Cs (PLCs) contribute importantly to the virulence and pathogenicity of several bacteria. It has been reported in previous studies that mutations in the four predicted plc genes of Mycobacterium tuberculosis inhibit the growth of these bacteria during the late phase of infection in mice. These enzymes have not yet been fully characterised, mainly because they are not easy to produce in large quantities. With a view to elucidating the role of all Mycobacterium tuberculosis phospholipase Cs (PLC-A, PLC-B, PLC-C and PLC-D), a large amount of active, soluble recombinant PLCs, were expressed and purified using Mycobacterium smegmatis as expression system. These enzymes showed different pH activity profiles. PLC-C was found to be the most active of the four recombinant PLCs under acidic conditions. All the enzymes tested induced cytotoxic effects on mouse macrophage RAW 264.7 cell lines, via direct or indirect enzymatic hydrolysis of cell membrane phospholipids. These results open new prospects for characterising biochemical and structural features of Mycobacterium tuberculosis PLCs, which might lead to the identification of novel anti-tuberculosis drug targets. All mycobacterial phospholipase Cs can now be studied in order to determine their role in the virulence and pathogenicity of bacteria of this kind. 2010 Elsevier B.V. All rights reserved.

  6. Replication of Mycobacterium tuberculosis in retinal pigment epithelium.

    PubMed

    Nazari, Hossein; Karakousis, Petros C; Rao, Narsing A

    2014-06-01

    Mycobacterium tuberculosis is an important cause of posterior uveitis in tuberculosis-endemic regions. Clinical and histopathologic evidence suggests that retinal pigment epithelium (RPE) can harbor M tuberculosis. However, the mechanism of M tuberculosis phagocytosis and its growth in RPE is not clear. To investigate M tuberculosis phagocytosis, replication, and cytopathic effects in RPE cells compared with macrophages. Human fetal RPE and monocytic leukemia macrophage (THP-1) cell lines were cultured, and RPE and THP-1 cells were exposed to avirulent M tuberculosis H37Ra. Mycobacteria were added to RPE and THP-1 cells with a 5:1 multiplicity of infection. Nonphagocytized M tuberculosis was removed after 12 hours of exposure (day 0). Cells were harvested at days 0, 1, and 5 to count live and dead cells and intracellular mycobacteria. Toll-like receptor 2 (TLR2) and TLR4 expression was determined by immunohistochemistry; intracellular bacillary load, following TLR2 and TLR4 blockade. Number of intracellular M tuberculosis, cell survival, and TLR2 and TLR4 expression in RPE and THP-1 cells following exposure to M tuberculosis. At day 0, an equal number of intracellular M tuberculosis was observed per THP-1 and RPE cells (0.45 and 0.35 M tuberculosis per RPE and THP-1 cells, respectively). Mean (SD) number of intracellular M tuberculosis at day 5 was 1.9 (0.03) and 3.3 (0.01) per RPE and THP-1 cells, respectively (P < .001). Viability of infected RPE was significantly greater than that of THP-1 cells at day 5 (viable cells: 17 [8%] THP-1 vs 73% [4%] RPE; P < .05). Expression of TLR2 and TLR4 was detected in both cell types after 12 hours of exposure. Inhibition of TLR2 and TLR4 reduced intracellular M tuberculosis counts in RPE but not in THP-1 cells. Mycobacterium tuberculosis is phagocytized by RPE to a similar extent as in macrophages. However, RPE cells are better able to control bacillary growth and RPE cell survival is greater than that of THP-1 cells

  7. Genome analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of the etiologic agent of tuberculosis

    PubMed Central

    Supply, Philip; Marceau, Michael; Mangenot, Sophie; Roche, David; Rouanet, Carine; Khanna, Varun; Majlessi, Laleh; Criscuolo, Alexis; Tap, Julien; Pawlik, Alexandre; Fiette, Laurence; Orgeur, Mickael; Fabre, Michel; Parmentier, Cécile; Frigui, Wafa; Simeone, Roxane; Boritsch, Eva C.; Debrie, Anne-Sophie; Willery, Eve; Walker, Danielle; Quail, Michael A.; Ma, Laurence; Bouchier, Christiane; Salvignol, Grégory; Sayes, Fadel; Cascioferro, Alessandro; Seemann, Torsten; Barbe, Valérie; Locht, Camille; Gutierrez, Maria-Cristina; Leclerc, Claude; Bentley, Stephen; Stinear, Timothy P.; Brisse, Sylvain; Médigue, Claudine; Parkhill, Julian; Cruveiller, Stéphane; Brosch, Roland

    2013-01-01

    Global spread and genetic monomorphism are hallmarks of Mycobacterium tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii, and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology, are restricted to East-Africa. Here, we sequenced and analyzed the genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4-5x coverage), 454/Roche (13-18x coverage) and/or Illumina DNA sequencing (45-105x coverage). We show that STB are highly recombinogenic and evolutionary early-branching, with larger genome sizes, 25-fold more SNPs, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse-infection experiments revealed that STB are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral, STB-like pool of mycobacteria by gain of persistence and virulence mechanisms and we provide genome-wide insights into the molecular events involved. PMID:23291586

  8. The Cording Phenotype of Mycobacterium tuberculosis Induces the Formation of Extracellular Traps in Human Macrophages.

    PubMed

    Kalsum, Sadaf; Braian, Clara; Koeken, Valerie A C M; Raffetseder, Johanna; Lindroth, Margaretha; van Crevel, Reinout; Lerm, Maria

    2017-01-01

    The causative agent of tuberculosis, Mycobacterium tuberculosis , shares several characteristics with organisms that produce biofilms during infections. One of these is the ability to form tight bundles also known as cords. However, little is known of the physiological relevance of the cording phenotype. In this study, we investigated whether cord-forming M. tuberculosis induce the formation of macrophage extracellular traps (METs) in human monocyte-derived macrophages. Macrophages have previously been shown to produce extracellular traps in response to various stimuli. We optimized bacterial culturing conditions that favored the formation of the cord-forming phenotype as verified by scanning electron microscopy. Microscopy analysis of METs formation during experimental infection of macrophages with M. tuberculosis revealed that cord-forming M. tuberculosis induced significantly more METs compared to the non-cording phenotype. Deletion of early secreted antigenic target-6 which is an important virulence factor of M. tuberculosis , abrogated the ability of the bacteria to induce METs. The release of extracellular DNA from host cells during infection may represent a defense mechanism against pathogens that are difficult to internalize, including cord-forming M. tuberculosis .

  9. Dramatic reduction of culture time of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Ghodbane, Ramzi; Raoult, Didier; Drancourt, Michel

    2014-02-01

    Mycobacterium tuberculosis culture, a critical technique for routine diagnosis of tuberculosis, takes more than two weeks. Here, step-by-step improvements in the protocol including a new medium, microaerophlic atmosphere or ascorbic-acid supplement and autofluorescence detection dramatically shortened this delay. In the best case, primary culture and rifampicin susceptibility testing were achieved in 72 hours when specimens were inoculated directly on the medium supplemented by antibiotic at the beginning of the culture.

  10. Pili of Mycobacterium tuberculosis: current knowledge and future prospects.

    PubMed

    Ramsugit, Saiyur; Pillay, Manormoney

    2015-08-01

    Many pathogenic bacteria express filamentous appendages, termed pili, on their surface. These organelles function in several important bacterial processes, including mediating bacterial interaction with, and colonization of the host, signalling events, locomotion, DNA uptake, electric conductance, and biofilm formation. In the last decade, it has been established that the tuberculosis-causing bacterium, Mycobacterium tuberculosis, produces two pili types: curli and type IV pili. In this paper, we review studies on M. tuberculosis pili, highlighting their structure and biological significance to M. tuberculosis pathogenesis, and discuss their potential as targets for therapeutic intervention and diagnostic test development.

  11. Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

    PubMed Central

    Arora, Shalini; Kosalai, K.; Namane, Abdelkader; Pym, Alex S.; Cole, Stewart T.

    2002-01-01

    The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium. PMID:18629250

  12. Human tuberculosis caused by Mycobacterium bovis: a retrospective comparison with Mycobacterium tuberculosis in a Mexican tertiary care centre, 2000-2015.

    PubMed

    Torres-Gonzalez, Pedro; Cervera-Hernandez, Miguel E; Martinez-Gamboa, Areli; Garcia-Garcia, Lourdes; Cruz-Hervert, Luis P; Bobadilla-Del Valle, Miriam; Ponce-de Leon, Alfredo; Sifuentes-Osornio, Jose

    2016-11-08

    Human tuberculosis caused by Mycobacterium bovis is believed to be frequent in developing countries. Transmission is usually through ingestion of unpasteurized dairy products, although airborne contagion is possible. Disease caused by M. tuberculosis or M. bovis is clinically indistinguishable from each other. The aim of this study was to determine the factors associated with M. bovis disease. Retrospective analysis of all culture-positive cases of M. bovis and M. tuberculosis from 2000 to 2015, in a Mexican tertiary-care centre. Sociodemographic, clinical, and radiographic data from medical records were compared. Disease site was classified as pulmonary, extrapulmonary, or pulmonary and extrapulmonary, based on cultures. We evaluated 533 cases, 372 (69.7 %) of which were caused by M. tuberculosis and 161 (30.2 %) by M. bovis. Characteristics associated with M. bovis disease were: younger age (aOR 0.97, 95 % CI 0.95-0.98), glucocorticoid use (aOR 2.27, 95 % CI 1.42-3.63), and extrapulmonary disease (aOR 1.80, 95 % CI 1.21-2.69). M. tuberculosis was associated with lower socioeconomic status (aOR 0.52, 95 % CI 0.28-0.97). When we analysed only pulmonary cases, younger age (aOR 0.97, 95 % CI 0.96-0.99), glucocorticoid use (aOR 2.41, 95 % CI 1.30-4.46), and smoking (aOR 1.94, CI 95 % 1.15-3.27) were associated with M. bovis. Both groups showed similar proportions of direct microscopy smear results (respiratory samples) and chest X-ray cavitations. Younger age, glucocorticoid use, and extrapulmonary disease were associated with M. bovis as the causative agent of tuberculosis in a group of patients from a tertiary care centre in a country where bovine tuberculosis is endemic. Further studies must be conducted in the general population to determine pathogen-specific associated factors and outcomes.

  13. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    PubMed

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  14. Mixed-Strain Mycobacterium tuberculosis Infections and the Implications for Tuberculosis Treatment and Control

    PubMed Central

    van Helden, Paul D.; Wilson, Douglas; Colijn, Caroline; McLaughlin, Megan M.; Abubakar, Ibrahim; Warren, Robin M.

    2012-01-01

    Summary: Numerous studies have reported that individuals can simultaneously harbor multiple distinct strains of Mycobacterium tuberculosis. To date, there has been limited discussion of the consequences for the individual or the epidemiological importance of mixed infections. Here, we review studies that documented mixed infections, highlight challenges associated with the detection of mixed infections, and discuss possible implications of mixed infections for the diagnosis and treatment of patients and for the community impact of tuberculosis control strategies. We conclude by highlighting questions that should be resolved in order to improve our understanding of the importance of mixed-strain M. tuberculosis infections. PMID:23034327

  15. Evidence of presence of Mycobacterium tuberculosis in bovine tissue samples by multiplex PCR: possible relevance to reverse zoonosis.

    PubMed

    Mittal, M; Chakravarti, S; Sharma, V; Sanjeeth, B S; Churamani, C P; Kanwar, N S

    2014-04-01

    Bovine tuberculosis, caused by Mycobacterium bovis, remains one of the most important zoonotic health concerns worldwide. The transmission of Mycobacterium tuberculosis from humans to animals also occurs especially in countries where there is close interaction of humans with the animals. In the present study, thirty bovine lung tissue autopsy samples from an organized dairy farm located in North India were screened for the presence of Mycobacterium tuberculosis complex by smear microscopy, histopathological findings and PCR. Differential diagnosis of M. tuberculosis and M. bovis was made based on the deletion of mce-3 operon in M. bovis. The present study found eight of these samples positive for M. tuberculosis by multiplex PCR. Sequencing was performed on two PCR-positive representative samples and on annotation, and BLAST analysis confirmed the presence of gene fragment specific to Mycobacterium tuberculosis. The presence of M. tuberculosis in all the positive samples raises the possibility of human-to-cattle transmission and possible adaptation of this organism in bovine tissues. This study accentuates the importance of screening and differential diagnosis of Mycobacterium tuberculosis complex in humans and livestock for adopting effective TB control and eradication programmes. © 2014 Blackwell Verlag GmbH.

  16. Disseminated Mycobacterium tuberculosis Infection in a Dog

    PubMed Central

    Martinho, Anna Paula Vitirito; Franco, Marília Masello Junqueira; Ribeiro, Márcio Garcia; Perrotti, Isabella Belletti Mutt; Mangia, Simone Henriques; Megid, Jane; Vulcano, Luiz Carlos; Lara, Gustavo Henrique Batista; Santos, Adolfo Carlos Barreto; Leite, Clarice Queico Fujimura; de Carvalho Sanches, Osimar; Paes, Antonio Carlos

    2013-01-01

    An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. PMID:23339199

  17. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    PubMed

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Mutation of Rv2887, a marR-Like Gene, Confers Mycobacterium tuberculosis Resistance to an Imidazopyridine-Based Agent

    PubMed Central

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan

    2015-01-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. PMID:26303802

  19. CD8 T cells and Mycobacterium tuberculosis infection

    PubMed Central

    Lin, Philana Ling; Flynn, JoAnne L.

    2015-01-01

    Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection, and in humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection. PMID:25917388

  20. DNA Replication in Mycobacterium tuberculosis

    PubMed Central

    DITSE, ZANELE; LAMERS, MEINDERT H.; WARNER, DIGBY F.

    2017-01-01

    Faithful replication and maintenance of the genome are essential to the ability of any organism to survive and propagate. For an obligate pathogen such as Mycobacterium tuberculosis that has to complete successive cycles of transmission, infection, and disease in order to retain a foothold in the human population, this requires that genome replication and maintenance must be accomplished under the metabolic, immune, and antibiotic stresses encountered during passage through variable host environments. Comparative genomic analyses have established that chromosomal mutations enable M. tuberculosis to adapt to these stresses: the emergence of drug-resistant isolates provides direct evidence of this capacity, so too the well-documented genetic diversity among M. tuberculosis lineages across geographic loci, as well as the microvariation within individual patients that is increasingly observed as whole-genome sequencing methodologies are applied to clinical samples and tuberculosis (TB) disease models. However, the precise mutagenic mechanisms responsible for M. tuberculosis evolution and adaptation are poorly understood. Here, we summarize current knowledge of the machinery responsible for DNA replication in M. tuberculosis, and discuss the potential contribution of the expanded complement of mycobacterial DNA polymerases to mutagenesis. We also consider briefly the possible role of DNA replication—in particular, its regulation and coordination with cell division—in the ability of M. tuberculosis to withstand antibacterial stresses, including host immune effectors and antibiotics, through the generation at the population level of a tolerant state, or through the formation of a subpopulation of persister bacilli—both of which might be relevant to the emergence and fixation of genetic drug resistance. PMID:28361736

  1. Mycobacterium bovis infection of cattle and white-tailed deer: Translational research of relevance to human tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis (TB) is a premier example of a disease complex with pathogens primarily affecting humans (i.e., Mycobacterium tuberculosis) or livestock and wildlife (i.e., Mycobacterium bovis) and with a long history of inclusive collaborations between physicians and veterinarians. Advances with the s...

  2. High prevalence of Mycobacterium tuberculosis bacteraemia among a cohort of HIV-infected patients with severe sepsis in Lusaka, Zambia.

    PubMed

    Muchemwa, Levy; Shabir, Lakhi; Andrews, Ben; Bwalya, Mwango

    2017-05-01

    Tuberculosis is recognised as one of the leading causes of severe sepsis among HIV-infected patients. Most patients with Mycobacterium tuberculosis bacteraemia have advanced HIV disease with CD4 counts less than 100 cells/μl and its presentation is non-specific in most instances. This was a cross-sectional study which was done by analyzing data from 201 adult HIV-infected patients who met the inclusion criteria for severe sepsis. The prevalence of Mycobacterium tuberculosis bactraemia in the study population was 34.8%. Severe sepsis caused by other etiologies was observed in 33 (16.4%) of the participants. Concomitant infection of Mycobacterium tuberculosis bactraemia with other organisms is not uncommon in patients with severe sepsis. This cohort of HIV-infected patients had severe immunosuppression with a median CD4 count of 51 (20-136) cells/μl with moderate anaemia, mean haemoglobin 8.0 (3.0) g/dl, and were generally underweight with a mean mid upper arm circumference (MUAC) of 21.0 (3.4) cm. Mycobacterium tuberculosis bacteraemia is very common in HIV-infected patients with advanced HIV disease who present with severe sepsis. Mycobacterium tuberculosis bacteraemia co-infection with aerobic organisms is not uncommon. Factors that were independently associated with Mycobacterium tuberculosis bacteraemia in our study population were MUAC and sodium level.

  3. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  4. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  5. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  6. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  7. 21 CFR 866.3370 - Mycobacterium tuberculosis immunofluorescent reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mycobacterium tuberculosis immunofluorescent reagents. 866.3370 Section 866.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  8. Failure of BACTEC™ MGIT 960™ to detect Mycobacterium tuberculosis complex within a 42-day incubation period.

    PubMed

    Mahomed, Sharana; Dlamini-Mvelase, Nomonde R; Dlamini, Moses; Mlisana, Koleka

    2017-01-01

    For the optimal recovery of Mycobacterium tuberculosis from the BACTEC™ Mycobacterium Growth Indicator Tube 960™ system, an incubation period of 42-56 days is recommended by the manufacturer. Due to logistical reasons, it is common practice to follow an incubation period of 42 days. We undertook a retrospective study to document positive Mycobacterium Growth Indicator Tube cultures beyond the 42-day incubation period. In total, 98/110 (89%) were positive for M. tuberculosis complex. This alerted us to M. tuberculosis growth detection failure at 42 days.

  9. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti.

    PubMed

    Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine; Vergnaud, Gilles

    2014-01-01

    Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important.

  10. Progenitor “Mycobacterium canettii” Clone Responsible for Lymph Node Tuberculosis Epidemic, Djibouti

    PubMed Central

    Blouin, Yann; Cazajous, Géraldine; Dehan, Céline; Soler, Charles; Vong, Rithy; Hassan, Mohamed Osman; Hauck, Yolande; Boulais, Christian; Andriamanantena, Dina; Martinaud, Christophe; Martin, Émilie; Pourcel, Christine

    2014-01-01

    Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important. PMID:24520560

  11. Comparison of the UDP-N-Acetylmuramate:l-Alanine Ligase Enzymes from Mycobacterium tuberculosis and Mycobacterium leprae

    PubMed Central

    Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.

    2000-01-01

    In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931

  12. Targeting phenotypically tolerant Mycobacterium tuberculosis

    PubMed Central

    Gold, Ben; Nathan, Carl

    2016-01-01

    While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in a clinical setting. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of post-treatment relapse. Some promising drugs to treat tuberculosis, such as rifampicin and bedaquiline, only kill nonreplicating M. tuberculosis in vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores. However, few of these compounds were tested under conditions that would exclude the impact of adsorbed compound acting during the recovery phase of

  13. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    PubMed

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  14. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens.

    PubMed

    Shojaei, Taha Roodbar; Mohd Salleh, Mohamad Amran; Tabatabaei, Meisam; Ekrami, Alireza; Motallebi, Roya; Rahmani-Cherati, Tavoos; Hajalilou, Abdollah; Jorfi, Raheleh

    2014-01-01

    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  15. Mycobacterium tuberculosis: ecology and evolution of a human bacterium.

    PubMed

    Bañuls, Anne-Laure; Sanou, Adama; Anh, Nguyen Thi Van; Godreuil, Sylvain

    2015-11-01

    Some species of the Mycobacterium tuberculosis complex (MTBC), particularly Mycobacterium tuberculosis, which causes human tuberculosis (TB), are the first cause of death linked to a single pathogen worldwide. In the last decades, evolutionary studies have much improved our knowledge on MTBC history and have highlighted its long co-evolution with humans. Its ability to remain latent in humans, the extraordinary proportion of asymptomatic carriers (one-third of the entire human population), the deadly epidemics and the observed increasing level of resistance to antibiotics are proof of its evolutionary success. Many MTBC molecular signatures show not only that these bacteria are a model of adaptation to humans but also that they have influenced human evolution. Owing to the unbalance between the number of asymptomatic carriers and the number of patients with active TB, some authors suggest that infection by MTBC could have a protective role against active TB disease and also against other pathologies. However, it would be inappropriate to consider these infectious pathogens as commensals or symbionts, given the level of morbidity and mortality caused by TB.

  16. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.

    PubMed

    Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2015-10-01

    Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.

  17. Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation.

    PubMed

    Levillain, Florence; Poquet, Yannick; Mallet, Ludovic; Mazères, Serge; Marceau, Michael; Brosch, Roland; Bange, Franz-Christoph; Supply, Philip; Magalon, Axel; Neyrolles, Olivier

    2017-11-01

    The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.

  18. In vitro anti Mycobacterium tuberculosis H37Rv activity of Lannea acida A. Rich from Burkina Faso.

    PubMed

    Ouattara, L; Koudou, J; Karou, D S; Giacò, L; Capelli, G; Simpore, J; Fraziano, M; Colizzi, V; Traore, A S

    2011-01-01

    The cytotoxic and anti-Mycobacterium tuberculosis H37Rv activities of hydro-alcoholic extract of Lannea acida A. Rich (Anacardiaceae) were assessed. The cytoxicity evaluation was carried out on THP1 monocytoid cell line (after 24 h at 1; 5 and 10 microg mL(-1)) and showed only a slight modification of lactate dehydrogenase (LDH) release. The rate of monocytes in different stages of mitosis had been amended in absence and presence of extract as follows: Go/G1 58.83-59.83%; synthesis 21.95-18.64%; mitosis 16.67-15.77%; necrosis 2.65-5.64%. The percentage of inhibition of Mycobacterium tuberculosis proliferation was respectively 77.6 and 36.8% at 1.2 and 0.6 mg mL(-1) of extract. This is an interesting experimental study on antimicrobial and immune-stimulating properties of Lannea acida ethanol-water (70% v/v) extract which may contain potential antibacterial and immune-stimulating agents for clinical use.

  19. Progress on mechanism of ethambutol resistance in Mycobacterium Tuberculosis.

    PubMed

    Wang, Ting; Jiao, Wei-wei; Shen, A-dong

    2016-10-20

    The occurance and prevalence of multidrug-resistant tuberculosis poses a serious threat to the global tuberculosis control. Ethambutol (EMB) is one of the first-line anti-tuberculosis drugs, which is usually used in combination with isoniazid and rifampicin for treating pan-sensitive tuberculosis, and it can also be used in drug-resistant tuberculosis. However, the situation of EMB resistance is alarmingly high, especially in multi-drug resistant tuberculosis. In China, EMB resistance rate in the previously treated cases was up to 17.2% and showed an increased tendency. What was worse, 51.3%-66.7% of multidrug-resistant tuberculosis cases were resistant to EMB. Thus, it is important to understand the drug resistance mechanism of EMB, which will help to slow down the drug resistance rate of EMB. In this review, we focus on the current status of EMB resistance, the effects of EMB and the mechanisms of EMB resistance in Mycobacterium tuberculosis.

  20. Virulence factors of the Mycobacterium tuberculosis complex

    PubMed Central

    Forrellad, Marina A.; Klepp, Laura I.; Gioffré, Andrea; Sabio y García, Julia; Morbidoni, Hector R.; Santangelo, María de la Paz; Cataldi, Angel A.; Bigi, Fabiana

    2013-01-01

    The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world. PMID:23076359

  1. Sequence analysis of the drug‑resistant rpoB gene in the Mycobacterium tuberculosis L‑form among patients with pneumoconiosis complicated by tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Ye, Song; Deng, Yun; Ma, Shuai; Li, Chao-Pin

    2014-04-01

    The aim of the present study was to investigate the mutational characteristics of the drug‑resistant Mycobacterium tuberculosis L‑form of the rpoB gene isolated from patients with pneumoconiosis complicated by tuberculosis, in order to reduce the occurrence of the drug resistance of patients and gain a more complete information on the resistance of the Mycobacterium tuberculosis L‑form. A total of 42 clinically isolated strains of Mycobacterium tuberculosis L‑form were collected, including 31 drug‑resistant strains. The genomic DNA was extracted, then the target genes were amplified by polymerase chain reaction and the hot mutational regions of the rpoB gene were analyzed by direct sequencing. The results revealed that no rpoB gene mutation was present in 11 rifampicin (RFP)‑sensitive strains, while conformational changes were identified in 31 RFP‑resistant strains. The mutation rate was 93.55% (29/31) in the resistant strains, and was frequently concentrated in codons 531 (51.61%; 16/31) and 526 (32.26%; 10/31), mainly occurring by case substitutions, including 27 unit point mutations and two two‑point mutations. The novel mutation identified in codon 516 had not been previously reported. The substitution of highly‑conserved amino acids encoded by the rpoB gene resulted in the molecular mechanism responsible for RFP resistance in the Mycobacterium tuberculosis L‑form. This also demonstrated that the rpoB gene is diversiform.

  2. Phenotypic assays for Mycobacterium tuberculosis infection.

    PubMed

    Song, Ok-Ryul; Deboosere, Nathalie; Delorme, Vincent; Queval, Christophe J; Deloison, Gaspard; Werkmeister, Elisabeth; Lafont, Frank; Baulard, Alain; Iantomasi, Raffaella; Brodin, Priscille

    2017-10-01

    Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  3. Preventing Transmission of Mycobacterium tuberculosis in Health Care Settings.

    PubMed

    Punjabi, Chitra D; Perloff, Sarah R; Zuckerman, Jerry M

    2016-12-01

    Patients with tuberculosis (TB) pose a risk to other patients and health care workers, and outbreaks in health care settings occur when appropriate infection control measures are not used. In this article, we discuss strategies to prevent transmission of Mycobacterium tuberculosis within health care settings. All health care facilities should have an operational TB infection control plan that emphasizes the use of a hierarchy of controls (administrative, environmental, and personal respiratory protection). We also discuss resources available to clinicians who work in the prevention and investigation of nosocomial transmission of M tuberculosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mycobacterium tuberculosis Complex and HIV Co-Infection among Extrapulmonary Tuberculosis Suspected Cases at the University of Gondar Hospital, Northwestern Ethiopia.

    PubMed

    Fanosie, Alemu; Gelaw, Baye; Tessema, Belay; Tesfay, Wogahta; Admasu, Aschalew; Yitayew, Gashaw

    2016-01-01

    Extrapulmonary Tuberculosis (EPTB) and Human Immunodeficiency Virus (HIV) infection are interrelated as a result of immune depression. The aim of this study was to determine the prevalence of Mycobacterium tuberculosis complex isolates and the burden of HIV co-infection among EPTB suspected patients. An institution based cross-sectional study was conducted among EPTB suspected patients at the University of Gondar Hospital. Socio-demographic characteristics and other clinical data were collected using a pretested questionnaire. GeneXpert MTB/RIF assay was performed to diagnosis Mycobacterium tuberculosis complex and Rifampicin resistance. All samples were also investigated by cytology and culture. The HIV statuses of all patients were screened initially by KHB, and all positive cases were further re-tested by STAT-pack. Data was analyzed using SPSS version 20 computer software and a P-value of < 0.05 was taken as statistically significant. A total of 141 extrapulmonary suspected patients were enrolled in this study. The overall prevalence of culture confirmed extrapulmonary tuberculosis infection was 29.8%, but the GeneXpert result showed a 26.2% prevalence of Mycobacterium tuberculosis complex infection. The 78.4% prevalence of extrapulmonary tuberculosis infection was found to be higher among the adult population. The prevalence of HIV infection among EPTB suspected patients was 14.1%, while it was 32.4% among GeneXpert-confirmed extrapulmonary TB cases (12/37). Tuberculosis lymphadenitis was the predominant (78.4%) type of EPTB infection followed by tuberculosis cold abscess (10.7%). Adult hood, previous history of contact with known pulmonary tuberculosis patients, and HIV co-infection showed a statistically significant association with extrapulmonary tuberculosis infection (P<0.013). The prevalence of culture confirmed-EPTB infection was high, and a higher EPTB-HIV co-infection was also observed.

  5. Mycobacterium tuberculosis Complex and HIV Co-Infection among Extrapulmonary Tuberculosis Suspected Cases at the University of Gondar Hospital, Northwestern Ethiopia

    PubMed Central

    Fanosie, Alemu; Gelaw, Baye; Tessema, Belay; Tesfay, Wogahta; Admasu, Aschalew; Yitayew, Gashaw

    2016-01-01

    Background Extrapulmonary Tuberculosis (EPTB) and Human Immunodeficiency Virus (HIV) infection are interrelated as a result of immune depression. The aim of this study was to determine the prevalence of Mycobacterium tuberculosis complex isolates and the burden of HIV co-infection among EPTB suspected patients. Method An institution based cross-sectional study was conducted among EPTB suspected patients at the University of Gondar Hospital. Socio-demographic characteristics and other clinical data were collected using a pretested questionnaire. GeneXpert MTB/RIF assay was performed to diagnosis Mycobacterium tuberculosis complex and Rifampicin resistance. All samples were also investigated by cytology and culture. The HIV statuses of all patients were screened initially by KHB, and all positive cases were further re-tested by STAT-pack. Data was analyzed using SPSS version 20 computer software and a P-value of < 0.05 was taken as statistically significant. Results A total of 141 extrapulmonary suspected patients were enrolled in this study. The overall prevalence of culture confirmed extrapulmonary tuberculosis infection was 29.8%, but the GeneXpert result showed a 26.2% prevalence of Mycobacterium tuberculosis complex infection. The 78.4% prevalence of extrapulmonary tuberculosis infection was found to be higher among the adult population. The prevalence of HIV infection among EPTB suspected patients was 14.1%, while it was 32.4% among GeneXpert-confirmed extrapulmonary TB cases (12/37). Tuberculosis lymphadenitis was the predominant (78.4%) type of EPTB infection followed by tuberculosis cold abscess (10.7%). Adult hood, previous history of contact with known pulmonary tuberculosis patients, and HIV co-infection showed a statistically significant association with extrapulmonary tuberculosis infection (P<0.013). Conclusion The prevalence of culture confirmed-EPTB infection was high, and a higher EPTB-HIV co-infection was also observed. PMID:26950547

  6. Mycobacterium Tuberculosis Pyomyositis in an Infant

    PubMed Central

    Malik, ZA; Shehab, M

    2013-01-01

    Mycobacterium tuberculosis is endemic to many parts of the world. It may have variable clinical presentations, especially in the pediatric age group. Presented here is the case of a 9-month old infant who was referred for infectious disease opinion when his thigh induration failed to improve after surgical drainage and a course of oral antibiotic therapy. Mycobacterial PCR on the operative sample fluid was found to be positive; and mycobacterial culture grew M. tuberculosis. He received 9 months of treatment with anti-TB medications, with excellent results and complete recovery. This is the first report of TB pyomyositis in an infant; and highlights the need to have a high index of suspicion for unusual organisms when conventional therapy fails to demonstrate expected results. PMID:23919207

  7. Mycobacterium tuberculosis pyomyositis in an infant.

    PubMed

    Malik, Za; Shehab, M

    2013-04-01

    Mycobacterium tuberculosis is endemic to many parts of the world. It may have variable clinical presentations, especially in the pediatric age group. Presented here is the case of a 9-month old infant who was referred for infectious disease opinion when his thigh induration failed to improve after surgical drainage and a course of oral antibiotic therapy. Mycobacterial PCR on the operative sample fluid was found to be positive; and mycobacterial culture grew M. tuberculosis. He received 9 months of treatment with anti-TB medications, with excellent results and complete recovery. This is the first report of TB pyomyositis in an infant; and highlights the need to have a high index of suspicion for unusual organisms when conventional therapy fails to demonstrate expected results.

  8. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives.

    PubMed

    Schön, T; Miotto, P; Köser, C U; Viveiros, M; Böttger, E; Cambau, E

    2017-03-01

    Drug-resistance testing, or antimicrobial susceptibility testing (AST), is mandatory for Mycobacterium tuberculosis in cases of failure on standard therapy. We reviewed the different methods and techniques of phenotypic and genotypic approaches. Although multiresistant and extensively drug-resistant (MDR/XDR) tuberculosis is present worldwide, AST for M. tuberculosis (AST-MTB) is still mainly performed according to the resources available rather than the drug-resistance rates. Phenotypic methods, i.e. culture-based AST, are commonly used in high-income countries to confirm susceptibility of new cases of tuberculosis. They are also used to detect resistance in tuberculosis cases with risk factors, in combination with genotypic tests. In low-income countries, genotypic methods screening hot-spot mutations known to confer resistance were found to be easier to perform because they avoid the culture and biosafety constraint. Given that genotypic tests can rapidly detect the prominent mechanisms of resistance, such as the rpoB mutation for rifampicin resistance, we are facing new challenges with the observation of false-resistance (mutations not conferring resistance) and false-susceptibility (mutations different from the common mechanism) results. Phenotypic and genotypic approaches are therefore complementary for obtaining a high sensitivity and specificity for detecting drug resistances and susceptibilities to accurately predict MDR/XDR cure and to gather relevant data for resistance surveillance. Although AST-MTB was established in the 1960s, there is no consensus reference method for MIC determination against which the numerous AST-MTB techniques can be compared. This information is necessary for assessing in vitro activity and setting breakpoints for future anti-tuberculosis agents. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Isolation and molecular characterization of Mycobacterium tuberculosis from humans and cattle in Namwala District, Zambia.

    PubMed

    Malama, Sydney; Muma, John; Munyeme, Musso; Mbulo, Grace; Muwonge, Adrian; Shamputa, Isdore Chola; Djønne, Berit; Godfroid, Jacques; Johansen, Tone Bjordal

    2014-12-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, is considered primarily a human pathogen. It has, however, been reported in a wide range of domestic and wild animals, often living in close prolonged contact with humans. Sputum samples in which acid fast bacteria were detected in smears were collected from patients at three health facilities in Namwala district, Zambia. Samples from cattle presenting gross lesions compatible with bovine tuberculosis were collected at a local abattoir in the same district. Isolated mycobacteria were identified and genotyped using classical molecular methods. From a total of 33 isolates of M. tuberculosis detected (30 from humans and 3 from cattle), two cattle isolates shared the same spoligotype and MIRU-VNTR pattern with a human patient. This study has for the first time documented the isolation of M. tuberculosis from cattle in Zambia and provides molecular evidence of an epidemiological link between M. tuberculosis isolates from humans and cattle in Namwala district. A possible spill back of M. tuberculosis to humans cannot be excluded and therefore further studies documenting to what extent M. tuberculosis is shed in cattle milk are needed. This finding further suggests that veterinary public health measures to control human TB, should also take into account the bovine reservoir.

  10. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    PubMed

    Lam, Karen K Y; Zheng, Xingji; Forestieri, Roberto; Balgi, Aruna D; Nodwell, Matt; Vollett, Sarah; Anderson, Hilary J; Andersen, Raymond J; Av-Gay, Yossef; Roberge, Michel

    2012-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  11. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    PubMed Central

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  12. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.

    PubMed

    Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L

    2016-11-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.

  13. MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth.

    PubMed

    Delorme, Vincent; Diomandé, Sadia V; Dedieu, Luc; Cavalier, Jean-François; Carrière, Frédéric; Kremer, Laurent; Leclaire, Julien; Fotiadu, Frédéric; Canaan, Stéphane

    2012-01-01

    Lipid metabolism plays an important role during the lifetime of Mycobacterium tuberculosis, the causative agent of tuberculosis. Although M. tuberculosis possesses numerous lipolytic enzymes, very few have been characterized yet at a biochemical/pharmacological level. This study was devoted to the M. tuberculosis lipolytic enzymes belonging to the Hormone-Sensitive Lipase (HSL) family, which encompasses twelve serine hydrolases closely related to the human HSL. Among them, nine were expressed, purified and biochemically characterized using a broad range of substrates. In vitro enzymatic inhibition studies using the recombinant HSL proteins, combined with mass spectrometry analyses, revealed the potent inhibitory activity of an oxadiazolone compound, named MmPPOX. In addition, we provide evidence that MmPPOX alters mycobacterial growth. Overall, these findings suggest that the M. tuberculosis HSL family displays important metabolic functions, thus opening the way to further investigations linking the involvement of these enzymes in mycobacterial growth.

  14. MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth

    PubMed Central

    Delorme, Vincent; Diomandé, Sadia V.; Dedieu, Luc; Cavalier, Jean-François; Carrière, Frédéric; Kremer, Laurent; Leclaire, Julien; Fotiadu, Frédéric; Canaan, Stéphane

    2012-01-01

    Lipid metabolism plays an important role during the lifetime of Mycobacterium tuberculosis, the causative agent of tuberculosis. Although M. tuberculosis possesses numerous lipolytic enzymes, very few have been characterized yet at a biochemical/pharmacological level. This study was devoted to the M. tuberculosis lipolytic enzymes belonging to the Hormone-Sensitive Lipase (HSL) family, which encompasses twelve serine hydrolases closely related to the human HSL. Among them, nine were expressed, purified and biochemically characterized using a broad range of substrates. In vitro enzymatic inhibition studies using the recombinant HSL proteins, combined with mass spectrometry analyses, revealed the potent inhibitory activity of an oxadiazolone compound, named MmPPOX. In addition, we provide evidence that MmPPOX alters mycobacterial growth. Overall, these findings suggest that the M. tuberculosis HSL family displays important metabolic functions, thus opening the way to further investigations linking the involvement of these enzymes in mycobacterial growth. PMID:23029536

  15. Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis.

    PubMed

    Forrellad, Marina Andrea; McNeil, Michael; Santangelo, María de la Paz; Blanco, Federico Carlos; García, Elizabeth; Klepp, Laura Inés; Huff, Jason; Niederweis, Michael; Jackson, Mary; Bigi, Fabiana

    2014-03-01

    Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the causative agent of human tuberculosis, has developed several strategies involving proteins and other compounds known collectively as virulence factors to subvert human host defences and invade the human host. The Mce proteins are among these virulence-related proteins and are encoded by the mce1, mce2, mce3 and mce4 operons in the genome of M. tuberculosis. It has been proposed that these operons encode ABC-like lipid transporters; however, the nature of their substrates has only been revealed in the case of the Mce4 proteins. Here we found that the knockout of the mce1 operon alters the lipid profile of M. tuberculosis H37Rv and the uptake of palmitic acid. Thin layer chromatography and liquid chromatography-mass spectrometry analysis showed that the mce1 mutant accumulates more mycolic acids than the wild type and complemented strains. Interestingly, this accumulation of mycolic acid is exacerbated when bacteria are cultured in the presence of palmitic acid or arachidonic acid. These results suggest that the mce1 operon may serve as a mycolic acid re-importer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Clinical Evaluation of the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test for Rapid Diagnosis of Tuberculosis Lymphadenitis

    PubMed Central

    Kerleguer, A.; Fabre, M.; Bernatas, J. J.; Gerome, P.; Nicand, E.; Herve, V.; Koeck, J. L.

    2004-01-01

    This prospective study evaluated the performance of the Amplified Mycobacterium Tuberculosis Direct Test (MTD) for the diagnosis of lymph node tuberculosis in Djibouti, Republic of Djibouti. Of 197 specimens sampled from 153 patients, 123 were from 95 tuberculous patients. The sensitivity and specificity of MTD were 93 and 100%, respectively. The sensitivity of culture was 89%. PMID:15583341

  17. Molecular identification of Mycobacterium tuberculosis in cattle.

    PubMed

    Sweetline Anne, N; Ronald, B S M; Kumar, T M A Senthil; Kannan, P; Thangavelu, A

    2017-01-01

    Bovine tuberculosis continued to be a re-emerging problem in some countries especially in endemic areas due to the fact that human and animal health surveillance system is not adopted to diagnose the infection. This crisis can be attributed due to sharing of the same habitat especially in rural areas. In the present study, a total of 148 samples were collected from cattle for isolation over a period of 3 years from cattle with and without lesions, of which 67 isolates were obtained by culture. Fifty one isolates were identified as Mycobacterium tuberculosis complex (MTBC) by IS6110 PCR of which 43 (84.3%) were identified as M. tuberculosis and 08 (15.6%) were identified as M. bovis by using 12.7kb fragment multiplex PCR. Among this, 31 isolates which were positive for IS6110 PCR were subjected to spoligotyping and revealed 28 isolates belonging to MANU1 strain of M. tuberculosis. This study clearly indicates that high prevalence of M. tuberculosis than M. bovis in bovine was identified by means of culture and by molecular methods M. tuberculosis can affect cattle producing lesion in contradiction to the earlier thoughts. This study speculates that M. tuberculosis MANU1 strain infection in cattle could be due to spill over from human or other non specific hosts in tuberculosis endemic areas. Though bovine tuberculosis due to M. tuberculosis in cattle is not considered a serious threat worldwide, in countries where human TB is endemic, M. tuberculosis infection of cattle needs to be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mycobacterium tuberculosis infection within parotid gland Warthin tumor.

    PubMed

    Ozcan, Cengiz; Apa, Duygu Düşmez; Aslan, Gönül; Gülhan, Stk; Görür, Kemal

    2008-11-01

    Tuberculosis of the parotid gland is extremely unusual. Tuberculosis comprises 2.5% to 10% of parotid gland lesions. Two clinical forms of parotid gland tuberculosis infection exist. One is a diffuse parenchymatous disease (either primary or secondary to nodal disease), resembling common infection. The second is a chronic, slow-growing, painless, and firm parotid mass mimicking a neoplasm. Most of these patients were diagnosed after parotid gland surgery and histopathologic evaluation. Warthin tumor is a well-known benign neoplasm of the salivary glands. It is the second most common tumor of the parotid gland. Mycobacterium tuberculosis within Warthin tumor is also unusual. Five cases with parotid gland tuberculosis within Warthin tumor were reported in the literature. In this report, we present a new patient with parotid gland tuberculosis within the Warthin tumor. This type parotid gland pathology is an extremely rare entity, and to the best of our knowledge, this is the second documented case using polymerase chain reaction. We also discussed the possible mechanisms of development of infection within Warthin tumor.

  19. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  20. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors.

    PubMed

    Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan

    2017-04-15

    An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genetic Diversity and Dynamic Distribution of Mycobacterium tuberculosis Isolates Causing Pulmonary and Extrapulmonary Tuberculosis in Thailand

    PubMed Central

    Srilohasin, Prapaporn; Tokunaga, Katsushi; Nishida, Nao; Prammananan, Therdsak; Smittipat, Nat; Mahasirimongkol, Surakameth; Chaiyasirinroje, Boonchai; Yanai, Hideki; Palittapongarnpim, Prasit

    2014-01-01

    This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies. PMID:25297330

  2. Mycobacterium tuberculosis infection in grazing cattle in central Ethiopia.

    PubMed

    Ameni, Gobena; Vordermeier, Martin; Firdessa, Rebuma; Aseffa, Abraham; Hewinson, Glyn; Gordon, Stephen V; Berg, Stefan

    2011-06-01

    A preliminary study to characterise mycobacteria infecting tuberculous cattle from two different management systems in central Ethiopia was carried out. Approximately 27% of isolates from grazing cattle were Mycobacterium tuberculosis, while cattle in a more intensive-production system were exclusively infected with M. bovis. The practice of local farmers discharging chewed tobacco directly into the mouths of pastured cattle was identified as a potential route of human-to-cattle transmission of M. tuberculosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. On the nature of Mycobacterium tuberculosis-latent bacilli.

    PubMed

    Cardona, P-J; Ruiz-Manzano, J

    2004-12-01

    Mycobacterium tuberculosis-latent bacilli are microorganisms that adapt to stressful conditions generated by the infected host against them. By slowing metabolism or becoming dormant, they may counterbalance these conditions and appear as silent to the immune system. Moreover, the dynamic turnover of the infected cells provokes a constant reactivation of the latent bacilli when the environmental conditions are favourable, or an activation after being dormant in necrotic and fibrotic lesions for a long period of time. Since there is no in vivo nor in vitro evidence for quick resuscitation of dormant bacilli, the current authors strongly favour the possibility that latent tuberculosis infection can be maintained for no longer than approximately 10 yrs, which is, nowadays, a time period very close to that considered for "primary" tuberculosis. This concept may also be helpful for newer epidemiological considerations regarding the real impact of reinfection in tuberculosis.

  4. Novel Multiplex Real-Time PCR Diagnostic Assay for Identification and Differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis Complex Strains▿†

    PubMed Central

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-01-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC. PMID:21123525

  5. Regulatory RNA in Mycobacterium tuberculosis, back to basics.

    PubMed

    Schwenk, Stefan; Arnvig, Kristine B

    2018-06-01

    Since the turn of the millenium, RNA-based control of gene expression has added an extra dimension to the central dogma of molecular biology. Still, the roles of Mycobacterium tuberculosis regulatory RNAs and the proteins that facilitate their functions remain elusive, although there can be no doubt that RNA biology plays a central role in the baterium's adaptation to its many host environments. In this review, we have presented examples from model organisms and from M. tuberculosis to showcase the abundance and versatility of regulatory RNA, in order to emphasise the importance of these 'fine-tuners' of gene expression.

  6. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  7. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.

    PubMed

    Bailo, Rebeca; Bhatt, Apoorva; Aínsa, José A

    2015-08-01

    Tuberculosis is still a major health problem worldwide and one of the main causes of death by a single infectious agent. Only few drugs are really effective to treat tuberculosis, hence, the emergence of multiple, extensively, and totally drug resistant bacilli compromises the already difficult antituberculosis treatments. Given the persistent global burden of tuberculosis, it is crucial to understand the underlying mechanisms required for the pathogenicity of Mycobacterium tuberculosis (Mtb), the causal agent of tuberculosis, in order to pave the way for developing better drugs and strategies to treat and prevent tuberculosis. The exclusive mycobacterial cell wall lipids such as trehalose monomycolate and dimycolate (TMM, TDM), phthiocerol dimycocerosate (PDIM), sulpholipid-1 (SL-1), diacyl trehalose (DAT), and pentacyl trehalose (PAT), among others, are known to play an important role in pathogenesis; thus, proteins responsible for their transport are potential virulence factors. MmpL and MmpS proteins mediate transport of important cell wall lipids across the mycobacterial membrane. In Mtb, MmpL3, MmpL7 and MmpL8 transport TMM, PDIM and SL-1 respectively. The translocation of DAT and biosynthesis of PAT is likely due to MmpL10. MmpL and MmpS proteins are involved in other processes such as drug efflux (MmpL5 and MmpL7), siderophore export (MmpL4/MmpS4 and MmpL5/MmpS5), and heme uptake (MmpL3 and MmpL11). Altogether, these proteins can be regarded as new potential targets for antituberculosis drug development. We will review recent advances in developing inhibitors of MmpL proteins, in the challenging context of targeting membrane proteins and the future prospects for potential antituberculosis drug candidates. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mice with Pulmonary Tuberculosis Treated with Mycobacterium vaccae Develop Strikingly Enhanced Recall Gamma Interferon Responses to M. vaccae Cell Wall Skeleton▿

    PubMed Central

    Rodríguez-Güell, Elisabeth; Agustí, Gemma; Corominas, Mercè; Cardona, Pere-Joan; Luquin, Marina; Julián, Esther

    2008-01-01

    Whole heat-killed Mycobacterium vaccae is used as an immunotherapeutic agent in tuberculosis (TB), but the compound(s) that triggers its immunostimulatory ability is not known. Here, we show that among different subcellular fractions, the cell wall skeleton induced a prominent expression of gamma interferon in splenocytes from both non-TB and TB M. vaccae-treated mice. PMID:18337379

  9. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    PubMed Central

    2011-01-01

    Background The P27-P55 (lprG-Rv1410c) operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are functionally connected in

  10. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice.

    PubMed

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-04-23

    Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.

  11. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice

    PubMed Central

    Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E

    2018-01-01

    Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332

  12. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  13. Development of a three component complex to increase isoniazid efficacy against isoniazid resistant and nonresistant Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Plummer, Sydney; Baker, Tess; Wylie, Greg; Clingenpeel, Amy C; Phillips, Dennis

    2015-10-15

    The bacterium responsible for causing tuberculosis has evolved resistance to antibiotics used to treat the disease, resulting in new multidrug resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug resistant M. tuberculosis (XDR-TB) strains. Analytical techniques (1)H and (13)C Nuclear Magnetic Resonance (NMR), Fourier Transform-Ion Cyclotron Resonance with Electrospray Ionization (FT-ICR/ESI), and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-TOF-MS) were used to study different aspects of the Cu(II)-polyethylene glycol (PEG-3350)-sucrose-isoniazid and Cu(II)-polyethylene glycol (PEG3350)-glucose-isoniazid complexes. The Cu(II) cation, sucrose or glucose, and the aggregate formed by PEG primarily serve as a composite drug delivery agent for the frontline antibiotic, however the improvement in MIC values produced with the CU-PEG-SUC-INH complex suggest an additional effect. Several Cu-PEG-SUC-INH complex variations were tested against INH resistant and nonresistant strains of M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advances in Mycobacterium tuberculosis therapeutics discovery utlizing structural biology

    PubMed Central

    Chim, Nicholas; Owens, Cedric P.; Contreras, Heidi; Goulding, Celia W.

    2013-01-01

    In 2012, tuberculosis (TB) remains a global health threat and is exacerbated both by the emergence of drug resistant Mycobacterium tuberculosis strains and its synergy with HIV infection. The waning effectiveness of current treatment regimens necessitates the development of new or repurposed anti-TB therapeutics for improved combination therapies against the disease. Exploiting atomic resolution structural information of proteins in complex with their substrates and/or inhibitors can facilitate structure-based rational drug design. Since our last review in 2009, there has been a wealth of new M. tuberculosis protein structural information. Once again, we have compiled the most promising structures with regards to potential anti-TB drug development and present them in this updated review. PMID:23167715

  15. Fighting an old disease with modern tools: characteristics and molecular detection methods of drug-resistant Mycobacterium tuberculosis.

    PubMed

    Engström, Anna

    2016-01-01

    Tuberculosis (TB) is an ancient disease, but not a disease of the past. The increasing prevalence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate detection of the pathogen, and its drug susceptibility pattern, is essential for timely initiation of treatment, and ultimately, control of the disease. Molecular-based methods offer a great chance to improve detection of drug-resistant TB; however, their development and usage should be accompanied with a profound understanding of drug resistance mechanisms and circulating M. tuberculosis strains in specific settings, as otherwise, the usefulness of such tests may be limited. This review gives an overview of the history of TB treatment and drug resistance, drug resistance mechanisms for the most commonly used drugs and molecular methods designed to detect drug-resistant strains.

  16. Activity of Nitazoxanide and Tizoxanide against Mycobacterium tuberculosis in vitro and in whole blood culture

    PubMed Central

    Harausz, Elizabeth P.; Chervenak, Keith A.; Good, Caryn E.; Jacobs, Michael R.; Wallis, Robert S.; Sanchez-Felix, Manuel; Boom, W. Henry

    2016-01-01

    Nitazoxanide (NTZ) and its metabolite tizoxanide (TIZ) were studied as antimycobacterial agents in vitro (in mycobacterial growth indicator tube [MGIT] cultures) and in a whole blood bactericidal assay. Both NTZ and TIZ show high protein binding. In MGIT cultures (albumin concentration=78 µM), inhibition of Mycobacterium tuberculosis growth occurred at total drug concentrations of ≥16 µg/ml, whereas in whole blood cultures (albumin concentration=350 µM), ≥128 µg/ml was required. Free drug fractions at these two conditions were estimated to be 69% and 2%, respectively. Co-incubation of NTZ and TIZ in human plasma for 72 hours nearly completely eliminated their ability to inhibit mycobacterial growth in MGIT. Interactions with plasma proteins may limit the potential of NTZ and TIZ as drugs for human tuberculosis. PMID:27156623

  17. Targeting Mycobacterium tuberculosis Topoisomerase I by Small-Molecule Inhibitors

    PubMed Central

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K.; Ekins, Sean

    2014-01-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules. PMID:25534741

  18. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    PubMed

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  19. The Role of B Cells and Humoral Immunity in Mycobacterium tuberculosis Infection

    PubMed Central

    Kozakiewicz, Lee; Phuah, Jiayao; Flynn, JoAnne

    2014-01-01

    Tuberculosis (TB) remains a serious threat to public health, causing 2 million deaths annually world-wide. The control of TB has been hindered by the requirement of long duration of treatment involving multiple chemotherapeutic agents, the increased susceptibility to Mycobacterium tuberculosis infection in the HIV-infected population, and the development of multi-drug resistant and extensively resistant strains of tubercle bacilli. An efficacious and cost-efficient way to control TB is the development of effective anti-TB vaccines. This measure requires thorough understanding of the immune response to M. tuberculosis. While the role of cell-mediated immunity in the development of protective immune response to the tubercle bacillus has been well established, the role of B cells in this process is not clearly understood. Emerging evidence suggests that B cells and humoral immunity can modulate the immune response to various intracellular pathogens, including M. tuberculosis. These lymphocytes form conspicuous aggregates in the lungs of tuberculous humans, non-human primates, and mice, which display features of germinal center B cells. In murine TB, it has been shown that B cells can regulate the level of granulomatous reaction, cytokine production, and the T cell response. This chapter discusses the potential mechanisms by which specific functions of B cells and humoral immunity can shape the immune response to intracellular pathogens in general, and to M. tuberculosis in particular. Knowledge of the B cell-mediated immune response to M. tuberculosis may lead to the design of novel strategies, including the development of effective vaccines, to better control TB. PMID:23468112

  20. Pulmonary disease due to Mycobacterium tuberculosis in a horse: zoonotic concerns and limitations of antemortem testing

    USDA-ARS?s Scientific Manuscript database

    A case of pulmonary tuberculosis caused by Mycobacterium tuberculosis was diagnosed in a horse. Clinical evaluation performed prior to euthanasia did not suggest tuberculosis, but postmortem examination provided pathological and bacteriological evidence of disease. In the lungs, multiple tuberculoid...

  1. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    PubMed Central

    Lerner, Thomas R.; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R.G.; Borel, Sophie; Diedrich, Collin R.; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M.; Wilkinson, Robert J.; Griffiths, Gareth; Gutierrez, Maximiliano G.

    2016-01-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes. PMID:26901813

  2. Effect of Lagerstroemia tomentosa and Diospyros virginiana methanolic extracts on different drug-resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Esfahani, B. Nasr; Hozoorbakhsh, F.; Rashed, Kh.; Havaei, S.A.; Heidari, K.; Moghim, Sh.

    2014-01-01

    Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis. The increasing incidence of multi drug resistance tuberculosis (MDR-TB) and extensively drug resistance tuberculosis (XDR-TB) worldwide highlighted the urgent need to search for alternative antimycobacterial agents. More and more people in developing countries utilize traditional medicine for their major primary health care needs. It has been determined that pharmaceutical plant, Lagerstroemia tomentosa and Diospyros virginiana, possesses some antibacterial effect. In this study, the antimycobacterial effects of L. tomentosa and D. virginiana methanolic extracts on sensitive and resistant isolates of MTB were examined. Leaf methanolic extract was prepared using methanol 70%. Sensitivity and resistance of isolates was determined by proportion method. The effects of two different methonolic extract concentrations (20 and 40 μg/ml) of the plants were examined against 6 sensitive and resistant strains of MTB with different patterns of drug resistance. MTB H37Rv (ATCC 27294) was set as control in all culturing and sensitivity testing processes. The results showed that L. tomentosa and D. virginiana methanolic extracts had weak inhibitory effect on different strains of MTB. The highest percentage of inhibition for L. tomentosa and D. virginiana was observed 38% and 33.3%, respectively. PMID:25657789

  3. [Study on molecular characteristics regarding DNA genotype of Mycobacterium tuberculosis clinical strains in Shandong].

    PubMed

    Deng, Yun-feng; Zhang, Yan-an; Zheng, Jian-li; Jing, Hui; Wang, Yan; Wang, Hai-ying; Ma, Xin; Liu, Zhi-min

    2010-03-01

    To establish the molecular characteristics of Mycobacterium tuberculosis and on factors influencing the recent transmission of drug resistant isolates in Shandong. Mycobacterium tuberculosis isolated from active pulmonary tuberculosis patients of 13 counties were genotyped by mycobacterial interspersed repetitive units (MIRU) methods. 12 loci of MIRU were detected in 558 isolates and a total of 143 MIRU patterns were confirmed. 66 isolates had distinct patterns, and 481 (86.2%) strains were in clusters. Shandong cluster included 177 strains with 74.6% of the isolates belonged to Beijing family. The recent transmission index of multi-drug resistance strains was in lower level, comparing to the susceptible strains. Our results showed that the Shandong cluster isolates had capacities of facilitating person-to-person transmission and high level of drug resistance.

  4. Infection caused by Mycobacterium tuberculosis.

    PubMed

    Peloquin, C A; Berning, S E

    1994-01-01

    To update readers on the clinical management of infections caused by Mycobacterium tuberculosis, to provide a general description of the organism, culture and susceptibility testing, and clinical manifestations of the disease, and to provide several aspects of the treatment of the disease, including historical perspective, current approaches, and research opportunities for the future. The current medical literature, including abstracts presented at recent international meetings, is reviewed. References were identified through MEDLINE, MEDLARS II, Current Contents, and published meeting abstracts. Data regarding the epidemiology, clinical manifestations, culture and susceptibility testing, and treatment of tuberculosis are cited. Specific attention has been focused on the clinical management of patients with noncontagious infection and potentially contagious active disease (TB) caused by M. tuberculosis. Information contributing to the discussion of the topics selected by the authors is reviewed. Data supporting and disputing specific conclusions are presented. The incidence of TB is increasing in the US, despite the fact that available technologies are capable of controlling the vast majority of existing cases. Fueling the fire is the problem of coinfection with HIV and M. tuberculosis. Very few drugs are available for the treatment of TB, and few of these approach the potency of isoniazid and rifampin. Preventive therapy of patients exposed to multiple-drug-resistant M. tuberculosis (MDR-TB) is controversial and of unknown efficacy. Treatment of active disease caused by MDR-TB requires up to four times longer, is associated with increased toxicity, and is far less successful than the treatment of drug-susceptible TB. Strategies for the management of such cases are presented. The rising incidence of TB in the US reflects a breakdown in the healthcare systems responsible for controlling the disease, which reflects the past budgetary reductions. Although TB control

  5. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  6. Tuberculosis in Alpacas (Lama pacos) Caused by Mycobacterium bovis▿

    PubMed Central

    García-Bocanegra, I.; Barranco, I.; Rodríguez-Gómez, I. M.; Pérez, B.; Gómez-Laguna, J.; Rodríguez, S.; Ruiz-Villamayor, E.; Perea, A.

    2010-01-01

    We report three cases of tuberculosis in alpacas from Spain caused by Mycobacterium bovis. The animals revealed two different lesional patterns. Mycobacterial culture and PCR assay yielded positive results for M. bovis. Molecular typing of the isolates identified spoligotype SB0295 and identical variable-number tandem repeat (VNTR) allele sizes. PMID:20237097

  7. Goats challenged with different members of the Mycobacterium tuberculosis complex display different clinical pictures.

    PubMed

    Bezos, J; Casal, C; Díez-Delgado, I; Romero, B; Liandris, E; Álvarez, J; Sevilla, I A; Juan, L de; Domínguez, L; Gortázar, C

    2015-10-15

    Tuberculosis (TB) in goats (Capra hircus) is due to infection with members of the Mycobacterium tuberculosis complex (MTC), mainly Mycobacterium bovis and Mycobacterium caprae. We report a comparative experimental infection of goats with M. bovis, M. caprae and M. tuberculosis strains. We hypothesized that goats experimentally infected with different members of the MTC would display different clinical pictures. Three groups of goats were challenged with either M. bovis SB0134 (group 1, n=5), M. caprae SB0157 (group 2, n=5) and M. tuberculosis SIT58 (group 3, n=4). The highest mean total lesion score was observed in M. bovis challenged goats (mean 15.2, range 9-19), followed by those challenged with M. caprae (10.8, 2-23). The lowest score was recorded in goats challenged with M. tuberculosis (3, 1-6). Culture results coincided with the lesion scores in yielding more positive pools (7/15) in M. bovis challenged goats. By contrast, only three pools were positive from goats challenged M. tuberculosis (3/12) and with M. caprae (3/15), respectively. Differences in the performance of the intradermal and gamma-interferon (IFN-γ) tests depending of the group were observed since all goats from group 1 were diagnosed using intradermal test and these goats reacted earlier to the IFN-γ assay in comparison to the other groups. This study confirmed that goats experimentally infected with different members of the MTC display different clinical pictures and this fact may have implications for MTC maintenance and bacterial shedding. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis.

    PubMed

    Yagi, Akiho; Uchida, Ryuji; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Kimura, Ken-Ichi; Tomoda, Hiroshi

    2017-05-01

    An in vivo-mimic silkworm infection model with Mycobacterium smegmatis was established. When silkworms were raised at 37 °C following an injection of M. smegmatis cells (1.25 × 10 7 CFU larva -1  g -1 ) into the silkworm hemolymph, they died within 48 h. Under these conditions, four microbial peptides with anti-M. smegmatis activity, lariatin A, calpinactam, lysocin E and propeptin, exerted therapeutic effects in a dose-dependent manner, and these are also clinically used agents that are active against Mycobacterium tuberculosis. These results indicate that the silkworm infection model with M. smegmatis is practically useful for the screening of therapeutically effective anti-M. tuberculosis antibiotics.

  9. Comprehensive Multicenter Evaluation of a New Line Probe Assay Kit for Identification of Mycobacterium Species and Detection of Drug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Mitarai, Satoshi; Kato, Seiya; Ogata, Hideo; Aono, Akio; Chikamatsu, Kinuyo; Mizuno, Kazue; Toyota, Emiko; Sejimo, Akiko; Suzuki, Katsuhiro; Yoshida, Shiomi; Saito, Takefumi; Moriya, Ataru; Fujita, Akira; Sato, Shuko; Matsumoto, Tomoshige; Ano, Hiromi; Suetake, Toshinori; Kondo, Yuji; Mori, Toru

    2012-01-01

    We evaluated a new line probe assay (LiPA) kit to identify Mycobacterium species and to detect mutations related to drug resistance in Mycobacterium tuberculosis. A total of 554 clinical isolates of Mycobacterium tuberculosis (n = 316), Mycobacterium avium (n = 71), Mycobacterium intracellulare (n = 51), Mycobacterium kansasii (n = 54), and other Mycobacterium species (n = 62) were tested with the LiPA kit in six hospitals. The LiPA kit was also used to directly test 163 sputum specimens. The results of LiPA identification of Mycobacterium species in clinical isolates were almost identical to those of conventional methods. Compared with standard drug susceptibility testing results for the clinical isolates, LiPA showed a sensitivity and specificity of 98.9% and 97.3%, respectively, for detecting rifampin (RIF)-resistant clinical isolates; 90.6% and 100%, respectively, for isoniazid (INH) resistance; 89.7% and 96.0%, respectively, for pyrazinamide (PZA) resistance; and 93.0% and 100%, respectively, for levofloxacin (LVX) resistance. The LiPA kit could detect target species directly in sputum specimens, with a sensitivity of 85.6%. Its sensitivity and specificity for detecting RIF-, PZA-, and LVX-resistant isolates in the sputum specimens were both 100%, and those for detecting INH-resistant isolates were 75.0% and 92.9%, respectively. The kit was able to identify mycobacterial bacilli at the species level, as well as drug-resistant phenotypes, with a high sensitivity and specificity. PMID:22205814

  10. Development of a Quantitative Sandwich Enzyme-Linked Immunosorbent Assay for Detecting the MPT64 Antigen of Mycobacterium tuberculosis

    PubMed Central

    Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae

    2014-01-01

    Purpose Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. Materials and Methods The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. Results The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×104 CFU/mL and 2.0×106 CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). Conclusion The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis. PMID:24719143

  11. Development of a quantitative sandwich enzyme-linked immunosorbent assay for detecting the MPT64 antigen of Mycobacterium tuberculosis.

    PubMed

    Ji, Mijung; Cho, Byungki; Cho, Young Shik; Park, Song-Yong; Cho, Sang-Nae; Jeon, Bo-Young; Yoon, Byoung-Su

    2014-05-01

    Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M. tuberculosis, an antigen marker of the M. tuberculosis complex, was developed. The MPT64 protein was expressed, and anti-MPT64 monoclonal antibodies were prepared. A sandwich ELISA was established using recombinant MPT64 protein and anti-MPT64 monoclonal antibodies. The sandwich MPT64 ELISA was evaluated using reference and clinical mycobacterial strains. The sandwich MPT64 ELISA detected MPT64 protein from 2.1 ng/mL to 250 ng/mL (equivalent to 1.7×10⁴ CFU/mL and 2.0×10⁶ CFU/mL). All 389 clinical M. tuberculosis isolates tested positive in the sandwich MPT64 ELISA (sensitivity, 100%), and the assay showed no cross reactivity to any tested nontuberculous mycobacterial strain (specificity, 100%). The sandwich MPT64 ELISA is a highly sensitive and quantitative test for MPT64 protein, which can identify M. tuberculosis.

  12. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis.

    PubMed

    Salazar, L; Fsihi, H; de Rossi, E; Riccardi, G; Rios, C; Cole, S T; Takiff, H E

    1996-04-01

    The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.

  13. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies

    PubMed Central

    Kato-Maeda, Midori; Metcalfe, John Z.; Flores, Laura

    2014-01-01

    Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed ‘molecular epidemiology’) to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools. PMID:21366420

  14. Mycobacterium smegmatis strain for detection of Mycobacterium tuberculosis by PCR used as internal control for inhibition of amplification and for quantification of bacteria.

    PubMed Central

    Kolk, A H; Noordhoek, G T; de Leeuw, O; Kuijper, S; van Embden, J D

    1994-01-01

    For the detection of Mycobacterium tuberculosis by PCR, the IS6110 sequence was used. A modified target was constructed by insertion of 56 nucleotides in the IS6110 insertion element of Mycobacterium bovis BCG. This modified insertion sequence was integrated into the genome of Mycobacterium smegmatis, a mycobacterium species which does not contain the IS6110 element. When DNA from the modified M. smegmatis 1008 strain was amplified with IS6110-specific primers INS1 and INS2, a band of 301 bp was seen on agarose gel, whereas the PCR product of M. tuberculosis complex DNA was a 245-bp fragment with these primers. The addition of a small number of M. smegmatis 1008 cells to clinical samples before DNA purification enables the detection of problems which may be due to the loss of DNA in the isolation procedure or to the presence of inhibitors. The presence of inhibitors of the amplification reaction can be confirmed by the addition of M. smegmatis 1008 DNA after the DNA isolation procedure. Furthermore, competition between the different target DNAs of M. smegmatis 1008 DNA and M. tuberculosis complex DNA enables the estimation of the number of IS6110 elements in the clinical sample. Images PMID:8051267

  15. Establishment of a Neonatal Rhesus Macaque Model to Study Mycobacterium tuberculosis Infection

    PubMed Central

    Cepeda, Magdalena; Salas, Mary; Folwarczny, Jessica; Leandro, Ana C.; Hodara, Vida L.; de la Garza, Melissa A.; Dick, Edward J.; Owston, Michael; Armitige, Lisa Y.; Gauduin, Marie-Claire

    2014-01-01

    Summary Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) with an estimated 8.8 million new TB cases and 1.4 million deaths annually. Tuberculosis is the leading cause of death in AIDS patients worldwide but very little is known about early TB infection or TB/HIV co-infection in infants. A clinically relevant newborn animal model to study TB infection is urgently needed. We have successfully established an aerosol newborn/infant model in neonatal nonhuman primates (NHPs) that mimics clinical and bacteriological characteristics of Mtb infection as seen in human newborns/infants. Further, this model will allow the establishment of a TB coinfection model of pediatric AIDS. Aerosol versus intra broncho-alveolar Mtb infection was studied. Interestingly, 42 days post infection specific lesions were detected suggestive of the classic Ghon focus in human children. Concurrently, specific cellular immune responses developed 4–6 weeks after Mtb infection. Using the enzyme-linked immunospot (ELISPOT) assays, we found that IL-12 production correlated with early Mtb infection lesions seen by routine thoracic radiographs. Overall, this work represents the first example of early Mtb infection of newborn macaques. This study gives us a unique opportunity to further characterize immunopathogenesis and establish a TB/SIV co-infection model for pediatric AIDS. PMID:24388650

  16. Mycobacterium leprae RecA is structurally analogous but functionally distinct from Mycobacterium tuberculosis RecA protein.

    PubMed

    Patil, K Neelakanteshwar; Singh, Pawan; Harsha, Sri; Muniyappa, K

    2011-12-01

    Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Identification of a New DNA Region Specific for Members of Mycobacterium tuberculosis Complex

    PubMed Central

    Magdalena, Juana; Vachée, Anne; Supply, Philip; Locht, Camille

    1998-01-01

    The successful use of DNA amplification for the detection of tuberculous mycobacteria crucially depends on the choice of the target sequence, which ideally should be present in all tuberculous mycobacteria and absent from all other bacteria. In the present study we developed a PCR procedure based on the intergenic region (IR) separating two genes encoding a recently identified mycobacterial two-component system named SenX3-RegX3. The senX3-regX3 IR is composed of a novel type of repetitive sequence, called mycobacterial interspersed repetitive units (MIRUs). In a survey of 116 Mycobacterium tuberculosis strains characterized by different IS6110 restriction fragment length polymorphisms, 2 Mycobacterium africanum strains, 3 Mycobacterium bovis strains (including 2 BCG strains), and 1 Mycobacterium microti strain, a specific PCR fragment was amplified in all cases. This collection included M. tuberculosis strains that lack IS6110 or mtp40, two target sequences that have previously been used for the detection of M. tuberculosis. No PCR fragment was amplified when DNA from other organisms was used, giving a sensitivity of 100% and a specificity of 100% in the confidence limit of this study. The numbers of MIRUs were found to vary among strains, resulting in six different groups of strains on the basis of the size of the amplified PCR fragment. However, the vast majority of the strains (approximately 90%) fell within the same group, containing two 77-bp MIRUs followed by one 53-bp MIRU. PMID:9542912

  18. [Increased IL-4 production in response to virulent Mycobacterium tuberculosis in tuberculosis patients with advanced disease].

    PubMed

    Ordway, Diane J; Martins, Marta S; Costa, Leonor M; Freire, Mónica S; Arroz, Maria J; Dockrell, Hazel M; Ventura, Fernando A

    2005-01-01

    The study was designed to compare immune responses to Mycobacterium tuberculosis bacilli and antigens in healthy Portuguese subjects and pulmonary tuberculosis patients (TB), and to correlate immune status with clinical severity of tuberculosis disease. PBMC were cultured and stimulated with live and killed M. tuberculosis H37Rv and purified protein derivative (PPD) and lymphoproliferation and production of IFN-gamma and IL-5/IL-4 by these cultures were evaluated by the use of ELISA and multi-parameter flow cytometry. PBMC from 30 tuberculosis patients demonstrated significantly reduced amounts of proliferation and IFN-gamma when stimulated with live M. tuberculosis compared the control group. Of 15 tuberculosis patients tested for intracellular IL-4 following stimulation with M. tuberculosis, 7 showed greatly increased IL-4 production in CD8+ and gammadelta+ T cells. Tuberculosis patients demonstrated an increase of intracellular IL-4 after PBMC were stimulated with live M. tuberculosis in the CD4+ phenotype, but more notably in CD8+ and gammadelta TCR+ subsets. Increased production of IL-4 in tuberculosis patients was primarily in individuals with advanced involvement of lung parenchymal with high bacterial loads in sputum. These results suggest that an alteration in type 1 and type 2 cytokine balance can occur in patients with tuberculosis at an advanced clinical stage of disease.

  19. Complex multifractal nature in Mycobacterium tuberculosis genome

    PubMed Central

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-01-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326

  20. Complex multifractal nature in Mycobacterium tuberculosis genome

    NASA Astrophysics Data System (ADS)

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-04-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.

  1. Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria

    PubMed Central

    Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í

    2000-01-01

    Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227

  2. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats.

    PubMed

    Bezos, J; Casal, C; Álvarez, J; Roy, A; Romero, B; Rodríguez-Bertos, A; Bárcena, C; Díez, A; Juste, R; Gortázar, C; Puentes, E; Aguiló, N; Martín, C; de Juan, L; Domínguez, L

    2017-05-01

    The development of new vaccines against animal tuberculosis (TB) is a priority for improving the control and eradication of this disease, particularly in those species not subjected to compulsory eradication programmes. In this study, the protection conferred by the Mycobacterium tuberculosis SO 2 experimental vaccine was evaluated using a natural infection model in goats. Twenty-six goats were distributed in three groups: (1) 10 goats served as a control group; (2) six goats were subcutaneously vaccinated with BCG; and (3) 10 goats were subcutaneously vaccinated with SO 2 . Four months after vaccination, all groups were merged with goats infected with Mycobacterium bovis or Mycobacterium caprae, and tested over a 40 week period using a tuberculin intradermal test and an interferon-γ assay for mycobacterial reactivity. The severity of lesions was determined at post-mortem examination and the bacterial load in tissues were evaluated by culture. The two vaccinated groups had significantly lower lesion and bacterial culture scores than the control group (P<0.05); at the end of the study, the SO 2 vaccinated goats had the lowest lesion and culture scores. These results suggest that the SO 2 vaccine provides some protection against TB infection acquired from natural exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Novel species including Mycobacterium fukienense sp. is found from tuberculosis patients in Fujian Province, China, using phylogenetic analysis of Mycobacterium chelonae/abscessus complex.

    PubMed

    Zhang, Yuan Yuan; Li, Yan Bing; Huang, Ming Xiang; Zhao, Xiu Qin; Zhang, Li Shui; Liu, Wen En; Wan, Kang Lin

    2013-11-01

    To identify the novel species 'Mycobacterium fukienense' sp. nov of Mycobacterium chelonae/abscessus complex from tuberculosis patients in Fujian Province, China. Five of 27 clinical Mycobacterium isolates (Cls) were previously identified as M. chelonae/abscessus complex by sequencing the hsp65, rpoB, 16S-23S rRNA internal transcribed spacer region (its), recA and sodA house-keeping genes commonly used to describe the molecular characteristics of Mycobacterium. Clinical Mycobacterium isolates were classified according to the gene sequence using a clustering analysis program. Sequence similarity within clusters and diversity between clusters were analyzed. The 5 isolates were identified with distinct sequences exhibiting 99.8% homology in the hsp65 gene. However, a complete lack of homology was observed among the sequences of the rpoB, 16S-23S rRNA internal transcribed spacer region (its), sodA, and recA genes as compared with the M. abscessus. Furthermore, no match for rpoB, sodA, and recA genes was identified among the published sequences. The novel species, Mycobacterium fukienense, is identified from tuberculosis patients in Fujian Province, China, which does not belong to any existing subspecies of M. chelonea/abscessus complex. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. rBCG30-Induced Immunity and Cross-Protection against Mycobacterium leprae Challenge Are Enhanced by Boosting with the Mycobacterium tuberculosis 30-Kilodalton Antigen 85B

    PubMed Central

    Gillis, Thomas P.; Tullius, Michael V.

    2014-01-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. PMID:25001602

  5. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    PubMed

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS.

    PubMed

    Simithy, Johayra; Reeve, Nathaniel; Hobrath, Judith V; Reynolds, Robert C; Calderón, Angela I

    2014-03-01

    Increasing drug resistance has challenged the control and treatment of tuberculosis, sparking recent interest in finding new antitubercular agents with different chemical scaffolds and mechanisms of action. Mycobacterium tuberculosis shikimate kinase (MtSK), an enzyme present in the shikimate pathway in bacteria, is essential for the survival of the tubercle bacillus, representing an ideal target for therapeutic intervention given its absence in mammals. In this study, a small library of 404 synthetic antimycobacterial compounds identified and supplied through the NIH Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) high throughput screening program against whole cell M. tuberculosis H37Rv was further screened using a mass spectrometry-based functional assay in order to identify a potential enzymatic target. Fourteen compounds containing an oxadiazole-amide or a 2-aminobenzothiazole core scaffold showed MtSK inhibitory activity at 50 μM, with the lowest giving an IC50 of 1.94 μM. Induced fit docking studies suggested that the scaffolds shared by these compounds fit well in the shikimate binding pocket of MtSK. In summary, we report new early discovery stage lead scaffolds targeting the essential protein MtSK that can be further pursued in a rational drug design program for the discovery of more selective antitubercular drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Molecular Epidemiology of Mycobacterium tuberculosis Isolates in 100 Patients With Tuberculosis Using Pulsed Field Gel Electrophoresis

    PubMed Central

    Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz

    2015-01-01

    Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly

  8. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  9. Rapid susceptibility testing of Mycobacterium avium complex and Mycobacterium tuberculosis isolated from AIDS patients

    NASA Technical Reports Server (NTRS)

    Dhople, Arvind M.

    1994-01-01

    In ominous projections issued by both U.S. Public Health Service and the World Health Organization, the epidemic of HIV infection will continue to rise more rapidly worldwide than predicted earlier. The AIDS patients are susceptible to diseases called opportunistic infections of which tuberculosis and Mycobacterium avium complex (MAC) infection are most common. This has created an urgent need to uncover new drugs for the treatment of these infections. In the seventies, NASA scientists at Goddard Space Flight Center, Greenbelt, MD, had adopted a biochemical indicator, adenosine triphosphate (ATP), to detect presence of life in extraterrestrial space. We proposed to develop ATP assay technique to determine sensitivity of antibacterial compounds against MAC and M. tuberculosis.

  10. Assessment of the probability of introducing Mycobacterium tuberculosis into Danish cattle herds.

    PubMed

    Foddai, Alessandro; Nielsen, Liza Rosenbaum; Krogh, Kaspar; Alban, Lis

    2015-11-01

    Tuberculosis is a zoonosis caused by Mycobacterium spp. International trade in cattle is regulated with respect to Mycobacterium bovis (M. bovis) but not Mycobacterium tuberculosis (M. tuberculosis), despite that cattle can become infected with both species. In this study we estimated the annual probability (PIntro) of introducing M. tuberculosis into the Danish cattle population, by the import of cattle and/or by immigrants working in Danish cattle herds. Data from 2013 with date, number, and origin of imported live cattle were obtained from the Danish cattle database. Information on immigrants working in Danish cattle herds was obtained through a questionnaire sent to Danish cattle farmers. The gained inputs were fed into three stochastic scenario trees to assess the PIntro for the current and alternative test-and-manage strategies, such as testing of imported animals and/or testing immigrant workers with the tuberculin skin test. We considered the population of Danish farmers and practitioners free of tuberculosis, because in Denmark, the incidence of the disease in humans is low and primarily related to immigrants and socially disadvantaged people. The median annual probability of introducing M. tuberculosis into the Danish cattle population due to imported live cattle was 0.008% (90% P.I.: 0.0007%; 0.03%), while the probability due to immigrant workers was 4.1% (90% P.I.: 0.8%; 12.1%). The median combined probability (PIntro) due to imported cattle plus workers was 4.1% (90% P.I.: 0.8%; 12.6%). Hence, on average at least one introduction each 24 (90% P.I.: 8; 125) years could be expected. Imported live cattle appeared to play a marginal role on the overall annual PIntro, because they represented only approximately 0.2% of the median annual probability. By testing immigrant workers the overall annual PIntro could be reduced to 0.2% (90% P.I.: 0.04%; 0.7%). Thus, testing of immigrant workers could be considered as a risk mitigation strategy to markedly reduce

  11. Increasing incidence of fluoroquinolone-resistant Mycobacterium tuberculosis in Mumbai, India.

    PubMed

    Agrawal, D; Udwadia, Z F; Rodriguez, C; Mehta, A

    2009-01-01

    Tertiary referral centre, private hospital, Mumbai, India. To analyse the incidence of fluoroquinolone (FQ) resistant Mycobacterium tuberculosis (TB) in our laboratory from 1995 to 2004. Retrospective review and analysis of the drug susceptibility test records of all M. tuberculosis culture-positive samples from our Microbiology Department from 1995 to 2004. FQ resistance has increased exponentially in our laboratory, from 3% in 1996 to 35% in 2004. The incidence of multidrug-resistant tuberculosis has also increased during the same period, from 33% in 1995 to 56% in 2004. The incidence of FQ-resistant M. tuberculosis is gradually increasing to alarming levels. This may be due to widespread use of this vital group of drugs in the treatment of community-acquired infections. We urge that these broad spectrum antibiotics be used judiciously, and ideally be reserved for treatment of resistant TB in TB-endemic areas.

  12. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    PubMed

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  13. Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti.

    PubMed

    Godreuil, S; Renaud, F; Choisy, M; Depina, J J; Garnotel, E; Morillon, M; Van de Perre, P; Bañuls, A L

    2010-07-01

    Djibouti is an East African country with a high tuberculosis incidence. This study was conducted over a 2-month period in Djibouti, during which 62 consecutive patients with pulmonary tuberculosis (TB) were included. Genetic characterization of Mycobacterium tuberculosis, using mycobacterial interspersed repetitive-unit variable-number tandem-repeat typing and spoligotyping, was performed. The genetic and phylogenetic analysis revealed only three major families (Central Asian, East African Indian and T). The high diversity and linkage disequilibrium within each family suggest a long period of clonal evolution. A Bayesian approach shows that the phylogenetic structure observed in our sample of 62 isolates is very likely to be representative of the phylogenetic structure of the M. tuberculosis population in the total number of TB cases.

  14. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy.

    PubMed

    Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan

    2014-01-01

    Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids.

  15. Characterization and function of Mycobacterium tuberculosis H37Rv Lipase Rv1076 (LipU).

    PubMed

    Li, Chunyan; Li, Qiming; Zhang, Yuan; Gong, Zhen; Ren, Sai; Li, Ping; Xie, Jianping

    2017-03-01

    Lipids and lipases/esterases are essential for Mycobacterium tuberculosis (Mtb) survival and persistence, even virulence. Mycobacterium tuberculosis H37Rv Rv1076 (LipU), a member of lipase family, is homologous to the human Hormone Sensitive Lipase (HSL) based on the presence of conserved motif 'GXSXG'. To define the enzymatic characteristics of rv1076, the gene was cloned, and expressed in Escherichia coli. The protein was purified for enzymatic characterization. LipU showed high specific activity for the hydrolysis of short carbon chain substrates with optimal activity at 40°C/pH 8.0 and stability at low temperature and near-neutral pH. The specific activity, Km and Vmax of LipU was calculated to 176.7U/mg, 1.73μM and 62.24μM/min respectively. Ionic detergents can inhibit its activity. The active-site residues of LipU were determined to be Ser140, Asp244 and His269 by site-directed mutagenesis. The upregulation of Mycobacterium tuberculosis rv1076 under nutritive stress implicates a role in starvation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru

    PubMed Central

    Grandjean, Louis; Iwamoto, Tomotada; Lithgow, Anna; Gilman, Robert H; Arikawa, Kentaro; Nakanishi, Noriko; Martin, Laura; Castillo, Edith; Alarcon, Valentina; Coronel, Jorge; Solano, Walter; Aminian, Minoo; Guezala, Claudia; Rastogi, Nalin; Couvin, David; Sheen, Patricia; Zimic, Mirko; Moore, David AJ

    2015-01-01

    Background The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis. Methods To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census. Results The Latin American Mediterranean (LAM) clade (OR 2.4, p<0.001) was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively). Conclusions Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs. PMID:25984723

  17. New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo

    PubMed Central

    Malm, Sven; Linguissi, Laure S. Ghoma; Tekwu, Emmanuel M.; Vouvoungui, Jeannhey C.; Kohl, Thomas A.; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K.; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine

    2017-01-01

    Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC. PMID:28221129

  18. New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo.

    PubMed

    Malm, Sven; Linguissi, Laure S Ghoma; Tekwu, Emmanuel M; Vouvoungui, Jeannhey C; Kohl, Thomas A; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine; Niemann, Stefan

    2017-03-01

    Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC.

  19. Interaction of Erp Protein of Mycobacterium tuberculosis with Rv2212 Enhances Intracellular Survival of Mycobacterium smegmatis.

    PubMed

    Ganaie, Arsheed Ahmad; Trivedi, Garima; Kaur, Amanpreet; Jha, Sidharth Shankar; Anand, Shashi; Rana, Vibhuti; Singh, Amit; Kumar, Shekhar; Sharma, Charu

    2016-10-15

    The Mycobacterium tuberculosis exported repetitive protein (RvErp) is a crucial virulence-associated factor as determined by its role in the survival and multiplication of mycobacteria in cultured macrophages and in vivo Although attempts have been made to understand the function of Erp protein, its exact role in Mycobacterium pathogenesis is still elusive. One way to determine this is by searching for novel interactions of RvErp. Using a yeast two-hybrid assay, an adenylyl cyclase (AC), Rv2212, was found to interact with RvErp. The interaction between RvErp and Rv2212 is direct and occurs at the endogenous level. The Erp protein of Mycobacterium smegmatis (MSMEG_6405, or MsErp) interacts neither with Rv2212 nor with Ms_4279, the M. smegmatis homologue of Rv2212. Deletion mutants of Rv2212 revealed its adenylyl cyclase domain to be responsible for the interaction. RvErp enhances Rv2212-mediated cyclic AMP (cAMP) production. Also, the biological significance of the interaction between RvErp and Rv2212 was demonstrated by the enhanced survival of M. smegmatis within THP-1 macrophages. Taken together, these studies address a novel mechanism by which Erp executes its function. RvErp is one of the important virulence factors of M. tuberculosis This study describes a novel function of RvErp protein of M. tuberculosis by identifying Rv2212 as its interacting protein. Rv2212 is an adenylyl cyclase (AC) and produces cAMP, one of the prime second messengers that regulate the intracellular survival of mycobacteria. Therefore, the significance of investigating novel interactions of RvErp is paramount in unraveling the mechanisms governing the intracellular survival of mycobacteria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Interaction of Mycobacterium tuberculosis with human respiratory mucosa.

    PubMed

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Ratliff, T L; Wilson, R

    2002-01-01

    Endobronchial infection is associated with pulmonary tuberculosis in the majority of cases. We have investigated the adherence of Mycobacterium tuberculosis to the human respiratory mucosa. Organ cultures constructed with human tissue were infected with M. tuberculosis in the presence or absence of mycobacterial fibronectin attachment cell surface proteins and examined by scanning electron microscopy. M. tuberculosis adhered mainly to extracellular matrix (ECM) in areas of mucosal damage, but not to ciliated mucosa, intact extruded cells, basement membrane or collagen fibres. Bacteria also adhered to fibrous but not globular mucus and occasionally to healthy unciliated mucosa, open tight junctions and to extruded cells that had degenerated, exposing their contents. There was a significant reduction (p<0.05) in the number of bacteria adhering to ECM after pre-incubation of bacteria with fibronectin and after pre-incubation of the tissue with M. avium fibronectin attachment protein (FAP) and M. bovis antigen 85B protein, in a concentration dependent manner. The combined effect of FAP and antigen 85B protein was significantly greater than either protein alone. Bacterial adherence to fibrous mucus was not influenced by fibronectin. We conclude that M. tuberculosis adheres to ECM in areas of mucosal damage at least in part via FAP and antigen 85B protein.

  1. Functional, thermodynamics, structural and biological studies of in silico-identified inhibitors of Mycobacterium tuberculosis enoyl-ACP(CoA) reductase enzyme

    NASA Astrophysics Data System (ADS)

    Martinelli, Leonardo K. B.; Rotta, Mariane; Villela, Anne D.; Rodrigues-Junior, Valnês S.; Abbadi, Bruno L.; Trindade, Rogério V.; Petersen, Guilherme O.; Danesi, Giuliano M.; Nery, Laura R.; Pauli, Ivani; Campos, Maria M.; Bonan, Carla D.; de Souza, Osmar Norberto; Basso, Luiz A.; Santos, Diogenes S.

    2017-04-01

    Novel chemotherapeutics agents are needed to kill Mycobacterium tuberculosis, the main causative agent of tuberculosis (TB). The M. tuberculosis 2-trans-enoyl-ACP(CoA) reductase enzyme (MtInhA) is the druggable bona fide target of isoniazid. New chemotypes were previously identified by two in silico approaches as potential ligands to MtInhA. The inhibition mode was determined by steady-state kinetics for seven compounds that inhibited MtInhA activity. Dissociation constant values at different temperatures were determined by protein fluorescence spectroscopy. van’t Hoff analyses of ligand binding to MtInhA:NADH provided the thermodynamic signatures of non-covalent interactions (ΔH°, ΔS°, ΔG°). Phenotypic screening showed that five compounds inhibited in vitro growth of M. tuberculosis H37Rv strain. Labio_16 and Labio_17 compounds also inhibited the in vitro growth of PE-003 multidrug-resistant strain. Cytotoxic effects on Hacat, Vero and RAW 264.7 cell lines were assessed for the latter two compounds. The Labio_16 was bacteriostatic and Labio_17 bactericidal in an M. tuberculosis-infected macrophage model. In Zebrafish model, Labio_16 showed no cardiotoxicity whereas Labio_17 showed dose-dependent cardiotoxicity. Accordingly, a model was built for the MtInhA:NADH:Labio_16 ternary complex. The results show that the Labio_16 compound is a direct inhibitor of MtInhA, and it may represent a hit for the development of chemotherapeutic agents to treat TB.

  2. A Mycobacterium tuberculosis Cytochrome bd Oxidase Mutant Is Hypersensitive to Bedaquiline

    PubMed Central

    Hartman, Travis E.

    2014-01-01

    ABSTRACT The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. PMID:25028424

  3. Molecular Characteristics of Mycobacterium tuberculosis Strains Isolated from Cutaneous Tuberculosis Patients in China.

    PubMed

    Jiang, Haiqin; Jin, Yali; Vissa, Varalakshmi; Zhang, Liangfen; Liu, Weijun; Qin, Lianhua; Wan, Kanglin; Wu, Xiaocui; Wang, Hongsheng; Liu, Weida; Wang, Baoxi

    2017-04-06

    Cutaneous tuberculosis (CTB) is probably underreported due to difficulties in detection and diagnosis. To address this issue, genotypes of Mycobacterium tuberculosis strains isolated from 30 patients with CTB were mapped at multiple loci, namely, RD105 deletions, spacer oligonucleotides, and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats (MIRU-VNTRs). Fifty-eight strains of pulmonary tuberculosis (PTB) were mapped as experimental controls. Drug resistance-associated gene mutations were determined by amplicon sequencing of target regions within 7 genes. Beijing family isolates were the most prevalent strains in CTB and PTB. MIRU-VNTR typing separated the Beijing strains from the non-Beijing strains, and the majority of CTB could be separated from PTB counterparts. Drug resistance determining regions showed only one CTB strain expressing isomazid resistance. Thus, while the CTB strains belonged to the same phylogenetic lineages and sub-lineages as the PTB strains, they differed at the level of several MIRU-VNTRs and in the proportion of drug resistance.

  4. Genetic diversity, transmission dynamics and drug resistance of Mycobacterium tuberculosis in Angola.

    PubMed

    Perdigão, João; Clemente, Sofia; Ramos, Jorge; Masakidi, Pedro; Machado, Diana; Silva, Carla; Couto, Isabel; Viveiros, Miguel; Taveira, Nuno; Portugal, Isabel

    2017-02-23

    Tuberculosis (TB) poses a serious public health problem in Angola. No surveillance data on drug resistance is available and nothing is known regarding the genetic diversity and population structure of circulating Mycobacterium tuberculosis strains. Here, we have genotyped and evaluated drug susceptibility of 89 Mycobacterium tuberculosis clinical isolates from Luanda. Thirty-three different spoligotype profiles corresponding to 24 different Shared International Types (SIT) and 9 orphan profiles were detected. SIT 20 (LAM1) was the most prevalent (n = 16, 18.2%) followed by SIT 42 (LAM9; n = 15, 17.1%). Overall, the M. tuberculosis population structure in this sample was dominated by LAM (64.8%) and T (33.0%) strains. Twenty-four-loci MIRU-VNTR analysis revealed that a total of 13 isolates were grouped in 5 distinct clusters. Drug susceptibility data showed that 22 (24.7%) of the 89 clinical isolates were resistant to one or more antibacillary drugs of which 4 (4.5%) were multidrug resistant. In conclusion, this study demonstrates a high predominance of LAM strains circulating in the Luanda setting and the presence of recent transmission events. The rate and the emergence dynamics of drug resistant TB found in this sample are significant and highlight the need of further studies specifically focused on MDR-TB transmission.

  5. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade

    PubMed Central

    Pepperell, Caitlin S.; Granka, Julie M.; Alexander, David C.; Behr, Marcel A.; Chui, Linda; Gordon, Janet; Guthrie, Jennifer L.; Jamieson, Frances B.; Langlois-Klassen, Deanne; Long, Richard; Nguyen, Dao; Wobeser, Wendy; Feldman, Marcus W.

    2011-01-01

    Patterns of gene flow can have marked effects on the evolution of populations. To better understand the migration dynamics of Mycobacterium tuberculosis, we studied genetic data from European M. tuberculosis lineages currently circulating in Aboriginal and French Canadian communities. A single M. tuberculosis lineage, characterized by the DS6Quebec genomic deletion, is at highest frequency among Aboriginal populations in Ontario, Saskatchewan, and Alberta; this bacterial lineage is also dominant among tuberculosis (TB) cases in French Canadians resident in Quebec. Substantial contact between these human populations is limited to a specific historical era (1710–1870), during which individuals from these populations met to barter furs. Statistical analyses of extant M. tuberculosis minisatellite data are consistent with Quebec as a source population for M. tuberculosis gene flow into Aboriginal populations during the fur trade era. Historical and genetic analyses suggest that tiny M. tuberculosis populations persisted for ∼100 y among indigenous populations and subsequently expanded in the late 19th century after environmental changes favoring the pathogen. Our study suggests that spread of TB can occur by two asynchronous processes: (i) dispersal of M. tuberculosis by minimal numbers of human migrants, during which small pathogen populations are sustained by ongoing migration and slow disease dynamics, and (ii) expansion of the M. tuberculosis population facilitated by shifts in host ecology. If generalizable, these migration dynamics can help explain the low DNA sequence diversity observed among isolates of M. tuberculosis and the difficulties in global elimination of tuberculosis, as small, widely dispersed pathogen populations are difficult both to detect and to eradicate. PMID:21464295

  6. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    PubMed Central

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  7. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus.

    PubMed

    Behar, Samuel M; Carpenter, Stephen M; Booty, Matthew G; Barber, Daniel L; Jayaraman, Pushpa

    2014-12-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Pulmonary tuberculosis

    MedlinePlus

    TB; Tuberculosis - pulmonary; Mycobacterium - pulmonary ... Pulmonary TB is caused by the bacterium Mycobacterium tuberculosis (M tuberculosis) . TB is contagious. This means the bacteria is easily spread from an infected person ...

  9. Linking minimum inhibitory concentrations to whole genome sequence-predicted drug resistance in Mycobacterium tuberculosis strains from Romania.

    PubMed

    Ruesen, Carolien; Riza, Anca Lelia; Florescu, Adriana; Chaidir, Lidya; Editoiu, Cornelia; Aalders, Nicole; Nicolosu, Dragos; Grecu, Victor; Ioana, Mihai; van Crevel, Reinout; van Ingen, Jakko

    2018-06-26

    Mycobacterium tuberculosis drug resistance poses a major threat to tuberculosis control. Current phenotypic tests for drug susceptibility are time-consuming, technically complex, and expensive. Whole genome sequencing is a promising alternative, though the impact of different drug resistance mutations on the minimum inhibitory concentration (MIC) remains to be investigated. We examined the genomes of 72 phenotypically drug-resistant Mycobacterium tuberculosis isolates from 72 Romanian patients for drug resistance mutations. MICs for first- and second-line drugs were determined using the MycoTB microdilution method. These MICs were compared to macrodilution critical concentration testing by the Mycobacterium Growth Indicator Tube (MGIT) platform and correlated to drug resistance mutations. Sixty-three (87.5%) isolates harboured drug resistance mutations; 48 (66.7%) were genotypically multidrug-resistant. Different drug resistance mutations were associated with different MIC ranges; katG S315T for isoniazid, and rpoB S450L for rifampicin were associated with high MICs. However, several mutations such as in rpoB, rrs and rpsL, or embB were associated with MIC ranges including the critical concentration for rifampicin, aminoglycosides or ethambutol, respectively. Different resistance mutations lead to distinct MICs, some of which may still be overcome by increased dosing. Whole genome sequencing can aid in the timely diagnosis of Mycobacterium tuberculosis drug resistance and guide clinical decision-making.

  10. bioA mutant of Mycobacterium tuberculosis shows severe growth defect and imparts protection against tuberculosis in guinea pigs

    PubMed Central

    Kar, Ritika; Nangpal, Prachi; Mathur, Shubhita; Singh, Swati

    2017-01-01

    Owing to the devastation caused by tuberculosis along with the unsatisfactory performance of the Bacillus Calmette–Guérin (BCG) vaccine, a more efficient vaccine than BCG is required for the global control of tuberculosis. A number of studies have demonstrated an essential role of biotin biosynthesis in the growth and survival of several microorganisms, including mycobacteria, through deletion of the genes involved in de novo biotin biosynthesis. In this study, we demonstrate that a bioA mutant of Mycobacterium tuberculosis (MtbΔbioA) is highly attenuated in the guinea pig model of tuberculosis when administered aerogenically as well as intradermally. Immunization with MtbΔbioA conferred significant protection in guinea pigs against an aerosol challenge with virulent M. tuberculosis, when compared with the unvaccinated animals. Booster immunization with MtbΔbioA offered no advantage over a single immunization. These experiments demonstrate the vaccinogenic potential of the attenuated M. tuberculosis bioA mutant against tuberculosis. PMID:28658275

  11. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    PubMed

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  12. Mycobacterium tuberculosis Arylamine N-Acetyltransferase Acetylates and Thus Inactivates para-Aminosalicylic Acid.

    PubMed

    Wang, Xude; Yang, Shanshan; Gu, Jing; Deng, Jiaoyu

    2016-12-01

    Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) is able to acetylate para-aminosalicylic acid (PAS) both in vitro and in vivo as determined by high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) techniques. The antituberculosis activity of the acetylated PAS is significantly reduced. As a result, overexpression of TBNAT in M. tuberculosis results in PAS resistance, as determined by MIC tests and drug exposure experiments. Taken together, our results suggest that TBNAT from M. tuberculosis is able to inactivate PAS by acetylating the compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis.

    PubMed

    Donini, Stefano; Garavaglia, Silvia; Ferraris, Davide M; Miggiano, Riccardo; Mori, Shigetarou; Shibayama, Keigo; Rizzi, Menico

    2017-01-01

    Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M. tuberculosis target. In this context, we report the biochemical and structural characterization of M. smegmatis phosphoribosylpyrophosphate synthetase (PrsA), the ortholog of M. tuberculosis PrsA, the unique enzyme responsible for the synthesis of phosphoribosylpyrophosphate (PRPP). PRPP is a key metabolite involved in several biosynthetic pathways including those for histidine, tryptophan, nucleotides and decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Since M. tuberculosis PrsA has been validated as a drug target for the development of antitubercular agents, the data presented here will add to the knowledge of the mycobacterial enzyme and could contribute to the development of M. tuberculosis PrsA inhibitors of potential pharmacological interest.

  14. Mycobacterium tuberculosis and Rifampin Resistance, United Kingdom

    PubMed Central

    Sam, I-Ching; More, Philip; Kemp, Melanie; Brown, Timothy

    2006-01-01

    The United Kingdom Health Protection Agency Mycobacterium Reference Unit offers a national "Fastrack" molecular service for detecting Mycobacterium tuberculosis complex (MTBC) and rifampin resistance by using the INNO-LiPA Rif.TB assay. We analyzed the service in a routine, nontrial context of 1,997 primary clinical specimens, including 658 nonrespiratory specimens. The overall adjusted concordance, sensitivity, specificity, positive predictive value, and negative predictive value for detecting MTBC were 91.2%, 85.2%, 96.2%, 95.7%, and 86.7%, respectively (unadjusted, 86.7%, 85.2%, 88.2%, 86.9%, and 86.7%), when false-positive samples from patients (n = 83) with a known microbiologic diagnosis of MTBC or patients receiving current or recent antituberculous treatment were excluded. The parameters for detecting rifampin resistance were 99.1%, 95.0%, 99.6%, 92.7%, and 99.7%, respectively. The assay enabled earlier diagnosis of MTBC and rifampin resistance (15.2 days) compared with culture-based techniques (30.7 days). PMID:16704831

  15. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates.

    PubMed

    Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M; van Helden, Paul D; van der Merwe, Ruben G; Gey van Pittius, Nicolaas C; Pain, Arnab; Sampson, Samantha L; Tabb, David L

    2017-10-06

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  16. Infection of great apes and a zoo keeper with the same Mycobacterium tuberculosis spoligotype.

    PubMed

    Akkerman, Onno W; van der Werf, Tjip S; Rietkerk, Frank; Eger, Tony; van Soolingen, Dick; van der Loo, Kees; van der Zanden, Adri G M

    2014-04-01

    An animal keeper was diagnosed with pulmonary tuberculosis (TB) after bi-annual screening for latent TB infection in zoo employees. In the same period, several bonobos of the zoo were suffering from TB as well. The Mycobacterium tuberculosis strains from both the animal keeper and the bonobos appeared identical. We provide evidence that the animals infected their keeper.

  17. Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses.

    PubMed

    Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica; Madan-Lala, Ranjna; Rengarajan, Jyothi

    2018-02-01

    Mycobacterium tuberculosis successfully subverts the host immune response to promote disease progression. In addition to its known intracellular niche in macrophages, M. tuberculosis interferes with the functions of dendritic cells (DCs), which are the primary antigen-presenting cells of the immune system. We previously showed that M. tuberculosis dampens proinflammatory responses and impairs DC functions through the cell envelope-associated serine protease Hip1. Here we present data showing that M. tuberculosis GroEL2, a substrate of Hip1, modulates DC functions. The full-length GroEL2 protein elicited robust proinflammatory responses from DCs and promoted DC maturation and antigen presentation to T cells. In contrast, the cleaved form of GroEL2, which predominates in M. tuberculosis , was poorly immunostimulatory and was unable to promote DC maturation and antigen presentation. Moreover, DCs exposed to full-length, but not cleaved, GroEL2 induced strong antigen-specific gamma interferon (IFN-γ), interleukin-2 (IL-2), and IL-17A cytokine responses from CD4 + T cells. Moreover, the expression of cleaved GroEL2 in the hip1 mutant restored the robust T cell responses to wild-type levels, suggesting that proteolytic cleavage of GroEL2 allows M. tuberculosis to prevent optimal DC-T cell cross talk during M. tuberculosis infection. Copyright © 2018 American Society for Microbiology.

  18. Genotype heterogeneity of Mycobacterium tuberculosis within geospatial hotspots suggests foci of imported infection in Sydney, Australia.

    PubMed

    Gurjav, Ulziijargal; Jelfs, Peter; Hill-Cawthorne, Grant A; Marais, Ben J; Sintchenko, Vitali

    2016-06-01

    In recent years the State of New South Wales (NSW), Australia, has maintained a low tuberculosis incidence rate with little evidence of local transmission. Nearly 90% of notified tuberculosis cases occurred in people born in tuberculosis-endemic countries. We analyzed geographic, epidemiological and genotypic data of all culture-confirmed tuberculosis cases to identify the bacterial and demographic determinants of tuberculosis hotspot areas in NSW. Standard 24-loci mycobacterium interspersed repetitive unit-variable number tandem repeat (MIRU-24) typing was performed on all isolates recovered between 2009 and 2013. In total 1692/1841 (91.9%) cases with confirmed Mycobacterium tuberculosis infection had complete MIRU-24 and demographic data and were included in the study. Despite some year-to-year variability, spatio-temporal analysis identified four tuberculosis hotspots. The incidence rate and the relative risk of tuberculosis in these hotspots were 2- to 10-fold and 4- to 8-fold higher than the state average, respectively. MIRU-24 profiles of M. tuberculosis isolates associated with these hotspots revealed high levels of heterogeneity. This suggests that these spatio-temporal hotspots, within this low incidence setting, can represent areas of predominantly imported infection rather than clusters of cases due to local transmission. These findings provide important epidemiological insight and demonstrate the value of combining tuberculosis genotyping and spatiotemporal data to guide better-targeted public health interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation.

    PubMed

    Odermatt, Nina T; Sala, Claudia; Benjak, Andrej; Kolly, Gaëlle S; Vocat, Anthony; Lupien, Andréanne; Cole, Stewart T

    2017-08-15

    A handful of nucleoid-associated proteins (NAPs) regulate the vast majority of genes in a bacterial cell. H-NS, the h istone-like n ucleoid- s tructuring protein, is one of these NAPs and protects Escherichia coli from foreign gene expression. Though lacking any sequence similarity with E. coli H-NS, Rv3852 was annotated as the H-NS ortholog in Mycobacterium tuberculosis , as it resembles human histone H1. The role of Rv3852 was thoroughly investigated by immunoblotting, subcellular localization, construction of an unmarked rv3852 deletion in the M. tuberculosis genome, and subsequent analysis of the resulting Δ rv3852 strain. We found that Rv3852 was predominantly present in the logarithmic growth phase with a decrease in protein abundance in stationary phase. Furthermore, it was strongly associated with the cell membrane and not detected in the cytosolic fraction, nor was it secreted. The Δ rv3852 strain displayed no growth defect or morphological abnormalities. Quantitative measurement of nucleoid localization in the Δ rv3852 mutant strain compared to that in the parental H37Rv strain showed no difference in nucleoid position or spread. Infection of macrophages as well as severe combined immunodeficient (SCID) mice demonstrated that loss of Rv3852 had no detected influence on the virulence of M. tuberculosis We thus conclude that M. tuberculosis Rv3852 is not involved in pathogenesis and is not a typical NAP. The existence of an as yet undiscovered Rv3852 ortholog cannot be excluded, although this role is likely played by the well-characterized Lsr2 protein. IMPORTANCE Mycobacterium tuberculosis is the causative agent of the lung infection tuberculosis, claiming more than 1.5 million lives each year. To understand the mechanisms of latent infection, where M. tuberculosis can stay dormant inside the human host, we require deeper knowledge of the basic biology and of the regulatory networks. In our work, we show that Rv3852, previously annotated as H-NS, is not

  20. Prevalence of latent Mycobacterium tuberculosis infection in prisoners

    PubMed Central

    de Navarro, Pedro Daibert; de Almeida, Isabela Neves; Kritski, Afrânio Lineu; Ceccato, Maria das Graças; Maciel, Mônica Maria Delgado; Carvalho, Wânia da Silva; de Miranda, Silvana Spindola

    2016-01-01

    ABSTRACT Objective: To determine the prevalence of and the factors associated with latent Mycobacterium tuberculosis infection (LTBI) in prisoners in the state of Minas Gerais, Brazil. Methods: This was a cross-sectional cohort study conducted in two prisons in Minas Gerais. Tuberculin skin tests were performed in the individuals who agreed to participate in the study. Results: A total of 1,120 individuals were selected for inclusion in this study. The prevalence of LTBI was 25.2%. In the multivariate analysis, LTBI was associated with self-reported contact with active tuberculosis patients within prisons (adjusted OR = 1.51; 95% CI: 1.05-2.18) and use of inhaled drugs (adjusted OR = 1.48; 95% CI: 1.03-2.13). Respiratory symptoms were identified in 131 (11.7%) of the participants. Serological testing for HIV was performed in 940 (83.9%) of the participants, and the result was positive in 5 (0.5%). Two cases of active tuberculosis were identified during the study period. Conclusions: Within the prisons under study, the prevalence of LTBI was high. In addition, LTBI was associated with self-reported contact with active tuberculosis patients and with the use of inhaled drugs. Our findings demonstrate that it is necessary to improve the conditions in prisons, as well as to introduce strategies, such as chest X-ray screening, in order to detect tuberculosis cases and, consequently, reduce M. tuberculosis infection within the prison system. PMID:27812634

  1. A case of Manila type Mycobacterium tuberculosis infection in Japan

    PubMed Central

    Usami, Osamu; Nakajima, Chie; Endo, Shiro; Inomata, Shinya; Kanamori, Hajime; Hirakata, Yoichi; Uchiyama, Bine; Kaku, Mitsuo; Suzuki, Yasuhiko; Hattori, Toshio

    2015-01-01

    Key Clinical Message A 76-year-old Japanese woman contracted a Mycobacterium tuberculosis (TB, Manila type) infection in Japan, despite never having traveled. However, her son was treated for TB in the Philippines 3 years before he stayed at her house. Spoligotyping allows us to identify the TB genotype and identify the route of infection. PMID:26273455

  2. Susceptibility of Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and their combination over a 12 year period in Taiwan.

    PubMed

    Huang, Tsi-Shu; Kunin, Calvin M; Yan, Bo-Shiun; Chen, Yao-Shen; Lee, Susan Shin-Jung; Syu, Wan

    2012-03-01

    This study was designed to determine the susceptibility of clinical isolates of multidrug-resistant (MDR) and non-MDR Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and trimethoprim/sulfamethoxazole over a 12 year period in Taiwan. We examined a total of 117 clinical isolates of M. tuberculosis collected from Southern Taiwan, 116 from 1995 to 2006 and an extensively drug-resistant (XDR) isolate in 2009. These included 28 isolates susceptible to all four first-line agents, 52 MDR isolates and 36 isolates with a mixed combination of drug resistance patterns other than MDR and 1 XDR isolate. Sulfamethoxazole inhibited 80% growth of all 117 isolates regardless of their susceptibility to the first-line agents at an MIC(90) of 9.5 mg/L. The concentration required to inhibit 99% growth was 38 mg/L. There were no significant changes in the MIC(50) or MIC(90) of sulfamethoxazole over a 12 year period. All 117 isolates were resistant to trimethoprim at >8 mg/L. The combination of trimethoprim/sulfamethoxazole at a ratio of 1:19 had no additive or synergistic effects. Sulfamethoxazole inhibited the growth of clinical isolates of M. tuberculosis at achievable concentrations in plasma after oral administration. Susceptibility to sulfamethoxazole remained constant over a 12 year period. Trimethoprim was inactive against M. tuberculosis and trimethoprim/sulfamethoxazole provided no additional activity. Although the current and prior studies demonstrate that sulfamethoxazole is active against M. tuberculosis the search needs to continue for more active, lipid-soluble sulphonamides that are better absorbed into tissues and have improved therapeutic efficacy.

  3. Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening

    PubMed Central

    Singh, Swati; Khare, Garima; Bahal, Ritika Kar; Ghosh, Prahlad C; Tyagi, Anil K

    2018-01-01

    Background 7,8-Diaminopelargonic acid synthase (BioA), an enzyme of biotin biosynthesis pathway, is a well-known promising target for anti-tubercular drug development. Methods In this study, structure-based virtual screening was employed against the active site of BioA to identify new chemical entities for BioA inhibition and top ranking compounds were evaluated for their ability to inhibit BioA enzymatic activity. Results Seven compounds inhibited BioA enzymatic activity by greater than 60% at 100 μg/mL with most potent compounds being A36, A35 and A65, displaying IC50 values of 10.48 μg/mL (28.94 μM), 33.36 μg/mL (88.16 μM) and 39.17 μg/mL (114.42 μM), respectively. Compounds A65 and A35 inhibited Mycobacterium tuberculosis (M. tuberculosis) growth with MIC90 of 20 μg/mL and 80 μg/mL, respectively, whereas compound A36 exhibited relatively weak inhibition of M. tuberculosis growth (83% inhibition at 200 μg/mL). Compound A65 emerged as the most potent compound identified in our study that inhibited BioA enzymatic activity and growth of the pathogen and possessed drug-like properties. Conclusion Our study has identified a few hit molecules against M. tuberculosis BioA that can act as potential candidates for further development of potent anti-tubercular therapeutic agents. PMID:29750019

  4. Antimycobacterial activity of pyrazinoate prodrugs in replicating and non-replicating Mycobacterium tuberculosis.

    PubMed

    Segretti, Natanael Dante; Simões, Cristina Kortstee; Corrêa, Michelle Fidelis; Felli, Veni Maria Andres; Miyata, Marcelo; Cho, Sang Hyun; Franzblau, Scott Gary; Fernandes, João Paulo Dos Santos

    2016-07-01

    Tuberculosis (TB) is an important infectious disease caused by Mycobacterium tuberculosis (Mtb) and responsible for thousands of deaths every year. Although there are antimycobacterial drugs available in therapeutics, just few new chemical entities have reached clinical trials, and in fact, since introduction of rifampin only two important drugs had reached the market. Pyrazinoic acid (POA), the active agent of pyrazinamide, has been explored through prodrug approach to achieve novel molecules with anti-Mtb activity, however, there is no activity evaluation of these molecules against non-replicating Mtb until the present. Additionally, pharmacokinetic must be preliminary evaluated to avoid future problems during clinical trials. In this paper, we have presented six POA esters as prodrugs in order to evaluate their anti-Mtb activity in replicating and non-replicating Mtb, and these showed activity highly influenced by medium composition (especially by albumin). Lipophilicity seems to play the main role in the activity, possibly due to controlling membrane passage. Novel duplicated prodrugs of POA were also described, presenting interesting activity. Cytotoxicity of these prodrugs set was also evaluated, and these showed no important cytotoxic profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    PubMed

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  6. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens

    PubMed Central

    Kleiveland, Charlotte R.; Minic, Rajna; Moen, Lars F.; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Eijsink, Vincent G. H.

    2016-01-01

    ABSTRACT Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum. The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo. The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and

  7. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens.

    PubMed

    Kuczkowska, Katarzyna; Kleiveland, Charlotte R; Minic, Rajna; Moen, Lars F; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Mathiesen, Geir; Eijsink, Vincent G H

    2017-01-15

    Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this

  8. Rv2358 and FurB: Two Transcriptional Regulators from Mycobacterium tuberculosis Which Respond to Zinc

    PubMed Central

    Canneva, Fabio; Branzoni, Manuela; Riccardi, Giovanna; Provvedi, Roberta; Milano, Anna

    2005-01-01

    In a previous work, we demonstrated that the Mycobacterium tuberculosis Rv2358-furB operon is induced by zinc. In this study, the orthologous genes from Mycobacterium smegmatis mc2155 were inactivated and mutants analyzed. Rv2358 protein was purified and found to bind upstream of the Rv2358 gene. Binding was inhibited by Zn2+ ions. PMID:16077132

  9. Evaluation of highly conserved hsp65-specific nested PCR primers for diagnosing Mycobacterium tuberculosis.

    PubMed

    Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G

    2017-02-01

    To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.

  10. Current Methods in the Molecular Typing of Mycobacterium tuberculosis and Other Mycobacteria

    PubMed Central

    van Ingen, Jakko; Dziadek, Jarosław; Mazur, Paweł K.; Bielecki, Jacek

    2014-01-01

    In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed. PMID:24527454

  11. Viral Booster Vaccines Improve Mycobacterium bovis BCG-Induced Protection Against Bovine Tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Previous work in small animal laboratory models of tuberculosis have shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacille Calmette-Guerin (BCG) to prime and Modified Vaccinia Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad8...

  12. Allium sativum Constituents Exhibit Anti-tubercular Activity In vitro and in RAW 264.7 Mouse Macrophage Cells Infected with Mycobacterium tuberculosis H37Rv

    PubMed Central

    Nair, Swapna S.; Gaikwad, Sujay S.; Kulkarni, Savita P.; Mukne, Alka Pravin

    2017-01-01

    Background: Long duration of treatment, side-effects of currently used anti-tubercular drugs and emergence of drug-resistant forms of Mycobacterium tuberculosis (MTB) warrants the need to develop new drugs to tackle the scourge of tuberculosis (TB). Garlic is an edible plant reported to have anti-tubercular activity. However, previous researches on anti-tubercular effect of garlic were focused mostly on preliminary in vitro screening. Objective: To identify constituents responsible for anti-tubercular activity of thiosulfinate-derivative rich extract of garlic (GE) and to evaluate activity of the most active constituent in RAW 264.7 mouse macrophage cells infected with M. tuberculosis H37Rv (MTBH). Materials and Methods: In the present study, we have isolated eight compounds from GE by flash chromatography. The isolated compounds were characterized by 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry and Fourier transform infrared spectroscopy. Individual isolates and GE were screened for activity against MTBH by Resazurin Microtitre Plate Assay (REMA). Results: Anti-tubercular activity of GE was superior to that of isolates when evaluated by REMA, possibly due to synergism amongst the constituents of GE. Cytotoxicity of GE was evaluated in RAW 264.7 mouse macrophage cells and it was observed that GE had a favorable selectivity index (>10). Therefore, anti-tubercular activity of GE was further evaluated by intracellular macrophage infection model. GE demonstrated concentration-dependent activity in macrophages infected with MTBH. Conclusion: This is the first report on intracellular anti-tubercular activity of any extract of garlic or its components. Appreciable intracellular anti-tubercular activity of GE in macrophages combined with low cytotoxicity makes it a suitable candidate for further development as an anti-tubercular agent. SUMMARY Thiosulfinate-derivative rich extract of Allium sativum showed better activity than its

  13. Oligonucleotide (GTG)5 as a marker for Mycobacterium tuberculosis strain identification.

    PubMed Central

    Wiid, I J; Werely, C; Beyers, N; Donald, P; van Helden, P D

    1994-01-01

    Culture of Mycobacterium tuberculosis provides no information on the identity of a strain or the distribution of such a strain in the community. Strain identification of M. tuberculosis can help to address important epidemiological questions, e.g., the origin of an infection in a patient's household or community, whether reactivation of infection is endogenous or exogenous in origin, and the spread and early detection of organisms with acquired antibiotic resistance. To research this problem, strain identification must be reliable and accurate. Although genetic identification techniques already exist, it is valuable to have genetic identification techniques based on a number of genetic markers to improve the accurate identification of M. tuberculosis strains. We show that oligonucleotide (GTG)5 can be successfully applied to the identification of M. tuberculosis strains. This technique may be particularly useful in cases in which M. tuberculosis strains have few or no insertion elements (e.g., IS6110) or in identifying other strains of mycobacteria when informative probes are lacking. Images PMID:7914207

  14. Evaluation of Immunogenicity and Protective Efficacy Elicited by Mycobacterium bovis BCG Overexpressing Ag85A Protein against Mycobacterium tuberculosis Aerosol Infection.

    PubMed

    Xu, Zheng Zhong; Chen, Xiang; Hu, Ting; Meng, Chuang; Wang, Xiao Bo; Rao, Yan; Zhang, Xiao Ming; Yin, Yue Lan; Pan, Zhi Ming; Jiao, Xin An

    2016-01-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) is currently the only vaccine available for preventing tuberculosis (TB), however, BCG has varying success in preventing pulmonary TB. In this study, a recombinant BCG (rBCG::Ag85A) strain overexpressing the immunodominant Ag85A antigen was constructed, and its immunogenicity and protective efficacy were evaluated. Our results indicated that the Ag85A protein was successfully overexpressed in rBCG::Ag85A, and the Ag85A peptide-MHC complexes on draining lymph node dendritic cells of C57BL/6 mice infected with rBCG::Ag85A were detectable 4 h post-infection. The C57BL/6 mice infected with this strain had stronger antigen-specific interferon-gamma (IFN-γ) responses and higher antibody titers than those immunized with BCG, and the protective experiments showed that rBCG::Ag85A can enhance protection against Mycobacterium tuberculosis (M. tuberculosis) H37Rv infection compared to the BCG vaccine alone. Our results demonstrate the potential of rBCG::Ag85A as a candidate vaccine against TB.

  15. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis

    PubMed Central

    Donini, Stefano; Garavaglia, Silvia; Ferraris, Davide M.; Miggiano, Riccardo; Mori, Shigetarou; Shibayama, Keigo

    2017-01-01

    Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M. tuberculosis target. In this context, we report the biochemical and structural characterization of M. smegmatis phosphoribosylpyrophosphate synthetase (PrsA), the ortholog of M. tuberculosis PrsA, the unique enzyme responsible for the synthesis of phosphoribosylpyrophosphate (PRPP). PRPP is a key metabolite involved in several biosynthetic pathways including those for histidine, tryptophan, nucleotides and decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Since M. tuberculosis PrsA has been validated as a drug target for the development of antitubercular agents, the data presented here will add to the knowledge of the mycobacterial enzyme and could contribute to the development of M. tuberculosis PrsA inhibitors of potential pharmacological interest. PMID:28419153

  16. Mycobacterium tuberculosis: Success through dormancy

    PubMed Central

    Gengenbacher, Martin; Kaufmann, Stefan H. E.

    2012-01-01

    Tuberculosis (TB) remains a major health threat, killing near to 2 million individuals around this globe, annually. The sole vaccine developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable due to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the crosstalk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, Mtb’s enormous success is based on three capacities: First, reprogramming of macrophages after primary infection/phagocytosis in order to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host–pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy and highlight gaps in our understanding to be addressed in future research. PMID:22320122

  17. Recent transmission of Mycobacterium tuberculosis in China: the implication of molecular epidemiology for tuberculosis control.

    PubMed

    Yang, Chongguang; Gao, Qian

    2018-02-01

    Tuberculosis (TB) has remained an ongoing concern in China. The national scale-up of the Directly Observed Treatment, Short Course (DOTS) program has accelerated the fight against TB in China. Nevertheless, many challenges still remain, including the spread of drug-resistant strains, high disease burden in rural areas, and enormous rural-to-urban migrations. Whether incident active TB represents recent transmission or endogenous reactivation has helped to prioritize the strategies for TB control. Evidence from molecular epidemiology studies has delineated the recent transmission of Mycobacterium tuberculosis (M. tuberculosis) strains in many settings. However, the transmission patterns of TB in most areas of China are still not clear. Studies carried out to date could not capture the real burden of recent transmission of the disease in China because of the retrospective study design, incomplete sampling, and use of low-resolution genotyping methods. We reviewed the implementations of molecular epidemiology of TB in China, the estimated disease burden due to recent transmission of M. tuberculosis strains, the primary transmission of drug-resistant TB, and the evaluation of a feasible genotyping method of M. tuberculosis strains in circulation.

  18. Genetic biodiversity of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in India.

    PubMed

    Singh, Urvashi Balbir; Arora, Jyoti; Suresh, Naga; Pant, Hema; Rana, Tanu; Sola, Christophe; Rastogi, Nalin; Pande, Jitendra Nath

    2007-07-01

    Spoligotyping was performed on 540 Mycobacterium tuberculosis isolates in order to evaluate the genetic biodiversity of tubercle bacilli in India. One hundred and forty seven patterns were unique and 393 were grouped in 48 clusters. Comparison with an international spoligotype database showed that the most predominant clades among tuberculosis (TB) isolates were Central Asian (CAS) and East-African Indian (EAI) with shared-types (ST) ST26 and ST11 alone being responsible for 34% of all TB cases. Twenty one (3.8%) isolates belonged to the Beijing genotype. Marked variations were observed among circulating strains, STs belonging to CAS family predominated in the North, whereas the EAI family was more common in the Southern India. TB in India is predominantly caused by strains belonging to the principal genetic group 1 (PGG1), suggesting that most of the TB burden in India may be traced to ancestral clones of the tubercle bacilli. This study gives an insight into the global M. tuberculosis genetic biodiversity in India, the predominant spoligotypes and their impact on disease transmission.

  19. Drug resistance of Mycobacterium tuberculosis isolates from tuberculosis lymphadenitis patients in Ethiopia

    PubMed Central

    Biadglegne, Fantahun; Tessema, Belay; Sack, Ulrich; Rodloff, Arne C.

    2014-01-01

    Background & objectives: The emergence of drug resistance tuberculosis (TB) is a significant challenge for TB control and prevention programmes, and the major problem is multidrug resistant tuberculosis (MDR-TB). The present study was carried out to determine the frequency of drug resistant Mycobacterium tuberculosis isolates among newly and retreated TB lymphadenitis patients and risk factors for acquiring this infection. Methods: Two hundred twenty five M. tuberculosis isolates from TB lymphadenitis patients who were diagnosed as new and retreated tuberculosis cases between April 2012 and May 2012 were included in this study. Isolates were tested for susceptibility to isoniazed (INH), rifampicin (RMP), streptomycin (SM), ethambutol (EMB) and pyrazinamide (PZA) using the BacT/AlerT 3D system protocol. Results: Among 225 isolates, 15 (6.7%) were resistant to at least one first line anti-TB drug. Three (1.3%) were MDR-TB. Resistance to INH, RMP, SM, and EMB was found in 8 (3.6%), 4 (1.8%), 10 (4.4%), and 4 (1.8%) isolates, respectively. Of the 212 new TB lymphadenitis cases three (1.4%) were MDR-TB. A rifampicin resistant M. tuberculosis isolate was diagnosed from smear and culture negative newly treated cases. All isolates were susceptible to PZA. Matted cervical lymph nodes were the prominent sites involved. Newly treated TB lymphadenitis patients had a greater risk for presenting resistance to anti-TB drugs (P=0.046). Interpretation & conclusions: Our study showed that TB lymphadenitis patients harboured drug resistant TB and MDR-TB, although at a low rate. Resistance was not associated with age, sex, patients’ education and contact history. Further research is required to determine transmission dynamics of drug resistant strains. PMID:25222786

  20. [A study on genotype of 271 mycobacterium tuberculosis isolates in 6 prefectures in Yunnan Province].

    PubMed

    Chen, L Y; Yang, X; Ru, H H; Yang, H J; Yan, S Q; Ma, L; Chen, J O; Yang, R; Xu, L

    2018-01-06

    Objective: To understand the characteristics of genotypes of Mycobacterium tuberculosis isolates in Yunnan province, and provide the molecular epidemiological evidence for prevention and control of tuberculosis in Yunnan Province. Methods: Mycobacterium Tuberculosis isolates were collected from 6 prefectures of Yunnan province in 2014 and their Genetypes of Mycobacterium tuberculosis isolates were obtained using spoligotyping and multiple locus variable numbers of tandem repeats analysis (MLVA). The results of spoligotyping were entered into the SITVITWEB database to obtain the Spoligotyping International Type (SIT) patterns and the sublineages of MTB isolates. The genoyping patterns were clustered with BioNumerics (version 5.0). Results: A total of 271 MTB isolates represented patients were collected from six prefectures in Yunnan province. Out of these patients, 196 (72.3%) were male. The mean age of the patients was (41.9±15.1) years. The most MTB isolates were from Puer, totally 94 iusolates(34.69%). Spoligotyping analysis revealed that 151 (55.72%) MTB isolates belonged to the Beijing genotype, while the other 120 (44.28%) were from non-Beijing genotype; 40 genotypes were consisted of 24 unique genotypes and 16 clusters. The 271 isolates were differentiated into 30 clusters (2 to 17 isolates per cluster) and 177 unique genotypes, showing a clustering rate of 23.62%. Beijing genotype strains showed higher clustering rate than non-Beijing genotype strains (29.14% vs 16.67%). The HGI of 12-locus VNTR in total MTB strains, Beijing genotype strains and non-Beijing genotype was 0.993, 0.982 and 0.995 respectively. Conclusion: The Beijing genotype was the predominant genotype in Yunnan Province, the characteristics of Mycobacterium tuberculosis showed high genetic diversity. The genotyping data reflect the potential recent ongoing transmission in some area, which highlights the urgent need for early diagnosis and treatment of the infectious TB cases, to cut off the

  1. Predominance of Ancestral Lineages of Mycobacterium tuberculosis in India

    PubMed Central

    Gutierrez, M. Cristina; Ahmed, Niyaz; Willery, Eve; Narayanan, Sujatha; Hasnain, Seyed E.; Chauhan, Devendra S.; Katoch, Vishwa M.; Vincent, Véronique; Locht, Camille

    2006-01-01

    Although India has the highest prevalence of tuberculosis (TB) worldwide, the genetic diversity of Mycobacterium tuberculosis in India is largely unknown. A collection of 91 isolates originating from 12 different regions spread across the country were analyzed by genotyping using 21 loci with variable-number tandem repeats (VNTRs), by spoligotyping, by principal genetic grouping (PGG), and by deletion analysis of M. tuberculosis–specific deletion region 1. The isolates showed highly diverse VNTR genotypes. Nevertheless, highly congruent groupings identified by using the 4 independent sets of markers permitted a clear definition of 3 prevalent PGG1 lineages, which corresponded to the "ancestral" East African–Indian, the Delhi, and the Beijing/W genogroups. A few isolates from PGG2 lineages and a single representative of the presumably most recent PGG3 were identified. These observations suggest a predominance of ancestral M. tuberculosis genotypes in the Indian subcontinent, which supports the hypothesis that India is an ancient endemic focus of TB. PMID:17073085

  2. Origin, Spread and Demography of the Mycobacterium tuberculosis Complex

    PubMed Central

    Wirth, Thierry; Hildebrand, Falk; Allix-Béguec, Caroline; Wölbeling, Florian; Kubica, Tanja; Kremer, Kristin; van Soolingen, Dick; Rüsch-Gerdes, Sabine; Locht, Camille; Brisse, Sylvain; Meyer, Axel

    2008-01-01

    The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations. PMID:18802459

  3. Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth

    PubMed Central

    Silvis, Melanie R.; Luo, Samantha S.; Sogi, Kimberly; Vokes, Martha; Bray, Mark-Anthony; Carpenter, Anne E.; Moore, Christopher B.; Siddiqi, Noman; Rubin, Eric J.; Hung, Deborah T.

    2014-01-01

    Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by

  4. Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia.

    PubMed

    Fang, Xin; Wallqvist, Anders; Reifman, Jaques

    2012-01-01

    The ability to adapt to different conditions is key for Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), to successfully infect human hosts. Adaptations allow the organism to evade the host immune responses during acute infections and persist for an extended period of time during the latent infectious stage. In latently infected individuals, estimated to include one-third of the human population, the organism exists in a variety of metabolic states, which impedes the development of a simple strategy for controlling or eradicating this disease. Direct knowledge of the metabolic states of M. tuberculosis in patients would aid in the management of the disease as well as in forming the basis for developing new drugs and designing more efficacious drug cocktails. Here, we propose an in silico approach to create state-specific models based on readily available gene expression data. The coupling of differential gene expression data with a metabolic network model allowed us to characterize the metabolic adaptations of M. tuberculosis H37Rv to hypoxia. Given the microarray data for the alterations in gene expression, our model predicted reduced oxygen uptake, ATP production changes, and a global change from an oxidative to a reductive tricarboxylic acid (TCA) program. Alterations in the biomass composition indicated an increase in the cell wall metabolites required for cell-wall growth, as well as heightened accumulation of triacylglycerol in preparation for a low-nutrient, low metabolic activity life style. In contrast, the gene expression program in the deletion mutant of dosR, which encodes the immediate hypoxic response regulator, failed to adapt to low-oxygen stress. Our predictions were compatible with recent experimental observations of M. tuberculosis activity under hypoxic and anaerobic conditions. Importantly, alterations in the flow and accumulation of a particular metabolite were not necessarily directly linked to differential gene

  5. Uptake of Sulfate but Not Phosphate by Mycobacterium tuberculosis Is Slower than That for Mycobacterium smegmatis

    PubMed Central

    Song, Houhui

    2012-01-01

    Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process. PMID:22194452

  6. High Throughput Phenotypic Analysis of Mycobacterium tuberculosis and Mycobacterium bovis Strains' Metabolism Using Biolog Phenotype Microarrays

    PubMed Central

    Khatri, Bhagwati; Fielder, Mark; Jones, Gareth; Newell, William; Abu-Oun, Manal; Wheeler, Paul R.

    2013-01-01

    Tuberculosis is a major human and animal disease of major importance worldwide. Genetically, the closely related strains within the Mycobacterium tuberculosis complex which cause disease are well-characterized but there is an urgent need better to understand their phenotypes. To search rapidly for metabolic differences, a working method using Biolog Phenotype MicroArray analysis was developed. Of 380 substrates surveyed, 71 permitted tetrazolium dye reduction, the readout over 7 days in the method. By looking for ≥5-fold differences in dye reduction, 12 substrates differentiated M. tuberculosis H37Rv and Mycobacterium bovis AF2122/97. H37Rv and a Beijing strain of M. tuberculosis could also be distinguished in this way, as could field strains of M. bovis; even pairs of strains within one spoligotype could be distinguished by 2 to 3 substrates. Cluster analysis gave three clear groups: H37Rv, Beijing, and all the M. bovis strains. The substrates used agreed well with prior knowledge, though an unexpected finding that AF2122/97 gave greater dye reduction than H37Rv with hexoses was investigated further, in culture flasks, revealing that hexoses and Tween 80 were synergistic for growth and used simultaneously rather than in a diauxic fashion. Potential new substrates for growth media were revealed, too, most promisingly N-acetyl glucosamine. Osmotic and pH arrays divided the mycobacteria into two groups with different salt tolerance, though in contrast to the substrate arrays the groups did not entirely correlate with taxonomic differences. More interestingly, these arrays suggested differences between the amines used by the M. tuberculosis complex and enteric bacteria in acid tolerance, with some hydrophobic amino acids being highly effective. In contrast, γ-aminobutyrate, used in the enteric bacteria, had no effect in the mycobacteria. This study proved principle that Phenotype MicroArrays can be used with slow-growing pathogenic mycobacteria and already has

  7. Vaccination of guinea pigs using mce operon mutants of Mycobacterium tuberculosis

    PubMed Central

    Obregón-Henao, Andrés; Shanley, Crystal; Bianco, María Verónica; Cataldi, Angel A; Basaraba, Randall J; Orme, Ian M; Bigi, Fabiana

    2011-01-01

    The limited efficacy of the BCG vaccine for tuberculosis, coupled with emerging information suggesting that it is poorly protective against newly emerging strains of Mycobacterium tuberculosis such as the W-Beijing isolates, makes it paramount to search for more potent alternatives. One such class of candidates is attenuated mutants derived from M. tuberculosis itself. We demonstrate here, in an initial short term assay, that mutants derived from disruption of the mce genes of the bacillus were highly protective in guinea pigs exposed by low dose aerosol infection with the virulent W-Beijing isolate SA161. This protection was demonstrated by a significant reduction in the numbers of bacilli harvested from the lungs, and dramatic improvements in lung histopathology. PMID:21515327

  8. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis.

    PubMed

    Collins, Angela C; Cai, Haocheng; Li, Tuo; Franco, Luis H; Li, Xiao-Dong; Nair, Vidhya R; Scharn, Caitlyn R; Stamm, Chelsea E; Levine, Beth; Chen, Zhijian J; Shiloh, Michael U

    2015-06-10

    Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genetic Diversity of Mycobacterium tuberculosis Isolates from Tibetans in Tibet, China

    PubMed Central

    Zhao, Xiuqin; Sang, Ba; Lv, Bing; Liu, Zhiguang; Wan, Kanglin

    2012-01-01

    Background Tuberculosis (TB) is a serious health problem in Tibet where Tibetans are the major ethnic group. Although genotyping of Mycobacterium tuberculosis (M. tuberculosis) isolates is a valuable tool for TB control, our knowledge of population structure of M. tuberculosis circulating in Tibet is limited. Methodology/Principal Findings In our study, a total of 576 M. tuberculosis isolates from Tibetans in Tibet, China, were analyzed via spoligotyping and 24-locus MIRU-VNTR. The Beijing genotype was the most prevalent family (90.63%, n = 522). Shared-type (ST) 1 was the most dominant genotype (88.89%, n = 512). We found that there was no association between the Beijing genotype and sex, age and treatment status. In this sample collection, 7 of the 24 MIRU-VNTR loci were highly or moderately discriminative according to their Hunter-Gaston discriminatory index. An informative set of 12 loci had similar discriminatory power with 24 loci set. Conclusions/Significance The population structure of M. tuberculosis isolates in Tibetans is homogeneous and dominated by Beijing genotype. The analysis of 24-locus MIRU-VNTR data might be useful to select appropriate VNTR loci for the genotyping of M. tuberculosis. PMID:22479472

  10. Cough Aerosols of Mycobacterium tuberculosis in the Prediction of Incident Tuberculosis Disease in Household Contacts

    PubMed Central

    Jones-López, Edward C.; Acuña-Villaorduña, Carlos; Ssebidandi, Martin; Gaeddert, Mary; Kubiak, Rachel W.; Ayakaka, Irene; White, Laura F.; Joloba, Moses; Okwera, Alphonse; Fennelly, Kevin P.

    2016-01-01

    Background. Tuberculosis disease develops in only 5%–10% of humans infected with Mycobacterium tuberculosis . The mechanisms underlying this variability remain poorly understood. We recently demonstrated that colony-forming units of M. tuberculosis in cough-generated aerosols are a better predictor of infection than the standard sputum acid-fast bacilli smear. We hypothesized that cough aerosol cultures may also predict progression to tuberculosis disease in contacts. Methods. We conducted a retrospective cohort study of 85 patients with smear-positive tuberculosis and their 369 household contacts in Kampala, Uganda. Index case patients underwent a standard evaluation, and we cultured M. tuberculosis from cough aerosols. Contacts underwent a standard evaluation at enrollment, and they were later traced to determine their tuberculosis status. Results. During a median follow-up of 3.9 years, 8 (2%) of the contacts developed tuberculosis disease. In unadjusted and adjusted analyses, incident tuberculosis disease in contacts was associated with sputum Mycobacterial Growth Indicator Tube culture (odds ratio, 8.2; 95% confidence interval, 1.1–59.2; P = .04), exposure to a high-aerosol tuberculosis case patient (6.0, 1.4–25.2; P = .01), and marginally, human immunodeficiency virus in the contact (6.11; 0.89–41.7; P = .07). We present data demonstrating that sputum and aerosol specimens measure 2 related but different phenomena. Conclusions. We found an increased risk of tuberculosis progression among contacts of high-aerosol case patients. The hypothesis that a larger infectious inoculum, represented by high aerosol production, determines the risk of disease progression deserves evaluation in future prospective studies. PMID:27025837

  11. Cough Aerosols of Mycobacterium tuberculosis in the Prediction of Incident Tuberculosis Disease in Household Contacts.

    PubMed

    Jones-López, Edward C; Acuña-Villaorduña, Carlos; Ssebidandi, Martin; Gaeddert, Mary; Kubiak, Rachel W; Ayakaka, Irene; White, Laura F; Joloba, Moses; Okwera, Alphonse; Fennelly, Kevin P

    2016-07-01

    Tuberculosis disease develops in only 5%-10% of humans infected with Mycobacterium tuberculosis The mechanisms underlying this variability remain poorly understood. We recently demonstrated that colony-forming units of M. tuberculosis in cough-generated aerosols are a better predictor of infection than the standard sputum acid-fast bacilli smear. We hypothesized that cough aerosol cultures may also predict progression to tuberculosis disease in contacts. We conducted a retrospective cohort study of 85 patients with smear-positive tuberculosis and their 369 household contacts in Kampala, Uganda. Index case patients underwent a standard evaluation, and we cultured M. tuberculosis from cough aerosols. Contacts underwent a standard evaluation at enrollment, and they were later traced to determine their tuberculosis status. During a median follow-up of 3.9 years, 8 (2%) of the contacts developed tuberculosis disease. In unadjusted and adjusted analyses, incident tuberculosis disease in contacts was associated with sputum Mycobacterial Growth Indicator Tube culture (odds ratio, 8.2; 95% confidence interval, 1.1-59.2; P = .04), exposure to a high-aerosol tuberculosis case patient (6.0, 1.4-25.2; P = .01), and marginally, human immunodeficiency virus in the contact (6.11; 0.89-41.7; P = .07). We present data demonstrating that sputum and aerosol specimens measure 2 related but different phenomena. We found an increased risk of tuberculosis progression among contacts of high-aerosol case patients. The hypothesis that a larger infectious inoculum, represented by high aerosol production, determines the risk of disease progression deserves evaluation in future prospective studies. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Human Exposure following Mycobacterium tuberculosis Infection of Multiple Animal Species in a Metropolitan Zoo

    PubMed Central

    Oh, Peter; Granich, Reuben; Scott, Jim; Sun, Ben; Joseph, Michael; Stringfield, Cynthia; Thisdell, Susan; Staley, Jothan; Workman-Malcolm, Donna; Borenstein, Lee; Lehnkering, Eleanor; Ryan, Patrick; Soukup, Jeanne; Nitta, Annette

    2002-01-01

    From 1997 to 2000, Mycobacterium tuberculosis was diagnosed in two Asian elephants (Elephas maximus), three Rocky Mountain goats (Oreamnos americanus), and one black rhinoceros (Diceros bicornis) in the Los Angeles Zoo. DNA fingerprint patterns suggested recent transmission. An investigation found no active cases of tuberculosis in humans; however, tuberculin skin-test conversions in humans were associated with training elephants and attending an elephant necropsy. PMID:12453358

  13. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis.

    PubMed

    Gama, Ntombenhle H; Elkhadir, Afag Y F; Gordhan, Bhavna G; Kana, Bavesh D; Darkwa, James; Meyer, Debra

    2016-08-01

    Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.

  14. Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism

    PubMed Central

    Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin

    2012-01-01

    Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285

  15. Prevalence of latent Mycobacterium tuberculosis infection in prisoners.

    PubMed

    Navarro, Pedro Daibert de; Almeida, Isabela Neves de; Kritski, Afrânio Lineu; Ceccato, Maria das Graças; Maciel, Mônica Maria Delgado; Carvalho, Wânia da Silva; Miranda, Silvana Spindola de

    2016-01-01

    To determine the prevalence of and the factors associated with latent Mycobacterium tuberculosis infection (LTBI) in prisoners in the state of Minas Gerais, Brazil. This was a cross-sectional cohort study conducted in two prisons in Minas Gerais. Tuberculin skin tests were performed in the individuals who agreed to participate in the study. A total of 1,120 individuals were selected for inclusion in this study. The prevalence of LTBI was 25.2%. In the multivariate analysis, LTBI was associated with self-reported contact with active tuberculosis patients within prisons (adjusted OR = 1.51; 95% CI: 1.05-2.18) and use of inhaled drugs (adjusted OR = 1.48; 95% CI: 1.03-2.13). Respiratory symptoms were identified in 131 (11.7%) of the participants. Serological testing for HIV was performed in 940 (83.9%) of the participants, and the result was positive in 5 (0.5%). Two cases of active tuberculosis were identified during the study period. Within the prisons under study, the prevalence of LTBI was high. In addition, LTBI was associated with self-reported contact with active tuberculosis patients and with the use of inhaled drugs. Our findings demonstrate that it is necessary to improve the conditions in prisons, as well as to introduce strategies, such as chest X-ray screening, in order to detect tuberculosis cases and, consequently, reduce M. tuberculosis infection within the prison system. Determinar a prevalência e os fatores associados à infecção latente por Mycobacterium tuberculosis (ILTB) em pessoas privadas de liberdade no Estado de Minas Gerais. Estudo de coorte transversal realizado em duas penitenciárias em Minas Gerais. Foi realizada a prova tuberculínica nos indivíduos que aceitaram participar do estudo. Foram selecionados 1.120 indivíduos para a pesquisa. A prevalência da ILTB foi de 25,2%. Na análise multivariada, a ILTB esteve associada com relato de contato com caso de tuberculose ativa dentro da penitenciária (OR ajustada = 1,51; IC95%: 1

  16. In vitro infection with Mycobacterium tuberculosis induces a distinct immunological pattern in blood from healthy relatives of tuberculosis patients.

    PubMed

    Juan-García, Javier; García-García, Silvia; Guerra-Laso, José Manuel; Raposo-García, Sara; Diez-Tascón, Cristina; Nebreda-Mayoral, Teresa; López-Fidalgo, Eduardo; López-Medrano, Ramiro; Fernández-Maraña, Araceli; Rivero-Lezcano, Octavio Miguel

    2017-11-30

    Part of the susceptibility to tuberculosis has a genetic basis, which is clear in primary immunodeficiencies, but is less evident in apparently immunocompetent subjects. Immune responses were analysed in blood samples from tuberculosis patients and their healthy first-degree relatives who were infected in vitro with mycobacteria (either Mycobacterium tuberculosis or M. bovis BCG). The antimicrobial activity against M. tuberculosis in blood from relatives was significantly lower than that observed in healthy controls. Tuberculosis patients exhibited a higher number of neutrophils, and monocyte phagocytosis was inhibited in both relatives and tuberculosis patients. A remarkable finding was that the production of reactive oxygen species by infected neutrophils was higher in relatives than in healthy controls. A higher production of TNFα in infected blood from relatives was also observed. These results may indicate that relatives display a stronger inflammatory response and that their immune response to M. tuberculosis is different from those of unrelated controls. First-degree relatives may represent a highly informative group for the analysis of tuberculosis susceptibility. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the phosphotriesterase from Mycobacterium tuberculosis.

    PubMed

    Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin

    2013-01-01

    Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C222(1), with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data.

  18. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the phosphotriesterase from Mycobacterium tuberculosis

    PubMed Central

    Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin

    2013-01-01

    Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C2221, with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data. PMID:23295488

  19. Diversity of Mycobacterium tuberculosis lineages in French Polynesia.

    PubMed

    Osman, Djaltou Aboubaker; Phelippeau, Michael; Drancourt, Michel; Musso, Didier

    2017-04-01

    French Polynesia is an overseas territory located in the South Pacific. The incidence of tuberculosis in French Polynesia has been stable since 2000 with an average of 20 cases/y/100,000 inhabitants. Molecular epidemiology of Mycobacterium tuberculosis in French Polynesia is unknown because M. tuberculosis isolates have not been routinely genotyped. From 2009 to 2012, 34 isolates collected from 32 French Polynesian patients were identified as M. tuberculosis by probe hybridization. These isolates were genotyped using spoligotyping and 24-loci mycobacterial interspersed repetitive units (MIRUs)-variable number of tandem repeat (VNTR). Spoligotype patterns obtained using commercial kits were compared with the online international database SITVIT. MIRU-VNTR genotyping was performed using an in-house protocol based on capillary electrophoresis sizing for 24-loci MIRU-VNTR genotyping. The results of the spoligotyping method revealed that 25 isolates grouped into six previously described spoligotypes [H1, H3, U likely (S), T1, Manu, and Beijing] and nine isolates grouped into six new spoligotypes. Comparison with the international database MIRU-VNTRplus distributed 30 isolates into five lineages (Haarlem, Latin American Mediterranean, S, X, and Beijing) and four as unassigned isolates. Genotyping identified four phylogenetic lineages belonging to the modern Euro-American subgroup, one Beijing genotype responsible for worldwide pandemics, including remote islands in the South Pacific, and one Manu genotype of the ancestral lineage of M. tuberculosis. Copyright © 2015. Published by Elsevier B.V.

  20. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor.

    PubMed

    Sethi, Deepti; Mahajan, Sahil; Singh, Chaahat; Lama, Amrita; Hade, Mangesh Dattu; Gupta, Pawan; Dikshit, Kanak L

    2016-02-05

    Mycobacterium tuberculosis executes numerous defense strategies for the successful establishment of infection under a diverse array of challenges inside the host. One such strategy that has been delineated in this study is the abrogation of lytic activity of lysozyme by a novel glycosylated and surface-localized lipoprotein, LprI, which is exclusively present in M. tuberculosis complex. The lprI gene co-transcribes with the glbN gene (encoding hemoglobin (HbN)) and both are synchronously up-regulated in M. tuberculosis during macrophage infection. Recombinant LprI, expressed in Escherichia coli, exhibited strong binding (Kd ≤ 2 nm) with lysozyme and abrogated its lytic activity completely, thereby conferring protection to fluorescein-labeled Micrococcus lysodeikticus from lysozyme-mediated hydrolysis. Expression of the lprI gene in Mycobacterium smegmatis (8-10-fold) protected its growth from lysozyme inhibition in vitro and enhanced its phagocytosis and survival during intracellular infection of peritoneal and monocyte-derived macrophages, known to secrete lysozyme, and in the presence of exogenously added lysozyme in secondary cell lines where lysozyme levels are low. In contrast, the presence of HbN enhanced phagocytosis and intracellular survival of M. smegmatis only in the absence of lysozyme but not under lysozyme stress. Interestingly, co-expression of the glbN-lprI gene pair elevated the invasion and survival of M. smegmatis 2-3-fold in secondary cell lines in the presence of lysozyme in comparison with isogenic cells expressing these genes individually. Thus, specific advantage against macrophage-generated lysozyme, conferred by the combination of LprI-HbN during invasion of M. tuberculosis, may have vital implications on the pathogenesis of tuberculosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Prospective Genotyping of Mycobacterium tuberculosis from Fresh Clinical Samples

    PubMed Central

    Bidovec-Stojkovič, Urška; Seme, Katja; Žolnir-Dovč, Manca; Supply, Philip

    2014-01-01

    Shorter time-to-result is key for improving molecular-guided epidemiological investigation of tuberculosis (TB) cases. We performed a prospective study to evaluate the use of standardized MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat) typing of Mycobacterium tuberculosis directly on 79 fresh clinical samples from 26 TB patients consecutively enrolled over a 17-month period. Overall, complete 24-locus types were obtained for 18 out of the 26 (69.2%) patients and 14 of the 16 grade 3+ and grade 2+ samples (87.5%). The degree of completion of the genotypes obtained significantly correlated with smear microscopy grade both for 26 first samples (p = 0.0003) and for 53 follow-up samples (p = 0.002). For 20 of the 26 patients for whom complete or even incomplete M. tuberculosis isolate genotypes were obtained, typing applied to the clinical samples allowed the same unambiguous conclusions regarding case clustering or uniqueness as those that could have been drawn based on the corresponding cultured isolates. Standard 24 locus MIRU-VNTR typing of M. tuberculosis can be applied directly to fresh clinical samples, with typeability depending on the bacterial load in the sample. PMID:25313883

  3. Bovine Tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis (TB) in animals and humans may result from exposure to bacilli within the Mycobacterium tuberculosis complex (i.e., M. tuberculosis, M. bovis, M. africanum, M. pinnipedii, M. microti, M. caprae, or M. canetti). Mycobacterium bovis is the species most often isolated from tuberculous catt...

  4. Bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis (TB) in animals and humans may result from exposure to bacilli within the Mycobacterium tuberculosis complex (i.e., M. tuberculosis, M. bovis, M. africanum, M. pinnipedii, M. microti, M. caprae, or M. canetti) . Mycobacterium bovis is the species most often isolated from tuberculous cat...

  5. Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents

    DTIC Science & Technology

    1997-11-01

    status can sometimes be reflected in the infectious potential or drug resistance of those pathogens. For example, in Mycobacterium tuberculosis ... Mycobacterium tuberculosis , its antibiotic resistance and prediction of pathogenicity amongst Mycobacterium spp. based on signature lipid biomarkers ...TITLE AND SUBTITLE Rapid, Potentially Automatable, Method Extract Biomarkers for HPLC/ESI/MS/MS to Detect and Identify BW Agents 5a. CONTRACT NUMBER 5b

  6. Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs

    PubMed Central

    Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.

    2014-01-01

    ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847

  7. Detection and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a Neolithic Settlement in the Eastern Mediterranean

    PubMed Central

    Minnikin, David E.; Besra, Gurdyal S.; Lee, Oona Y-C.; Gernaey, Angela M.; Galili, Ehud; Eshed, Vered; Greenblatt, Charles L.; Lemma, Eshetu; Bar-Gal, Gila Kahila; Spigelman, Mark

    2008-01-01

    Background Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship. Methodology/Principal Findings We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex. Conclusions/Significance Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen. PMID:18923677

  8. Molecular characteristics of "Mycobacterium canettii" the smooth Mycobacterium tuberculosis bacilli.

    PubMed

    Fabre, Michel; Hauck, Yolande; Soler, Charles; Koeck, Jean-Louis; van Ingen, Jakko; van Soolingen, Dick; Vergnaud, Gilles; Pourcel, Christine

    2010-12-01

    Since the first discovery of the smooth tubercle (SmTB) bacilli "Mycobacterium canettii" less than 60 isolates have been reported, all but one originating from a limited geographical location, the Horn of Africa. In spite of its rarity, the SmTB lineage deserves special attention. Previous investigations suggested that SmTB isolates represent an ancestral lineage of the Mycobacterium tuberculosis complex (MTBC) and that consequently they might provide essential clues on the origin and evolution of the MTBC. There is evidence that unlike the rest of the MTBC, SmTB strains recombine chromosomal sequences with a yet unknown Mycobacterium species. This behavior contributes to the much larger genetic heterogeneity observed in the SmTB isolates compared to the other members of the MTBC. We have collected 59 SmTB isolates of which 14 were newly recovered since previous reports, and performed extensive phenotypical and genotypical characterization. We take advantage of these investigations to review the current knowledge of "M. canettii". Their characteristics and the apparent lack of human to human transmission are consistent with the previously proposed existence of non-human sources of infection. SmTB strains show remarkably common features together with secondary and taxonomically minor genetic differences such as the presence or absence of the CRISPR (Clustered Regularly Interspersed Palindromic Repeat) locus (usually called Direct Repeat or DR region) or number of IS sequences. Multiple Locus Variable number of tandem repeat Analysis (MLVA) and DR region analyses reveal one predominant clone, one minor clone and a number of more distantly related strains. This suggests that the two most frequent clones may represent successfully emerging lineages. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites.

    PubMed

    Wang, QingBiao; Xu, Yiqin; Gu, Zhuoya; Liu, Nian; Jin, Ke; Li, Yao; Crabbe, M James C; Zhong, Yang

    2018-04-01

    Bacterial RNA polymerase (RNAP) is an effective target for antibacterial treatment. In order to search new potential targets in RNAP of Mycobacterium, we detected adaptive selections of RNAP related genes in 13 strains of Mycobacterium by phylogenetic analysis. We first collected sequences of 17 genes including rpoA, rpoB, rpoC, rpoZ, and sigma factor A-M. Then maximum likelihood trees were constructed, followed by positive selection detection. We found that sigG shows positive selection along the clade (M. tuberculosis, M. bovis), suggesting its important evolutionary role and its potential to be a new antibacterial target. Moreover, the regions near 933Cys and 935His on the rpoB subunit of M. tuberculosis showed significant positive selection, which could also be a new attractive target for anti-tuberculosis drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Genetic diversity of Mycobacterium tuberculosis isolates from Tochigi prefecture, a local region of Japan.

    PubMed

    Mizukoshi, Fuminori; Miyoshi-Akiyama, Tohru; Iwai, Hiroki; Suzuki, Takako; Kiritani, Reiko; Kirikae, Teruo; Funatogawa, Keiji

    2017-05-25

    Foreign-born patients with tuberculosis (TB) may introduce globally disseminated isolates of Mycobacterium tuberculosis into large cities in Japan. The risk of dissemination of these isolates into local regions, however, has not been determined. This study analyzed the molecular epidemiology of M. tuberculosis isolates obtained from TB patients living in a local region of Japan. Whole genome sequences of 169 M. tuberculosis isolates, obtained from 148 Japanese-born and 21 foreign-born patients living in Tochigi, Japan, were analyzed using the Comprehensive analysis server for the Mycobacterium t u b erculosis complex (CASTB). The 169 isolates were clustered into four clades; Lineage 2 (111 isolates 65.7%), Lineage 4 (43 isolates, 25.4%), Lineage 1 (13 isolates, 7.7%), and Lineage 3 (2 isolates, 1.2%). Of the 111 isolates belonging to Lineage 2, 79 (71.2%) were of the atypical Beijing sub-genotype. Of the 13 Lineage 1 isolates, nine (69.2%) were from foreign-born patients. The isolates belonging to Lineage 4 were further clustered into three clades, two containing isolates shared by both Japanese- and foreign-born patients. The two isolates belonging to Lineage 3 were obtained from foreign-born patients. The genotypic diversity of M. tuberculosis in a local region of Japan is increased primarily by the presence of isolates obtained from foreign-born patients.

  11. Detection of Mycobacterium tuberculosis complex by nested polymerase chain reaction in pulmonary and extrapulmonary specimens* ,**

    PubMed Central

    Furini, Adriana Antônia da Cruz; Pedro, Heloisa da Silveira Paro; Rodrigues, Jean Francisco; Montenegro, Lilian Maria Lapa; Machado, Ricardo Luiz Dantas; Franco, Célia; Schindler, Haiana Charifker; Batista, Ida Maria Foschiani Dias; Rossit, Andrea Regina Baptista

    2013-01-01

    OBJECTIVE: To compare the performance of nested polymerase chain reaction (NPCR) with that of cultures in the detection of the Mycobacterium tuberculosis complex in pulmonary and extrapulmonary specimens. METHODS: We analyzed 20 and 78 pulmonary and extrapulmonary specimens, respectively, of 67 hospitalized patients suspected of having tuberculosis. An automated microbial system was used for the identification of Mycobacterium spp. cultures, and M. tuberculosis IS6110 was used as the target sequence in the NPCR. The kappa statistic was used in order to assess the level of agreement among the results. RESULTS: Among the 67 patients, 6 and 5, respectively, were diagnosed with pulmonary and extrapulmonary tuberculosis, and the NPCR was positive in all of the cases. Among the 98 clinical specimens, smear microscopy, culture, and NPCR were positive in 6.00%, 8.16%, and 13.26%, respectively. Comparing the results of NPCR with those of cultures (the gold standard), we found that NPCR had a sensitivity and specificity of 100% and 83%, respectively, in pulmonary specimens, compared with 83% and 96%, respectively, in extrapulmonary specimens, with good concordance between the tests (kappa, 0.50 and 0.6867, respectively). CONCLUSIONS: Although NPCR proved to be a very useful tool for the detection of M. tuberculosis complex, clinical, epidemiological, and other laboratory data should also be considered in the diagnosis and treatment of pulmonary and extrapulmonary tuberculosis. PMID:24473765

  12. Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease γ subunit

    PubMed Central

    Habel, Jeff E.; Bursey, Evan H.; Rho, Beom-Seop; Kim, Chang-Yub; Segelke, Brent W.; Rupp, Bernhard; Park, Min S.; Terwilliger, Thomas C.; Hung, Li-Wei

    2010-01-01

    The crystal structure of the urease γ subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 Å resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (αβγ)3 composition observed for other bacterial ureases. The γ subunit may be of primary importance for the formation of the urease quaternary structure. PMID:20606272

  13. Current prospects of synthetic curcumin analogs and chalcone derivatives against mycobacterium tuberculosis.

    PubMed

    Bukhari, Syed Nasir Abbas; Franzblau, Scott G; Jantan, Ibrahim; Jasamai, Malina

    2013-11-01

    Tuberculosis, caused by Mycobacterium tuberculosis, is amongst the foremost infectious diseases. Treatment of tuberculosis is a complex process due to various factors including a patient's inability to persevere with a combined treatment regimen, the difficulty in eradicating the infection in immune-suppressed patients, and multidrug resistance (MDR). Extensive research circumscribing molecules to counteract this disease has led to the identification of many inhibitory small molecules. Among these are chalcone derivatives along with curcumin analogs. In this review article, we summarize the reported literature regarding anti tubercular activity of chalcone derivatives and synthetic curcumin analogs. Our goal is to provide an analysis of research to date in order to facilitate the synthesis of superior antitubercular chalcone derivatives and curcumin analogs.

  14. [Epidemiology of resistance to antituberculosis drugs in Mycobacterium tuberculosis complex strains isolated from adenopathies in Djibouti. Prospective study carried out in 1999].

    PubMed

    Koeck, J L; Bernatas, J J; Gerome, P; Fabre, M; Houmed, A; Herve, V; Teyssou, R

    2002-01-01

    Tuberculosis is a major cause of death in the Republic of Djibouti. Tuberculous lymphadenitis represents about 25% of the clinical forms of tuberculosis in this country. Between January 1999 and April 1999, 196 lymph node specimens were consecutively collected from 153 patients living in Djibouti. Testing of susceptibility to the major anti-tuberculosis drugs was performed by the proportion method. Growth of Mycobacterium tuberculosis complex strains was obtained from specimens of 85 patients including 9 with prior treatment. Strains were identified as Mycobacterium tuberculosis in 78 cases, Mycobacterium canetti in 3, Mycobacterium africanum in 3, and Mycobacterium bovis in 1. Prevalence of HIV infection was 15%. Assessment of primary resistance demonstrated that the overall resistance rate, i.e., resistance to 1 or more drugs, was 18 (21.2%). Results showed resistance to isoniazid (H) in 6 cases (7.1%), rifampicin (R) in 3 (3.5%), ethambutol (E) in 1 (1.2%), streptomycin (S) in 13 (15.3%) and pyrazinamide (Z) in 1 (1.2%). Multidrug resistance (MDR) was found in 2 cases (2.4%). Assessment of acquired resistance demonstrated resistance to H in 4 cases (44%), R in 2 (22%), S in 2 (22%), E in 0, Z in 0 and MDR in 1 (11%). These findings were not significantly different from data obtained from sputum samples analysed between 1997 and 2000 or from those described in a study conducted in 1985.

  15. Synthesis and Biological Evaluation of New Hydrazone Derivatives of Quinoline and Their Cu(II) and Zn(II) Complexes against Mycobacterium tuberculosis

    PubMed Central

    Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh

    2015-01-01

    A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537

  16. [Frontier of mycobacterium research--host vs. mycobacterium].

    PubMed

    Okada, Masaji; Shirakawa, Taro

    2005-09-01

    During the past decade, we have observed advance in tuberculosis research including novel vaccines, innate immunity (TLR), SNIP analysis and molecular mechanism of drug resistance. Worldwide genome project enabled the whole genome sequence of host resistant against tuberculosis as well as the whole genome sequence of M. tuberculosis H37Rv. DNA technology has also provided a great impact on the development of novel vaccine against TB. In this symposium, we have invited leading researchers in the field of the frontier study of Mycobacterium research in order to provide general overview of the cutting edge of frontier research. Molecular mechanism of drug resistance of M. tuberculosis has been clarified. On the other hand, molecular mechanism of host-defence (insusceptibility of host) against M. tuberculosis has not yet elucidated. Dr. Taro Shirakawa (Kyoto University) reviewed the susceptibility genes of host in TB infection and presented candidate genes associated with multi-drug resistant tuberculosis. Dr. Naoto Keicho (International Medical Center of Japan) tried to identify host genetic factors involved in susceptibility to pulmonary Mycobacterium avium complex (MAC) infection by candidate gene approach and genome-wide approach. In Japan, Dr. Masaji Okada (National Hospital Organization Kinki-Chuo Chest Medical Center) has been engaged actively in the development of new tuberculosis vaccines (HVJ-liposome/Hsp65 DNA + IL-12 DNA vaccine and recombinant 72f BCG vaccine). He showed basic strategy for construction of new candidate vaccines and also showed significant efficacy on the protection of tuberculosis infection using cynomolgus monkeys, which are very similar to human tuberculosis. Dr. Hatsumi Taniguchi (University of Occupational and Environmental Health) presented that M. tuberculosis mIHF and the neighbor genes went into a dormacy-like state of M. smegmatis in J774 macrophage cells. This study might provide a weapon for elucidating the mechanism of dormacy

  17. Genotypic characteristics of Mycobacterium tuberculosis isolated from household contacts of tuberculosis patients in the Philippines.

    PubMed

    Sia, Irene G; Buckwalter, Seanne P; Doerr, Kelly A; Lugos, Sonia; Kramer, Rebecca; Orillaza-Chi, Ruth; Quelapio, Maria Imelda; Tupasi, Thelma E; Wengenack, Nancy L

    2013-12-05

    The Philippines has an extremely high rate of tuberculosis but little is known about M. tuberculosis genotypes and transmission dynamics in this country. The aim of this study was to determine the proportion of household contacts who develop active TB due to direct transmission from an index case in that household. Mycobacterium tuberculosis isolates from household contacts of tuberculosis patients in the Philippines were characterized using restriction-fragment-length polymorphism analysis, spoligotyping, and mycobacterial interspersed repetitive units - variable number tandem repeats typing (12-loci) to determine their utility in elucidating transmission in an area of high tuberculosis prevalence. Drug susceptibility patterns for these isolates were also determined. Spoligotyping and MIRU-VNTR typing results matched in 10 (62.5%) of 16 index patient-household contact pairs while IS6110 fingerprints matched in only six (37.5%) pairs. Only 3/16 (18.8%) index patient-household contact pairs had identical drug susceptibility results. Strain typing of M. tuberculosis isolates from household contacts in the Philippines indicates that transmission of strains does not necessarily occur directly from the index patient living in close proximity in the same household but rather that community-based transmission also frequently occurs. Accurate susceptibility testing of all isolates is necessary to insure optimal care of both the index patients and any culture-positive household contacts.

  18. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model.

    PubMed

    Filio-Rodríguez, Georgina; Estrada-García, Iris; Arce-Paredes, Patricia; Moreno-Altamirano, María M; Islas-Trujillo, Sergio; Ponce-Regalado, M Dolores; Rojas-Espinosa, Oscar

    2017-10-01

    In 2004, a novel mechanism of cellular death, called 'NETosis', was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.

  19. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs.

    PubMed

    Li, Z; Kelley, C; Collins, F; Rouse, D; Morris, S

    1998-04-01

    The molecular mechanisms associated with the pathogenesis of tuberculosis are not well understood. The present study evaluated the role of catalase-peroxidase as a potential virulence factor for Mycobacterium tuberculosis. Growth and persistence of M. tuberculosis H37Rv in intravenously infected BALB/ c mice were compared with katG-deleted, isoniazid-resistant M. tuberculosis H37RVINHR. Transformation of M. tuberculosis H37Rv (TBkatG) or Mycobacterium intracellulare (MACkatG) genes into M. tuberculosis H37RvINHR restored its catalase-peroxidase activities and the ability of the recombinants to persist in spleens of mice and guinea pigs. Transformation with the TBkatG gene with the codon 463 R-->L mutation also restored catalase-peroxidase activity and enhanced persistence. However, transformants with the codon 275 T-->P mutant expressed low levels of enzymatic activity and failed to persist in guinea pig spleen, although they did survive in mouse tissues. These results indicate that KatG contributes to the ability of M. tuberculosis to grow and survive within the infected host tissues.

  20. High prevalence of Mycobacterium tuberculosis mixed infection in the capital of moderate tuberculosis incidence country.

    PubMed

    Hajimiri, Elahe Sadat; Masoomi, Morteza; Ebrahimzadeh, Nayereh; Fateh, Abolfazl; Hadizadeh Tasbiti, Alireza; Rahimi Jamnani, Fatemeh; Bahrmand, Ahmad Reza; Mirsaeidi, Mehdi; Vaziri, Farzam; Siadat, Seyed Davar

    2016-04-01

    Recent studies using molecular epidemiological techniques have demonstrated mixed infection with multiple strains of Mycobacterium tuberculosis especially in countries with high tuberculosis (TB) burden. We aimed to determine the prevalence of mixed infection among patients with TB in the capital of Iran as a country with moderate incidence rate. Samples were collected randomly from January 2011 to December 2013 in Tehran, capital of Iran. A total of 75 M. tuberculosis isolates were genotyped by 24 loci mycobacterial interspersed repetitive unit-variable number tandem repeat typing (MIRU-VNTR) for screening the mixed infection. Twenty patients (20/75) were identified with mixed infection, and the estimated rate of mixed infection was 26.6%. Thirteen out of the 24 loci were able to detect the mixed infection in our study. Mixed infections occur at high prevalence among studied Iranian TB patients. Further research is inevitable to evaluate the association of mixed infection and disease progression and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Unique Mechanism of Action of the Thiourea Drug Isoxyl on Mycobacterium tuberculosis*

    PubMed Central

    Phetsuksiri, Benjawan; Jackson, Mary; Scherman, Hataichanok; McNeil, Michael; Besra, Gurdyal S.; Baulard, Alain R.; Slayden, Richard A.; DeBarber, Andrea E.; Barry, Clifton E.; Baird, Mark S.; Crick, Dean C.; Brennan, Patrick J.

    2016-01-01

    The thiourea isoxyl (thiocarlide; 4,4′-diisoamyloxydiphenylthiourea) is known to be an effective anti-tuberculosis drug, active against a range of multidrug-resistant strains of Mycobacterium tuberculosis and has been used clinically. Little was known of its mode of action. We now demonstrate that isoxyl results in a dose-dependent decrease in the synthesis of oleic and, consequently, tuberculostearic acid in M. tuberculosis with complete inhibition at 3 μg/ml. Synthesis of mycolic acid was also affected. The anti-bacterial effect of isoxyl was partially reversed by supplementing growth medium with oleic acid. The specificity of this inhibition pointed to a Δ9-stearoyl desaturase as the drug target. Development of a cell-free assay for Δ9-desaturase activity allowed direct demonstration of the inhibition of oleic acid synthesis by isoxyl. Interestingly, sterculic acid, a known inhibitor of Δ9-desaturases, emulated the effect of isoxyl on oleic acid synthesis but did not affect mycolic acid synthesis, demonstrating the lack of a relationship between the two effects of the drug. The three putative fatty acid desaturases in the M. tuberculosis genome, desA1, desA2, and desA3, were cloned and expressed in Mycobacterium bovis BCG. Cell-free assays and whole cell labeling demonstrated increased Δ9-desaturase activity and oleic acid synthesis only in the desA3-overexpressing strain and an increase in the minimal inhibitory concentration for isoxyl, indicating that DesA3 is the target of the drug. These results validate membrane-bound Δ9-desaturase, DesA3, as a new therapeutic target, and the thioureas as anti-tuberculosis drugs worthy of further development. PMID:14559907

  2. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae.

    PubMed Central

    Philipp, W J; Poulet, S; Eiglmeier, K; Pascopella, L; Balasubramanian, V; Heym, B; Bergh, S; Bloom, B R; Jacobs, W R; Cole, S T

    1996-01-01

    An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom. Images Fig. 1 Fig. 2 PMID:8610181

  3. Sensitivity of Mycobacterium bovis to common beef processing interventions

    USDA-ARS?s Scientific Manuscript database

    Introduction. Cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis and a relevant zoonosis to humans, may be sent to slaughter before diagnosis of infection because of slow multiplication of the pathogen. Purpose. This study evaluates multiple processing interventi...

  4. LAG3 Expression in Active Mycobacterium tuberculosis Infections

    PubMed Central

    Phillips, Bonnie L.; Mehra, Smriti; Ahsan, Muhammad H.; Selman, Moises; Khader, Shabaana A.; Kaushal, Deepak

    2016-01-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus–induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4+ T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response. PMID:25549835

  5. Spoligotyping of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mumbai, India.

    PubMed

    Kulkarni, Savita; Sola, Christophe; Filliol, Ingrid; Rastogi, Nalin; Kadival, Gururaj

    2005-05-01

    Tuberculosis remains a major health problem in India, with 2 million new cases and 421,000 deaths each year. In this paper, we describe the spoligotyping results of 216 Mycobacterium tuberculosis culture isolates from patients with pulmonary tuberculosis in Mumbai, India. As spoligotyping data from India have rarely been described until now, and as there is limited information on the major circulating clades of M. tuberculosis, the data obtained were also compared to an international spoligotype database (SpolDB4) that contained patterns from 22,546 isolates from more than 100 countries. Eighty-four (39%) of the isolates were definitively marked as orphan strains, indicating the paucity of such data from India. The remaining 132 isolates clustered among 59 shared types; among these, 42 shared types were already present in the database, 17 were newly created, and 5 of them were specifically reported from Mumbai. A total of 9 major types in this study clustered 32% of the isolates. At the phylogenetic level, 30% of the isolates belonged to the Central Asian families CAS1 and CAS2, of the major genetic group (MGG) 1, 29% to MGG 2 and 3 families (spacers 33-36 missing) and 17% to the ancestral East African Indian (EAI) family. Finally, nearly 10% of the isolates belonged to the W-Beijing family in a broad sense, also in the MGG 1 group. In conclusion, historic clones of the MGG 1 group of M. tuberculosis are responsible for roughly 60% of all tuberculosis cases in Mumbai. Together with the fact that organisms presumably of European descent (such as the Haarlem family) were only rarely found, our observations suggest that tuberculosis in Mumbai, India is essentially caused by historical clones of tubercle bacilli undergoing active circulation due to uncontrolled demography, high prevalence of the disease, and a paucity of resources.

  6. Molecular characterization of Mycobacterium tuberculosis isolates from elephants of Nepal.

    PubMed

    Paudel, Sarad; Mikota, Susan K; Nakajima, Chie; Gairhe, Kamal P; Maharjan, Bhagwan; Thapa, Jeewan; Poudel, Ajay; Shimozuru, Michito; Suzuki, Yasuhiko; Tsubota, Toshio

    2014-05-01

    Mycobacterium tuberculosis was cultured from the lung tissues of 3 captive elephants in Nepal that died with extensive lung lesions. Spoligotyping, TbD1 detection and multi-locus variable number of tandem repeat analysis (MLVA) results suggested 3 isolates belonged to a specific lineage of Indo-Oceanic clade, EAI5 SIT 138. One of the elephant isolates had a new synonymous single nucleotide polymorphism (SNP) T231C in the gyrA sequence, and the same SNP was also found in human isolates in Nepal. MLVA results and transfer history of the elephants suggested that 2 of them might be infected with M. tuberculosis from the same source. These findings indicated the source of M. tuberculosis infection of those elephants were local residents, presumably their handlers. Further investigation including detailed genotyping of elephant and human isolates is needed to clarify the infection route and eventually prevent the transmission of tuberculosis to susceptible hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Prevalence of tuberculosis in pigs slaughtered at two abattoirs in Ethiopia and molecular characterization of Mycobacterium tuberculosis isolated from tuberculous-like lesions in pigs.

    PubMed

    Arega, Sintayehu Mulugeta; Conraths, Franz Josef; Ameni, Gobena

    2013-05-06

    Tuberculosis (TB) is an infectious, granulomatous disease caused by acid-fast bacilli of the genus Mycobacterium. The disease affects practically all species of vertebrates. Although mammalian tuberculosis has been nearly controlled in many developed countries, it is still a serious problem in humans and domestic animals including pigs in developing countries. In Ethiopia, the prevalence of TB in pigs is not known. Therefore, this study was designed to estimate the prevalence of TB in pigs in central Ethiopia and to characterize the causative agents using molecular techniques. The estimated prevalence of TB was 5.8% (49/841). Age and origin of pigs were significantly associated (P<0.001) with the prevalence. In contrast, an association of sex, floor type and water source with the prevalence could not be shown. Culture positivity was confirmed in 30.6% (15/49) of the tuberculous-like lesions. Of the 15 isolates, 12 were acid fast positive while five of the latter were confirmed by multiplex PCR as members of the M. tuberculosis complex. Speciation of the five isolates further confirmed that they were M. tuberculosis, belonging to SIT1088 (two isolates) and SIT1195 (one isolate). The remaining two isolates belong to an identical spoligotype, the pattern of which was not found in the spoligotype database (SpolDB4). The isolation of M. tuberculosis from pigs suggests a possible risk of transmission between humans and pigs. Hence, establishing feasible control methods is required.

  8. Toward Mycobacterium tuberculosis DXR inhibitor design: homology modeling and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Singh, Nidhi; Avery, Mitchell A.; McCurdy, Christopher R.

    2007-09-01

    Mycobacterium tuberculosis 1-deoxy- d-xylulose-5-phosphate reductoisomerase ( MtDXR) is a potential target for antitubercular chemotherapy. In the absence of its crystallographic structure, our aim was to develop a structural model of MtDXR. This will allow us to gain early insight into the structure and function of the enzyme and its likely binding to ligands and cofactors and thus, facilitate structure-based inhibitor design. To achieve this goal, initial models of MtDXR were generated using MODELER. The best quality model was refined using a series of minimizations and molecular dynamics simulations. A protein-ligand complex was also developed from the initial homology model of the target protein by including information about the known ligand as spatial restraints and optimizing the mutual interactions between the ligand and the binding site. The final model was evaluated on the basis of its ability to explain several site-directed mutagenesis data. Furthermore, a comparison of the homology model with the X-ray structure published in the final stages of the project shows excellent agreement and validates the approach. The knowledge gained from the current study should prove useful in the design and development of inhibitors as potential novel therapeutic agents against tuberculosis by either de novo drug design or virtual screening of large chemical databases.

  9. Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis

    PubMed Central

    Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z.; Tyagi, Anil K.

    2014-01-01

    ABSTRACT Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size—their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. PMID:25370496

  10. Genetic diversity of Mycobacterium tuberculosis isolates from central India.

    PubMed

    Desikan, Prabha; Chauhan, D S; Sharma, Pragya; Panwalkar, Nikita; Chourey, Manju; Patidar, Mohan Lal; Yadav, Priyanka; Chandrasekaran, V; Ohri, B S

    2016-04-01

    There is a paucity of data available on genetic biodiversity of Mycobacterium tuberculosis isolates from central India. The present study was carried out on isolates of M. tuberculosis cultured from diagnostic clinical samples of patients from Bhopal, central India, using spoligotyping as a method of molecular typing. DNA was extracted from 340 isolates of M. tuberculosis from culture, confirmed as M. tuberculosis by molecular and biochemical methods and subjected to spoligotyping. The results were compared with the international SITVIT2 database. Sixty five different spoligo international type (SIT) patterns were observed. A total of 239 (70.3%) isolates could be clustered into 25 SITs. The Central Asian (CAS) and East African Indian (EAI) families were found to be the two major circulating families in this region. SIT26/CAS1_DEL was identified as the most predominant type, followed by SIT11/EAI3_IND and SIT288/CAS[2]. Forty (11.8%) unique (non-clustered) and 61 (17.9%) orphan isolates were identified in the study. There was no significant association of clustering with clinical and demographic characteristics of patients. Well established SITs were found to be predominant in our study. SIT26/CAS1_DEL was the most predominant type. However, the occurrence of a substantial number of orphan isolates may indicate the presence of active spatial and temporal evolutionary dynamics within the isolates of M. tuberculosis.

  11. Evaluation of tissue fixation methods to inactivate Mycobacterium bovis under routine laboratory conditions

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium bovis (M. bovis) is the etiological agent of tuberculosis in mammals including humans. The seriousness of disease and low infective dose require that the agent be handled under biosafety level 3 conditions. Many experimental protocols include histological examination of infected tissue...

  12. Performance of a Highly Sensitive Mycobacterium tuberculosis Complex Real-Time PCR Assay for Diagnosis of Pulmonary Tuberculosis in a Low-Prevalence Setting: a Prospective Intervention Study.

    PubMed

    Vinuesa, Víctor; Borrás, Rafael; Briones, María Luisa; Clari, María Ángeles; Cresencio, Vicenta; Giménez, Estela; Muñoz, Carmen; Oltra, Rosa; Servera, Emilio; Scheelje, Talia; Tornero, Carlos; Navarro, David

    2018-05-01

    The potential impact of routine real-time PCR testing of respiratory specimens from patients with presumptive tuberculosis in terms of diagnostic accuracy and time to tuberculosis treatment inception in low-prevalence settings remains largely unexplored. We conducted a prospective intervention cohort study. Respiratory specimens from 1,020 patients were examined by acid-fast bacillus smear microscopy, tested by a real-time Mycobacterium tuberculosis complex PCR assay (Abbott RealTi me MTB PCR), and cultured in mycobacterial media. Seventeen patients tested positive by PCR (5 were acid-fast bacillus smear positive and 12 acid-fast bacillus smear negative), and Mycobacterium tuberculosis was recovered from cultures for 12 of them. Patients testing positive by PCR and negative by culture ( n = 5) were treated and deemed to have responded to antituberculosis therapy. There were no PCR-negative/culture-positive cases, and none of the patients testing positive for nontuberculous mycobacteria ( n = 20) yielded a positive PCR result. The data indicated that routine testing of respiratory specimens from patients with presumptive tuberculosis by the RealTi me MTB PCR assay improves the tuberculosis diagnostic yield and may reduce the time to antituberculosis treatment initiation. On the basis of our data, we propose a novel mycobacterial laboratory algorithm for tuberculosis diagnosis. Copyright © 2018 American Society for Microbiology.

  13. Evaluation of the RT-LAMP and LAMP methods for detection of Mycobacterium tuberculosis.

    PubMed

    Wu, Dandan; Kang, Jiwen; Li, Baosheng; Sun, Dianxing

    2018-05-01

    The current methods for detecting Mycobacterium tuberculosis (Mtb) are not clinically optimal. Standard culture methods (SCMs) are slow, costly, or unreliable, and loop-mediated isothermal amplification (LAMP) cannot differentiate live Mtb. This study compared reverse transcription (RT)-LAMP, LAMP, and an SCM for detecting Mtb. A first experiment tested the sensitivity and specificity of primers for 9 species of Mycobacterium (H37Rv, M. intracellulare, M. marinum, M. kansasii, M. avium, M. flavescens, M. smegmatis, M. fortuitum, and M. chelonae); and 3 non-Mycobacterium species (Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae). A second experiment tested sputum specimens for the presence of Mtb, from 100 patients with tuberculosis (clinical) and 22 from patients without tuberculosis (control), using Roche solid culture (SCM), LAMP, and RT-LAMP. In the clinical samples. The rates of positivity for Mtb of the SCM, LAMP, and RT-LAMP methods were 88%, 92%, and 100%, respectively. The difference in detection rate was significant between RT-LAMP and SCM, but RT-LAMP and LAMP were comparable. In the control group, the detection rates were nil for all three methods. The specificities of the methods were similar. The sensitivity of RT-LAMP was ~10-fold higher than that of LAMP for detecting Mtb. Unlike LAMP, RT-LAMP could identify viable bacteria, and was able to detect a single copy of Mtb. Among SCM, LAMP, and RT-LAMP, the latter is the most suitable for wide use in the lower-level hospitals and clinics of China for detecting Mtb in sputum samples. © 2017 Wiley Periodicals, Inc.

  14. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis

    PubMed Central

    Marcus, Sarah A.; Sidiropoulos, Sarah W.; Steinberg, Howard; Talaat, Adel M.

    2016-01-01

    Mycobacterium tuberculosis, a pathogen infecting one third of the world population, faces numerous challenges within the host, including high levels of copper. We have previously shown that M. tuberculosis CsoR is a copper inducible transcriptional regulator. Here we examined the hypothesis that csoR is necessary for maintaining copper homeostasis and surviving under various stress conditions. With an unmarked csoR knockout strain, we were able to characterize the role of csoR in M. tuberculosis as it faced copper and host stress. Growth under high levels of copper demonstrated that M. tuberculosis survives copper stress significantly better in the absence of csoR. Yet under minimal levels of copper, differential expression analysis revealed that the loss of csoR results in a cell wide hypoxia-type stress response with the induction of the DosR regulon. Despite the stress placed on M. tuberculosis by the loss of csoR, survival of the knockout strain was increased compared to wild type during the early chronic stages of mouse infection, suggesting that csoR could play an active role in modulating M. tuberculosis fitness within the host. Overall, analysis of CsoR provided an increased understanding of the M. tuberculosis copper response with implications for other intracellular pathogens harboring CsoR. PMID:26999439

  15. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  16. Molecular diversity of Mycobacterium tuberculosis isolates from patients with tuberculosis in Honduras

    PubMed Central

    2010-01-01

    Background Tuberculosis persists as a public health problem in Honduras. A better knowledge of the molecular characteristics of Mycobacterium tuberculosis strains will contribute to understand the transmission dynamics of the disease within the country. The aim of this study was to provide an insight of the genetic biodiversity of M. tuberculosis clinical isolates collected in Honduras between 1994 and 2002. Genotyping was performed using spoligotyping and RFLP. The spoligotypes obtained were compared with the SITVIT2 proprietary database of the Pasteur Institute of Guadeloupe. Results Spoligotyping grouped 84% of the isolates into 27 clusters (2 to 43 strains per cluster). Of the 44 shared international types (SITs) identified among the Honduran stains, 8 SITs were newly identified either within the present study or after match with an orphan type previously identified in the SITVIT2 database. In addition, 16 patterns corresponded to orphan, previously unreported isolates. The Latin American Mediterranean (LAM) lineage was the most common in this study; 55% of the strains belonged to this family. Other genotypes found were Haarlem (16%), T (16%), X-clade (6%), Unknown signature (5%) and S (1%). Only one Beijing strain was identified (0.5%). We observed a high degree of diversity after characterizing the 43 isolates belonging to the main spoligotyping cluster (SIT 33, LAM3) with IS6110-RFLP. A total of 35 different RFLP-fingerprints were detected, of which 6 patterns corresponded to the same number of clusters comprising 14 strains. Conclusions The findings obtained in this study show that tuberculosis transmission in Honduras is due to modern M. tuberculosis lineages with high level of biodiversity. PMID:20678242

  17. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic.

    PubMed Central

    Crowle, A J; Dahl, R; Ross, E; May, M H

    1991-01-01

    Mycobacterium tuberculosis and Mycobacterium avium multiply in cultured human macrophages (MP) within membrane-enclosed vesicles. These vesicles are generally assumed to be acidic. The evidence most frequently cited for this assumption is that pyrazinamide, which requires an acid pH to be effective, is effective and streptomycin, which loses most of its activity at a low pH, is poorly effective against tubercle bacilli. This assumption was tested by using the two weak bases chloroquine and NH4Cl to raise the pH of acidic vesicles in MP experimentally infected with M. tuberculosis or M. avium. An immunocytochemical locator of acidic regions in the MP was used to monitor the association of intracellular bacilli with acidity. MP were infected with M. tuberculosis or M. avium and incubated with various combinations of the drugs and the weak bases. Replication of the bacteria in the MP was measured by culture counts. Intracellular associations of the mycobacteria with acidity were assessed by electron micrographs and by using the weak base 3-(2,4-dinitroanilino)-3'-amino-N-methyl dipropylamine, which was detected with colloidal gold-labeled antibodies. It was confirmed by immunocytochemistry that both chloroquine and NH4Cl raise the pH of acidic vesicles in the infected MP. However, neither caused any pH-related change in the antimycobacterial activities of pyrazinamide or streptomycin or of the pH-independent drug isoniazid. Immunochemical analyses showed acidity to be associated with killed but not living mycobacteria in the MP. These findings suggest that living M. tuberculosis and M. avium are located in human MP in vesicles which are not acidic. Images PMID:1902198

  18. The seal tuberculosis agent, Mycobacterium pinnipedii, infects domestic cattle in New Zealand: epidemiologic factors and DNA strain typing.

    PubMed

    Loeffler, Scott H; de Lisle, Geoffrey W; Neill, Mark A; Collins, Desmond M; Price-Carter, Marian; Paterson, Brent; Crews, Kevin B

    2014-04-01

    The fur seal (Arctocephalus forsteri), which is abundant in coastal areas of New Zealand, harbors several zoonotic pathogens, including Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis complex. We describe the microbiology and epidemiology of seven cases of M. pinnipedii infection in beef cattle (Bos primigenius) in coastal areas of New Zealand in 1991-2011. Epidemiologic factors were analyzed on six case farms and a telephone survey of 55 neighboring farms. A DNA-strain typing, using analysis of variable number tandem repeats and the direct repeats (VNTR/DR) of those isolates, was used to compare them to M. bovis isolates commonly found in New Zealand cattle and wildlife. In all cases of M. pinnipedii in cattle, only one animal in the herd was found to be infected. In six of seven cases, the lesions were in the thoracic lymph nodes, indicating a likely aerosol pathway. The lack of multiple cases within a herd suggests that cow-to-cow transmission is uncommon, if it occurs at all. There was no significant difference between case and control farms in distance to sea, herd size, herd type, or farming practice. The odds ratio for access to the beach for cattle on the Chatham Islands was significantly higher than it was for farms on the mainland coastal areas (odds ratio [OR] = 3.6, 95% CI = 1.1-11.4) Likewise, the odds ratio for acquiring tuberculosis was increased when farmers had seen seals on the property (OR =  9, 95% CI = 1.4-56.1 ). In all case farms, cattle had access to seals by beach grazing areas or waterways connecting directly with the ocean. The VNTR/DR typing of the isolates showed some variation in the M. pinnipedii isolates, with only two being identical; all isolates were easily distinguishable from M. bovis isolates.

  19. Duplex detection of the Mycobacterium tuberculosis complex and medically important non-tuberculosis mycobacteria by real-time PCR based on the rnpB gene.

    PubMed

    Abdeldaim, Guma; Svensson, Erik; Blomberg, Jonas; Herrmann, Björn

    2016-11-01

    A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  20. Aptamer Against Mannose-capped Lipoarabinomannan Inhibits Virulent Mycobacterium tuberculosis Infection in Mice and Rhesus Monkeys

    PubMed Central

    Pan, Qin; Wang, Qilong; Sun, Xiaoming; Xia, Xianru; Wu, Shimin; Luo, Fengling; Zhang, Xiao-Lian

    2014-01-01

    The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. We used systematic evolution of ligands by exponential enrichment (SELEX) to generate an aptamer (ZXL1) that specifically bound to ManLAM from the virulent M. tb strain H37Rv. Aptamer ZXL1 had the highest binding affinity, with an equilibrium dissociation constant (Kd) of 436.3 ± 37.84 nmol/l, and competed with the mannose receptor for binding to ManLAM and M. tb H37Rv. ZXL1 significantly inhibited the ManLAM-induced immunosuppression of CD11c+ dendritic cells (DCs) and enhanced the M. tb antigen–presenting activity of DCs for naive CD4+ Th1 cell activation. More importantly, we demonstrated that injection of aptamer ZXL1 significantly reduced the progression of M. tb H37Rv infections and bacterial loads in lungs of mice and rhesus monkeys. These results suggest that the aptamer ZXL1 is a new potential antimycobacterial agent and tuberculosis vaccine immune adjuvant. PMID:24572295

  1. Laboratory Diagnosis and Susceptibility Testing for Mycobacterium tuberculosis.

    PubMed

    Procop, Gary W

    2016-12-01

    The laboratory, which utilizes some of the most sophisticated and rapidly changing technologies, plays a critical role in the diagnosis of tuberculosis. Some of these tools are being employed in resource-challenged countries for the rapid detection and characterization of Mycobacterium tuberculosis. Foremost, the laboratory defines appropriate specimen criteria for optimal test performance. The direct detection of mycobacteria in the clinical specimen, predominantly done by acid-fast staining, may eventually be replaced by rapid-cycle PCR. The widespread use of the Xpert MTB/RIF (Cepheid) assay, which detects both M. tuberculosis and key genetic determinants of rifampin resistance, is important for the early detection of multidrug-resistant strains. Culture, using both broth and solid media, remains the standard for establishing the laboratory-based diagnosis of tuberculosis. Cultured isolates are identified far less commonly by traditional biochemical profiling and more commonly by molecular methods, such as DNA probes and broad-range PCR with DNA sequencing. Non-nucleic acid-based methods of identification, such as high-performance liquid chromatography and, more recently, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, may also be used for identification. Cultured isolates of M. tuberculosis should be submitted for susceptibility testing according to standard guidelines. The use of broth-based susceptibility testing is recommended to significantly decrease the time to result. Cultured isolates may also be submitted for strain typing for epidemiologic purposes. The use of massive parallel sequencing, also known as next-generation sequencing, promises to continue to this molecular revolution in mycobacteriology, as whole-genome sequencing provides identification, susceptibility, and typing information simultaneously.

  2. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.

    PubMed

    Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V

    2002-06-01

    Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.

  3. Evaluation of the Speed-oligo Direct Mycobacterium tuberculosis Assay for Molecular Detection of Mycobacteria in Clinical Respiratory Specimens

    PubMed Central

    Lara-Oya, Ana; Mendoza-Lopez, Pablo; Rodriguez-Granger, Javier; Fernández-Sánchez, Ana María; Bermúdez-Ruiz, María Pilar; Toro-Peinado, Inmaculada; Palop-Borrás, Begoña; Navarro-Marí, Jose María

    2013-01-01

    We present the first evaluation of a novel molecular assay, the Speed-oligo Direct Mycobacterium tuberculosis (SO-DMT) assay, which is based on PCR combined with a dipstick for the detection of mycobacteria and the specific identification of M. tuberculosis complex (MTC) in respiratory specimens. A blind evaluation was carried out in two stages: first, under experimental conditions on convenience samples comprising 20 negative specimens, 44 smear- and culture-positive respiratory specimens, and 11 sputa inoculated with various mycobacterium-related organisms; and second, in the routine workflow of 566 fresh respiratory specimens (4.9% acid-fast bacillus [AFB] smear positives, 7.6% MTC positives, and 1.8% nontuberculous mycobacteria [NTM] culture positives) from two Mycobacterium laboratories. SO-DMT assay showed no reactivity in any of the mycobacterium-free specimens or in those with mycobacterium-related organisms. Compared to culture, the sensitivity in the selected smear-positive specimens was 0.91 (0.92 for MTC and 0.90 for NTM), and there was no molecular detection of NTM in a tuberculosis case or vice versa. With respect to culture and clinical data, the sensitivity, specificity, and positive and negative predictive values for the SO-DMT system in routine specimens were 0.76 (0.93 in smear positives [1.0 for MTC and 0.5 for NTM] and 0.56 in smear negatives [0.68 for MTC and 0.16 for NTM]), 0.99, 0.85 (1.00 in smear positives and 0.68 in smear negatives), and 0.97, respectively. Molecular misidentification of NTM cases occurred when testing 2 gastric aspirates from two children with clinically but not microbiologically confirmed lung tuberculosis. The SO-DMT assay appears to be a fast and easy alternative for detecting mycobacteria and differentiating MTC from NTM in smear-positive respiratory specimens. PMID:23100355

  4. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines.

    PubMed

    Shah, Preksha; Mistry, Jaymisha; Reche, Pedro A; Gatherer, Derek; Flower, Darren R

    2018-05-01

    Effective control of Mycobacterium tuberculosis is a global necessity. In 2015, tuberculosis (TB) caused more deaths than HIV. Considering the increasing prevalence of multi-drug resistant forms of M. tuberculosis, the need for effective TB vaccines becomes imperative. Currently, the only licensed TB vaccine is Bacillus Calmette-Guérin (BCG). Yet, BCG has many drawbacks limiting its efficacy and applicability. We applied advanced computational procedures to derive a universal TB vaccine and one targeting East Africa. Our approach selects an optimal set of highly conserved, experimentally validated epitopes, with high projected population coverage (PPC). Through rigorous data analysis, five different potential vaccine combinations were selected each with PPC above 80% for East Africa and above 90% for the World. Two potential vaccines only contained CD8+ epitopes, while the others included both CD4+ and CD8+ epitopes. Our prime vaccine candidate was a putative seven-epitope ensemble comprising: SRGWSLIKSVRLGNA, KPRIITLTMNPALDI, AAHKGLMNIALAISA, FPAGGSTGSL, MLLAVTVSL, QSSFYSDW and KMRCGAPRY, with a 97.4% global PPC and a 92.7% East African PPC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal.

    PubMed

    Poudel, Ajay; Maharjan, Bhagwan; Nakajima, Chie; Fukushima, Yukari; Pandey, Basu D; Beneke, Antje; Suzuki, Yasuhiko

    2013-01-01

    The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global control of TB. Although molecular characterization of drug resistance-associated mutations in multidrug-resistant isolates in Nepal has been made, mutations in XDR isolates and their genotypes have not been reported previously. In this study, we identified and characterized 13 XDR Mycobacterium tuberculosis isolates from clinical isolates in Nepal. The most prevalent mutations involved in rifampicin, isoniazid, ofloxacin, and kanamycin/capreomycin resistance were Ser531Leu in rpoB gene (92.3%), Ser315Thr in katG gene (92.3%), Asp94Gly in gyrA gene (53.9%) and A1400G in rrs gene (61.5%), respectively. Spoligotyping and multilocus sequence typing revealed that 69% belonged to Beijing family, especially modern types. Further typing with 26-loci variable number of tandem repeats suggested the current spread of XDR M. tuberculosis. Our result highlights the need to reinforce the TB policy in Nepal with regard to control and detection strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. HLA-B*35-Restricted CD8+-T-Cell Epitope in Mycobacterium tuberculosis Rv2903c

    PubMed Central

    Klein, Michèl R.; Hammond, Abdulrahman S.; Smith, Steve M.; Jaye, Assan; Lukey, Pauline T.; McAdam, Keith P. W. J.

    2002-01-01

    Few human CD8+ T-cell epitopes in mycobacterial antigens have been described to date. Here we have identified a novel HLA-B*35-restricted CD8+ T-cell epitope in Mycobacterium tuberculosis Rv2903c based on a reverse immunogenetics approach. Peptide-specific CD8 T cells were able to kill M. tuberculosis-infected macrophages and produce gamma interferon and tumor necrosis factor alpha. PMID:11796635

  7. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates.

    PubMed

    Liu, Fei; Hu, Yongfei; Wang, Qi; Li, Hong Min; Gao, George F; Liu, Cui Hua; Zhu, Baoli

    2014-06-13

    Due to excessive antibiotic use, drug-resistant Mycobacterium tuberculosis has become a serious public health threat and a major obstacle to disease control in many countries. To better understand the evolution of drug-resistant M. tuberculosis strains, we performed whole genome sequencing for 7 M. tuberculosis clinical isolates with different antibiotic resistance profiles and conducted comparative genomic analysis of gene variations among them. We observed that all 7 M. tuberculosis clinical isolates with different levels of drug resistance harbored similar numbers of SNPs, ranging from 1409-1464. The numbers of insertion/deletions (Indels) identified in the 7 isolates were also similar, ranging from 56 to 101. A total of 39 types of mutations were identified in drug resistance-associated loci, including 14 previously reported ones and 25 newly identified ones. Sixteen of the identified large Indels spanned PE-PPE-PGRS genes, which represents a major source of antigenic variability. Aside from SNPs and Indels, a CRISPR locus with varied spacers was observed in all 7 clinical isolates, suggesting that they might play an important role in plasticity of the M. tuberculosis genome. The nucleotide diversity (Л value) and selection intensity (dN/dS value) of the whole genome sequences of the 7 isolates were similar. The dN/dS values were less than 1 for all 7 isolates (range from 0.608885 to 0.637365), supporting the notion that M. tuberculosis genomes undergo purifying selection. The Л values and dN/dS values were comparable between drug-susceptible and drug-resistant strains. In this study, we show that clinical M. tuberculosis isolates exhibit distinct variations in terms of the distribution of SNP, Indels, CRISPR-cas locus, as well as the nucleotide diversity and selection intensity, but there are no generalizable differences between drug-susceptible and drug-resistant isolates on the genomic scale. Our study provides evidence strengthening the notion that

  8. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR.

    PubMed

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  9. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR

    PubMed Central

    Araújo, Cristina P.; Osório, Ana Luiza A.R.; Jorge, Klaudia S.G.; Ramos, Carlos A.N.; Souza Filho, Antonio F.; Vidal, Carlos E.S.; Vargas, Agueda P.C.; Roxo, Eliana; Rocha, Adalgiza S.; Suffys, Philip N.; Fonseca, Antônio A.; Silva, Marcio R.; Barbosa Neto, José D.; Cerqueira, Valíria D.; Araújo, Flábio R.

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis. PMID:25242951

  10. Whole-Genome Analysis of Mycobacterium tuberculosis from Patients with Tuberculous Spondylitis, Russia.

    PubMed

    Chernyaeva, Ekaterina; Rotkevich, Mikhail; Krasheninnikova, Ksenia; Yurchenko, Andrey; Vyazovaya, Anna; Mokrousov, Igor; Solovieva, Natalia; Zhuravlev, Viacheslav; Yablonsky, Piotr; O'Brien, Stephen J

    2018-03-01

    Whole-genome analysis of Mycobacterium tuberculosis isolates collected in Russia (N = 71) from patients with tuberculous spondylitis supports a detailed characterization of pathogen strain distributions and drug resistance phenotype, plus distinguished occurrence and association of known resistance mutations. We identify known and novel genome determinants related to bacterial virulence, pathogenicity, and drug resistance.

  11. Rapid Diagnosis of Tuberculosis by Real-Time High-Resolution Imaging of Mycobacterium tuberculosis Colonies.

    PubMed

    Ghodbane, Ramzi; Asmar, Shady; Betzner, Marlena; Linet, Marie; Pierquin, Joseph; Raoult, Didier; Drancourt, Michel

    2015-08-01

    Culture remains the cornerstone of diagnosis for pulmonary tuberculosis, but the fastidiousness of Mycobacterium tuberculosis may delay culture-based diagnosis for weeks. We evaluated the performance of real-time high-resolution imaging for the rapid detection of M. tuberculosis colonies growing on a solid medium. A total of 50 clinical specimens, including 42 sputum specimens, 4 stool specimens, 2 bronchoalveolar lavage fluid specimens, and 2 bronchial aspirate fluid specimens were prospectively inoculated into (i) a commercially available Middlebrook broth and evaluated for mycobacterial growth indirectly detected by measuring oxygen consumption (standard protocol) and (ii) a home-made solid medium incubated in an incubator featuring real-time high-resolution imaging of colonies (real-time protocol). Isolates were identified by Ziehl-Neelsen staining and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Use of the standard protocol yielded 14/50 (28%) M. tuberculosis isolates, which is not significantly different from the 13/50 (26%) M. tuberculosis isolates found using the real-time protocol (P = 1.00 by Fisher's exact test), and the contamination rate of 1/50 (2%) was not significantly different from the contamination rate of 2/50 (4%) using the real-time protocol (P = 1.00). The real-time imaging protocol showed a 4.4-fold reduction in time to detection, 82 ± 54 h versus 360 ± 142 h (P < 0.05). These preliminary data give the proof of concept that real-time high-resolution imaging of M. tuberculosis colonies is a new technology that shortens the time to growth detection and the laboratory diagnosis of pulmonary tuberculosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161

    PubMed Central

    Honda, Jennifer R; Shang, Shaobin; Shanley, Crystal A; Caraway, Megan L; Henao-Tamayo, Marcela; Chan, Edward D; Basaraba, Randall J; Orme, Ian M; Ordway, Diane J; Flores, Sonia C

    2011-01-01

    Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis. PMID:22046211

  13. Epidemiologic Consequences of Microvariation in Mycobacterium tuberculosis

    PubMed Central

    Mathema, Barun; Kurepina, Natalia; Yang, Guibin; Shashkina, Elena; Manca, Claudia; Mehaffy, Carolina; Bielefeldt-Ohmann, Helle; Ahuja, Shama; Fallows, Dorothy A.; Izzo, Angelo; Bifani, Pablo; Dobos, Karen; Kaplan, Gilla

    2012-01-01

    Background. Evidence from genotype-phenotype studies suggests that genetic diversity in pathogens have clinically relevant manifestations that can impact outcome of infection and epidemiologic success. We studied 5 closely related Mycobacterium tuberculosis strains that collectively caused extensive disease (n = 862), particularly among US-born tuberculosis patients. Methods. Representative isolates were selected using population-based genotyping data from New York City and New Jersey. Growth and cytokine/chemokine response were measured in infected human monocytes. Survival was determined in aerosol-infected guinea pigs. Results. Multiple genotyping methods and phylogenetically informative synonymous single nucleotide polymorphisms showed that all strains were related by descent. In axenic culture, all strains grew similarly. However, infection of monocytes revealed 2 growth phenotypes, slower (doubling ∼55 hours) and faster (∼25 hours). The faster growing strains elicited more tumor necrosis factor α and interleukin 1β than the slower growing strains, even after heat killing, and caused accelerated death of infected guinea pigs (∼9 weeks vs 24 weeks) associated with increased lung inflammation/pathology. Epidemiologically, the faster growing strains were associated with human immunodeficiency virus and more limited in spread, possibly related to their inherent ability to induce a strong protective innate immune response in immune competent hosts. Conclusions. Natural variation, with detectable phenotypic changes, among closely related clinical isolates of M. tuberculosis may alter epidemiologic patterns in human populations. PMID:22315279

  14. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    NASA Astrophysics Data System (ADS)

    Badr, Hesham M.

    2011-11-01

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4±1 °C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria.

  15. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity.

    PubMed

    Müller, Romy; Roberts, Charlotte A; Brown, Terence A

    2014-04-22

    The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second-nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth-nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.

  16. A New Approach for Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis

    PubMed Central

    Loli, Sebastian; Gilman, Robert H.; Gutierrez, Andrés; Fuentes, Patricia; Cotrina, Milagros; Kirwan, Daniela; Sheen, Patricia

    2012-01-01

    Background: Pyrazinamide (PZA) is an important drug in the treatment of tuberculosis. Microbiological methods of PZA susceptibility testing are controversial and have low reproducibility. After conversion of PZA into pyrazinoic acid (POA) by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. Objective: To evaluate the rate of POA extrusion from Mycobacterium tuberculosis as a parameter to detect PZA resistance. Methods: The rate of POA extrusion and PZA susceptibility determined by BACTEC 460 were measured for 34 strains in a previous study. PZA resistance was modeled in a logistic regression with the pyrazinoic efflux rate. Result: POA efflux rate predicted PZA resistance with 70.83%–92.85% sensitivity and 100% specificity compared with BACTEC 460. Conclusion: POA efflux rate could be a useful tool for predicting PZA resistance in M. tuberculosis. Further exploration of this approach may lead to the development of new tools for diagnosing PZA resistance, which may be of public health importance. PMID:22372927

  17. A new approach for pyrazinamide susceptibility testing in Mycobacterium tuberculosis.

    PubMed

    Zimic, Mirko; Loli, Sebastian; Gilman, Robert H; Gutierrez, Andrés; Fuentes, Patricia; Cotrina, Milagros; Kirwan, Daniela; Sheen, Patricia

    2012-08-01

    Pyrazinamide (PZA) is an important drug in the treatment of tuberculosis. Microbiological methods of PZA susceptibility testing are controversial and have low reproducibility. After conversion of PZA into pyrazinoic acid (POA) by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. To evaluate the rate of POA extrusion from Mycobacterium tuberculosis as a parameter to detect PZA resistance. The rate of POA extrusion and PZA susceptibility determined by BACTEC 460 were measured for 34 strains in a previous study. PZA resistance was modeled in a logistic regression with the pyrazinoic efflux rate. POA efflux rate predicted PZA resistance with 70.83%-92.85% sensitivity and 100% specificity compared with BACTEC 460. POA efflux rate could be a useful tool for predicting PZA resistance in M. tuberculosis. Further exploration of this approach may lead to the development of new tools for diagnosing PZA resistance, which may be of public health importance.

  18. Pathogen ‘Roid Rage: Cholesterol Utilization by Mycobacterium tuberculosis

    PubMed Central

    Wipperman, Matthew F.; Sampson, Nicole S.; Thomas, Suzanne, T.

    2014-01-01

    The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism, and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism. PMID:24611808

  19. Mycobacterium tuberculosis manipulates pulmonary APCs subverting early immune responses.

    PubMed

    Garcia-Romo, Gina S; Pedroza-Gonzalez, Alexander; Lambrecht, Bart N; Aguilar-Leon, Diana; Estrada-Garcia, Iris; Hernandez-Pando, Rogelio; Flores-Romo, Leopoldo

    2013-03-01

    Alveolar macrophages (AM) and dendritic cells (DCs) are the main antigen presenting cells (APCs) in the respiratory tract. Whereas macrophages have been extensively studied in tuberculosis, in situ interactions of DC with Mycobacterium tuberculosis (Mtb) are poorly explored. We aimed to characterize lung APCs during pulmonary tuberculosis in Balb/C mice infected with Mtb H37Rv. Mtb-infection via the airways induced a delayed and continuous accumulation of DCs and AM in the lungs. While lung DCs increased after day 3 post-infection, macrophages increased after 2-3 weeks. Although both populations accumulated in lungs during the infection, DCs decreased in the late stages. Infection induced differential expression of co-stimulatory molecules in these lung APCs, decreasing to basal levels in both APCs in the late stages. A remarkable segregation was found regarding bacillary burden. Many macrophages contained numerous bacilli, but DC contained scarce mycobacteria or none. Mtb-infection also induced delayed accumulation of DC in draining lymph nodes. This delayed recruitment was not associated with a lack of IL-12p40, which was detected from day 3 post-infection. Although AM and lung DCs behave differently during pulmonary tuberculosis, Mtb apparently manipulates both lung APCs subverting early protective responses resulting in disease progression. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Modulation of Roquin function in myeloid cells reduces Mycobacterium tuberculosis induced inflammation

    PubMed Central

    Nagalingam, Gayathri; Vinuesa, Carola G.; Britton, Warwick J; Saunders, Bernadette M.

    2017-01-01

    Damaging inflammation is a hallmark of Mycobacterium tuberculosis infection, and understanding how this is regulated is important for the development of new therapies to limit excessive inflammation. The E3 ubiquitin ligase, Roquin, is involved in immune regulation, however its role in immunity to M. tuberculosis is unknown. To address this we infected mice with a point mutation in Roquin1/Rc3h1 (sanroque). Aerosol-infected sanroque mice showed enhanced control of M. tuberculosis infection associated with delayed bacterial dissemination and upregulated TNF production in the lung after 2 weeks. However, this early control of infection was not maintained, and by 8 weeks post-infection sanroque mice demonstrated increased bacterial burden and dysregulated inflammation in the lung. As the inflammation in the lung of the sanroque mice could have been influenced by emerging autoimmune conditions that are characteristic of aging sanroque mice, the function of Roquin was examined in immune cell subsets in the absence of autoimmune complications. Mycobacterium bovis BCG-primed sanroque T cells transferred into Rag1-/- mice provided equivalent protection in the spleen and liver. Interestingly, the transfer of mycobacteria-specific (P25 CD4+ TCR transgenic) wild-type spleen cells into sanroque.Rag1-/- mice actually led to enhanced protection with reduced bacterial load, decreased chemokine expression and reduced inflammation in the lung compared with transfers into Rag1-/- mice expressing intact Roquin. These studies suggest that modulation of Roquin in myeloid cells may reduce both inflammation and bacterial growth during the chronic phase of M. tuberculosis infection. PMID:28747346

  1. Microbial sensor for drug susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    Zhang, Z-T; Wang, D-B; Li, C-Y; Deng, J-Y; Zhang, J-B; Bi, L-J; Zhang, X-E

    2018-01-01

    Drug susceptibility testing (DST) of clinical isolates of Mycobacterium tuberculosis is critical in treating tuberculosis. We demonstrate the possibility of using a microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The sensor is made of an oxygen electrode with M. tuberculosis cells attached to its surface. This sensor monitors the residual oxygen consumption of M. tuberculosis cells after treatment with anti-TB drugs with glycerine as a carbon source. In principle, after drug pretreatment for 4-5 days, the response differences between the sensors made of drug-sensitive isolates are distinguishable from the sensors made of drug-resistant isolates. The susceptibility of the M. tuberculosis H37Ra strain, its mutants and 35 clinical isolates to six common anti-TB drugs: rifampicin, isoniazid, streptomycin, ethambutol, levofloxacin and para-aminosalicylic acid were tested using the proposed method. The results agreed well with the gold standard method (LJ) and were determined in significantly less time. The whole procedure takes approximately 11 days and therefore has the potential to inform clinical decisions. To our knowledge, this is the first study that demonstrates the possible application of a dissolved oxygen electrode-based microbial sensor in M. tuberculosis drug resistance testing. This study used the microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The overall detection result of the microbial sensor agreed well with that of the conventional LJ proportion method and takes less time than the existing phenotypic methods. In future studies, we will build an O 2 electrode array microbial sensor reactor to enable a high-throughput drug resistance analysis. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  2. Human ULK1 Variation and Susceptibility to Mycobacterium tuberculosis Infection.

    PubMed

    Horne, David J; Graustein, Andrew D; Shah, Javeed A; Peterson, Glenna; Savlov, Meg; Steele, Sergio; Narita, Masahiro; Hawn, Thomas R

    2016-10-15

    Unlike tuberculosis, few studies have evaluated a host genetic basis for variability in susceptibility to latent Mycobacterium tuberculosis infection (LTBI). We performed a candidate gene association study of autophagy-related genes and LTBI. We enrolled close contacts of individuals with pulmonary tuberculosis, assessed LTBI status, and determined clinical and sociodemographic risk factors for LTBI. In participants who self-identified as Asian or black, we compared haplotype-tagging single-nucleotide polymorphisms (SNPs) in ULK1 and GABARAP between cases (n = 143) and controls (n = 106). Using CRISPR/Cas9 in U937 monocytes, we investigated the effect of ULK1 deficiency on cytokine expression, autophagy, and M. tuberculosis replication. In Asian participants, we identified 2 ULK1 SNPs (rs12297124 and rs7300908) associated with LTBI. After adjustment for population admixture and clinical risk for LTBI, each rs12297124 minor allele conferred 80% reduction in LTBI risk (odds ratio, 0.18; 95% confidence interval, .07-.46). Compared with controls, ULK1-deficient cells exhibited decreased tumor necrosis factor secretion after stimulation with Toll-like receptor ligands and M. tuberculosis whole-cell lysate, increased M. tuberculosis replication, and decreased selective autophagy. These results demonstrate a strong association of rs12297124, a noncoding ULK1 SNP, with LTBI and a role for ULK1 regulation of TNF secretion, nonspecific and M. tuberculosis-induced autophagy, and M. tuberculosis replication in monocytes. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis.

    PubMed

    Lee, Lian Ni; Ronan, Edward O; de Lara, Catherine; Franken, Kees L M C; Ottenhoff, Tom H M; Tchilian, Elma Z; Beverley, Peter C L

    2011-08-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT6(1-20) peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment.

  4. Mycobacterium indicus pranii (MIP) mediated host protective intracellular mechanisms against tuberculosis infection: Involvement of TLR-4 mediated signaling.

    PubMed

    Das, Shibali; Chowdhury, Bidisha Paul; Goswami, Avranil; Parveen, Shabina; Jawed, Junaid; Pal, Nishith; Majumdar, Subrata

    2016-12-01

    Mycobacterium tuberculosis infection inflicts the disease Tuberculosis (TB), which is fatal if left untreated. During M. tuberculosis infection, the pathogen modulates TLR-4 receptor down-stream signaling, indicating the possible involvement of TLR-4 in the regulation of the host immune response. Mycobacterium indicus pranii (MIP) possesses immuno-modulatory properties which induces the pro-inflammatory responses via induction of TLR-4-mediated signaling. Here, we observed the immunomodulatory properties of MIP against tuberculosis infection. We have studied the detailed signaling mechanisms employed by MIP in order to restore the host immune response against the in vitro tuberculosis infection. We observed that in infected macrophages MIP treatment significantly increased the TLR-4 expression as well as activation of its downstream signaling, facilitating the activation of P38 MAP kinase. MIP treatment was able to activate NF-κB via involvement of TLR-4 signaling leading to the enhanced pro-inflammatory cytokine and NO generation in the infected macrophages and generation of protective immune response. Therefore, we may suggest that, TLR4 may represent a novel therapeutic target for the activation of the innate immune response during Tuberculosis infection. Copyright © 2016. Published by Elsevier Ltd.

  5. Human tuberculosis due to Mycobacterium bovis in the United States, 1995-2005.

    PubMed

    Hlavsa, Michele C; Moonan, Patrick K; Cowan, Lauren S; Navin, Thomas R; Kammerer, J Steve; Morlock, Glenn P; Crawford, Jack T; Lobue, Philip A

    2008-07-15

    Understanding the epidemiology of human Mycobacterium bovis tuberculosis (TB) in the United States is imperative; this disease can be foodborne or airborne, and current US control strategies are focused on TB due to Mycobacterium tuberculosis and airborne transmission. The National TB Genotyping Service's work has allowed systematic identification of M. tuberculosis-complex isolates and enabled the first US-wide study of M. bovis TB. Results of spacer oligonucleotide and mycobacterial interspersed repetitive units typing were linked to corresponding national surveillance data for TB cases reported for the period 2004-2005 and select cases for the period 1995-2003. We also used National TB Genotyping Service data to evaluate the traditional antituberculous drug resistance-based case definition of M. bovis TB. Isolates from 165 (1.4%) of 11,860 linked cases were identified as M. bovis. Patients who were not born in the United States, Hispanic patients, patients <15 years of age, patients reported to be HIV infected, and patients with extrapulmonary disease each had increased adjusted odds of having M. bovis versus M. tuberculosis TB. Most US-born, Hispanic patients with TB due to M. bovis (29 [90.6%] of 32) had extrapulmonary disease, and their overall median age was 9.5 years. The National TB Genotyping Service's data indicated that the pyrazinamide-based case definition's sensitivity was 82.5% (95% confidence interval; 75.3%-87.9%) and that data identified 14 errors in pyrazinamide-susceptibility testing or reporting. The prevalence of extrapulmonary disease in the young, US-born Hispanic population suggests recent transmission of M. bovis, possibly related to foodborne exposure. Because of its significantly different epidemiologic profile, compared with that of M. tuberculosis TB, we recommend routine surveillance of M. bovis TB. Routine surveillance and an improved understanding of M. bovis TB transmission dynamics would help direct the development of additional

  6. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload

    PubMed Central

    Rowland, Jennifer L.; Niederweis, Michael

    2012-01-01

    SUMMARY Mycobacterium tuberculosis is an important bacterial pathogen with an extremely slow growth rate, an unusual outer membrane of very low permeability and a cunning ability to survive inside the human host despite a potent immune response. A key trait of M. tuberculosis is to acquire essential nutrients while still preserving its natural resistance to toxic compounds. In this regard, copper homeostasis mechanisms are particularly interesting, because copper is an important element for bacterial growth, but copper overload is toxic. In M. tuberculosis at least two enzymes require copper as a cofactor: the Cu/Zn-superoxide dismutase SodC and the cytochrome c oxidase which is essential for growth in vitro. Mutants of M. tuberculosis lacking the copper metallothionein MymT, the efflux pump CtpV and the membrane protein MctB are more susceptible to copper indicating that these proteins are part of a multipronged system to balance intracellular copper levels. Recent evidence showed that part of copper toxicity is a reversible damage of accessible Fe-S clusters of dehydratases and the displacement of other divalent cations such as zinc and manganese as cofactors in proteins. There is accumulating evidence that macrophages use copper to poison bacteria trapped inside phagosomes. Here, we review the rapidly increasing knowledge about copper homeostasis mechanisms in M. tuberculosis and contrast those with similar mechanisms in E. coli. These findings reveal an intricate interplay between the host which aims to overload the phagosome with copper and M. tuberculosis which utilizes several mechanisms to reduce the toxic effects of excess copper. PMID:22361385

  7. Incidence and nature of human tuberculosis due to Mycobacterium africanum in South-East England: 1977-87.

    PubMed

    Grange, J M; Yates, M D

    1989-08-01

    A total of 210 new cases of tuberculosis due to Mycobacterium africanum were registered at the South-East Regional Centre for Tuberculosis Bacteriology, Dulwich, between 1977 and 1987 inclusive. This represented 1.25% of bacteriologically-confirmed cases of tuberculosis in South-East England, an incidence slightly higher than that of disease due to M. bovis. Two variants were identified: 150 strains were typed as African I (a type associated with East Africa) and 60 as African II (a type more prevalent in West Africa). Over half the patients infected with African I strains were of Indian subcontinent ethnic origin; patients of African ethnic origin predominated in the African II group while about a fifth o patients infected with either type were of European origin. The European patients with tuberculosis due to M. africanum were notably younger than those in the same region with disease due to other tubercle bacilli. The distribution of lesions due to M. africanum was similar to that due to other tubercle bacilli in the various ethnic groups, except that genito-urinary tuberculosis was uncommon. The importance of a clinical awareness that M. africanum is a highly pathogenic and transmissible tubercle bacillus rather than an opportunist or 'atypical' mycobacterium is stressed.

  8. Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis.

    PubMed

    Rahman, Syed Asad; Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z; Tyagi, Anil K; Hasnain, Seyed E

    2014-11-04

    Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size--their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. The complete sequence analysis of Mycobacterium indicus pranii, a novel species of Mycobacterium shown earlier to have strong immunomodulatory properties and currently in use for

  9. Description of polymerase chain reaction and sequencing DNA Mycobacterium tuberculosis from specimen sputum of tuberculosis patients in Medan

    NASA Astrophysics Data System (ADS)

    Lily; Siregar, Y.; Ilyas, S.

    2018-03-01

    This study purposed to describe the product Polymerase Chain Reaction (PCR) and sequencing of DNA Mycobacterium (M.) tuberculosis from sputum of tuberculosis (TB) patients in Medan. Sputum was collected from patients that diagnosed with pulmonary TB by a physician. Specimen processed by PCR method of Li et al. and sequencing at Macrogen Laboratory. All of 12 product PCR were showed brightness bands at 126 base pair (bp). These results indicated similarity to the study of Li et al. Sequencing analysis showed the presence of a mutation and non-mutation groups of M. tuberculosis. The reference and outcome berange of the mutation and non-mutation of M. tuberculosis were 56-107, 59-85, 60-120 and 63-94, respectively. The percentage bp difference between the outcome and references for mutation and non-mutation were 3.448-6.569and 3.278-7.428%, respectively. In conclusion, the successful amplification of PCR products in a 1.5% agarose gel electrophoresis where all 12 sputa contained rpoB-positive M. tuberculosis and 0.644% difference was found between the outcome with reference bp of the mutation and non-mutation M. tuberculosis groups.

  10. Simple method for production of internal control DNA for Mycobacterium tuberculosis polymerase chain reaction assays.

    PubMed Central

    deWit, D; Wootton, M; Allan, B; Steyn, L

    1993-01-01

    A simple method for the production of internal control DNA for two well-established Mycobacterium tuberculosis polymerase chain reaction assays is described. The internal controls were produced from Mycobacterium kansasii DNA with the same primers but at a lower annealing temperature than that used in the standard assays. In both assays, therefore, the internal control DNA has the same primer-binding sequences at the target DNA. One-microgram quantities of internal control DNA which was not contaminated with target DNA could easily be produced by this method. The inclusion of the internal control in the reaction mixture did not affect the efficiency of amplification of the target DNA. The method is simple and rapid and should be adaptable to most M. tuberculosis polymerase chain reaction assays. Images PMID:8370752

  11. Immune Responses to Bacillus Calmette–Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis?

    PubMed Central

    Moliva, Juan I.; Turner, Joanne; Torrelles, Jordi B.

    2017-01-01

    Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity. PMID:28424703

  12. Widespread Environmental Contamination with Mycobacterium tuberculosis Complex Revealed by a Molecular Detection Protocol

    PubMed Central

    Santos, Nuno; Santos, Catarina; Valente, Teresa; Gortázar, Christian; Almeida, Virgílio; Correia-Neves, Margarida

    2015-01-01

    Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70–0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area. PMID:26561038

  13. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    PubMed

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  14. LAG3 expression in active Mycobacterium tuberculosis infections.

    PubMed

    Phillips, Bonnie L; Mehra, Smriti; Ahsan, Muhammad H; Selman, Moises; Khader, Shabaana A; Kaushal, Deepak

    2015-03-01

    Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Mycobacterium tuberculosis Isolates from Single Outpatient Clinic in Panama City Exhibit Wide Genetic Diversity

    PubMed Central

    Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador

    2014-01-01

    Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. PMID:24865686

  16. Gamma Interferon Release Assays for Detection of Mycobacterium tuberculosis Infection

    PubMed Central

    Denkinger, Claudia M.; Kik, Sandra V.; Rangaka, Molebogeng X.; Zwerling, Alice; Oxlade, Olivia; Metcalfe, John Z.; Cattamanchi, Adithya; Dowdy, David W.; Dheda, Keertan; Banaei, Niaz

    2014-01-01

    SUMMARY Identification and treatment of latent tuberculosis infection (LTBI) can substantially reduce the risk of developing active disease. However, there is no diagnostic gold standard for LTBI. Two tests are available for identification of LTBI: the tuberculin skin test (TST) and the gamma interferon (IFN-γ) release assay (IGRA). Evidence suggests that both TST and IGRA are acceptable but imperfect tests. They represent indirect markers of Mycobacterium tuberculosis exposure and indicate a cellular immune response to M. tuberculosis. Neither test can accurately differentiate between LTBI and active TB, distinguish reactivation from reinfection, or resolve the various stages within the spectrum of M. tuberculosis infection. Both TST and IGRA have reduced sensitivity in immunocompromised patients and have low predictive value for progression to active TB. To maximize the positive predictive value of existing tests, LTBI screening should be reserved for those who are at sufficiently high risk of progressing to disease. Such high-risk individuals may be identifiable by using multivariable risk prediction models that incorporate test results with risk factors and using serial testing to resolve underlying phenotypes. In the longer term, basic research is necessary to identify highly predictive biomarkers. PMID:24396134

  17. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells.

    PubMed

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-12-01

    It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti- Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). The activity of IgY anti- M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). IgY anti- M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti- M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti- M. tuberculosis . We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti- M. tuberculosis , stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti- Mycobacterium tuberculosis complexIgY anti- M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti- M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by Ig

  18. Admixed Phylogenetic Distribution of Drug Resistant Mycobacterium tuberculosis in Saudi Arabia

    PubMed Central

    Varghese, Bright; Supply, Philip; Allix-Béguec, Caroline; Shoukri, Mohammed; Al-Omari, Ruba; Herbawi, Mais; Al-Hajoj, Sahal

    2013-01-01

    Background The phylogeographical structure of Mycobacterium tuberculosis is generally bimodal in low tuberculosis (TB) incidence countries, where genetic lineages of the isolates generally differ with little strain clustering between autochthonous and foreign-born TB patients. However, less is known on this structure in Saudi Arabia—the most important hub of human migration as it hosts a total population of expatriates and pilgrims from all over the world which is equal to that of its citizens. Methodology We explored the mycobacterial phylogenetic structure and strain molecular clustering in Saudi Arabia by genotyping 322 drug-resistant clinical isolates collected over a 12-month period in a national drug surveillance survey, using 24 locus-based MIRU-VNTR typing and spoligotyping. Principal Findings In contrast to the cosmopolitan population of the country, almost all the known phylogeographic lineages of M. tuberculosis complex (with noticeable exception of Mycobacterium africanum/West-African 1 and 2) were detected, with Delhi/CAS (21.1%), EAI (11.2%), Beijing (11.2%) and main branches of the Euro-American super-lineage such as Ghana (14.9%), Haarlem (10.6%) and Cameroon (7.8%) being represented. Statistically significant associations of strain lineages were observed with poly-drug resistance and multi drug resistance especially among previously treated cases (p value of < = 0.001 for both types of resistance), with relative over-representation of Beijing strains in the latter category. However, there was no significant difference among Saudi and non-Saudi TB patients regarding distribution of phylogenetic lineages (p = 0.311). Moreover, 59.5% (22/37) of the strain molecular clusters were shared between the Saudi born and immigrant TB patients. Conclusions Specific distribution of M. tuberculosis phylogeographic lineages is not observed between the autochthonous and foreign-born populations. These observations might reflect both socially favored

  19. Human Tuberculosis Caused by Mycobacterium bovis in the United States, 2006-2013.

    PubMed

    Scott, Colleen; Cavanaugh, Joseph S; Pratt, Robert; Silk, Benjamin J; LoBue, Philip; Moonan, Patrick K

    2016-09-01

    Using genotyping techniques that have differentiated Mycobacterium bovis from Mycobacterium tuberculosis since 2005, we review the epidemiology of human tuberculosis caused by M. bovis in the United States and validate previous findings nationally. All tuberculosis cases with a genotyped M. tuberculosis complex isolate reported during 2006-2013 in the United States were eligible for analysis. We used binomial regression to identify characteristics independently associated with M. bovis disease using adjusted prevalence ratios (aPRs) and corresponding 95% confidence intervals (CIs). During 2006-2013, the annual percentages of tuberculosis cases attributable to M. bovis remained consistent nationally (range, 1.3%-1.6%) among all tuberculosis cases (N = 59 273). Compared with adults 25-44 years of age, infants aged 0-4 years (aPR, 1.9 [95% CI, 1.4-2.8]) and children aged 5-14 years (aPR, 4.0 [95% CI, 3.1-5.3]) had higher prevalences of M. bovis disease. Patients who were foreign-born (aPR, 1.4 [95% CI, 1.2-1.7]), Hispanic (aPR, 3.9 [95% CI, 3.0-5.0]), female (aPR, 1.4 [95% CI, 1.3-1.6]), and resided in US-Mexico border counties (aPR, 2.0 [95% CI, 1.7-2.4]) also had higher M. bovis prevalences. Exclusively extrapulmonary disease (aPR, 3.7 [95% CI, 3.3-4.2]) or disease that was both pulmonary and extrapulmonary (aPR, 2.4 [95% CI, 2.1-2.9]) were associated with a higher prevalence of M. bovis disease. Children, foreign-born persons, Hispanics, and females are disproportionately affected by M. bovis, which was independently associated with extrapulmonary disease. Targeted prevention efforts aimed at Hispanic mothers and caregivers are warranted. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductasemore » activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.« less

  1. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis.

    PubMed

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C; Jacobs, William R; Kremer, Laurent

    2010-12-01

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA_T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development. © 2010 Blackwell Publishing Ltd.

  2. High prevalence of shared international type 53 among Mycobacterium tuberculosis complex strains in retreated patients from Côte d'Ivoire.

    PubMed

    Ouassa, Timothée; Borroni, Emanuele; Loukou, Guillaume Yao; Faye-Kette, Hortense; Kouakou, Jacquemin; Menan, Hervé; Cirillo, Daniela Maria

    2012-01-01

    Genotyping methods are useful tools to provide information on tuberculosis epidemic. They can allow a better response from health authorities and the implementation of measures for tuberculosis control. This study aimed to identify the main lineages and clades of Mycobacterium tuberculosis complex strains circulating in Côte d'Ivoire. Strains isolated from sputum samples of patients ongoing retreatment from all the country were characterized by spoligotyping and by MIRU-VNTR. Profiles obtained by spoligotyping were first compared to the SITVIT/SpolDB4 database for family assignment. Of 194 strains analysed, 146 (75.3%) belonged to the T lineage. The most predominant spoligotype was the shared international type 53 with 135 strains (69.6%). In contrast with neighbouring countries, LAM (11 strains, 5.7%) and H (9 strains 4.6%) lineages were slightly represented. Only 3 Beijing strains (1.5%) and 4 strains of Mycobacterium africanum (2%) were found. Analysis of the results obtained with MIRU-VNTR revealed also a high level of clustering. The population of Mycobacterium tuberculosis complex strains among retreatment cases in Côte d'Ivoire exhibits a low diversity, allowing to assume recent transmission and locally based infection.

  3. Predominance of Uganda genotype of Mycobacterium tuberculosis isolated from Ugandan patients with tuberculous lymphadenitis.

    PubMed

    Wamala, Dan; Okee, Moses; Kigozi, Edgar; Couvin, David; Rastogi, Nalin; Joloba, Moses; Kallenius, Gunilla

    2015-09-01

    In Uganda, the emerging Uganda genotype of Mycobacterium tuberculosis is the most common cause of pulmonary tuberculosis (PTB), and accounts for up to 70% of isolates. Extrapulmonary TB (EPTB) is less studied in Uganda. Molecular characterization using deletion analysis and spoligotyping was performed on 121 M. tuberculosis isolates from lymph node fine needle biopsy aspirates of Ugandan patients with tuberculous lymphadenitis. The evolutionary relationships and worldwide distribution of the spoligotypes were analyzed. Mycobacterium tuberculosis was the only cause of EPTB in this study. The T2 sublineage was the most predominant lineage and the Uganda genotype was the dominant genotype. There were 54 spoligotype patterns among the 121 study isolates. The dominant spoligotypes were shared international types (SIT) SIT420, SIT53, SIT 135, SIT 128 and SIT590 in descending order. All but SIT420 were previously reported in pulmonary TB in this setting. The phylogenetic analysis showed a long descendant branch of spoligotypes belonging to the T2-Uganda sublineage containing specifically SITs 135, 128 and 420. In most cases, the spoligotypes were similar to those causing PTB, but the Uganda genotype was found to be less common in EPTB than previously reported for PTB in Uganda. The phylogenetic analysis and the study of the worldwide distribution of clustered spoligotypes indicate an ongoing evolution of the Uganda genotype, with the country of Uganda at the center of this evolution.

  4. Comparative proteomic analysis of virulent Korean Mycobacterium tuberculosis K-strain with other mycobacteria strain following infection of U-937 macrophage.

    PubMed

    Ryoo, Sung Weon; Park, Young Kil; Park, Sue-Nie; Shim, Young Soo; Liew, Hyunjeong; Kang, Seongman; Bai, Gill-Han

    2007-06-01

    In Korea, the Mycobacterium tuberculosis K-strain is the most prevalent clinical isolates and belongs to the Beijing family. In this study, we conducted comparative porteomics of expressed proteins of clinical isolates of the K-strain with H37Rv, H37Ra as well as the vaccine strain of Mycobacterium bovis BCG following phagocytosis by the human monocytic cell line U-937. Proteins were analyzed by 2-D PAGE and MALDITOF-MS. Two proteins, Mb1363 (probable glycogen phosphorylase GlgP) and MT2656 (Haloalkane dehalogenase LinB) were most abundant after phagocytosis of M. tuberculosis K-strain. This approach provides a method to determine specific proteins that may have critical roles in tuberculosis pathogenesis.

  5. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction

    PubMed Central

    Mishra, Arun K; Driessen, Nicole N; Appelmelk, Ben J; Besra, Gurdyal S

    2011-01-01

    Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl–arabinogalactan–peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host–pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host–pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates. PMID:21521247

  6. Immunogenic Activity of a Ribosomal Fraction Obtained from Mycobacterium tuberculosis

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1965-01-01

    Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Immunogenic activity of a ribosomal fraction obtained from Mycobacterium tuberculosis. J. Bacteriol. 89:1291–1298. 1965.—The highly immunogenic particulate fraction obtained from mechanically ruptured cells of the H37Ra strain of Mycobacterium tuberculosis was suspended and centrifuged at 20,360 × g. The supernatant liquid from this centrifugation was centrifuged at 56,550 × g to remove the larger particles, and the supernatant liquid from this was centrifuged at 144,000 × g to obtain a ribosomal fraction. The sediments from the first two centrifugations were highly immunogenic, but the ribosomal fraction showed only slight capacity to immunize mice. However, when the ribosomal fraction was mixed with Freund's incomplete adjuvant, the immunogenic activity was equivalent to the particulate fraction from which it was prepared. To test the hypothesis that some membranous substance in the particulate fraction was acting as an adjuvant for the smaller particles in the ribosomal fraction, portions of the particulate fraction were treated separately with each of the membrane-disrupting agents, sodium deoxycholate, sodium lauryl sulfate, and 1 m sodium chloride. The treated materials were then centrifuged at 144,000 × g, and the sediments were tested for immunogenicity both with and without the addition of Freund's incomplete adjuvant. Without the adjuvant, the immunizing activities were very weak or absent; with the adjuvant, they were equivalent to that of the particulate fraction from which they were prepared. Other factors which have been found to damage or destroy membranes, such as freezing and thawing, and heat, also significantly decreased the immunogenic activity of the particulate fraction unless it was incorporated into Freund's incomplete adjuvant. The larger particles which sedimented at 56,550 × g were also treated with sodium lauryl sulfate and sodium

  7. The purinergic P2X7 receptor is not required for control of pulmonary Mycobacterium tuberculosis infection.

    PubMed

    Myers, Amy J; Eilertson, Brandon; Fulton, Scott A; Flynn, Joanne L; Canaday, David H

    2005-05-01

    The importance in vivo of P2X7 receptors in control of virulent Mycobacterium tuberculosis was examined in a low-dose aerosol infection mouse model. P2X7(-/-) mice controlled infection in lungs as well as wild-type mice, suggesting that the P2X7 receptor is not required for control of pulmonary M. tuberculosis infection.

  8. Sensitivity of Mycobacterium bovis to common beef processing interventions

    USDA-ARS?s Scientific Manuscript database

    Objective. Mycobacterium bovis is the causative agent of bovine tuberculosis, a relevant zoonosis that can spread to humans through inhalation or by ingestion. M. bovis multiplies slowly, so infected animals may be sent to slaughter during the early stages of the disease before diagnosis and when ...

  9. [Origin and development of RUTI, a new therapeutic vaccine against Mycobacterium tuberculosis infection].

    PubMed

    Cardona, P J; Amat, I

    2006-01-01

    This article reviews the pathophysiology of the latent form of Mycobacterium tuberculosis along with its natural history and progression in infected tissues. The proposed hypotheses regarding the relationship between M tuberculosis and the associated immune response, the cause of granuloma necrosis, the tolerance of a certain concentration of the bacillus in host tissues, the constant turnover of cells in the lung, and the effect of chemotherapy form the basis for the design of the therapeutic vaccine RUTI against latent M tuberculosis infection. This vaccine is generated from detoxified M tuberculosis cell fragments that facilitate a balanced T helper (Th) 1/Th2/Th3 response to a wide range of antigens along with intense antibody production. Treatment with RUTI following chemotherapy has been demonstrated to be effective in experimental models in mice and guinea pigs and does not exhibit toxicity.

  10. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries.

    PubMed

    Getahun, Haileyesus; Matteelli, Alberto; Abubakar, Ibrahim; Aziz, Mohamed Abdel; Baddeley, Annabel; Barreira, Draurio; Den Boon, Saskia; Borroto Gutierrez, Susana Marta; Bruchfeld, Judith; Burhan, Erlina; Cavalcante, Solange; Cedillos, Rolando; Chaisson, Richard; Chee, Cynthia Bin-Eng; Chesire, Lucy; Corbett, Elizabeth; Dara, Masoud; Denholm, Justin; de Vries, Gerard; Falzon, Dennis; Ford, Nathan; Gale-Rowe, Margaret; Gilpin, Chris; Girardi, Enrico; Go, Un-Yeong; Govindasamy, Darshini; D Grant, Alison; Grzemska, Malgorzata; Harris, Ross; Horsburgh, C Robert; Ismayilov, Asker; Jaramillo, Ernesto; Kik, Sandra; Kranzer, Katharina; Lienhardt, Christian; LoBue, Philip; Lönnroth, Knut; Marks, Guy; Menzies, Dick; Migliori, Giovanni Battista; Mosca, Davide; Mukadi, Ya Diul; Mwinga, Alwyn; Nelson, Lisa; Nishikiori, Nobuyuki; Oordt-Speets, Anouk; Rangaka, Molebogeng Xheedha; Reis, Andreas; Rotz, Lisa; Sandgren, Andreas; Sañé Schepisi, Monica; Schünemann, Holger J; Sharma, Surender Kumar; Sotgiu, Giovanni; Stagg, Helen R; Sterling, Timothy R; Tayeb, Tamara; Uplekar, Mukund; van der Werf, Marieke J; Vandevelde, Wim; van Kessel, Femke; van't Hoog, Anna; Varma, Jay K; Vezhnina, Natalia; Voniatis, Constantia; Vonk Noordegraaf-Schouten, Marije; Weil, Diana; Weyer, Karin; Wilkinson, Robert John; Yoshiyama, Takashi; Zellweger, Jean Pierre; Raviglione, Mario

    2015-12-01

    Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100 000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing and treatment of LTBI is conditionally recommended, according to TB epidemiology and resource availability. Either commercial interferon-gamma release assays or Mantoux tuberculin skin testing could be used to test for LTBI. Chest radiography should be performed before LTBI treatment to rule out active TB disease. Recommended treatment regimens for LTBI include: 6 or 9 month isoniazid; 12 week rifapentine plus isoniazid; 3-4 month isoniazid plus rifampicin; or 3-4 month rifampicin alone. Copyright ©ERS 2015.

  11. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries

    PubMed Central

    Matteelli, Alberto; Abubakar, Ibrahim; Aziz, Mohamed Abdel; Baddeley, Annabel; Barreira, Draurio; Den Boon, Saskia; Borroto Gutierrez, Susana Marta; Bruchfeld, Judith; Burhan, Erlina; Cavalcante, Solange; Cedillos, Rolando; Chaisson, Richard; Chee, Cynthia Bin-Eng; Chesire, Lucy; Corbett, Elizabeth; Dara, Masoud; Denholm, Justin; de Vries, Gerard; Falzon, Dennis; Ford, Nathan; Gale-Rowe, Margaret; Gilpin, Chris; Girardi, Enrico; Go, Un-Yeong; Govindasamy, Darshini; D. Grant, Alison; Grzemska, Malgorzata; Harris, Ross; Horsburgh Jr, C. Robert; Ismayilov, Asker; Jaramillo, Ernesto; Kik, Sandra; Kranzer, Katharina; Lienhardt, Christian; LoBue, Philip; Lönnroth, Knut; Marks, Guy; Menzies, Dick; Migliori, Giovanni Battista; Mosca, Davide; Mukadi, Ya Diul; Mwinga, Alwyn; Nelson, Lisa; Nishikiori, Nobuyuki; Oordt-Speets, Anouk; Rangaka, Molebogeng Xheedha; Reis, Andreas; Rotz, Lisa; Sandgren, Andreas; Sañé Schepisi, Monica; Schünemann, Holger J.; Sharma, Surender Kumar; Sotgiu, Giovanni; Stagg, Helen R.; Sterling, Timothy R.; Tayeb, Tamara; Uplekar, Mukund; van der Werf, Marieke J.; Vandevelde, Wim; van Kessel, Femke; van't Hoog, Anna; Varma, Jay K.; Vezhnina, Natalia; Voniatis, Constantia; Vonk Noordegraaf-Schouten, Marije; Weil, Diana; Weyer, Karin; Wilkinson, Robert John; Yoshiyama, Takashi; Zellweger, Jean Pierre; Raviglione, Mario

    2015-01-01

    Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100 000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing and treatment of LTBI is conditionally recommended, according to TB epidemiology and resource availability. Either commercial interferon-gamma release assays or Mantoux tuberculin skin testing could be used to test for LTBI. Chest radiography should be performed before LTBI treatment to rule out active TB disease. Recommended treatment regimens for LTBI include: 6 or 9 month isoniazid; 12 week rifapentine plus isoniazid; 3–4 month isoniazid plus rifampicin; or 3–4 month rifampicin alone. PMID:26405286

  12. Molecular Characteristics and Drug Susceptibility of Mycobacterium tuberculosis Isolates from Patients Co-infected with Human Immunodeficiency Virus in Beijing, China.

    PubMed

    Liu, Jie; Wang, Hui Zhu; Lian, Lu Lu; Yu, Yan Hua; Zhao, Xiu Qin; Guo, Cai Ping; Liu, Hai Can; Liu, Shu Mei; Zhao, Hui; Zeng, Zhao Ying; Zhao, Xiu Ying; Wan, Kang Lin

    2015-03-01

    70 clinical Mycobacterium tuberculosis strains isolated from AIDS patients in two HIV/AIDS referral hospitals in Beijing were used in this study. M. tuberculosis and non-tuberculosis mycobacterium (NTM) were identified by using multi-locus PCR. M. tuberculosis was genotyped by using 15-locus MIRU-VNTR technique and spoligotyping afterwards. Meanwhile, the drug susceptibilities of the strains to the four first-line anti TB drugs (rifampin, isoniazid, streptomycin, and ethambutol) and the four second-line anti-TB drugs (capreomycin, kanamycin, ofloxacin, and ethionanide) were tested with proportional method. In this study, M. tuberculosis and NTM strains isolated from AIDS patients with TB-like symptoms were identified and genotyping analysis indicated that Beijing genotype was the predominant genotype. In addition, the prevalence of drug-resistant TB, especially the prevalence of XDR-TB, was higher than that in TB patients without HIV infection. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  13. The Importance of First Impressions: Early Events in Mycobacterium tuberculosis Infection Influence Outcome.

    PubMed

    Cadena, Anthony M; Flynn, JoAnne L; Fortune, Sarah M

    2016-04-05

    Tuberculosis remains a major health threat in much of the world. New vaccines against Mycobacterium tuberculosis are essential for preventing infection, disease, and transmission. However, the host immune responses that need to be induced by an effective vaccine remain unclear. Increasingly, it has become clear that early events in infection are of major importance in the eventual outcome of the infection. Studying such events in humans is challenging, as they occur within the lung and thoracic lymph nodes, and any clinical signs of early infection are relatively nonspecific. Nonetheless, clinical studies and animal models of tuberculosis have provided new insights into the local events that occur in the first few weeks of tuberculosis. Development of an effective vaccine requires a clear understanding of the successful (and detrimental) early host responses against M. tuberculosis, with the goal to improve upon natural immune responses and prevent infection or disease. Copyright © 2016 Cadena et al.

  14. Biosynthesis and Regulation of Sulfomenaquinone, a Metabolite Associated with Virulence in Mycobacterium tuberculosis.

    PubMed

    Sogi, Kimberly M; Holsclaw, Cynthia M; Fragiadakis, Gabriela K; Nomura, Daniel K; Leary, Julie A; Bertozzi, Carolyn R

    2016-11-11

    Sulfomenaquinone (SMK) is a recently identified metabolite that is unique to the Mycobacterium tuberculosis (M. tuberculosis) complex and is shown to modulate its virulence. Here, we report the identification of the SMK biosynthetic operon that, in addition to a previously identified sulfotransferase stf3, includes a putative cytochrome P450 gene (cyp128) and a gene of unknown function, rv2269c. We demonstrate that cyp128 and stf3 are sufficient for the biosynthesis of SMK from menaquinone and rv2269c exhibits promoter activity in M. tuberculosis. Loss of Stf3 expression, but not that of Cyp128, is correlated with elevated levels of menaquinone-9, an essential component in the electron-transport chain in M. tuberculosis. Finally, we showed in a mouse model of infection that the loss of cyp128 exhibits a hypervirulent phenotype similar to that in previous studies of the stf3 mutant. These findings provide a platform for defining the molecular basis of SMK's role in M. tuberculosis pathogenesis.

  15. Solution Structures of Mycobacterium tuberculosis Thioredoxin C and Models of the Intact Thioredoxin System Suggest New Approaches to Inhibitor and Drug Design

    PubMed Central

    Olson, Andrew L.; Neumann, Terrence S.; Cai, Sheng; Sem, Daniel S.

    2012-01-01

    Here we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C-terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared to the solution structure. Based on these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti-mycobacterial agents, or as chemical genetic probes of function. PMID:23229911

  16. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    PubMed

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  17. Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG

    PubMed Central

    Mori, Giorgia; Chiarelli, Laurent R.; Esposito, Marta; Makarov, Vadim; Bellinzoni, Marco; Hartkoorn, Ruben C.; Degiacomi, Giulia; Boldrin, Francesca; Ekins, Sean; de Jesus Lopes Ribeiro, Ana Luisa; Marino, Leonardo B.; Centárová, Ivana; Svetlíková, Zuzana; Blaško, Jaroslav; Kazakova, Elena; Lepioshkin, Alexander; Barilone, Nathalie; Zanoni, Giuseppe; Porta, Alessio; Fondi, Marco; Fani, Renato; Baulard, Alain R.; Mikušová, Katarína; Alzari, Pedro M.; Manganelli, Riccardo; de Carvalho, Luiz Pedro S.; Riccardi, Giovanna; Cole, Stewart T.; Pasca, Maria Rosalia

    2015-01-01

    Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target. PMID:26097035

  18. Tuberculosis transmission of predominant genotypes of Mycobacterium tuberculosis in northern suburbs of Buenos Aires city region.

    PubMed

    Morcillo, N; Zumarraga, M; Imperiale, B; Di Giulio, B; Chirico, C; Kuriger, A; Alito, A; Kremer, K; Cataldi, A

    2007-01-01

    In 2003, the incidence of tuberculosis in Argentina showed an increase compared to 2002. The severe national crisis at the end of the 90s has probably strongly contributed to this situation. The goal of this work was to estimate the extent of the spread of the most predominant Mycobacterium tuberculosis strains and to assess the spread of predominant M. tuberculosis clusters as determined by spoligotyping and IS6110 RFLP. The study involved 590 pulmonary, smear-positive TB cases receiving medical attention at health centers and hospitals in Northern Buenos Aires (NBA) suburbs, from October 2001 to December 2002. From a total of 208 clinical isolates belonging to 6 major clusters, 63 (30.2%) isolates had identical spoligotyping and IS6110 RFLP pattern. Only 22.2% were shown to have epidemiological connections with another member of their respective cluster. In these major clusters, 30.2% of the 208 TB cases studied by both molecular techniques and contact tracing could be convincingly attributable to a recently acquired infection. This knowledge may be useful to assess the clonal distribution of predominant M. tuberculosis clusters in Argentina, which may make an impact on TB control strategies.

  19. Integrating knowledge of Mycobacterium tuberculosis pathogenesis for the design of better vaccines.

    PubMed

    Mascart, Françoise; Locht, Camille

    2015-01-01

    Today, tuberculosis (TB) still remains one of the main global causes of mortality and morbidity, and an effective vaccine against both TB disease and Mycobacterium tuberculosis infection is essential to reach the updated post-2015 Millennium development goal of eradicating TB by 2050. During the last two decades much knowledge has accumulated on the pathogenesis of TB and the immune responses to infection by M. tuberculosis. Furthermore, many vaccine candidates are under development, and close to 20 of them have entered clinical assessment at various levels. Nevertheless, the M. tuberculosis-host interaction is very complex, and the full complexity of this interaction is still not sufficiently well understood to develop novel, rationally designed vaccines. However, some of the recent knowledge is now integrated into the design of various types of vaccine candidates to be used either as pre-exposure, as post-exposure or as therapeutic vaccines, as will be discussed in this paper.

  20. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release

    PubMed Central

    Singh, Ramandeep; Manjunatha, Ujjini; Boshoff, Helena I. M.; Ha, Young Hwan; Niyomrattanakit, Pornwaratt; Ledwidge, Richard; Dowd, Cynthia S.; Lee, Ill Young; Kim, Pilho; Zhang, Liang; Kang, Sunhee; Keller, Thomas H.; Jiricek, Jan; Barry, Clifton E.

    2009-01-01

    Bicyclic nitroimidazoles, including PA-824, are exciting candidates for the treatment of tuberculosis. These prodrugs require intracellular activation for their biological function. We found that Rv3547 is a deazaflavin-dependent nitroreductase (Ddn) that converts PA-824 into three primary metabolites; the major one is the corresponding des-nitroimidazole (des-nitro). When derivatives of PA-824 were used, the amount of des-nitro metabolite formed was highly correlated with anaerobic killing of Mycobacterium tuberculosis (Mtb). Des-nitro metabolite formation generated reactive nitrogen species, including nitric oxide (NO), which are the major effectors of the anaerobic activity of these compounds. Furthermore, NO scavengers protected the bacilli from the lethal effects of the drug. Thus, these compounds may act as intracellular NO donors and could augment a killing mechanism intrinsic to the innate immune system. PMID:19039139

  1. Microarray analysis of Mycobacterium tuberculosis-infected monocytes reveals IL26 as a new candidate gene for tuberculosis susceptibility.

    PubMed

    Guerra-Laso, José M; Raposo-García, Sara; García-García, Silvia; Diez-Tascón, Cristina; Rivero-Lezcano, Octavio M

    2015-02-01

    Differences in the activity of monocytes/macrophages, important target cells of Mycobacterium tuberculosis, might influence tuberculosis progression. With the purpose of identifying candidate genes for tuberculosis susceptibility we infected monocytes from both healthy elderly individuals (a tuberculosis susceptibility group) and elderly tuberculosis patients with M. tuberculosis, and performed a microarray experiment. We detected 78 differentially expressed transcripts and confirmed these results by quantitative PCR of selected genes. We found that monocytes from tuberculosis patients showed similar expression patterns for these genes, regardless of whether they were obtained from younger or older patients. Only one of the detected genes corresponded to a cytokine: IL26, a member of the interleukin-10 (IL-10) cytokine family which we found to be down-regulated in infected monocytes from tuberculosis patients. Non-infected monocytes secreted IL-26 constitutively but they reacted strongly to M. tuberculosis infection by decreasing IL-26 production. Furthermore, IL-26 serum concentrations appeared to be lower in the tuberculosis patients. When whole blood was infected, IL-26 inhibited the observed pathogen-killing capability. Although lymphocytes expressed IL26R, the receptor mRNA was not detected in either monocytes or neutrophils, suggesting that the inhibition of anti-mycobacterial activity may be mediated by lymphocytes. Additionally, IL-2 concentrations in infected blood were lower in the presence of IL-26. The negative influence of IL-26 on the anti-mycobacterial activity and its constitutive presence in both serum and monocyte supernatants prompt us to propose IL26 as a candidate gene for tuberculosis susceptibility. © 2014 John Wiley & Sons Ltd.

  2. Mycobacteriosis in a black-tailed deer (Odocoileus hemionus columbianus) caused by Mycobacterium kansasii

    USGS Publications Warehouse

    Hall, P.B.; Bender, L.C.; Garner, M.M.

    2005-01-01

    An eviscerated hunter-harvested female black-tailed deer (Odocoileus hemionus columbianus) was submitted to the Washington Department of Fish and Wildlife. The deer was emaciated, devoid of adipose tissue, and the parietal surface of the thoracic cavity contained multiple granulomas. Acid-fast bacteria were detected histologically from the granulomas and were isolated and identified as Mycobacterium kansasii, a nontuberculous mycobacterium sporadically reported to cause tuberculosis-like disease in a variety of vertebrates. This was the first report of symptomatic disease caused by M. kansasii in free-ranging deer. This case indicates that atypical mycobacteria can cause tuberculosis-like disease in free-ranging deer and illustrates the importance of identifying causative agents of tuberculosis-like disease in wildlife. Copyright 2005 by American Association of Zoo Veterinarians.

  3. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis.

    PubMed

    Wong, Ka-Wing

    2017-05-01

    In this article, we have described several cellular pathological effects caused by the Mycobacterium tuberculosis ESX-1. The effects include induction of necrosis, NOD2 signaling, type I interferon production, and autophagy. We then attempted to suggest that these pathological effects are mediated by the cytosolic access of M. tuberculosis -derived materials as a result of the phagosome-disrupting activity of the major ESX-1 substrate ESAT-6. Such activity of ESAT-6 is most likely due to its pore-forming activity at the membrane. The amyloidogenic characteristic of ESAT-6 is reviewed here as a potential mechanism of membrane pore formation. In addition to ESAT-6, the ESX-1 substrate EspB interferes with membrane-mediated innate immune mechanisms such as efferocytosis and autophagy, most likely through its ability to bind phospholipids. Overall, the M. tuberculosis ESX-1 secretion system appears to be a specialized system for the deployment of host membrane-targeting proteins, whose primary function is to interrupt key steps in innate immune mechanisms against pathogens. Inhibitors that block the ESX-1 system or block host factors critical for ESX-1 toxicity have been identified and should represent attractive potential new antituberculosis drugs.

  4. Complete annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono).

    PubMed

    Miyoshi-Akiyama, Tohru; Satou, Kazuhito; Kato, Masako; Shiroma, Akino; Matsumura, Kazunori; Tamotsu, Hinako; Iwai, Hiroki; Teruya, Kuniko; Funatogawa, Keiji; Hirano, Takashi; Kirikae, Teruo

    2015-01-01

    We report the completely annotated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann (ATCC35812) (Kurono), which is a used for virulence and/or immunization studies. The complete genome sequence of M. tuberculosis Kurono was determined with a length of 4,415,078 bp and a G+C content of 65.60%. The chromosome was shown to contain a total of 4,340 protein-coding genes, 53 tRNA genes, one transfer messenger RNA for all amino acids, and 1 rrn operon. Lineage analysis based on large sequence polymorphisms indicated that M. tuberculosis Kurono belongs to the Euro-American lineage (lineage 4). Phylogenetic analysis using whole genome sequences of M. tuberculosis Kurono in addition to 22 M. tuberculosis complex strains indicated that H37Rv is the closest relative of Kurono based on the results of phylogenetic analysis. These findings provide a basis for research using M. tuberculosis Kurono, especially in animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mycobacterium tuberculosis isolates from single outpatient clinic in Panama City exhibit wide genetic diversity.

    PubMed

    Sambrano, Dilcia; Correa, Ricardo; Almengor, Pedro; Domínguez, Amada; Vega, Silvio; Goodridge, Amador

    2014-08-01

    Understanding Mycobacterium tuberculosis biodiversity and transmission is significant for tuberculosis control. This short report aimed to determine the genetic diversity of M. tuberculosis isolates from an outpatient clinic in Panama City. A total of 62 M. tuberculosis isolates were genotyped by 12 loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) and Spoligotyping. Forty-five (72.6%) of the isolates showed unique MIRU-VNTR genotypes, and 13 (21%) of the isolates were grouped into four clusters. Four isolates showed polyclonal MIRU-VNTR genotypes. The MIRU-VNTR Hunter-Gaston discriminatory index reached 0.988. The Spoligotyping analysis revealed 16 M. tuberculosis families, including Latin American-Mediterranean, Harlem, and Beijing. These findings suggest a wide genetic diversity of M. tuberculosis isolates at one outpatient clinic. A detailed molecular epidemiology survey is now warranted, especially following second massive immigration for local Panama Canal expansion activities. © The American Society of Tropical Medicine and Hygiene.

  6. The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection.

    PubMed

    Correa, Andre F; Bailão, Alexandre M; Bastos, Izabela M D; Orme, Ian M; Soares, Célia M A; Kipnis, Andre; Santana, Jaime M; Junqueira-Kipnis, Ana Paula

    2014-12-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Clinico-pathological features of tuberculosis due to Mycobacterium tuberculosis Uganda genotype in patients with tuberculous lymphadenitis: a cross sectional study.

    PubMed

    Wamala, Dan; Asiimwe, Benon; Kigozi, Edgar; Mboowa, Gerald; Joloba, Moses; Kallenius, Gunilla

    2014-04-02

    Tuberculous lymphadenitis is next to pulmonary tuberculosis as the most common cause of tuberculosis. Uganda genotype, one of the sub-lineages of Mycobacterium tuberculosis, is the most prevalent cause of pulmonary tuberculosis in Uganda. We here investigate the clinicopathological characteristics of patients with tuberculous lymphadenitis infected with M. tuberculosis Uganda genotype compared with those infected with M. tuberculosis non-Uganda genotype strains. Between 2010 and 2012, we enrolled 121 patients (mean age 28.5 yrs, male 48%; female 52%) with tuberculous lymphadenitis, and categorized them by their M. tuberculosis genotypes. The clinical features and lymph node cytopathological parameters were compared between patients in the Uganda and non-Uganda categories using a crude and multivariable logistic regression model with adjustment for confounding factors. Of the 121participants, 56 (46%) were infected with strains of Uganda genotype. Patients infected with this genotype had significantly lower frequency of abdominal lymphadenopathy (odds ratio 0.4, p = 0.046) after adjusting for sex, age and HIV. Abdominal lymphadenopathy was also significantly associated with abnormal chest X-ray (p = 0.027). Tuberculous lymphadenitis patients infected with M. tuberculosis Uganda genotype were significantly less prone to have abdominal lymphadenopathy indicating potential reduced ability to disseminate and supporting the concept that differences in M. tuberculosis genotype may have clinical implications.

  8. Discovery of Novel MDR-Mycobacterium tuberculosis Inhibitor by New FRIGATE Computational Screen

    PubMed Central

    Vértessy, Beáta; Pütter, Vera; Grolmusz, Vince; Schade, Markus

    2011-01-01

    With 1.6 million casualties annually and 2 billion people being infected, tuberculosis is still one of the most pressing healthcare challenges. Here we report on the new computational docking algorithm FRIGATE which unites continuous local optimization techniques (conjugate gradient method) with an inherently discrete computational approach in forcefield computation, resulting in equal or better scoring accuracies than several benchmark docking programs. By utilizing FRIGATE for a virtual screen of the ZINC library against the Mycobacterium tuberculosis (Mtb) enzyme antigen 85C, we identified novel small molecule inhibitors of multiple drug-resistant Mtb, which bind in vitro to the catalytic site of antigen 85C. PMID:22164290

  9. Characterization of exochelins of the Mycobacterium bovis type strain and BCG substrains.

    PubMed

    Gobin, J; Wong, D K; Gibson, B W; Horwitz, M A

    1999-04-01

    Pathogenic mycobacteria must acquire iron in the host in order to multiply and cause disease. To do so, they release abundant quantities of siderophores called exochelins, which have the capacity to scavenge iron from host iron-binding proteins and deliver it to the mycobacteria. In this study, we have characterized the exochelins of Mycobacterium bovis, the causative agent of bovine and occasionally of human tuberculosis, and the highly attenuated descendant of M. bovis, bacillus Calmette-Guérin (BCG), widely used as a vaccine against human tuberculosis. The M. bovis type strain, five substrains of M. bovis BCG (Copenhagen, Glaxo, Japanese, Pasteur, and Tice), and two strains of virulent Mycobacterium tuberculosis all produce the same set of exochelins, although the relative amounts of individual exochelins may differ. Among these mycobacteria, the total amount of exochelins produced is greatest in M. tuberculosis, intermediate in M. bovis, and smallest in M. bovis BCG.

  10. Structural and functional analyses of Mycobacterium tuberculosis Rv3315c-encoded metal-dependent homotetrameric cytidine deaminase.

    PubMed

    Sánchez-Quitian, Zilpa A; Schneider, Cristopher Z; Ducati, Rodrigo G; de Azevedo, Walter F; Bloch, Carlos; Basso, Luiz A; Santos, Diógenes S

    2010-03-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, has exacerbated the treatment and control of this disease. Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that recycles cytidine and 2'-deoxycytidine for uridine and 2'-deoxyuridine synthesis, respectively. A probable M. tuberculosis CDA-coding sequence (cdd, Rv3315c) was cloned, sequenced, expressed in Escherichia coli BL21(DE3), and purified to homogeneity. Mass spectrometry, N-terminal amino acid sequencing, gel filtration chromatography, and metal analysis of M. tuberculosis CDA (MtCDA) were carried out. These results and multiple sequence alignment demonstrate that MtCDA is a homotetrameric Zn(2+)-dependent metalloenzyme. Steady-state kinetic measurements yielded the following parameters: K(m)=1004 microM and k(cat)=4.8s(-1) for cytidine, and K(m)=1059 microM and k(cat)=3.5s(-1) for 2'-deoxycytidine. The pH dependence of k(cat) and k(cat)/K(M) for cytidine indicate that protonation of a single ionizable group with apparent pK(a) value of 4.3 abolishes activity, and protonation of a group with pK(a) value of 4.7 reduces binding. MtCDA was crystallized and crystal diffracted at 2.0 A resolution. Analysis of the crystallographic structure indicated the presence of a Zn(2+) coordinated by three conserved cysteines and the structure exhibits the canonical cytidine deaminase fold. (c) 2009 Elsevier Inc. All rights reserved.

  11. Cutaneous Squamous Cell Carcinoma in Lupus Vulgaris Caused by Drug Resistant Mycobacterium Tuberculosis

    PubMed Central

    Kumaran, Muthu S.; Narang, Tarun; Jitendriya, Madhukara; Tirumale, Rajalakshmi; Manjunath, Suraj; Savio, Jayanthi

    2017-01-01

    Tuberculosis (TB) is still a major public health problem in the world, with many factors contributing to this burden, including poor living conditions, overcrowding, poverty, malnutrition, illiteracy, and rapid spread of human immunodeficiency virus infection. Cutaneous tuberculosis is a less common form of extrapulmonary tuberculosis, and in this paucibacillary form the diagnosis depends on histopathology, tuberculin positivity, and response to treatment. The diagnosis is even more difficult in cases with drug resistant Mycobacterium tuberculosis due to lack of awareness and lack of facilities to diagnose drug resistant tuberculosis. In this article, we describe an unusual case of multidrug resistant lupus vulgaris (LV), in a 34-year-old male who responded to anti-tubercular treatment (ATT) initially, but developed recurrent disease which failed to respond to standard four-drug ATT; subsequently, tissue culture showed growth of multidrug resistant M. tuberculosis. Subsequently, he also developed cutaneous squamous cell carcinoma. This article aims to exemplify a grave complication that can occur in long-standing case of LV, the limitations faced by clinicians in developing countries where tuberculosis is endemic, and classical methods of proving drug resistance are generally unavailable or fail. PMID:28761842

  12. Antigenic specificity of the Mycobacterium leprae homologue of ESAT-6.

    PubMed

    Spencer, John S; Marques, Maria Angela M; Lima, Monica C B S; Junqueira-Kipnis, Ana Paula; Gregory, Bruce C; Truman, Richard W; Brennan, Patrick J

    2002-02-01

    The sequence of the Mycobacterium leprae homologue of ESAT-6 shows only 36% amino acid correspondence to that from Mycobacterium tuberculosis. Anti-M. leprae ESAT-6 polyclonal and monoclonal antibodies and T-cell hybridomas reacted only with the homologous protein and allowed identification of the B- and T-cell epitopes. The protein is expressed in M. leprae and appears in the cell wall fraction. Thus, M. leprae ESAT-6 shows promise as a specific diagnostic agent for leprosy.

  13. Evaluation of a new rapid kit, BD MGIT TBc identification test for confirmation of Mycobacterium tuberculosis complex.

    PubMed

    Kandhakumari, Gandhi; Stephen, Selvaraj

    2017-01-01

    At present, three rapid kits are available globally for the confirmation of Mycobacterium tuberculosis complex (MTBC) in cultures by MPT64 antigen (MPT64 Ag) detection. These include Capilia TB, SD Bioline, and BD MGIT TBc Identification (TBcID). The third kit is yet to be validated in India. We have tested this kit and compared with SD Bioline using conventional tests as gold standard. Seventy-one MTBC (70 M. tuberculosis and one Mycobacterium bovis) and four nontuberculous mycobacteria (NTM) were isolated from 649 clinical specimens in MGIT 960 and/or Lowenstein-Jensen slants (LJ). MPT64 Ag was detected by both TBcID and SD Bioline kits in all the 71 clinical isolates and the reference strain M. tuberculosis H37Rv. All NTM species tested were negative by the two different kits. Thus, TBcID kit showed 100% concordance in terms of sensitivity and specificity. Rapid kits confirm MTBC cultures within 15 min in contrast to several weeks' time required by conventional techniques.

  14. 2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability

    PubMed Central

    Obregón-Henao, Andrés; Ackart, David F.; Podell, Brendan K.; Belardinelli, Juan M.; Jackson, Mary; Nguyen, Tuan V.; Blackledge, Meghan S.; Melander, Roberta J.; Melander, Christian; Johnson, Benjamin K.; Abramovitch, Robert B.

    2017-01-01

    There is an urgent need to develop new drug treatment strategies to control the global spread of drug-sensitive and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). The ß-lactam class of antibiotics is among the safest and most widely prescribed antibiotics, but they are not effective against M. tuberculosis due to intrinsic resistance. This study shows that 2-aminoimidazole (2-AI)-based small molecules potentiate ß-lactam antibiotics against M. tuberculosis. Active 2-AI compounds significantly reduced the minimal inhibitory and bactericidal concentrations of ß-lactams by increasing M. tuberculosis cell envelope permeability and decreasing protein secretion including ß-lactamase. Metabolic labeling and transcriptional profiling experiments revealed that 2-AI compounds impair mycolic acid biosynthesis, export and linkage to the mycobacterial envelope, counteracting an important defense mechanism reducing permeability to external agents. Additionally, other important constituents of the M. tuberculosis outer membrane including sulfolipid-1 and polyacyltrehalose were also less abundant in 2-AI treated bacilli. As a consequence of 2-AI treatment, M. tuberculosis displayed increased sensitivity to SDS, increased permeability to nucleic acid staining dyes, and rapid binding of cell wall targeting antibiotics. Transcriptional profiling analysis further confirmed that 2-AI induces transcriptional regulators associated with cell envelope stress. 2-AI based small molecules potentiate the antimicrobial activity of ß-lactams by a mechanism that is distinct from specific inhibitors of ß-lactamase activity and therefore may have value as an adjunctive anti-TB treatment. PMID:28749949

  15. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents.

    PubMed

    Campaniço, André; Moreira, Rui; Lopes, Francisca

    2018-04-25

    Tuberculosis (TB) remains a major health problem worldwide. The infectious agent, Mycobacterium tuberculosis, has a unique ability to survive within the host, alternating between active and latent disease states, and escaping the immune system defences. The extended duration of anti-TB regimens and the increasing prevalence of multidrug- (MDR) and extensively drug-resistant (XDR) M. tuberculosis strains have created an urgent need for new antibiotics active against drug-resistant organisms and that can shorten standard therapy. However, despite success in identifying active compounds through phenotypic screens, the conversion of hits into novel chemical series and ultimately into clinical candidates is hampered by the poor efficacy in eliminating M. tuberculosis within different host compartments, including macrophages, as well as a lack of knowledge about the specific target(s) inhibited and/or upregulated. The current status of anti-TB lead generation has much improved over the last decade, as exemplified by the recent approval of bedaquiline and delamanid to treat MDR-TB and XDR-TB. This review provides a critical analysis on the strategies used to progress hit compounds into viable lead candidates, and how emerging targets may play a role in TB drug discovery in the near future. Four new relevant targets are addressed: the enoyl-acyl carrier protein reductase, InhA; the transmembrane transport protein large, MmpL3; the decaprenylphospho-beta-d-ribofuranose 2-oxidase, DprE1; and the ubiquinol-cytochrome C reductase, QcrB. Validated hit compounds for each target are presented and explored, and the medicinal chemistry strategies to expand SAR around novel chemotypes analyzed. In addition, very recent emerging targets are also discussed. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Characterisation of Mycobacterium tuberculosis isolates lacking IS6110 in Viet Nam.

    PubMed

    Huyen, M N T; Tiemersma, E W; Kremer, K; de Haas, P; Lan, N T N; Buu, T N; Sola, C; Cobelens, F G J; van Soolingen, D

    2013-11-01

    The molecular diagnosis of tuberculosis (TB) in Viet Nam is often based on the detection of insertion sequence (IS) 6110 in Mycobacterium tuberculosis. However, 8-11% of M. tuberculosis strains in South-East Asia do not contain this target and this undermines the validity of these molecular tests. We quantified the frequency of M. tuberculosis strains lacking IS6110 in rural Viet Nam and studied their epidemiological and clinical characteristics. Consecutively diagnosed adult TB patients in rural Southern Viet Nam submitted two sputum samples for culture, IS6110 restriction fragment length polymorphism (RFLP) spoligotyping and 15-loci variable number tandem repeat typing. Polymerase chain reaction (PCR) was performed to confirm the absence of IS6110 elements in strains lacking IS6110 hybridisation in RFLP. Among 2664 TB patient isolates examined, 109 (4.1%) had no IS6110 element. Compared to other strains, these no-copy strains were less often resistant to anti-tuberculosis drugs, particularly to streptomycin (adjusted OR 0.2, 95%CI 0.1-0.5), and showed significant geographic variation. No associations with TB history or demographic factors were found. Strains without the IS6110 target pose a problem in Viet Nam as regards false-negative molecular TB diagnosis in PCR. Compared to other strains circulating in Viet Nam, no-copy strains are more susceptible to anti-tuberculosis drugs.

  17. A Mycobacterium tuberculosis cytochrome bd oxidase mutant is hypersensitive to bedaquiline.

    PubMed

    Berney, Michael; Hartman, Travis E; Jacobs, William R

    2014-07-15

    The new medicinal compound bedaquiline (BDQ) kills Mycobacterium tuberculosis by inhibiting F1Fo-ATP synthase. BDQ is bacteriostatic for 4 to 7 days and kills relatively slowly compared to other frontline tuberculosis (TB) drugs. Here we show that killing with BDQ can be improved significantly by inhibiting cytochrome bd oxidase, a non-proton-pumping terminal oxidase. BDQ was instantly bactericidal against a cytochrome bd oxidase null mutant of M. tuberculosis, and the rate of killing was increased by more than 50%. We propose that this exclusively bacterial enzyme should be a high-priority target for new drug discovery. Importance: A major drawback of current TB chemotherapy is its long duration. New drug regimens with rapid killing kinetics are desperately needed. Our study demonstrates that inhibition of a nonessential bacterial enzyme greatly improves the efficacy of the latest TB drug bedaquiline and emphasizes that screening for compounds with synergistic killing mechanisms is a promising strategy. Copyright © 2014 Berney et al.

  18. Molecular detection of Mycobacterium tuberculosis in cattle and buffaloes: a cause for public health concern.

    PubMed

    Abdel-Moein, Khaled A; Hamed, Osman; Fouad, Heba

    2016-12-01

    Tuberculosis is a re-emerging disease causing a growing public health burden. The current study was conducted to investigate the occurrence of Mycobacterium tuberculosis among cattle and buffaloes with tuberculous lesions. Typical tuberculous lesions were collected from 34 cattle and 34 buffaloes (Bubalus bubalis) through postmortem examination of slaughtered animals in abattoirs. DNAs were extracted from samples, and M. tuberculosis was identified by PCR. Positive samples were examined for resistance against rifampicin and isoniazid using GenoType MTBDRplus. Moreover, sera from 90 slaughterhouse workers, butchers, or meat inspectors were examined for the presence of M. tuberculosis antibodies using ELISA. Five cattle (14.7 %) and three buffaloes (8.8 %) tested positive. M. tuberculosis from one cattle was resistant to rifampicin and another was resistant to isoniazid. In addition, the seroprevalence of M. tuberculosis IgG among examined humans was 5.6 %. The occurrence of M. tuberculosis in cattle and buffaloes is a public health concern.

  19. Resistance pattern of multi-drug resistant strains of Mycobacterium tuberculosis and characteristics of patients with multi-drug resistant tuberculosis.

    PubMed

    Moisoiu, Adriana; Mitran, Cristina Iulia; Mitran, Mãdãlina Irina; Huhu, Mihaela Roxana; Ioghen, Octavian Costin; Gheorghe, Adelina-Silvana; Tampa, Mircea; Georgescu, Simona Roxana; Popa, Mircea Ioan

    2016-01-01

    Multi-drug resistant tuberculosis (MDR-TB) is a major concern in the medical community. Knowledge about the drug resistance pattern of Mycobacterium tuberculosis strains plays an essential role in the management of the disease. We conducted a retrospective, 3-year study (2009-2011), in an urban area. We collected data on the drug resistance for 497 M. tuberculosis strains, isolated from patients with pulmonary TB. Among the 497 strains, we identified 158 MDR strains. Eighty medical recorders of patients infected with MDR strains were available and we included those patients in the study group. Of the 497 analysed strains, 8% were resistant to a single anti-TB drug. We identified 5.2% polyresistant drug strains, the most frequent combination being INH+EMB (1.4%). Of the 158 MDR strains identified (31.8%), over 60% were resistant to all first line anti-TB drugs tested. Most of them presented resistance to STM (86.1%) and EMB (67.7%). With respect to second line anti-TB drugs resistance to KM (23.4%) was the most common, followed by OFX (8.2%). With respect to the patients with MDR-TB, a percentage of 61.2% of them had a history of anti-TB treatment. Regarding lifestyle habits, 61.2% of the patients were smokers and 18.8% were abusing alcohol. Out of 51 patients, for whom information was available regarding their occupation, only 33.3 % were employees. MDR strains of Mycobacterium tuberculosis display an increased resistance to first line anti-TB drugs. Extension of resistance to second line anti-TB drugs narrows the therapeutic options. Knowledge of MDR-TB risk factors is imperative for the correct and rapid initiation of the treatment.

  20. Antituberculosis IgG Antibodies as a Marker of Active Mycobacterium tuberculosis Disease

    PubMed Central

    Welch, Ryan J.; Lawless, Kathleen M.

    2012-01-01

    Anti-Mycobacterium tuberculosis IgG antibodies may aid in the diagnosis of active M. tuberculosis disease. We studied whether anti-M. tuberculosis IgG antibodies are elevated in active M. tuberculosis disease and assessed factors contributing to false-positive and -negative results. A retrospective study of 2,150 individuals tested by the QuantiFERON-TB Gold In-Tube (QFT-GIT) assay was conducted at the University of Utah, ARUP Laboratories, November 2008 to December 2010. All samples were tested with the InBios Active TbDetect antituberculosis (anti-TB) IgG antibody assay. Of 1,044 patients with a positive QFT-GIT, 59 (5.7%) were positive for M. tuberculosis antibodies. Fourteen of 1,106 (1.3%) with a negative or indeterminate QFT-GIT were positive for M. tuberculosis antibodies. M. tuberculosis antibody tests were positive in 61.5% with confirmed active M. tuberculosis disease and other mycobacterial infections. Over half of the false-negative M. tuberculosis antibody tests occurred in patients ≥90 years of age. False positives were seen in 12.9% of autoimmune patients. The odds ratio of being positive by the QFT-GIT and the InBios TB IgG assay increased with confirmed M. tuberculosis disease or highly suspected M. tuberculosis disease and was 86.7 (95% confidence interval [CI], 34.4 to 218.5) in these two groups compared to patients negative by both tests. Although anti-M. tuberculosis antibodies can be detected in patients with active M. tuberculosis disease, caution should be used with patients where immunoglobulin levels may be decreased or patients with autoantibodies. PMID:22301692

  1. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion.

    PubMed

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.

  2. Drug resistance of Mycobacterium tuberculosis in Malawi: a cross-sectional survey

    PubMed Central

    Abouyannis, Michael; Dacombe, Russell; Dambe, Isaias; Mpunga, James; Faragher, Brian; Gausi, Francis; Ndhlovu, Henry; Kachiza, Chifundo; Suarez, Pedro; Mundy, Catherine; Banda, Hastings T; Nyasulu, Ishmael

    2014-01-01

    Abstract Objective To document the prevalence of multidrug resistance among people newly diagnosed with – and those retreated for – tuberculosis in Malawi. Methods We conducted a nationally representative survey of people with sputum-smear-positive tuberculosis between 2010 and 2011. For all consenting participants, we collected demographic and clinical data, two sputum samples and tested for human immunodeficiency virus (HIV).The samples underwent resistance testing at the Central Reference Laboratory in Lilongwe, Malawi. All Mycobacterium tuberculosis isolates found to be multidrug-resistant were retested for resistance to first-line drugs – and tested for resistance to second-line drugs – at a Supranational Tuberculosis Reference Laboratory in South Africa. Findings Overall, M. tuberculosis was isolated from 1777 (83.8%) of the 2120 smear-positive tuberculosis patients. Multidrug resistance was identified in five (0.4%) of 1196 isolates from new cases and 28 (4.8%) of 581 isolates from people undergoing retreatment. Of the 31 isolates from retreatment cases who had previously failed treatment, nine (29.0%) showed multidrug resistance. Although resistance to second-line drugs was found, no cases of extensive drug-resistant tuberculosis were detected. HIV testing of people from whom M. tuberculosis isolates were obtained showed that 577 (48.2%) of people newly diagnosed and 386 (66.4%) of people undergoing retreatment were positive. Conclusion The prevalence of multidrug resistance among people with smear-positive tuberculosis was low for sub-Saharan Africa – probably reflecting the strength of Malawi’s tuberculosis control programme. The relatively high prevalence of such resistance observed among those with previous treatment failure may highlight a need for a change in the national policy for retreating this subgroup of people with tuberculosis. PMID:25378741

  3. Molecular Detection of Mycobacterium avium avium and Mycobacterium genavense in Feces of Free-living Scarlet Macaws ( Ara macao) in Costa Rica.

    PubMed

    Patiño W, Lena C; Monge, Otto; Suzán, Gerardo; Gutiérrez-Espeleta, Gustavo; Chaves, Andrea

    2018-04-01

      We conducted a study of the two main populations of free-living Scarlet Macaws ( Ara macao) in Costa Rica to detect the causal agents of avian tuberculosis using noninvasive techniques. We analyzed 83 fecal samples collected between February and May 2016 from the central and southern Pacific areas in the country. Using PCR, we first amplified the 16S region of the ribosomal RNA, common to all Mycobacterium species. Then, products from the insertion sequence IS901 and from a 155-base pair DNA fragment evidenced the presence of the avian pathogenic Mycobacterium avium subsp. avium strain and a Mycobacterium genavense strain, respectively. Seven of 38 (18%) samples collected in the central Pacific area were positive for Mycobacterium spp. and 3 of 38 (8%) were positive for M. genavense, with one sample amplifying regions for both. Two of the 45 (4%) samples collected in the south Pacific area of Costa Rica were positive to M. a. avium. Our detection of avian tuberculosis pathogens in free-living Scarlet Macaws suggests that free-living macaws could excrete in their feces M. genavense, bird-pathogenic M. a. avium, and possibly other Mycobacteria (not detected in our study).

  4. Mycobacterium smegmatis proteoliposome induce protection in a murine progressive pulmonary tuberculosis model.

    PubMed

    Tirado, Yanely; Puig, Alina; Alvarez, Nadine; Borrero, Reinier; Aguilar, Alicia; Camacho, Frank; Reyes, Fatima; Fernandez, Sonsire; Perez, Jose Luis; Acevedo, Reynaldo; Mata Espinoza, Dulce; Payan, Jorge Alberto Barrios; Garcia, Maria de Los A; Kadir, Ramlah; Sarmiento, María E; Hernandez-Pando, Rogelio; Norazmi, Mohd-Nor; Acosta, Armando

    2016-12-01

    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tuberculosis-resistant transgenic cattle

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis is a devastating disease that affects humans and many animal species. In humans, tuberculosis (TB) is mainly caused by Mycobacterium tuberculosis, while most cases in cattle are caused by Mycobacterium bovis. However, Mb can also cause, albeit rarely, human TB. In this issue, Wu et al. ...

  6. Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens.

    PubMed

    Nguyen, Nghi; Wilson, Danny W; Nagalingam, Gayathri; Triccas, James A; Schneider, Elena K; Li, Jian; Velkov, Tony; Baell, Jonathan

    2018-03-25

    In this study, a structure-activity relationship (SAR) compound series based on the NDH-2 inhibitor diphenyleneiodonium (DPI) was synthesised. Compounds were evaluated primarily for in vitro efficacy against Gram-positive and Gram-negative bacteria, commonly responsible for nosocomial and community acquired infections. In addition, we also assessed the activity of these compounds against Mycobacterium tuberculosis (Tuberculosis) and Plasmodium spp. (Malaria). This led to the discovery of highly potent compounds active against bacterial pathogens and malaria parasites in the low nanomolar range, several of which were significantly less toxic to mammalian cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Genetic Mimetics of Mycobacterium tuberculosis and Methicillin-Resistant Staphylococcus aureus as Verification Standards for Molecular Diagnostics.

    PubMed

    Machowski, Edith Erika; Kana, Bavesh Davandra

    2017-12-01

    Molecular diagnostics have revolutionized the management of health care through enhanced detection of disease or infection and effective enrollment into treatment. In recognition of this, the World Health Organization approved the rollout of nucleic acid amplification technologies for identification of Mycobacterium tuberculosis using platforms such as GeneXpert MTB/RIF, the GenoType MTBDR plus line probe assay, and, more recently, GeneXpert MTB/RIF Ultra. These assays can simultaneously detect tuberculosis infection and assess rifampin resistance. However, their widespread use in health systems requires verification and quality assurance programs. To enable development of these, we report the construction of genetically modified strains of Mycobacterium smegmatis that mimic the profile of Mycobacterium tuberculosis on both the GeneXpert MTB/RIF and the MTBDR plus line probe diagnostic tests. Using site-specific gene editing, we also created derivatives that faithfully mimic the diagnostic result of rifampin-resistant M. tuberculosis , with mutations at positions 513, 516, 526, 531, and 533 in the rifampin resistance-determining region of the rpoB gene. Next, we extended this approach to other diseases and demonstrated that a Staphylococcus aureus gene sequence can be introduced into M. smegmatis to generate a positive response for the SCC mec probe in the GeneXpert SA Nasal Complete molecular diagnostic cartridge, designed for identification of methicillin-resistant S. aureus These biomimetic strains are cost-effective, have low biohazard content, accurately mimic drug resistance, and can be produced with relative ease, thus illustrating their potential for widespread use as verification standards for diagnosis of a variety of diseases. Copyright © 2017 American Society for Microbiology.

  8. The use of PCR technique in the identification of Mycobacterium species responsible for bovine tuberculosis in cattle and buffaloes in Pakistan.

    PubMed

    Akhtar, Farah; Javed, Muhammad Tariq; Aziz-ur-Rehman; Khan, Muhammad Nisar; Akhtar, Pervez; Hussain, Sayed Misdaq; Aslam, Muhammad Sohaib; Kausar, Razia; Qamar, Mehwish; Cagiola, Monica

    2015-08-01

    Bovine tuberculosis is one of the important diseases of dairy and wild animals. The disease is prevalent all over the world, though developed countries have tremendously reduced the prevalence through eradication campaigns. The prevalence of disease in Pakistan on the basis of tuberculin testing or culture isolation of the organism has been reported previously. It is, however, important to use the latest diagnostic tools, i.e. PCR to confirm the type of Mycobacterium infecting the animals in Pakistan. Therefore, the present study was carried out to assess the utility of direct PCR on milk samples and nasal swabs to confirm the type of Mycobacterium infecting the animals. This study was carried out on 215 cattle and buffaloes of more than 2 years of age present at two livestock farms. The tuberculin results showed 22.5% prevalence at one farm and 25.9% at the other with an overall prevalence of 24.7%. The 92.5% of milk samples and/or nasal swabs showed positive PCR for Mycobacterium genus, 86.8% for Mycobacterium tuberculosis complex and 77.4% for Mycobacterium bovis. The M. bovis by PCR was detected in 13.2% of milk samples, 24.5% of nasal swabs and 39.6% of both milk samples + nasal swabs. The results suggested that there are 60% higher chance for a nasal swab to yield a positive PCR for M. bovis than the milk sample. It can be concluded from the present study that tuberculin testing is a useful method in studying the prevalence of disease as the PCR for Mycobacterium genus was positive in 92.5%, M. tuberculosis complex in 86.8% and Mycobacterium bovis in 77.4% cases.

  9. Unmasking leading to a health care worker Mycobacterium tuberculosis transmission.

    PubMed

    Holden, Kerry L; Bradley, Craig W; Curran, Evonne T; Pollard, Christopher; Smith, Grace; Holden, Elisabeth; Glynn, Patricia; Garvey, Mark

    2018-05-09

    Mycobacterium tuberculosis is a major health burden worldwide. The disease can present as an individual case, community outbreak or more rarely a nosocomial outbreak. Even in countries with a low prevalence such as the UK, tuberculosis (TB) presents a risk to healthcare workers (HCWs). To report an outbreak which manifested 12 months after a patient with pulmonary tuberculosis was admitted to Queen Elizabeth Hospital Birmingham (QEHB). We present the epidemiological and outbreak investigations; the role of whole genome sequencing (WGS) in identifying the outbreak and control measures to prevent further outbreaks. Subsequent to a case of open tuberculosis in a patient transmission was confirmed in one healthcare worker (HCW) who had active TB; HCW cases of latent TB infection (LTBI) were also identified amongst 7 HCW contacts of the index case. Of note, all the LBTI cases had other risk factors for TB. Routine use of Whole Genome Sequencing (WGS) identified the outbreak link between the index case to the HCW with active TB disease, and also informed our investigations. Exposure most likely occurred during an aerosol generating procedure (AGP) which was done in accordance with national guidance at that time without using respiratory protection. Enhanced control measures were implemented following the outbreak. Copyright © 2018. Published by Elsevier Ltd.

  10. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis

    PubMed Central

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L. C. M.; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M. Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H. M.; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates. PMID:25339944

  11. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis.

    PubMed

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L C M; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H M; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates.

  12. Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420.

    PubMed

    Blondiaux, Nicolas; Moune, Martin; Desroses, Matthieu; Frita, Rosangela; Flipo, Marion; Mathys, Vanessa; Soetaert, Karine; Kiass, Mehdi; Delorme, Vincent; Djaout, Kamel; Trebosc, Vincent; Kemmer, Christian; Wintjens, René; Wohlkönig, Alexandre; Antoine, Rudy; Huot, Ludovic; Hot, David; Coscolla, Mireia; Feldmann, Julia; Gagneux, Sebastien; Locht, Camille; Brodin, Priscille; Gitzinger, Marc; Déprez, Benoit; Willand, Nicolas; Baulard, Alain R

    2017-03-17

    Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis , circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide. Copyright © 2017, American Association for the Advancement of Science.

  13. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tuhin; Ghosh, Soumitra; Dixit, Karuna; Ganesan, Varsha; Ramagopal, Udupi A.; Dey, Debayan; Sarma, Siddhartha P.; Ramakumar, Suryanarayanarao; Nagaraja, Valakunja

    2014-06-01

    The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.

  14. Mycobacteriophages: an important tool for the diagnosis of Mycobacterium tuberculosis (review).

    PubMed

    Fu, Xiaoyan; Ding, Mingxing; Zhang, Ning; Li, Jicheng

    2015-07-01

    The prevention and control of tuberculosis (TB) on a global scale has become increasingly important with the emergence of multidrug‑resistant TB. Mycobacterium tuberculosis phages have been identified as an important investigative tool. Phage genomes exhibit a significant level of diversity and mosaic genome architecture, however, they are simple structures, which are amenable to genetic manipulation. Based on these characteristics, the phages may be used to construct a shuttle plasmid, which is an indispensable tool in the investigation of TB. Furthermore, they may be used for rapid diagnosis and assessing drug susceptibility of TB, including phage amplified assessment and reporter phage technology. With an improved understanding of mycobacteriophages, further clarification of the pathogenesis of TB, and of the implications for its diagnosis and therapy, may be elucidated.

  15. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells

    PubMed Central

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-01-01

    Objective: It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti-Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). Materials and Methods: The activity of IgY anti-M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). Results: IgY anti-M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti-M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis. Conclusions: We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti-M. tuberculosis, stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. SUMMARY Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti-Mycobacterium tuberculosis complexIgY anti-M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti-M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL

  16. Transmission of Mycobacterium tuberculosis in China: A Population-Based Molecular Epidemiologic Study

    PubMed Central

    Yang, Chongguang; Shen, Xin; Peng, Ying; Lan, Rushu; Zhao, Yuling; Long, Bo; Luo, Tao; Sun, Guomei; Li, Xia; Qiao, Ke; Gui, Xiaohong; Wu, Jie; Xu, Jiying; Li, Fabin; Li, Dingyue; Liu, Feiying; Shen, Mei; Hong, Jianjun; Mei, Jian; DeRiemer, Kathryn; Gao, Qian

    2015-01-01

    Background. Understanding the transmission of Mycobacterium tuberculosis is essential for the development of efficient tuberculosis control strategies. China has the second-largest tuberculosis burden in the world. Recent transmission and infection with M. tuberculosis, particularly drug-resistant strains, may account for many new tuberculosis cases. Methods. We performed a population-based molecular epidemiologic study of pulmonary tuberculosis in China during 1 July 2009 to 30 June 2012. We defined clusters as cases with identical variable number tandem repeat genotype patterns and identified the risk factors associated with clustering, by logistic regression. Relative transmission rates were estimated by the sputum smear status and drug susceptibility status of tuberculosis patients. Results. Among 2274 culture-positive tuberculosis patients with genotyped isolates, there were 705 (31.0%) tuberculosis patients in 287 clusters. Multidrug-resistant (MDR) tuberculosis (adjusted odds ratio [aOR], 1.86; 95% confidence interval [CI], 1.25–2.63) and infection with a Beijing family strain (aOR, 1.56; 95% CI, 1.23–2.96) were associated with clustering. Eighty-four of 280 (30.0%) clusters had a putative source case that was sputum smear negative, and 30.6% of their secondary cases were attributed to transmission by sputum smear–negative patients. The relative transmission rate for sputum smear negative compared with sputum smear–positive patients was 0.89 (95% CI, .68–1.10), and was 1.51 (95% CI, 1.00–2.24) for MDR tuberculosis vs drug-susceptible tuberculosis. Conclusions. Recent transmission of M. tuberculosis, including MDR strains, contributes substantially to tuberculosis disease in China. Sputum smear–negative cases were responsible for at least 30% of the secondary cases. Interventions to reduce the transmission of M. tuberculosis should be implemented in China. PMID:25829000

  17. Catabolism of the Last Two Steroid Rings in Mycobacterium tuberculosis and Other Bacteria.

    PubMed

    Crowe, Adam M; Casabon, Israël; Brown, Kirstin L; Liu, Jie; Lian, Jennifer; Rogalski, Jason C; Hurst, Timothy E; Snieckus, Victor; Foster, Leonard J; Eltis, Lindsay D

    2017-04-04

    Most mycolic acid-containing actinobacteria and some proteobacteria use steroids as growth substrates, but the catabolism of the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis , this pathway includes virulence determinants and has been proposed to be encoded by the KstR2-regulated genes, which include a predicted coenzyme A (CoA) transferase gene ( ipdAB ) and an acyl-CoA reductase gene ( ipdC ). In the presence of cholesterol, Δ ipdC and Δ ipdAB mutants of either M. tuberculosis or Rhodococcus jostii strain RHA1 accumulated previously undescribed metabolites: 3aα- H -4α(carboxyl-CoA)-5-hydroxy-7aβ-methylhexahydro-1-indanone (5-OH HIC-CoA) and ( R )-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA), respectively. A Δ fadE32 mutant of Mycobacterium smegmatis accumulated 4-methyl-5-oxo-octanedioic acid (MOODA). Incubation of synthetic 5-OH HIC-CoA with purified IpdF, IpdC, and enoyl-CoA hydratase 20 (EchA20), a crotonase superfamily member, yielded COCHEA-CoA and, upon further incubation with IpdAB and a CoA thiolase, yielded MOODA-CoA. Based on these studies, we propose a pathway for the final steps of steroid catabolism in which the 5-member ring is hydrolyzed by EchA20, followed by hydrolysis of the 6-member ring by IpdAB. Metabolites accumulated by Δ ipdF and Δ echA20 mutants support the model. The conservation of these genes in known steroid-degrading bacteria suggests that the pathway is shared. This pathway further predicts that cholesterol catabolism yields four propionyl-CoAs, four acetyl-CoAs, one pyruvate, and one succinyl-CoA. Finally, a Δ ipdAB M. tuberculosis mutant did not survive in macrophages and displayed severely depleted CoASH levels that correlated with a cholesterol-dependent toxicity. Our results together with the developed tools provide a basis for further elucidating bacterial steroid catabolism and virulence determinants in M. tuberculosis. IMPORTANCE Bacteria are the

  18. UTILIZATION OF CARBOHYDRATES AND POLYHYDRIC ALCOHOLS BY MYCOBACTERIUM TUBERCULOSIS

    PubMed Central

    Sweeney, Edward E.; Jann, Gregory J.

    1962-01-01

    Sweeney, Edward E. (University of California, Los Angeles) and Gregory J. Jann. Utilization of carbohydrates and polyhydric alcohols by Mycobacterium tuberculosis. J. Bacteriol. 84:459–465. 1962.—A new procedure, using a massive inoculum and nongrowth basal medium, was employed for testing carbohydrate and polyhydric alcohol utilization by human tubercle bacilli. A positive reaction was represented by acidification of the test medium rather than by growth, which was the criterion for carbohydrate utilization in studies by earlier workers. The new procedure was both more sensitive and more rapid than growth techniques; results were obtained within days, compared to weeks or months required for growth testing. The massive-inoculum technique may be applied to compounds other than carbohydrates and polyhydric alcohols, and is a sensitive means of detecting changes wrought by various chemical and physical agents upon the metabolism of tubercle bacilli. Three H37Rv strains and six strains of human tubercle bacilli freshly isolated from patients were tested with 21 carbohydrates and polyhydric alcohols. All nine strains gave strong positive reactions for glucose and glycerol, and usually weak positive reactions for ribose and sorbose. Five of the nine strains were trehalose positive, and six (all fresh patient isolates) of the nine were mannose positive. PMID:13979661

  19. Ex vivo expansion of alveolar macrophages with Mycobacterium tuberculosis from the resected lungs of patients with pulmonary tuberculosis

    PubMed Central

    Petrunina, Ekaterina; Umpeleva, Tatiana; Karskanova, Svetlana; Bayborodin, Sergey; Vakhrusheva, Diana; Kravchenko, Marionella; Skornyakov, Sergey

    2018-01-01

    Tuberculosis (TB), with the Mycobacterium tuberculosis (Mtb) as the causative agent, remains to be a serious world health problem. Traditional methods used for the study of Mtb in the lungs of TB patients do not provide information about the number and functional status of Mtb, especially if Mtb are located in alveolar macrophages. We have developed a technique to produce ex vivo cultures of cells from different parts of lung tissues surgically removed from patients with pulmonary TB and compared data on the number of cells with Mtb inferred by the proposed technique to the results of bacteriological and histological analyses used for examination of the resected lungs. The ex vivo cultures of cells obtained from the resected lungs of all patients were largely composed of CD14-positive alveolar macrophages, foamy or not, with or without Mtb. Lymphocytes, fibroblasts, neutrophils, and multinucleate Langhans giant cells were also observed. We found alveolar macrophages with Mtb in the ex vivo cultures of cells from the resected lungs of even those TB patients, whose sputum smears and lung tissues did not contain acid-fast Mtb or reveal growing Mtb colonies on dense medium. The detection of alveolar macrophages with Mtb in ex vivo culture as soon as 16–18 h after isolation of cells from the resected lungs of all TB patients suggests that the technique proposed for assessing the level of infection in alveolar macrophages of TB patients has higher sensitivity than do prolonged bacteriological or pathomorphological methods. The proposed technique allowed us to rapidly (in two days after surgery) determine the level of infection with Mtb in the cells of the resected lungs of TB patients and, by the presence or absence of Mtb colonies, including those with cording morphology, the functional status of the TB agent at the time of surgery. PMID:29401466

  20. A multiplex PCR method for detection of Aspergillus spp. and Mycobacterium tuberculosis in BAL specimens.

    PubMed

    Amini, F; Kachuei, R; Noorbakhsh, F; Imani Fooladi, A A

    2015-06-01

    The aim of this study was the detection of Aspergillus species and Mycobacterium tuberculosis together in bronchoalveolar lavage (BAL) using of multiplex PCR. In this study, from September 2012 until June 2013, 100 bronchoalveolar lavage (BAL) specimens were collected from patients suspected of tuberculosis (TB). After the direct and culture test, multiplex PCR were utilized in order to diagnose Aspergillus species and M. tuberculosis. Phenol-chloroform manual method was used in order to extract DNA from these microorganisms. Aspergillus specific primers, M. tuberculosis designed primers and beta actin primers were used for multiplex PCR. In this study, by multiplex PCR method, Aspergillus species were identified in 12 samples (12%), positive samples in direct and culture test were respectively 11% and 10%. Sensitivity and specificity of this method in comparison to direct test were respectively 100% and 98.8%, also sensitivity and specificity of this method in comparison to culture test were respectively 100% and 97.7%. In this assay, M. tuberculosis was identified in 8 samples (8%). Mycobacterium-positive samples in molecular method, direct and culture test were respectively 6%, 5% and 7%. Sensitivity and specificity of PCR method in comparison to direct test were 80% and 97.8% also sensitivity and specificity of this method in comparison to culture test was 71.4% and 98.9%. In the present study, multiplex PCR method had higher sensitivity than direct and culture test in order to identify and detect Aspergillus, also this method had lower sensitivity for identification of M. tuberculosis, suggesting that the method of DNA extraction was not suitable. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. ISONIAZID AND RIFAMPIN PHARMACOKINETICS IN TWO ASIAN ELEPHANTS (ELEPHAS MAXIMUS) INFECTED WITH MYCOBACTERIUM TUBERCULOSIS.

    PubMed

    Egelund, Eric F; Isaza, Ramiro; Alsultan, Abdullah; Peloquin, Charles A

    2016-09-01

    This report describes the pharmacokinetic profiles of chronically administered oral isoniazid and rifampin in one adult male and one adult female Asian elephant ( Elephas maximus ) that were asymptomatically infected with Mycobacterium tuberculosis . Rifampin's half-life was reduced when compared to previous single-dose pharmacokinetic profiles of healthy uninfected Asian elephants. Both elephants experienced delayed absorption of isoniazid and rifampin as compared to previous pharmacokinetic studies in this species. The altered pharmacokinetics of both drugs in repeated-dosing clinical situations underscores the need for individual therapeutic drug monitoring for tuberculosis treatment.

  2. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    PubMed Central

    Bhatter, Purva D.; Gupta, Pooja D.; Birdi, Tannaz J.

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity. PMID:26941797

  3. Identification of Novel Seroreactive Antigens in Johne's Disease Cattle by Using the Mycobacterium tuberculosis Protein Array

    PubMed Central

    Campo, Joseph J.; Li, Lingling; Randall, Arlo; Pablo, Jozelyn; Praul, Craig A.; Raygoza Garay, Juan Antonio; Stabel, Judith R.

    2017-01-01

    ABSTRACT Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis-infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next

  4. Identification of Novel Seroreactive Antigens in Johne's Disease Cattle by Using the Mycobacterium tuberculosis Protein Array.

    PubMed

    Bannantine, John P; Campo, Joseph J; Li, Lingling; Randall, Arlo; Pablo, Jozelyn; Praul, Craig A; Raygoza Garay, Juan Antonio; Stabel, Judith R; Kapur, Vivek

    2017-07-01

    Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis , is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis , here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis -infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next

  5. Structural measurements and cell line studies of the copper-PEG-Rifampicin complex against Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli

    2015-02-01

    The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Preliminary antimycobacterial study on selected Turkish plants (Lamiaceae) against Mycobacterium tuberculosis and search for some phenolic constituents

    PubMed Central

    2013-01-01

    Background The global resurgence of tuberculosis is a significant threat. Lamiaceae members have been used in folk remedies for centuries. This study was designed to assess the in-vitro antimycobacterial activity of eighteen crude extracts from six plants (Lamiaceae) and to characterize their phenolic and flavonoid compounds. Methods Six Turkish medicinal plants of the family Lamiaceae (Stachys tmolea Boiss., Stachys thirkei C. Koch, Ballota acetabulosa (L.) Benth., Thymus sipthorpii Benth., Satureja aintabensis P.H. Davis, and Micromeria juliana (L.) Benth. ex Reich.) were collected in 2009 – 2010. Dried and crushed plant samples were subjected to sequential extraction with petroleum ether, ethyl acetate, and methanol in order of increasing polarity. A broth microdilution method was employed to screen extracts against four mycobacterial strains of Mycobacterium tuberculosis. Phenolic and flavonoid compounds were characterized by liquid chromatography–mass spectrometry. Results S. aintabensis, T. sibthorpii, and M. juliana were found to develop considerable activity against the four strains of M. tuberculosis with the minimal inhibitory concentrations value of 12.5-100 μg/ml. S. aintabensis and T. sibthorpii extracts killed M. tuberculosis with the minimum bactericidal concentration value of 50–800 μg/ml. On the basis of these prominent antimycobacterial activity, we suggest that they could be a source of natural anti-tuberculosis agents. Conclusion S. aintabensis and T. sibthorpii showed activity by killing Mycobacteria strains. The major phenolic compound was rosmarinic for T. sibthorpii and S. aintabensis. Flavonoids might be “a modal” for the drug design. PMID:24359458

  7. Mycobacterium tuberculosis infection among persons who inject drugs in San Diego, California.

    PubMed

    Armenta, R F; Collins, K M; Strathdee, S A; Bulterys, M A; Munoz, F; Cuevas-Mota, J; Chiles, P; Garfein, R S

    2017-04-01

    Persons who inject drugs (PWID) might be at increased risk for Mycobacterium tuberculosis infection and reactivation of latent tuberculous infection (LTBI) due to their injection drug use. To determine prevalence and correlates of M. tuberculosis infection among PWID in San Diego, California, USA. PWID aged 18 years underwent standardized interviews and serologic testing using an interferon-gamma release assay (IGRA) for LTBI and rapid point-of-care assays for human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections. Independent correlates of M. tuberculosis infection were identified using multivariable log-binomial regression. A total of 500 participants met the eligibility criteria. The mean age was 43.2 years (standard deviation 11.6); most subjects were White (52%) or Hispanic (30.8%), and male (75%). Overall, 86.7% reported having ever traveled to Mexico. Prevalence of M. tuberculosis infection was 23.6%; 0.8% were co-infected with HIV and 81.7% were co-infected with HCV. Almost all participants (95%) had been previously tested for M. tuberculosis; 7.6% had been previously told they were infected. M. tuberculosis infection was independently associated with being Hispanic, having longer injection histories, testing HCV-positive, and correctly reporting that people with 'sleeping' TB cannot infect others. Strategies are needed to increase awareness about and treatment for M. tuberculosis infection among PWID in the US/Mexico border region.

  8. An attenuated quadruple gene mutant of Mycobacterium tuberculosis imparts protection against tuberculosis in guinea pigs

    PubMed Central

    Chauhan, Priyanka

    2018-01-01

    ABSTRACT Previously we had developed a triple gene mutant of Mycobacterium tuberculosis (MtbΔmms) harboring disruption in three genes, namely mptpA, mptpB and sapM. Though vaccination with MtbΔmms strain induced protection in the lungs of guinea pigs, the mutant strain failed to control the hematogenous spread of the challenge strain to the spleen. Additionally, inoculation with MtbΔmms resulted in some pathological damage to the spleens in the early phase of infection. In order to generate a strain that overcomes the pathology caused by MtbΔmms in spleen of guinea pigs and controls dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. MtbΔmmsb mutant strain was highly attenuated for growth and virulence in guinea pigs. Vaccination with MtbΔmmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleen of infected animals. However, the protection imparted by MtbΔmmsb was significantly less in comparison to BCG immunized animals. This study indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis for generating protection against tuberculosis. PMID:29242198

  9. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response.

    PubMed

    Queiroz, Adriano; Riley, Lee W

    2017-01-01

    The lipid-rich cell wall of Mycobacterium tuberculosis is a dynamic structure that is involved in the regulation of the transport of nutrients, toxic host-cell effector molecules, and anti-tuberculosis drugs. It is therefore postulated to contribute to the long-term bacterial survival in an infected human host. Accumulating evidence suggests that M. tuberculosis remodels the lipid composition of the cell wall as an adaptive mechanism against host-imposed stress. Some of these lipid species (trehalose dimycolate, diacylated sulphoglycolipid, and mannan-based lipoglycans) trigger an immunopathologic response, whereas others (phthiocerol dimycocerosate, mycolic acids, sulpholipid-1, and di-and polyacyltrehalose) appear to dampen the immune responses. These lipids appear to be coordinately expressed in the cell wall of M. tuberculosis during different phases of infection, ultimately determining the clinical fate of the infection. This review summarizes the current state of knowledge on the metabolism, transport, and homeostatic or immunostatic regulation of the cell wall lipids, and their orchestrated interaction with host immune responses that results in bacterial clearance, persistence, or tuberculosis.

  10. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts

    PubMed Central

    Lilic, Mirjana; Palka, Margaret; Mooney, Rachel Anne; Landick, Robert

    2018-01-01

    Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket. PMID:29480804

  11. Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Liu, Yunhui

    2015-12-01

    Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.

  12. Antibacterial activity of selected Cameroonian dietary spices ethno-medically used against strains of Mycobacterium tuberculosis.

    PubMed

    Tekwu, Emmanuel Mouafo; Askun, Tülin; Kuete, Victor; Nkengfack, Augustin Ephraim; Nyasse, Barthélémy; Etoa, François-Xavier; Beng, Véronique Penlap

    2012-07-13

    Tuberculosis (TB) is considered as a re-emerging disease and one of the most important public health problems worldwide. The use or (in most cases) misuse of existint anti-tuberculosis drugs over the years has led to an increasing prevalence of resistant strains, establishing an urgent need to search for new effective agents. Spices are largely used ethno-medically across Africa. The present study aimed to evaluate the in vitro antimycobacterial activities of a total of 20 methanol crude extracts prepared from 20 Cameroonian dietary spices for their ability to inhibit the growth of or kill Mycobacterium tuberculosis strains H(37)Rv (ATCC 27294) and H(37)Ra (ATCC 25177). The antituberculosis screening was performed using the Microplate Alamar Blue Assay (MABA) method to determine the minimum inhibitory concentration (MIC) and the minimum mycobactericidal concentration (MBC). Fifteen (15) plant extracts out of 20 showed varied levels of antimycobacterial activity against the strains M. tuberculosis H(37)Rv and H(37)Ra, with MICs in the range of 2.048-0.016 mg/ml. The extract of Echinops giganteus exhibited the most significant activity with a MIC value of 32 μg/ml and 16 μg/ml, respectively against H(37)Ra and H(37)Rv. To the best of our knowledge, the antimycobacterial activity of the tested spices has not been reported before and therefore our results can be evaluated as the first report about the antimycobacterial properties. The results of this study suggest that Echinops giganteus and Piper guineense could be important sources of bactericidal compounds against M. tuberculosis and could probably be promising candidates that can be further investigated. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Genotyping of Mycobacterium tuberculosis with additional markers enhances accuracy in epidemiological studies.

    PubMed Central

    Warren, R; Richardson, M; Sampson, S; Hauman, J H; Beyers, N; Donald, P R; van Helden, P D

    1996-01-01

    Two highly polymorphic Mycobacterium tuberculosis genomic domains, characterized by hybridization to the oligonucleotide (GTG)5, were identified as potential DNA fingerprinting probes. These domains were cloned [pMTB484(1) and pMTB484(2K4), respectively] and shown to be useful for genotype analysis by Southern blotting. These probes were used to genotype geographically linked strains of M. tuberculosis previously shown to have identical IS6110 fingerprints. Subsequent DNA fingerprints generated with MTB484(1) and MTB484(2K4) showed a high degree of polymorphism, allowing subclassification of IS6110-defined clusters into composites of smaller clusters and unique strains. Correlation of the molecular data with patient interviews and clinical records confirmed the sensitivity of these probes, as contacts were established only within subclusters. These findings demonstrate the requirement for multiple probes to accurately classify M. tuberculosis strains, even those with high copy numbers of IS6110. The enhanced accuracy of strain typing should, in turn, further our understanding of the epidemiology of tuberculosis. PMID:8862588

  14. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  15. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis.

    PubMed

    Surineni, Goverdhan; Yogeeswari, Perumal; Sriram, Dharmarajan; Kantevari, Srinivas

    2015-02-01

    A series of novel carbazole tethered pyrrole derivatives were designed by coupling core fragments of antitubercular agents, carbazole and substituted pyrrole in single molecular architecture. The synthesis of new analogues was achieved by FeCl3 mediated one pot three component condensation of 2-nitrovinylcarbazoles with aryl or alkyl amines and dimethylacetylene dicarboxylate (DMAD). All the new analogues 5a-l and 6a-l were fully characterized by their NMR and mass spectral data. Among the twenty four new compounds screened for in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv, dimethyl 1-(4-fluorophenyl)-4-(9-methyl-9H-carbazol-3-yl)-1H-pyrrole-2,3-dicarboxylate (5b) was found to be most active with MIC 3.13μg/mL and has shown low cytotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability

    PubMed Central

    Rücker, Nadine; Billig, Sandra; Bücker, René; Jahn, Dieter

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis persists inside granulomas in the human lung. Analysis of the metabolic composition of granulomas from guinea pigs revealed that one of the organic acids accumulating in the course of infection is acetate (B. S. Somashekar, A. G. Amin, C. D. Rithner, J. Troudt, R. Basaraba, A. Izzo, D. C. Crick, and D. Chatterjee, J Proteome Res 10:4186–4195, 2011, doi:http://dx.doi.org/10.1021/pr2003352), which might result either from metabolism of the pathogen or might be provided by the host itself. Our studies characterize a metabolic pathway by which M. tuberculosis generates acetate in the cause of fatty acid catabolism. The acetate formation depends on the enzymatic activities of Pta and AckA. Using actyl coenzyme A (acetyl-CoA) as a substrate, acetyl-phosphate is generated and finally dephosphorylated to acetate, which is secreted into the medium. Knockout mutants lacking either the pta or ackA gene showed significantly reduced acetate production when grown on fatty acids. This effect is even more pronounced when the glyoxylate shunt is blocked, resulting in higher acetate levels released to the medium. The secretion of acetate was followed by an assimilation of the metabolite when other carbon substrates became limiting. Our data indicate that during acetate assimilation, the Pta-AckA pathway acts in concert with another enzymatic reaction, namely, the acetyl-CoA synthetase (Acs) reaction. Thus, acetate metabolism might possess a dual function, mediating an overflow reaction to release excess carbon units and resumption of acetate as a carbon substrate. IMPORTANCE During infection, host-derived lipid components present the major carbon source at the infection site. β-Oxidation of fatty acids results in the formation of acetyl-CoA. In this study, we demonstrate that consumption of fatty acids by Mycobacterium tuberculosis activates an overflow mechanism, causing the pathogen to release excess carbon intermediates as acetate. The Pta

  17. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited

    PubMed Central

    1995-01-01

    We have used the cryosection immunogold technique to study the composition of the Mycobacterium tuberculosis phagosome. We have used quantitative immunogold staining to determine the distribution of several known markers of the endosomal-lysosomal pathway in human monocytes after ingestion of either M. tuberculosis, Legionella pneumophila, or polystyrene beads. Compared with the other phagocytic particles studied, the M. tuberculosis phagosome exhibits delayed clearance of major histocompatibility complex (MHC) class I molecules, relatively intense staining for MHC class II molecules and the endosomal marker transferrin receptor, and relatively weak staining for the lysosomal membrane glycoproteins, CD63, LAMP-1, and LAMP-2 and the lysosomal acid protease, cathepsin D. In contrast to M. tuberculosis, the L. pneumophila phagosome rapidly clears MHC class I molecules and excludes all endosomal-lysosomal markers studied. In contrast to both live M. tuberculosis and L. pneumophila phagosomes, phagosomes containing either polystyrene beads or heat-killed M. tuberculosis stain intensely for lysosomal membrane glycoproteins and cathepsin D. These findings suggest that (a) M. tuberculosis retards the maturation of its phagosome along the endosomal-lysosomal pathway and resides in a compartment with endosomal, as opposed to lysosomal, characteristics; and (b) the intraphagosomal pathway, i.e., the pathway followed by several intracellular parasites that inhibit phagosome-lysosome fusion, is heterogeneous. PMID:7807006

  18. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis.

    PubMed

    Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo

    2010-07-01

    Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.

  19. Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae*

    PubMed Central

    Wesener, Darryl A.; Levengood, Matthew R.

    2017-01-01

    The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis. In each species, the galactan is constructed from uridine 5′-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope. PMID:28039359

  20. Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina.

    PubMed

    Monteserin, Johana; Paul, Roxana; Gravina, Elida; Reniero, Ana; Hernandez, Teresa; Mazzeo, Eduardo; Togneri, Ana; Simboli, Norberto; López, Beatriz; Couvin, David; Rastogi, Nalin; Ritacco, Viviana

    2018-04-06

    Buenos Aires is an overpopulated port city historically inhabited by people of European descent. Together with its broader metropolitan area, the city exhibits medium tuberculosis rates, and receives migrants, mainly from tuberculosis highly endemic areas of Argentina and neighboring countries. This work was aimed to gain insight into the Mycobacterium tuberculosis population structure in two suburban districts of Buenos Aires which are illustrative of the overall situation of tuberculosis in Argentina. The Lineage 4 Euro-American accounted for >99% of the 816 isolates analyzed (one per patient). Frequencies of spoligotype families were T 35.9%, LAM 33.2%, Haarlem 19.5%, S 3.2%, X 1.5%, Ural 0.7%, BOV 0.2%, Beijing 0.2%, and Cameroon 0.2%. Unknown signatures accounted for 5.3% isolates. Of 55 spoligotypes not matching any extant shared international type (SIT) in SITVIT database, 22 fitted into 15 newly-issued SITs. Certain autochthonous South American genotypes were found to be actively evolving. LAM3, which is wild type for RD rio , was the predominant LAM subfamily in both districts and the RD rio signature was rare among autochthonous, newly created, SITs and orphan patterns. Two genotypes that are rarely observed in neighboring countries ̶ SIT2/H2 and SIT159/T1 Tuscany ̶ were conspicuously represented in Argentina. The infrequent Beijing patterns belonged to Peruvian patients. We conclude that the genotype diversity observed reflects the influence of the Hispanic colonization and more recent immigration waves from Mediterranean and neighboring countries. Unlike in Brazil, the RD rio type does not play a major role in the tuberculosis epidemic in Buenos Aires. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Application of the Capilia TB assay for culture confirmation of Mycobacterium tuberculosis complex isolates.

    PubMed

    Hillemann, D; Rüsch-Gerdes, S; Richter, E

    2005-12-01

    The usefulness of a low-tech rapid test for culture confirmation of Mycobacterium tuberculosis complex, Capilia TB, was tested on 172 mycobacteria-positive clinical samples. The overall sensitivity and specificity were 92.4% and 100%, respectively. In three of nine false-negative isolates a mutation in the mpb64 gene could be detected.

  2. Screening mutations in drug-resistant Mycobacterium tuberculosis strains in Yunnan, China.

    PubMed

    Li, Daoqun; Song, Yuzhu; Zhang, Cheng-Lin; Li, Xiaofei; Xia, Xueshan; Zhang, A-Mei

    Drug-resistant tuberculosis (DR-TB), especially multidrug-resistant tuberculosis (MDR-TB), is a serious medical and societal problem in China. The purpose of this study was to evaluate the mutation characteristics of drug-resistant Mycobacterium tuberculosis (M. tuberculosis) isolates in Yunnan, China. Drug susceptibility testing (DST) was performed in 523 clinical M. tuberculosis isolates. Six drug resistance genes (katG, inhA, rpoB, rpsL, embB, and pncA) were selected to screen for mutations. In total, 54 clinical M. tuberculosis strains were identified as drug-resistant by DST, including 18 single drug-resistant (SDR) strains and 36 multidrug-resistant (MDR) strains. Twenty-four types of mutations in five genes (excluding the inhA gene) were screened in forty-one strains. Six novel mutations were identified in this study, including three missense mutations (p.S302R in katG, p.D78G in embB, and p.M1I in pncA), two frameshift mutations (408 ins A and 538-580 del in pncA), and one mutation in a control region (-6 C>T located upstream of rpsL). The mutation frequencies in the hotspot mutation regions in the katG, rpoB, rpsL, embB, and pncA genes were 92.5%, 44.4%, 54.2%, 52.6%, and 37.5%, respectively. The mutation spectra and frequencies seemed somewhat unique in the Yunnan DR-TB strains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Pathology of the emerging Mycobacterium tuberculosis complex pathogen, M. mungi in the banded mongoose (Mungos mungo)

    USDA-ARS?s Scientific Manuscript database

    Wild banded mongooses (Mungos mungo) in northeastern Botswana and Northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex pathogen (MTC), M. mungi. This pathogen is transmitted environmentally between mongoose hosts through exposure to infected scent marks used in olfactory c...

  4. Distinct Clinical and Epidemiological Features of Tuberculosis in New York City Caused by the RDRio Mycobacterium tuberculosis Sublineage

    PubMed Central

    Weisenberg, Scott A.; Gibson, Andrea L.; Huard, Richard C.; Kurepina, Natalia; Bang, Heejung; Lazzarini, Luiz C O.; Chiu, Yalin; Li, Jiehui; Ahuja, Shama; Driscoll, Jeff; Kreiswirth, Barry N.; Ho, John L.

    2011-01-01

    Background Genetic tracking of Mycobacterium tuberculosis is a cornerstone of tuberculosis (TB) control programs. The RDRio M. tuberculosis sublineage was previously associated with TB in Brazil. We investigated 3847 M. tuberculosis isolates and registry data from New York City (NYC) (2001–2005) to: 1) affirm the position of RDRio strains within the M. tuberculosis phylogenetic structure, 2) determine its prevalence, and 3) define transmission, demographic, and clinical characteristics associated with RDRio TB. Methods Isolates classified as RDRio or non-RDRio M. tuberculosis by multiplex PCR were further classified as clustered (≥2 isolates) or unique based primarily upon IS6110-RFLP patterns and lineage-specific cluster proportions were calculated. The secondary case rate of RDRio was compared with other prevalent M. tuberculosis lineages. Genotype data were merged with the data from the NYC TB Registry to assess demographic and clinical characteristics. Results RDRio strains were found to: 1) be restricted to the Latin American-Mediterranean family, 2) cause approximately 8% of TB cases in NYC, and 3) be associated with heightened transmission as shown by: i) a higher cluster proportion compared to other prevalent lineages, ii) a higher secondary case rate, and iii) cases in children. Furthermore, RDRio strains were significantly associated with US-born Black or Hispanic race, birth in Latin American and Caribbean countries, and isoniazid resistance. Conclusions The RDRio genotype is a single M. tuberculosis strain population that is emerging in NYC. The findings suggest that expanded RDRio case and exposure identification could be of benefit due to its association with heightened transmission. PMID:21835266

  5. PPE Surface Proteins Are Required for Heme Utilization by Mycobacterium tuberculosis

    PubMed Central

    Mitra, Avishek; Speer, Alexander; Lin, Kan; Ehrt, Sabine

    2017-01-01

    ABSTRACT Iron is essential for replication of Mycobacterium tuberculosis, but iron is efficiently sequestered in the human host during infection. Heme constitutes the largest iron reservoir in the human body and is utilized by many bacterial pathogens as an iron source. While heme acquisition is well studied in other bacterial pathogens, little is known in M. tuberculosis. To identify proteins involved in heme utilization by M. tuberculosis, a transposon mutant library was screened for resistance to the toxic heme analog gallium(III)-porphyrin (Ga-PIX). Inactivation of the ppe36, ppe62, and rv0265c genes resulted in resistance to Ga-PIX. Growth experiments using isogenic M. tuberculosis deletion mutants showed that PPE36 is essential for heme utilization by M. tuberculosis, while the functions of PPE62 and Rv0265c are partially redundant. None of the genes restored growth of the heterologous M. tuberculosis mutants, indicating that the proteins encoded by the genes have separate functions. PPE36, PPE62, and Rv0265c bind heme as shown by surface plasmon resonance spectroscopy and are associated with membranes. Both PPE36 and PPE62 proteins are cell surface accessible, while the Rv0265c protein is probably located in the periplasm. PPE36 and PPE62 are, to our knowledge, the first proline-proline-glutamate (PPE) proteins of M. tuberculosis that bind small molecules and are involved in nutrient acquisition. The absence of a virulence defect of the ppe36 deletion mutant indicates that the different iron acquisition pathways of M. tuberculosis may substitute for each other during growth and persistence in mice. The emerging model of heme utilization by M. tuberculosis as derived from this study is substantially different from those of other bacteria. PMID:28119467

  6. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis

    PubMed Central

    Williamson, Benjamin H.; Kerns, Robert J.; Berger, James M.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) infects one-third of the world’s population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone–gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone–enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance. PMID:26792525

  7. Drug Resistance and Population Structure of Mycobacterium tuberculosis Beijing Strains Isolated in Poland.

    PubMed

    Kozińska, Monika; Augustynowicz-Kopeć, Ewa

    2015-01-01

    In total, 1095 Mycobacterium tuberculosis clinical isolates from 282 patients with drug-resistant and 813 with drug-sensitive tuberculosis (TB) in Poland during 2007-2011 were analysed. Seventy-one (6.5%) patients were found to have strains of Beijing genotype as defined by spoligotyping. The majority of patients were Polish-born; among foreign-born a large proportion came from Chechnya and Vietnam. Analysis showed strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients, suggesting that this is due to increased spread of drug-resistant strains rather than acquisition of resistance during treatment.

  8. The leprosy agents Mycobacterium lepromatosis and Mycobacterium leprae in Mexico.

    PubMed

    Han, Xiang Y; Sizer, Kurt Clement; Velarde-Félix, Jesús S; Frias-Castro, Luis O; Vargas-Ocampo, Francisco

    2012-08-01

    Mycobacterium leprae was the only known cause of leprosy until 2008, when a new species, named Mycobacterium lepromatosis, was found to cause diffuse lepromatous leprosy (DLL), a unique form of leprosy endemic in Mexico. We sought to differentiate the leprosy agents among 120 Mexican patients with various clinical forms of leprosy and to compare their relative prevalences and disease features. Archived skin biopsy specimens from these patients were tested for both M. leprae and M. lepromatosis using polymerase chain reaction-based species-specific assays. Etiologic species were confirmed in 87 (72.5%) patients, of whom 55 were infected with M. lepromatosis, 18 with M. leprae, and 14 with both organisms. The endemic regions of each agent differed but overlapped. Patients with M. lepromatosis were younger and were distributed across more states; their clinical diagnoses included DLL (n = 13), lepromatous leprosy (LL) (n = 34), and eight other forms of leprosy. By contrast, the diagnoses of patients with M. leprae did not include DLL but did include LL (n = 15) and three other forms of leprosy. Thus, M. lepromatosis caused DLL specifically (P = 0.023). Patients with M. lepromatosis also showed more variable skin lesions; the extremities were the most common sites of biopsy in these patients. Finally, patients with dual infections manifested all clinical forms and accounted for 16.1% of all species-confirmed cases. Mycobacterium lepromatosis is another cause of leprosy and is probably more prevalent than M. leprae in Mexico. It mainly causes LL and also specifically DLL. Dual infections caused by both species may occur in endemic areas. © 2012 The International Society of Dermatology.

  9. Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice.

    PubMed

    Srivastava, Vikas; Jain, Anamika; Srivastava, Brahm S; Srivastava, Ranjana

    2008-05-01

    In sequel to previous report [Srivastava V, Rouanet C, Srivastava R, Ramalingam B, Locht C, Srivastava BS. Macrophage-specific Mycobacterium tuberculosis genes: identification by green fluorescent protein and kanamycin resistance selection. Microbiology 2007;153:659-66], the genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice were identified in an in vivo expression system based on kanamycin resistance. A promoter library of M. tuberculosis was constructed in a promoter trap shuttle vector pLL192 containing an artificial bicistronic operon composed of promoterless green fluorescent protein gene followed by kanamycin resistance gene. The library was introduced in M. bovis BCG and then infected in mice by intravenous route. Mice were treated twice daily with 40 mg/kg dose of kanamycin by intramuscular route for 21 days. Recombinant BCG recovered from the lungs were reinfected in mice to enrich clones surviving kanamycin treatment in the lung but sensitive to killing by kanamycin in vitro. After nucleotide sequencing of inserts from these clones, 20 genes belonging to fatty acids metabolism, membrane transport, nitric oxide defence and PE_PGRS/PPE family were identified. Real-time PCR analysis using RNA isolated from M. tuberculosis grown in vitro and from the lungs, confirmed upregulation of genes from 2 to 20-fold in vivo compared to growth in vitro. Several of these select 20 genes were also found upregulated ex vivo in macrophage-like cell line J774A.1, thus, suggesting a correlation in mycobacterial gene expression between ex vivo and in vivo conditions.

  10. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks

    PubMed Central

    Flentie, Kelly; Garner, Ashley L.

    2016-01-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824

  11. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    PubMed Central

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  12. Pyrimidin-2(1H)-ones based inhibitors of Mycobacterium tuberculosis orotate phosphoribosyltransferase.

    PubMed

    Breda, Ardala; Machado, Pablo; Rosado, Leonardo Astolfi; Souto, André Arigony; Santos, Diógenes Santiago; Basso, Luiz Augusto

    2012-08-01

    Tuberculosis (TB) is an ancient human chronic infectious disease caused mainly by Mycobacterium tuberculosis. The emergence of strains resistant to first and second line anti-TB drugs, associated with the increasing number of TB cases among HIV positive subjects, and the large number of individuals infected with latent bacilli have urged the development of new strategies to treat TB. Enzymes of nucleotide metabolism pathways provide promising molecular targets for the development of drugs, aiming at both active and latent TB. The orotate phosphoribosyltransferase (OPRT) enzyme catalyzes the synthesis of orotidine 5'-monophosphate from 5'-phospho-α-d-ribose 1'-diphosphate and orotic acid, in the de novo pyrimidine synthesis pathway. Based on the kinetic mechanism and molecular properties, here we describe the design, selection and synthesis of substrate analogs with inhibitory activity of M. tuberculosis OPRT (MtOPRT) enzyme. Steady-state kinetic measurements were employed to determine the mode of inhibition of commercially available and chemically derived compounds. The 6-Hydroxy-2-oxo-1,2-dihydropyridine-4-carboxylic acid (6) chemical compound and its derivative, 3-Benzylidene-2,6-dioxo-1,2,3,6-tetrahydropyridine-4-carboxylic acid (13), showed enzyme inhibition constants in the submicromolar range. Isothermal titration calorimetry data indicated that binding of both compounds to MtOPRT have negative enthalpy and favorable Gibbs free energy probably due to their high complementarity to the enzyme's binding pocket. Improvement of compound 13 hydrophobic character by addition of an aromatic ring substituent resulted in entropic optimization, reflected on a thermodynamic discrimination profile characteristic of high affinity ligands. These inhibitors represent lead compounds for further development of MtOPRT inhibitors with increased potency, which may be tested as anti-TB agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Bactericidal activity of OPC-67683 against drug-tolerant Mycobacterium tuberculosis.

    PubMed

    Saliu, Oluwabunmi Y; Crismale, Catina; Schwander, Stephan K; Wallis, Robert S

    2007-11-01

    There is an urgent need for drugs that hasten sterilization in tuberculosis; however, we presently lack indicators of this activity to guide early drug development. We previously described a novel in vitro assay to study mycobacterial phenotypic drug tolerance, in which sterilizing activity could be assessed. OPC-67,683 is a novel imidazooxazole that accelerates sterilization in the mouse tuberculosis model. The present study was conducted to determine the activity of OPC-67,683 in the in vitro tolerance model using drug-tolerant clinical Mycobacterium tuberculosis strains. Tolerance was assessed in Bactec radiometric culture as: (i) delayed decline in growth index during 14 days of drug exposure; (ii) shorter time to positivity of subcultures following drug exposure. Four isolates were selected from among 16 surveyed, based on delayed killing by isoniazid and OPC-67,683. Unlike isoniazid and rifampicin, whose rates of killing were concentration-independent, OPC-67,683 showed concentration-dependent effects that, at the highest dose levels tested (1.0 microg/mL), were superior to isoniazid and equal to rifampicin. The sterilizing activity of OPC-67683 against drug-tolerant M. tuberculosis in the Bactec model is consistent with its activity in mice. Further studies are warranted to examine the effects of OPC-67683 on mycobacterial persistence in tuberculous patients and to determine the biological basis of tolerance in the model.

  14. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection

    PubMed Central

    Lin, Philana Ling; Dietrich, Jes; Tan, Esterlina; Abalos, Rodolfo M.; Burgos, Jasmin; Bigbee, Carolyn; Bigbee, Matthew; Milk, Leslie; Gideon, Hannah P.; Rodgers, Mark; Cochran, Catherine; Guinn, Kristi M.; Sherman, David R.; Klein, Edwin; Janssen, Christopher; Flynn, JoAnne L.; Andersen, Peter

    2011-01-01

    It is estimated that one-third of the world’s population is infected with Mycobacterium tuberculosis. Infection typically remains latent, but it can reactivate to cause clinical disease. The only vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is largely ineffective, and ways to enhance its efficacy are being developed. Of note, the candidate booster vaccines currently under clinical development have been designed to improve BCG efficacy but not prevent reactivation of latent infection. Here, we demonstrate that administering a multistage vaccine that we term H56 in the adjuvant IC31 as a boost to vaccination with BCG delays and reduces clinical disease in cynomolgus macaques challenged with M. tuberculosis and prevents reactivation of latent infection. H56 contains Ag85B and ESAT-6, which are two of the M. tuberculosis antigens secreted in the acute phase of infection, and the nutrient stress–induced antigen Rv2660c. Boosting with H56/IC31 resulted in efficient containment of M. tuberculosis infection and reduced rates of clinical disease, as measured by clinical parameters, inflammatory markers, and improved survival of the animals compared with BCG alone. Boosted animals showed reduced pulmonary pathology and extrapulmonary dissemination, and protection correlated with a strong recall response against ESAT-6 and Rv2660c. Importantly, BCG/H56-vaccinated monkeys did not reactivate latent infection after treatment with anti-TNF antibody. Our results indicate that H56/IC31 boosting is able to control late-stage infection with M. tuberculosis and contain latent tuberculosis, providing a rationale for the clinical development of H56. PMID:22133873

  15. Pathology of Camel Tuberculosis and Molecular Characterization of Its Causative Agents in Pastoral Regions of Ethiopia

    PubMed Central

    Mamo, Gezahegne; Bayleyegn, Gizachew; Sisay Tessema, Tesfaye; Legesse, Mengistu; Medhin, Girmay; Bjune, Gunnar; Abebe, Fekadu; Ameni, Gobena

    2011-01-01

    A cross sectional study was conducted on 906 apparently healthy camels slaughtered at Akaki and Metehara abattoirs to investigate the pathology of camel tuberculosis (TB) and characterize its causative agents using postmortem examination, mycobacteriological culturing, and multiplex polymerase chain reaction (PCR), region of difference-4 (RD4)-based PCR and spoligotyping. The prevalence of camel TB was 10.04% (91/906) on the basis of pathology and it was significantly higher in females (χ2 = 4.789; P = 0.029). The tropism of TB lesions was significantly different among the lymph nodes (χ2 = 22.697; P = 0.002) and lung lobes (χ2 = 17.901; P = 0.006). Mycobacterial growth was observed in 34% (31/91) of camels with grossly suspicious TB lesions. Upon further molecular characterization using multiplex PCR, 68% (21/31) of the colonies showed a positive signal for the genus Mycobacterium, of which two were confirmed Mycobacterium bovis (M. bovis) by RD4 deletion typing. Further characterization of the two M. bovis at strains level revealed that one of the strains was SB0133 while the other strain was new and had not been reported to the M. bovis database prior to this study. Hence, it has now been reported to the database, and designated as SB1953. In conclusion, the results of the present study have shown that the majority of camel TB lesions are caused by mycobacteria other than Mycobacterium tuberculosis complex. And hence further identification and characterization of these species would be useful towards the efforts made to control TB in camels. PMID:21283668

  16. Expression, purification and preliminary crystallographic analysis of Mycobacterium tuberculosis CysQ, a phosphatase involved in sulfur metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Anna I.; Sarsam, Reta D.; Fisher, Andrew J., E-mail: ajfisher@ucdavis.edu

    The cysQ gene from Mycobacterium tuberculosis was cloned and the expressed protein, a 3′-phosphoadenosine-5′’-phosphatase, was purified and crystallized. X-ray diffraction data were collected to 1.7 Å resolution.

  17. Detection of Mycobacterium bovis in formalin-fixed, paraffin-embedded tissues of cattle and elk by PCR amplification of an IS6110 sequence specific for Mycobacterium tuberculosis complex organisms.

    PubMed

    Miller, J; Jenny, A; Rhyan, J; Saari, D; Suarez, D

    1997-07-01

    A presumptive diagnosis of tuberculosis can be made if a tissue has characteristic histopathologic changes and acid-fast organisms. However, definitive diagnosis requires culture and species identification of the causative mycobacterium, a process that takes several weeks to complete. The purpose of work reported here was to determine if formalin-fixed, paraffin-embedded tissues could be tested by polymerase chain reaction (PCR) to provide a more rapid diagnosis of tuberculosis. Nondecalcified tissues from cases of tuberculosis in cattle and elk (Cervus elaphus) were examined. The primers used for PCR amplified a 123-bp fragment of IS6110, an insertion sequence that is specific for organisms in the Mycobacterium tuberculosis complex (M. tuberculosis, M. bovis, M. microti, M. africanum). The PCR test detected this sequence in tissues from 92 of 99 (93%) tuberculosis cases, including 3 of 4 elk. In 80 tissues, the positive results were obtained using material prepared by immersion of paraffin sections in water containing a detergent, followed by alternating boil/freeze cycles. The remaining positive results were obtained with DNA isolated from the crude tissue extracts by proteinase K digestion and phenol/chloroform purification. Accuracy of the IS6110 PCR test was demonstrated by negative test results on 31 tissues that had either nonmycobacterial granulomas or granulomatous lesions caused by other mycobacteria (M. paratuberculosis or M. avium). The findings of this study show that a PCR test usually can provide a rapid diagnosis of tuberculosis when it is applied to paraffin sections that have characteristic lesions and acid-fast organisms.

  18. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis.

    PubMed

    Poyntz, Hazel C; Stylianou, Elena; Griffiths, Kristin L; Marsay, Leanne; Checkley, Anna M; McShane, Helen

    2014-05-01

    The efficacy of Bacillus Calmette-Guerin (BCG) vaccination in protection against pulmonary tuberculosis (TB) is highly variable between populations. One possible explanation for this variability is increased exposure of certain populations to non-tuberculous mycobacteria (NTM). This study used a murine model to determine the effect that exposure to NTM after BCG vaccination had on the efficacy of BCG against aerosol Mycobacterium tuberculosis challenge. The effects of administering live Mycobacterium avium (MA) by an oral route and killed MA by a systemic route on BCG-induced protection were evaluated. CD4+ and CD8+ T cell responses were profiled to define the immunological mechanisms underlying any effect on BCG efficacy. BCG efficacy was enhanced by exposure to killed MA administered by a systemic route; T helper 1 and T helper 17 responses were associated with increased protection. BCG efficacy was reduced by exposure to live MA administered by the oral route; T helper 2 cells were associated with reduced protection. These findings demonstrate that exposure to NTM can induce opposite effects on BCG efficacy depending on route of exposure and viability of NTM. A reproducible model of NTM exposure would be valuable in the evaluation of novel TB vaccine candidates. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Mycobacterium tuberculosis osteomyelitis in a patient with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS): a case report.

    PubMed

    Mannepalli, Supriya; Mitchell-Samon, Levonne; Guzman, Nilmarie; Relan, Manish; McCarter, Yvette S

    2010-02-23

    The incidence of tuberculosis is increasing in the United States. Extra-pulmonary involvement is more common in patients with HIV/AIDS. The diagnosis of Tuberculosis osteomyelitis requires a high degree of suspicion for accurate and timely diagnosis.We present a case of a 49 year old Caucasian male with HIV/AIDS who presented with a four-month history of soft tissue swelling in the left proximal thigh unresponsive to various broad spectrum antibiotics who was eventually diagnosed with Mycobacterium tuberculosis osteomyelitis of the left proximal femur.

  20. [Immunobiologic characteristics of a recombinant Listeria monocytogenes expressing Mycobacterium tuberculosis antigens].

    PubMed

    Yin, Yuelan; Zhao, Dan; Kang, Meiqin; Tan, Weijun; Lian, Kai; Hu, Maozhi; Chen, Xiang; Pan, Zhiming; Jiao, Xin'an

    2013-12-04

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis complex. Hence, novel vaccines against TB are urgently needed and important to the public health. Immunobiologic characteristics of a recombinant attenuated Listeria monocytogenes strain LMdeltahly: :Ag85b-esat-6 was evaluated. LMdeltahly: :Ag85b-esat-6 had lost the hemolytic activity. It was completely cleared from the livers and spleens of mice 5 days after inoculation via intravenous route. Furthermore, the LD50 of the recombinant strain increased by 4 Logs comparing to that of the parent strain. Histopathology reveals no obvious pathological changes following administration of the recombinant strain to mice, indicating its safety. In addition, the potential protective immune response was evaluated on C57BL/6 mice via intravenous immunization route. The results indicate that the antigen delivered by the recombination LM could induce Th1 type immune response and elicit strong cytotoxic lymphocyte effect against Ag85B-ESAT-6. Thus, LMdeltahly::Ag85b-esat-6 had high safety to mice, and could be used as a novel vaccines candidate for preventing tuberculosis.

  1. Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China.

    PubMed

    Chen, Qiuyang; Pang, Yu; Liang, Qingfu; Lin, Shufang; Wang, Yufeng; Lin, Jian; Zhao, Yong; Wei, Shuzhen; Zheng, Jinfeng; Zheng, Suhua

    2014-03-01

    Of 75 MDR isolates from Fujian Province, the sensitivity of RIF, INH, EMB, SM, OFLX and KAN resistance by DNA sequencing was 96.0%, 96.0%, 66.7%, 66.0%, 84.2% and 75.0%, respectively. We also identified that minority mutations in the mixed Mycobacterium tuberculosis population may be responsible for two "false-negative" results. In addition, Beijing genotype is still the predominant sublineage in the MDR TB cases from Fujian. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion.

    PubMed

    Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso

    2012-12-01

    Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A Thiolase of Mycobacterium tuberculosis Is Required for Virulence and Production of Androstenedione and Androstadienedione from Cholesterol▿ †

    PubMed Central

    Nesbitt, Natasha M.; Yang, Xinxin; Fontán, Patricia; Kolesnikova, Irina; Smith, Issar; Sampson, Nicole S.; Dubnau, Eugenie

    2010-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen that shifts to a lipid-based metabolism in the host. Moreover, metabolism of the host lipid cholesterol plays an important role in M. tuberculosis infection. We used transcriptional profiling to identify genes transcriptionally regulated by cholesterol and KstR (Rv3574), a TetR-like repressor. The fadA5 (Rv3546) gene, annotated as a lipid-metabolizing thiolase, the expression of which is upregulated by cholesterol and repressed by KstR, was deleted in M. tuberculosis H37Rv. We demonstrated that fadA5 is required for utilization of cholesterol as a sole carbon source in vitro and for full virulence of M. tuberculosis in the chronic stage of mouse lung infection. Cholesterol is not toxic to the fadA5 mutant strain, and, therefore, toxicity does not account for its attenuation. We show that the wild-type strain, H37Rv, metabolizes cholesterol to androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD) and exports these metabolites into the medium, whereas the fadA5 mutant strain is defective for this activity. We demonstrate that FadA5 catalyzes the thiolysis of acetoacetyl-coenzyme A (CoA). This catalytic activity is consistent with a β-ketoacyl-CoA thiolase function in cholesterol β-oxidation that is required for the production of androsterones. We conclude that the attenuated phenotype of the fadA5 mutant is a consequence of disrupted cholesterol metabolism that is essential only in the persistent stage of M. tuberculosis infection and may be caused by the inability to produce AD/ADD from cholesterol. PMID:19822655

  4. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  5. Whole Genome Sequencing Demonstrates Limited Transmission within Identified Mycobacterium tuberculosis Clusters in New South Wales, Australia

    PubMed Central

    Gurjav, Ulziijargal; Outhred, Alexander C.; Jelfs, Peter; McCallum, Nadine; Wang, Qinning; Hill-Cawthorne, Grant A.; Marais, Ben J.; Sintchenko, Vitali

    2016-01-01

    Australia has a low tuberculosis incidence rate with most cases occurring among recent immigrants. Given suboptimal cluster resolution achieved with 24-locus mycobacterium interspersed repetitive unit (MIRU-24) genotyping, the added value of whole genome sequencing was explored. MIRU-24 profiles of all Mycobacterium tuberculosis culture-confirmed tuberculosis cases diagnosed between 2009 and 2013 in New South Wales (NSW), Australia, were examined and clusters identified. The relatedness of cases within the largest MIRU-24 clusters was assessed using whole genome sequencing and phylogenetic analyses. Of 1841 culture-confirmed TB cases, 91.9% (1692/1841) had complete demographic and genotyping data. East-African Indian (474; 28.0%) and Beijing (470; 27.8%) lineage strains predominated. The overall rate of MIRU-24 clustering was 20.1% (340/1692) and was highest among Beijing lineage strains (35.7%; 168/470). One Beijing and three East-African Indian (EAI) clonal complexes were responsible for the majority of observed clusters. Whole genome sequencing of the 4 largest clusters (30 isolates) demonstrated diverse single nucleotide polymorphisms (SNPs) within identified clusters. All sequenced EAI strains and 70% of Beijing lineage strains clustered by MIRU-24 typing demonstrated distinct SNP profiles. The superior resolution provided by whole genome sequencing demonstrated limited M. tuberculosis transmission within NSW, even within identified MIRU-24 clusters. Routine whole genome sequencing could provide valuable public health guidance in low burden settings. PMID:27737005

  6. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.

    PubMed

    Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs

    2015-03-01

    Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of two line probe assays for rapid detection of Mycobacterium tuberculosis, tuberculosis (TB) drug resistance, and non-TB Mycobacteria in HIV-infected individuals with suspected TB.

    PubMed

    Luetkemeyer, Anne F; Kendall, Michelle A; Wu, Xingye; Lourenço, Maria Cristina; Jentsch, Ute; Swindells, Susan; Qasba, Sarojini S; Sanchez, Jorge; Havlir, Diane V; Grinsztejn, Beatriz; Sanne, Ian M; Firnhaber, Cynthia

    2014-04-01

    Limited performance data from line probe assays (LPAs), nucleic acid tests used for the rapid diagnosis of tuberculosis (TB), nontuberculosis mycobacteria (NTM), and Mycobacterium tuberculosis drug resistance are available for HIV-infected individuals, in whom paucibacillary TB is common. In this study, the strategy of testing sputum with GenoType MTBDRplus (MTBDR-Plus) and GenoType Direct LPA (Direct LPA) was compared to a gold standard of one mycobacterial growth indicator tube (MGIT) liquid culture. HIV-positive (HIV(+)) individuals with suspected TB from southern Africa and South America with <7 days of TB treatment had 1 sputum specimen tested with Direct LPA, MTBDR-Plus LPA, smear microscopy, MGIT, biochemical identification of mycobacterial species, and culture-based drug-susceptibility testing (DST). Of 639 participants, 59.3% were MGIT M. tuberculosis culture positive, of which 276 (72.8%) were acid-fast bacillus (AFB) smear positive. MTBDR-Plus had a sensitivity of 81.0% and a specificity of 100%, with sensitivities of 44.1% in AFB smear-negative versus 94.6% in AFB smear-positive specimens. For specimens that were positive for M. tuberculosis by MTBDR-Plus, the sensitivity and specificity for rifampin resistance were 91.7% and 96.6%, respectively, and for isoniazid (INH) they were 70.6% and 99.1%. The Direct LPA had a sensitivity of 88.4% and a specificity of 94.6% for M. tuberculosis detection, with a sensitivity of 72.5% in smear-negative specimens. Ten of 639 MGIT cultures grew Mycobacterium avium complex or Mycobacterium kansasii, half of which were detected by Direct LPA. Both LPA assays performed well in specimens from HIV-infected individuals, including in AFB smear-negative specimens, with 72.5% sensitivity for M. tuberculosis identification with the Direct LPA and 44.1% sensitivity with MTBDR-Plus. LPAs have a continued role for use in settings where rapid identification of INH resistance and clinically relevant NTM are priorities.

  8. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines.

    PubMed

    Caccamo, Nadia; Pietra, Gabriella; Sullivan, Lucy C; Brooks, Andrew G; Prezzemolo, Teresa; La Manna, Marco P; Di Liberto, Diana; Joosten, Simone A; van Meijgaarden, Krista E; Di Carlo, Paola; Titone, Lucina; Moretta, Lorenzo; Mingari, Maria C; Ottenhoff, Tom H M; Dieli, Francesco

    2015-04-01

    CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectable by a significant enhanced ex vivo frequency of tetramer-specific circulating CD8 T cells during active TB. These CD8 T cells produce type 2 cytokines upon antigenic in vitro stimulation, help B cells for Ab production, and mediate limited TRAIL-dependent cytolytic and microbicidal activity toward M. tuberculosis infected target cells. Our results, together with the finding that HLA-E/M. tuberculosis peptide specific CD8 T cells are detected in TB patients with or without HIV coinfection, suggest that this is a new human T-cell population that participates in immune response in TB. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genetic diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and identification of a rare multidrug resistant Beijing genotype.

    PubMed

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.

  10. Genetic Diversity of Mycobacterium tuberculosis from Guadalajara, Mexico and Identification of a Rare Multidrug Resistant Beijing Genotype

    PubMed Central

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor R.; Bocanegra-García, Virgilio; Vera-Cabrera, Lucio; Garza-González, Elvira

    2015-01-01

    Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America. PMID:25695431

  11. Tuberculosis

    USGS Publications Warehouse

    Friend, Milton

    1999-01-01

    Avian tuberculosis is usually caused by the bacterium Mycobacterium avium. At least 20 different types of M. avium have been identified, only three of which are known to cause disease in birds. Other types of Mycobacterium rarely cause tuberculosis in most avian species; however, parrots, macaws, and other large perching birds are susceptible to human and bovine types of tuberculosis bacilli. Avian tuberculosis generally is transmitted by direct contact with infected birds, ingestion of contaminated feed and water, or contact with a contaminated environment. Inhalation of the bacterium can cause respiratory tract infections. Wild bird studies in the Netherlands disclosed tuberculosis-infected puncture-type injuries in birds of prey that fight at the nest site (kestrels) or on the ground (buteo-type buzzards), but tuberculosisinfected injuries were not found in accipiters (falco

  12. Microwell hybridization assay for detection of PCR products from Mycobacterium tuberculosis complex and the recombinant Mycobacterium smegmatis strain 1008 used as an internal control.

    PubMed Central

    Kox, L F; Noordhoek, G T; Kunakorn, M; Mulder, S; Sterrenburg, M; Kolk, A H

    1996-01-01

    A microwell hybridization assay was developed for the detection of the PCR products from both Mycobacterium tuberculosis complex bacteria and the recombinant Mycobacterium smegmatis strain 1008 that is used as an internal control to monitor inhibition in the PCR based on the M. tuberculosis complex-specific insertion sequence IS6110. The test is based on specific detection with digoxigenin-labeled oligonucleotide probes of biotinylated PCR products which are captured in a microtiter plate coated with streptavidin. The captured PCR products are hybridized separately with two probes, one specific for the PCR product from IS6110 from M. tuberculosis complex and the other specific for the PCR fragment from the modified IS6110 fragment from the recombinant M. smegmatis 1008. The microwell hybridization assay discriminates perfectly between the two types of amplicon. The amount of PCR product that can be detected by this assay is 10 times less than that which can be detected by agarose gel electrophoresis. The test can be performed in 2 h. It is much faster and less laborious than Southern blot hybridization. Furthermore, the interpretation of results is objective. The assay was used with 172 clinical samples in a routine microbiology laboratory, and the results were in complete agreement with those of agarose gel electrophoresis and Southern blot hybridization. PMID:8862568

  13. Purification, crystallization and preliminary X-ray crystallographic studies of Rv3705c from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Feifei; Gao, Feng; Li, Honglin

    The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å.

  14. Mass spectrometry applied to the identification of Mycobacterium tuberculosis and biomarker discovery.

    PubMed

    López-Hernández, Y; Patiño-Rodríguez, O; García-Orta, S T; Pinos-Rodríguez, J M

    2016-12-01

    An adequate and effective tuberculosis (TB) diagnosis system has been identified by the World Health Organization as a priority in the fight against this disease. Over the years, several methods have been developed to identify the bacillus, but bacterial culture remains one of the most affordable methods for most countries. For rapid and accurate identification, however, it is more feasible to implement molecular techniques, taking advantage of the availability of public databases containing protein sequences. Mass spectrometry (MS) has become an interesting technique for the identification of TB. Here, we review some of the most widely employed methods for identifying Mycobacterium tuberculosis and present an update on MS applied for the identification of mycobacterial species. © 2016 The Society for Applied Microbiology.

  15. Fast and efficient detection of tuberculosis antigens using liposome encapsulated secretory proteins of Mycobacterium tuberculosis.

    PubMed

    Tiwari, Dileep; Haque, Shafiul; Tiwari, Ram P; Jawed, Arshad; Govender, Thavendran; Kruger, Hendrik G

    2017-04-01

    A rapid and efficient diagnostic test was developed for the detection of Mycobacterium tuberculosis antigens in serum samples of active tuberculosis (TB) and extrapulmonary TB patients via a liposomal agglutination-based method. A rapid card test has been developed to facilitate the recognition of high-affinity binding rabbit raised purified culture filtrate protein antibodies coupled on the surface of activated liposomal preparation. In the presence of TB antigens, the polyclonal antibodies bound to the liposomal particles demonstrate a visible agglutination reaction. The developed assay was simple, rapid, reliable, sensitive, and specific as a diagnostic test for the detection of antigens in serum samples of clinically confirmed cases of TB within 4-5 minutes' duration. The test was evaluated at different hospitals, medical colleges, and pathology centers, and involved 1483 participants. This investigation was conducted to detect the presence of these antigens during the period of active growth of the microorganism in serum samples for pulmonary TB and processed tissue biopsy for other extrapulmonary TB. Results obtained using this test were compared with acid-fast bacilli smear and culture results. Our study demonstrated that the newly developed liposome tuberculosis antigen card test detected antigens in our study population with approximately 97.48% sensitivity and 95.79% specificity. This is the first study to report the liposomal encapsulation of culture filtrate proteins from M. tuberculosis for diagnostic application. Copyright © 2015. Published by Elsevier B.V.

  16. Mycobacterium tuberculosis strains of the Beijing genotype are rarely observed in tuberculosis patients in South America.

    PubMed

    Ritacco, Viviana; López, Beatriz; Cafrune, Patricia I; Ferrazoli, Lucilaine; Suffys, Philip N; Candia, Norma; Vásquez, Lucy; Realpe, Teresa; Fernández, Jorge; Lima, Karla V; Zurita, Jeannete; Robledo, Jaime; Rossetti, Maria L; Kritski, Afranio L; Telles, Maria A; Palomino, Juan C; Heersma, Herre; van Soolingen, Dick; Kremer, Kristin; Barrera, Lucía

    2008-08-01

    The frequency of the Beijing genotype of Mycobacterium tuberculosis as a cause of tuberculosis (TB) in South America was determined by analyzing genotypes of strains isolated from patients that had been diagnosed with the disease between 1997 and 2003 in seven countries of the subcontinent. In total, 19 of the 1,202 (1.6%) TB cases carried Beijing isolates, including 11 of the 185 patients from Peru (5.9%), five of the 512 patients from Argentina (1.0%), two of the 252 Brazilian cases (0.8%), one of the 166 patients from Paraguay (0.6%) and none of the samples obtained from Chile (35), Colombia (36) and Ecuador (16). Except for two patients that were East Asian immigrants, all cases with Beijing strains were native South Americans. No association was found between carrying a strain with the Beijing genotype and having drug or multi-drug resistant disease. Our data show that presently transmission of M. tuberculosis strains of the Beijing genotype is not frequent in Latin America. In addition, the lack of association of drug resistant TB and infection with M. tuberculosis of the Beijing genotype observed presently demands efforts to define better the contribution of the virulence and lack of response to treatment to the growing spread of Beijing strains observed in other parts of the world.

  17. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  18. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea

    PubMed Central

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; Rijk, Pim De; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C.

    2015-01-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 “orphan” and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. PMID:26004194

  19. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    PubMed

    Ejo, Mebrat; Gehre, Florian; Barry, Mamadou Dian; Sow, Oumou; Bah, Nene Mamata; Camara, Mory; Bah, Boubacar; Uwizeye, Cecile; Nduwamahoro, Elie; Fissette, Kristina; De Rijk, Pim; Merle, Corinne; Olliaro, Piero; Burgos, Marcos; Lienhardt, Christian; Rigouts, Leen; de Jong, Bouke C

    2015-07-01

    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs. Copyright © 2015. Published by Elsevier B.V.

  20. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; ...

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  1. Recovery of Mycobacterium lentiflavum from bronchial lavage during follow-up of an extrapulmonary tuberculosis patient.

    PubMed

    Vise, Esther; Mawlong, Michael; Garg, Akshay; Sen, Arnab; Shakuntala, Ingudam; Das, Samir

    2017-01-01

    Initially diagnosed with cervical lymphadenitis, a 15-year-old boy was started with category I anti-tuberculosis (TB) drugs. Follow-up investigations led to isolation and identification of Mycobacterium lentiflavum by multiple diagnostic and identification approaches. Observation of this rare pathogen from human origin urges cautious diagnosis while attending TB cases.

  2. Tuberculosis Caused by Mycobacterium africanum, United States, 2004-2013.

    PubMed

    Sharma, Aditya; Bloss, Emily; Heilig, Charles M; Click, Eleanor S

    2016-03-01

    Mycobacterium africanum is endemic to West Africa and causes tuberculosis (TB). We reviewed reported cases of TB in the United States during 2004-2013 that had lineage assigned by genotype (spoligotype and mycobacterial interspersed repetitive unit variable number tandem repeats). M. africanum caused 315 (0.4%) of 73,290 TB cases with lineage assigned by genotype. TB caused by M. africanum was associated more with persons from West Africa (adjusted odds ratio [aOR] 253.8, 95% CI 59.9-1,076.1) and US-born black persons (aOR 5.7, 95% CI 1.2-25.9) than with US-born white persons. TB caused by M. africanum did not show differences in clinical characteristics when compared with TB caused by M. tuberculosis. Clustered cases defined as >2 cases in a county with identical 24-locus mycobacterial interspersed repetitive unit genotypes, were less likely for M. africanum (aOR 0.1, 95% CI 0.1-0.4), which suggests that M. africanum is not commonly transmitted in the United States.

  3. Diagnosis of latent Mycobacterium tuberculosis infection: is the demise of the Mantoux test imminent?

    PubMed

    Rothel, James S; Andersen, Peter

    2005-12-01

    Tuberculosis is responsible for more then 2 million deaths worldwide each year and vies with HIV as the world's most fatal infectious disease. In many developing countries, attempts to control the spread of infection rely solely on identification and treatment of those with active disease, ignoring subclinical infection. However, in developed countries, large efforts are also expended to identify and give prophylactic drugs to people with latent tuberculosis infection. Until recently, the 100-year-old tuberculin skin test (Mantoux) has been the only available diagnostic test for latent tuberculosis infection, despite its many well-known limitations. Advances in scientific knowledge have led to the development of tests for tuberculosis that measure the production of interferon-gamma by T-cells stimulated in vitro with Mycobacterium tuberculosis-specific antigens. These interferon-gamma tests are highly specific and unaffected by prior Bacille Calmette-Guérin vaccination or immune reactivity to most atypical mycobacteria. They are more sensitive than the tuberculin skin test in detecting people with active tuberculosis, and their results correlate more closely with M. tuberculosis exposure risk factors than the tuberculin skin test in people likely to have latent tuberculosis infection. Science has caught up with one of the oldest diagnostic tests still in use worldwide, and the adoption of new, tuberculosis-specific interferon-gamma-based tests should move us one step closer to better control of this insidious pathogen.

  4. Innate myeloid cell TNFR1 mediates first line defence against primary Mycobacterium tuberculosis infection.

    PubMed Central

    Segueni, Noria; Benmerzoug, Sulayman; Rose, Stéphanie; Gauthier, Amandine; Bourigault, Marie-Laure; Reverchon, Flora; Philippeau, Amandine; Erard, François; Le Bert, Marc; Bouscayrol, Hélène; Wachter, Thierry; Garcia, Irène; Kollias, George; Jacobs, Muazzam; Ryffel, Bernhard; Quesniaux, Valerie F.J.

    2016-01-01

    TNF is crucial for controlling Mycobacterium tuberculosis infection and understanding how will help immunomodulating the host response. Here we assessed the contribution of TNFR1 pathway from innate myeloid versus T cells. We first established the prominent role of TNFR1 in haematopoietic cells for controlling M. tuberculosis in TNFR1 KO chimera mice. Further, absence of TNFR1 specifically on myeloid cells (M-TNFR1 KO) recapitulated the uncontrolled M. tuberculosis infection seen in fully TNFR1 deficient mice, with increased bacterial burden, exacerbated lung inflammation, and rapid death. Pulmonary IL-12p40 over-expression was attributed to a prominent CD11b+ Gr1high cell population in infected M-TNFR1 KO mice. By contrast, absence of TNFR1 on T-cells did not compromise the control of M. tuberculosis infection over 6-months. Thus, the protective TNF/TNFR1 pathway essential for controlling primary M. tuberculosis infection depends on innate macrophage and neutrophil myeloid cells, while TNFR1 pathway in T cells is dispensable. PMID:26931771

  5. Characterization of Mycobacterium tuberculosis Complex DNAs from Egyptian Mummies by Spoligotyping

    PubMed Central

    Zink, Albert R.; Sola, Christophe; Reischl, Udo; Grabner, Waltraud; Rastogi, Nalin; Wolf, Hans; Nerlich, Andreas G.

    2003-01-01

    Bone and soft tissue samples from 85 ancient Egyptian mummies were analyzed for the presence of ancient Mycobacterium tuberculosis complex DNA (aDNA) and further characterized by spoligotyping. The specimens were obtained from individuals from different tomb complexes in Thebes West, Upper Egypt, which were used for upper social class burials between the Middle Kingdom (since ca. 2050 BC) and the Late Period (until ca. 500 BC). A total of 25 samples provided a specific positive signal for the amplification of a 123-bp fragment of the repetitive element IS6110, indicating the presence of M. tuberculosis DNA. Further PCR-based tests for the identification of subspecies failed due to lack of specific amplification products in the historic tissue samples. Of these 25 positive specimens, 12 could be successfully characterized by spoligotyping. The spoligotyping signatures were compared to those in an international database. They all show either an M. tuberculosis or an M. africanum pattern, but none revealed an M. bovis-specific pattern. The results from a Middle Kingdom tomb (used exclusively between ca. 2050 and 1650 BC) suggest that these samples bear an M. africanum-type specific spoligotyping signature. The samples from later periods provided patterns typical for M. tuberculosis. This study clearly demonstrates that spoligotyping can be applied to historic tissue samples. In addition, our results do not support the theory that M. tuberculosis originated from the M. bovis type but, rather, suggest that human M. tuberculosis may have originated from a precursor complex probably related to M. africanum. PMID:12517873

  6. Secreted Immunodominant Mycobacterium tuberculosis Antigens Are Processed by the Cytosolic Pathway

    PubMed Central

    Grotzke, Jeff E.; Siler, Anne C.; Lewinsohn, Deborah A.; Lewinsohn, David M.

    2010-01-01

    Exposure to Mycobacterium tuberculosis can result in lifelong but asymptomatic infection in most individuals. Although CD8+ T cells are elicited at high frequencies over the course of infection in both humans and mice, how phagosomal M. tuberculosis Ags are processed and presented by MHC class I molecules is poorly understood. Broadly, both cytosolic and noncytosolic pathways have been described. We have previously characterized the presentation of three HLA-I epitopes from M. tuberculosis and shown that these Ags are processed in the cytosol, whereas others have demonstrated noncytosolic presentation of the 19-kDa lipoprotein as well as apoptotic bodies from M. tuberculosis-infected cells. In this paper, we now characterize the processing pathway in an additional six M. tuberculosis epitopes from four proteins in human dendritic cells. Addition of the endoplasmic reticulum-Golgi trafficking inhibitor, brefeldin A, resulted in complete abrogation of Ag processing consistent with cytosolic presentation. However, although addition of the proteasome inhibitor epoxomicin blocked the presentation of two epitopes, presentation of four epitopes was enhanced. To further examine the requirement for proteasomal processing of an epoxomicin-enhanced epitope, an in vitro proteasome digestion assay was established. We find that the proteasome does indeed generate the epitope and that epitope generation is enhanced in the presence of epoxomicin. To further confirm that both the epoxomicin-inhibited and epoxomicin-enhanced epitopes are processed cytosolically, we demonstrate that TAP transport and new protein synthesis are required for presentation. Taken together, these data demonstrate that immunodominant M. tuberculosis CD8+ Ags are processed and presented using a cytosolic pathway. PMID:20802151

  7. Mycobacterium tuberculosis Infection in Close Childhood Contacts of Adults with Pulmonary Tuberculosis is Increased by Secondhand Exposure to Tobacco.

    PubMed

    Adetifa, Ifedayo M O; Kendall, Lindsay; Donkor, Simon; Lugos, Moses D; Hammond, Abdulrahman S; Owiafe, Patrick K; Ota, Martin O C; Brookes, Roger H; Hill, Philip C

    2017-08-01

    Tobacco use is a major risk factor for tuberculosis (TB). Secondhand smoke (SHS) is also a risk factor for TB and to a lesser extent, Mycobacterium tuberculosis infection without disease. We investigated the added risk of M. tuberculosis infection due to SHS exposure in childhood contacts of TB cases in The Gambia. Participants were childhood household contacts aged ≤ 14 years of newly diagnosed pulmonary TB (PTB) cases. The intensity of exposure to the case was categorized according to whether contacts slept in the same room, same house, or a different house as the case. Contacts were tested with an enzyme-linked immunospot interferon gamma release assay. In multivariate regression models, M. tuberculosis infection was associated with increasing exposure to a case (odds ratios [OR]: 3.9, 95% confidence interval [CI]: 2.11-71.4, P < 0.001]) and with male gender (OR: 1.5 [95% CI: 1.12-2.11], P = 0.008). Tobacco use caused a 3-fold increase in the odds of M. tuberculosis infection in children who slept closest to a case who smoked within the same home compared with a nonsmoking case (OR: 8.0 [95% CI: 2.74-23.29] versus 2.4 [95% CI: 1.17-4.92], P < 0.001). SHS exposure as an effect modifier appears to greatly increase the risk of M. tuberculosis infection in children exposed to PTB cases. Smoking cessation campaigns may be important for reducing transmission of M. tuberculosis to children within households.

  8. Mycobacterium tuberculosis genome-wide screen exposes multiple CD8+ T cell epitopes

    PubMed Central

    Hammond, A S; Klein, M R; Corrah, T; Fox, A; Jaye, A; McAdam, K P; Brookes, R H

    2005-01-01

    Mounting evidence suggests human leucocyte antigen (HLA) class I-restricted CD8+ T cells play a role in protective immunity against tuberculosis yet relatively few epitopes specific for the causative organism, Mycobacterium tuberculosis, are reported. Here a total genome-wide screen of M. tuberculosis was used to identify putative HLA-B*3501 T cell epitopes. Of 479 predicted epitopes, 13 with the highest score were synthesized and used to restimulate lymphocytes from naturally exposed HLA-B*3501 healthy individuals in cultured and ex vivo enzyme-linked immunospot (ELISPOT) assays for interferon (IFN)-γ. All 13 peptides elicited a response that varied considerably between individuals. For three peptides CD8+ T cell lines were expanded and four of the 13 were recognized permissively through the HLA-B7 supertype family. Although further testing is required we show the genome-wide screen to be feasible for the identification of unknown mycobacterial antigens involved in immunity against natural infection. While the mechanisms of protective immunity against M. tuberculosis infection remain unclear, conventional class I-restricted CD8+ T cell responses appear to be widespread throughout the genome. PMID:15762882

  9. Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis.

    PubMed

    Djaout, Kamel; Singh, Vinayak; Boum, Yap; Katawera, Victoria; Becker, Hubert F; Bush, Natassja G; Hearnshaw, Stephen J; Pritchard, Jennifer E; Bourbon, Pauline; Madrid, Peter B; Maxwell, Anthony; Mizrahi, Valerie; Myllykallio, Hannu; Ekins, Sean

    2016-06-10

    There is an urgent need to identify new treatments for tuberculosis (TB), a major infectious disease caused by Mycobacterium tuberculosis (Mtb), which results in 1.5 million deaths each year. We have targeted two essential enzymes in this organism that are promising for antibacterial therapy and reported to be inhibited by naphthoquinones. ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the human enzyme. DNA gyrase is a DNA topoisomerase present in bacteria and plants but not animals. The current study set out to understand the structure-activity relationships of these targets in Mtb using a combination of cheminformatics and in vitro screening. Here, we report the identification of new Mtb ThyX inhibitors, 2-chloro-3-(4-methanesulfonylpiperazin-1-yl)-1,4-dihydronaphthalene-1,4-dione) and idebenone, which show modest whole-cell activity and appear to act, at least in part, by targeting ThyX in Mtb.

  10. Skin test performed with highly purified Mycobacterium tuberculosis recombinant protein triggers tuberculin shock in infected guinea pigs.

    PubMed

    Reece, Stephen T; Stride, Nicole; Ovendale, Pamela; Reed, Steven G; Campos-Neto, Antonio

    2005-06-01

    Tuberculin shock due to inoculation of Mycobacterium tuberculosis antigens in patients with tuberculosis is a serious syndrome originally described over 100 years ago by Robert Koch. Here, we present experimental evidence that a single M. tuberculosis recombinant protein, CFP-10, triggers this syndrome. Intradermal inoculation of CFP-10 elicits in M. tuberculosis-infected mice high levels of serum tumor necrosis factor alpha and causes tuberculin shock in infected guinea pigs characterized by hypothermia and death within 6 to 48 h after the antigen inoculation. Autopsies of these animals revealed intense polycythemia and hemorrhagic patches in the lung parenchyma, a pathological observation consistent with tuberculin shock. These results point to the possible occurrence of tuberculin shock in sensitive individuals inoculated with highly purified M. tuberculosis recombinant proteins as vaccine candidates or skin test reagents.

  11. Genitourinary and pulmonary multidrug resistant Mycobacterium tuberculosis infection in an Asian elephant (Elephas maximus).

    PubMed

    Dumonceaux, Genevieve A; St Leger, Judy; Olsen, John H; Burton, Michael S; Ashkin, David; Maslow, Joel N

    2011-12-01

    A female Asian elephant (Elephas maximus) developed vaginal and trunk discharge. Cultures were positive for pan-susceptible Mycobacterium tuberculosis. Isoniazid and pyrazinamide were given rectally and monitored by serum levels. After being trained at 10 mo to accept oral dosing, treatment was changed and rifampin was added. Oral medications were administered for another 10 mo. A year after completion of therapy, the vaginal discharge increased and cultures yielded M. tuberculosis, resistant to isoniazid and rifampin. Treatment with oral ethambutol, pyrazinamide, and enrofloxacin and intramuscular amikacin was initiated. Although followup cultures became negative, adverse reactions to medications precluded treatment completion. Due to public health concerns related to multidrug resistant M. tuberculosis (MDR-TB), the elephant was euthanized. Postmortem smears from the lung, peribronchial, and abdominal lymph nodes yielded acid-fast bacteria, although cultures were negative. This case highlights important considerations in the treatment of M. tuberculosis in animals and the need for a consistent approach to diagnosis, treatment, and follow-up.

  12. Copper resistance is essential for virulence of Mycobacterium tuberculosis

    PubMed Central

    Wolschendorf, Frank; Ackart, David; Shrestha, Tej B.; Hascall-Dove, Laurel; Nolan, Scott; Lamichhane, Gyanu; Wang, Ying; Bossmann, Stefan H.; Basaraba, Randall J.; Niederweis, Michael

    2011-01-01

    Copper (Cu) is essential for many biological processes, but is toxic when present in excessive amounts. In this study, we provide evidence that Cu plays a crucial role in controlling tuberculosis. A Mycobacterium tuberculosis (Mtb) mutant lacking the outer membrane channel protein Rv1698 accumulated 100-fold more Cu and was more susceptible to Cu toxicity than WT Mtb. Similar phenotypes were observed for a M. smegmatis mutant lacking the homolog Ms3747, demonstrating that these mycobacterial copper transport proteins B (MctB) are essential for Cu resistance and maintenance of low intracellular Cu levels. Guinea pigs responded to infection with Mtb by increasing the Cu concentration in lung lesions. Loss of MctB resulted in a 1,000- and 100-fold reduced bacterial burden in lungs and lymph nodes, respectively, in guinea pigs infected with Mtb. In mice, the persistence defect of the Mtb mctB mutant was exacerbated by the addition of Cu to the diet. These experiments provide evidence that Cu is used by the mammalian host to control Mtb infection and that Cu resistance mechanisms are crucial for Mtb virulence. Importantly, Mtb is much more susceptible to Cu than other bacteria and is killed in vitro by Cu concentrations lower than those found in phagosomes of macrophages. Hence, this study reveals an Achilles heel of Mtb that might be a promising target for tuberculosis chemotherapy. PMID:21205886

  13. PolyTB: A genomic variation map for Mycobacterium tuberculosis

    PubMed Central

    Coll, Francesc; Preston, Mark; Guerra-Assunção, José Afonso; Hill-Cawthorn, Grant; Harris, David; Perdigão, João; Viveiros, Miguel; Portugal, Isabel; Drobniewski, Francis; Gagneux, Sebastien; Glynn, Judith R.; Pain, Arnab; Parkhill, Julian; McNerney, Ruth; Martin, Nigel; Clark, Taane G.

    2014-01-01

    Summary Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. PMID:24637013

  14. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis.

    PubMed

    Campanerut-Sá, Paula Az; Ghiraldi-Lopes, Luciana D; Meneguello, Jean E; Fiorini, Adriana; Evaristo, Geisa Pc; Siqueira, Vera Ld; Scodro, Regiane Bl; Patussi, Eliana V; Donatti, Lucélia; Souza, Emanuel M; Cardoso, Rosilene F

    2016-09-01

    To study the proteomic and morphological changes in Mycobacterium tuberculosis H37Rv exposed to subinhibitory concentration of isoniazid (INH). The bacillus was exposed to ½ MIC of INH at 12, 24 and 48 h. The samples' cells were submitted to scanning electron microscopy. The proteins were separated by 2D gel electrophoresis and identified by MS. INH exposure was able to alter the format, the multiplication and causing a cell swelling in the bacillus. The major altered proteins were related to the virulence, detoxification, adaptation, intermediary metabolism and lipid metabolism. The protein and morphological changes in M. tuberculosis induced by ½ MIC INH were related to defense mechanism of the bacillus or the action of INH therein.

  15. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  16. Innate immune response to Mycobacterium tuberculosis Beijing and other genotypes.

    PubMed

    Wang, Chongzhen; Peyron, Pascale; Mestre, Olga; Kaplan, Gilla; van Soolingen, Dick; Gao, Qian; Gicquel, Brigitte; Neyrolles, Olivier

    2010-10-25

    As a species, Mycobacterium tuberculosis is more diverse than previously thought. In particular, the Beijing family of M. tuberculosis strains is spreading and evaluating throughout the world and this is giving rise to public health concerns. Genetic diversity within this family has recently been delineated further and a specific genotype, called Bmyc10, has been shown to represent over 60% of all Beijing clinical isolates in several parts of the world. How the host immune system senses and responds to various M. tuberculosis strains may profoundly influence clinical outcome and the relative epidemiological success of the different mycobacterial lineages. We hypothesised that the success of the Bmyc10 group may, at least in part, rely upon its ability to alter innate immune responses and the secretion of cytokines and chemokines by host phagocytes. We infected human macrophages and dendritic cells with a collection of genetically well-defined M. tuberculosis clinical isolates belonging to various mycobacterial families, including Beijing. We analyzed cytokine and chemokine secretion on a semi-global level using antibody arrays allowing the detection of sixty-five immunity-related soluble molecules. Our data indicate that Beijing strains induce significantly less interleukin (IL)-6, tumor necrosis factor (TNF), IL-10 and GRO-α than the H37Rv reference strain, a feature that is variously shared by other modern and ancient M. tuberculosis families and which constitutes a signature of the Beijing family as a whole. However, Beijing strains did not differ relative to each other in their ability to modulate cytokine secretion. Our results confirm and expand upon previous reports showing that M. tuberculosis Beijing strains in general are poor in vitro cytokine inducers in human phagocytes. The results suggest that the epidemiological success of the Beijing Bmyc10 is unlikely to rely upon any specific ability of this group of strains to impair anti-mycobacterial innate

  17. Site-directed mutagenesis reveals a novel catalytic mechanism of Mycobacterium tuberculosis alkylhydroperoxidase C.

    PubMed Central

    Chauhan, Radha; Mande, Shekhar C

    2002-01-01

    Mycobacterium tuberculosis alkylhydroperoxidase C (AhpC) belongs to the peroxiredoxin family, but unusually contains three cysteine residues in its active site. It is overexpressed in isoniazid-resistant strains of M. tuberculosis. We demonstrate that AhpC is capable of acting as a general antioxidant by protecting a range of substrates including supercoiled DNA. Active-site Cys to Ala mutants show that all three cysteine residues are important for activity. Cys-61 plays a central role in activity and Cys-174 also appears to be crucial. Interestingly, the C174A mutant is inactive, but double mutant C174/176A shows significant revertant activity. Kinetic parameters indicate that the C176A mutant is active, although much less efficient. We suggest that M. tuberculosis AhpC therefore belongs to a novel peroxiredoxin family and might follow a unique disulphide-relay reaction mechanism. PMID:12084012

  18. Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units.

    PubMed

    Peñuelas-Urquides, Katia; Villarreal-Treviño, Licet; Silva-Ramírez, Beatriz; Rivadeneyra-Espinoza, Liliana; Said-Fernández, Salvador; de León, Mario Bermúdez

    2013-01-01

    The quantification of colony forming units (cfu), turbidity, and optical density at 600 nm (OD600) measurements were used to evaluate Mycobacterium tuberculosis growth. Turbidity and OD600 measurements displayed similar growth curves, while cfu quantification showed a continuous growth curve. We determined the cfu equivalents to McFarland and OD600 units.

  19. Identification of the likely translational start of Mycobacterium tuberculosis GyrB.

    PubMed

    Karkare, Shantanu; Brown, Amanda C; Parish, Tanya; Maxwell, Anthony

    2013-07-15

    Bacterial DNA gyrase is a validated target for antibacterial chemotherapy. It consists of two subunits, GyrA and GyrB, which form an A₂B₂ complex in the active enzyme. Sequence alignment of Mycobacterium tuberculosis GyrB with other bacterial GyrBs predicts the presence of 40 potential additional amino acids at the GyrB N-terminus. There are discrepancies between the M. tuberculosis GyrB sequences retrieved from different databases, including sequences annotated with or without the additional 40 amino acids. This has resulted in differences in the GyrB sequence numbering that has led to the reporting of previously known fluoroquinolone-resistance mutations as novel mutations. We have expressed M. tuberculosis GyrB with and without the extra 40 amino acids in Escherichia coli and shown that both can be produced as soluble, active proteins. Supercoiling and other assays of the two proteins show no differences, suggesting that the additional 40 amino acids have no effect on the enzyme in vitro. RT-PCR analysis of M. tuberculosis mRNA shows that transcripts that could yield both the longer and shorter protein are present. However, promoter analysis showed that only the promoter elements leading to the shorter GyrB (lacking the additional 40 amino acids) had significant activity. We conclude that the most probable translational start codon for M. tuberculosis GyrB is GTG (Val) which results in translation of a protein of 674 amino acids (74 kDa).

  20. Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members

    PubMed Central

    Costa, Pedro; Botelho, Ana; Couto, Isabel; Viveiros, Miguel; Inácio, João

    2014-01-01

    Nucleic acid testing (NAT) designate any molecular approach used for the detection, identification, and characterization of pathogenic microorganisms, enabling the rapid, specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These assays have been widely used since the 90s of the last century in human clinical laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies are based in the polymerase chain reaction (PCR) and its several enhancements and variations. From the conventional PCR, real-time PCR and its combinations, isothermal DNA amplification, to the nanotechnologies, here we review how the NAT assays have been applied to decipher if and which member of the Mycobacterium tuberculosis complex is present in a clinical sample. Recent advances in DNA sequencing also brought new challenges and have made possible to generate rapidly and at a low cost, large amounts of sequence data. This revolution with the high-throughput sequencing (HTS) technologies makes whole genome sequencing (WGS) and metagenomics the trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis with our view of the use of molecular diagnostics for detecting tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the classical culture of the agent. The complementary use of both classical and molecular diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision by competent authorities and rapid tackling of the disease. PMID:25988157

  1. Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members.

    PubMed

    Costa, Pedro; Botelho, Ana; Couto, Isabel; Viveiros, Miguel; Inácio, João

    2014-01-01

    Nucleic acid testing (NAT) designate any molecular approach used for the detection, identification, and characterization of pathogenic microorganisms, enabling the rapid, specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These assays have been widely used since the 90s of the last century in human clinical laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies are based in the polymerase chain reaction (PCR) and its several enhancements and variations. From the conventional PCR, real-time PCR and its combinations, isothermal DNA amplification, to the nanotechnologies, here we review how the NAT assays have been applied to decipher if and which member of the Mycobacterium tuberculosis complex is present in a clinical sample. Recent advances in DNA sequencing also brought new challenges and have made possible to generate rapidly and at a low cost, large amounts of sequence data. This revolution with the high-throughput sequencing (HTS) technologies makes whole genome sequencing (WGS) and metagenomics the trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis with our view of the use of molecular diagnostics for detecting tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the classical culture of the agent. The complementary use of both classical and molecular diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision by competent authorities and rapid tackling of the disease.

  2. [Protective immunity against Mycobacterium tuberculosis].

    PubMed

    Kawamura, Ikuo

    2006-11-01

    Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate M. tuberculosis on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-gamma and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-gamma plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-gamma-producing CD4+T cells. Since antigen-specific CD8+ T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.

  3. Development of Low-Cost Inverted Microscope to Detect Early Growth of Mycobacterium tuberculosis in MODS Culture

    PubMed Central

    Zimic, Mirko; Velazco, Abner; Comina, Germán; Coronel, Jorge; Fuentes, Patricia; Luna, Carmen G.; Sheen, Patricia; Gilman, Robert H.; Moore, David A. J.

    2010-01-01

    Background The microscopic observation drug susceptibility (MODS) assay for rapid, low-cost detection of tuberculosis and multidrug resistant tuberculosis depends upon visualization of the characteristic cording colonies of Mycobacterium tuberculosis in liquid media. This has conventionally required an inverted light microscope in order to inspect the MODS culture plates from below. Few tuberculosis laboratories have this item and the capital cost of $5,000 for a high-end microscope could be a significant obstacle to MODS roll-out. Methodology We hypothesized that the precise definition provided by costly high-specification inverted light microscopes might not be necessary for pattern recognition. Significance In this work we describe the development of a low-cost artesenal inverted microscope that can operate in both a standard or digital mode to effectively replace the expensive commercial inverted light microscope, and an integrated system that could permit a local and remote diagnosis of tuberculosis. PMID:20351778

  4. Modulation of the phenotype and function of Mycobacterium tuberculosis-stimulated dendritic cells by adrenal steroids.

    PubMed

    Angerami, Matias; Suarez, Guadalupe; Pascutti, Maria Fernanda; Salomon, Horacio; Bottasso, Oscar; Quiroga, Maria Florencia

    2013-07-01

    Cell-mediated immunity, cytokines induced during the specific immune response and T-cell populations are crucial factors for containing Mycobacterium tuberculosis infection. Recent reports suggest a cross-regulation between adrenal steroids (glucocorticoids and dehydroepiandrosterone, DHEA) and the function of antigen-presenting cells (APCs). Therefore, we investigated the role of adrenal hormones on the functional capacity of M. tuberculosis-induced dendritic cells (DCs). Cortisol significantly inhibited the functions of M. tuberculosis-induced DCs. Interestingly, the presence of DHEA enhanced the M. tuberculosis-induced expression of MHC I, MHC II and CD86 and also increased ERK1/2 phosphorylation. Moreover, DHEA improved the production of IL-12 in response to M. tuberculosis stimulation, diminished IL-10 secretion and could not modify TNF-α synthesis. Importantly, we observed that DHEA enhanced the antigen-specific T-cell proliferation and IFN-γ production induced by M. tuberculosis-stimulated DC. These data show for the first time the relevance of the adrenal axis (especially of DHEA) in the modulation of DC function in the context of tuberculosis, a disease where the induction of a Th1 environment by APCs is crucial for the development of an effective immune response to the mycobacteria.

  5. Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    PubMed Central

    Sable, Suraj B.; Cheruvu, Mani; Nandakumar, Subhadra; Sharma, Sunita; Bandyopadhyay, Kakali; Kellar, Kathryn L.; Posey, James E.; Plikaytis, Bonnie B.; Amara, Rama Rao; Shinnick, Thomas M.

    2011-01-01

    Background The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. Methods and Principal Findings In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. Conclusion and Significance Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis. PMID:21799939

  6. Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1.

    PubMed

    Madan-Lala, Ranjna; Sia, Jonathan Kevin; King, Rebecca; Adekambi, Toidi; Monin, Leticia; Khader, Shabaana A; Pulendran, Bali; Rengarajan, Jyothi

    2014-05-01

    Mycobacterium tuberculosis is a highly successful human pathogen that primarily resides in host phagocytes, such as macrophages and dendritic cells (DCs), and interferes with their functions. Although multiple strategies used by M. tuberculosis to modulate macrophage responses have been discovered, interactions between M. tuberculosis and DCs are less well understood. DCs are the primary APCs of the immune system and play a central role in linking innate and adaptive immune responses to microbial pathogens. In this study, we show that M. tuberculosis impairs DC cytokine secretion, maturation, and Ag presentation through the cell envelope-associated serine hydrolase, Hip1. Compared to wild-type, a hip1 mutant strain of M. tuberculosis induced enhanced levels of the key Th1-inducing cytokine IL-12, as well as other proinflammatory cytokines (IL-23, IL-6, TNF-α, IL-1β, and IL-18) in DCs via MyD88- and TLR2/9-dependent pathways, indicating that Hip1 restricts optimal DC inflammatory responses. Infection with the hip1 mutant also induced higher levels of MHC class II and costimulatory molecules CD40 and CD86, indicating that M. tuberculosis impairs DC maturation through Hip1. Further, we show that M. tuberculosis promotes suboptimal Ag presentation, as DCs infected with the hip1 mutant showed increased capacity to present Ag to OT-II- and early secreted antigenic target 6-specific transgenic CD4 T cells and enhanced Th1 and Th17 polarization. Overall, these data show that M. tuberculosis impairs DC functions and modulates the nature of Ag-specific T cell responses, with important implications for vaccination strategies.

  7. Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase.

    PubMed

    Shukla, Rohit; Shukla, Harish; Sonkar, Amit; Pandey, Tripti; Tripathi, Timir

    2018-06-01

    Mycobacterium tuberculosis is the etiological agent of tuberculosis in humans and is responsible for more than two million deaths annually. M. tuberculosis isocitrate lyase (MtbICL) catalyzes the first step in the glyoxylate cycle, plays a pivotal role in the persistence of M. tuberculosis, which acts as a potential target for an anti-tubercular drug. To identify the potential anti-tuberculosis compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,748) against the MtbICL structure. The ligands were docked against MtbICL in three sequential docking modes that resulted in 340 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 27 compounds were found to fit well with re-docking studies. After refinement by molecular docking and drug-likeness analyses, three potential inhibitors (ZINC1306071, ZINC2111081, and ZINC2134917) were identified. These three ligands and the reference compounds were further subjected to molecular dynamics simulation and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the MtbICL and bound complexes. The binding free energy analyses were calculated to validate and capture the intermolecular interactions. The results suggested that the three compounds had a negative binding energy with -96.462, -143.549, and -122.526 kJ mol -1 for compounds with IDs ZINC1306071, ZINC2111081, and ZINC2134917, respectively. These lead compounds displayed substantial pharmacological and structural properties to be drug candidates. We concluded that ZINC2111081 has a great potential to inhibit MtbICL and would add to the drug discovery process against tuberculosis.

  8. Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs

    PubMed Central

    Seifert, Marva; Garfein, Richard S.; Rodwell, Timothy C.

    2017-01-01

    ABSTRACT Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality

  9. Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs.

    PubMed

    Georghiou, Sophia B; Seifert, Marva; Catanzaro, Donald G; Garfein, Richard S; Rodwell, Timothy C

    2017-06-01

    Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality during

  10. IFNγ Response to Mycobacterium tuberculosis, Risk of Infection and Disease in Household Contacts of Tuberculosis Patients in Colombia

    PubMed Central

    Marín, Nancy D.; Marín, Diana M.; López, Lucelly; Henao, Hanna M.; Martínez, Teresita; Villa, Liliana; Barrera, Luis F.; Ortiz, Blanca L.; Ramírez, María E.; Montes, Carlos J.; Oquendo, María C.; Arango, Lisandra M.; Riaño, Felipe; Aguirre, Carlos; Bustamante, Alberto; Belisle, John T.; Dobos, Karen; Mejía, Gloria I.; Giraldo, Margarita R.; Brennan, Patrick J.; Robledo, Jaime; Arbeláez, María P.; Rojas, Carlos A.; García, Luis F.

    2009-01-01

    Objectives Household contacts (HHCs) of pulmonary tuberculosis patients are at high risk of Mycobacterium tuberculosis infection and early disease development. Identification of individuals at risk of tuberculosis disease is a desirable goal for tuberculosis control. Interferon-gamma release assays (IGRAs) using specific M. tuberculosis antigens provide an alternative to tuberculin skin testing (TST) for infection detection. Additionally, the levels of IFNγ produced in response to these antigens may have prognostic value. We estimated the prevalence of M. tuberculosis infection by IGRA and TST in HHCs and their source population (SP), and assessed whether IFNγ levels in HHCs correlate with tuberculosis development. Methods A cohort of 2060 HHCs was followed for 2–3 years after exposure to a tuberculosis case. Besides TST, IFNγ responses to mycobacterial antigens: CFP, CFP-10, HspX and Ag85A were assessed in 7-days whole blood cultures and compared to 766 individuals from the SP in Medellín, Colombia. Isoniazid prophylaxis was not offered to child contacts because Colombian tuberculosis regulations consider it only in children under 5 years, TST positive without BCG vaccination. Results Using TST 65.9% of HHCs and 42.7% subjects from the SP were positive (OR 2.60, p<0.0001). IFNγ response to CFP-10, a biomarker of M. tuberculosis infection, tested positive in 66.3% HHCs and 24.3% from the SP (OR = 6.07, p<0.0001). Tuberculosis incidence rate was 7.0/1000 person years. Children <5 years accounted for 21.6% of incident cases. No significant difference was found between positive and negative IFNγ responders to CFP-10 (HR 1.82 95% CI 0.79–4.20 p = 0.16). However, a significant trend for tuberculosis development amongst high HHC IFNγ producers was observed (trend Log rank p = 0.007). Discussion CFP-10-induced IFNγ production is useful to establish tuberculosis infection prevalence amongst HHC and identify those at highest risk of disease. The high

  11. Contribution of putative efflux pump genes to isoniazid resistance in clinical isolates of Mycobacterium tuberculosis.

    PubMed

    Narang, Anshika; Giri, Astha; Gupta, Shraddha; Garima, Kushal; Bose, Mridula; Varma-Basil, Mandira

    2017-01-01

    Isoniazid (INH) resistance in Mycobacterium tuberculosis has been mainly attributed to mutations in katG (64%) and inhA (19%). However, 20%-30% resistance to INH cannot be explained by mutations alone. Hence, other mechanisms besides mutations may play a significant role in providing drug resistance. Here, we explored the role of 24 putative efflux pump genes conferring INH-resistance in M. tuberculosis. Real-time expression profiling of the efflux pump genes was performed in five INH-susceptible and six high-level INH-resistant clinical isolates of M. tuberculosis exposed to the drug. Isolates were also analyzed for mutations in katG and inhA. Four high-level INH-resistant isolates (minimum inhibitory concentration [MIC] ≥2.5 mg/L) with mutations at codon 315 (AGC-ACC) of katG showed upregulation of one of the efflux genes Rv1634, Rv0849, efpA, or p55. Another high-level INH-resistant isolate (MIC 1.5 mg/L), with no mutations at katG or inhA overexpressed 8/24 efflux genes, namely, Rv1273c, Rv0194, Rv1634, Rv1250, Rv3823c, Rv0507, jefA, and p55. Five of these, namely, Rv0194, Rv1634, Rv1250, Rv0507, and p55 were induced only in resistant isolates. The high number of efflux genes overexpressed in an INH-resistant isolate with no known INH resistance associated mutations, suggests a role for efflux pumps in resistance to this antituberculous agent, with the role of Rv0194 and Rv0507 in INH resistance being reported for the first time.

  12. Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units

    PubMed Central

    Peñuelas-Urquides, Katia; Villarreal-Treviño, Licet; Silva-Ramírez, Beatriz; Rivadeneyra-Espinoza, Liliana; Said-Fernández, Salvador; de León, Mario Bermúdez

    2013-01-01

    The quantification of colony forming units (cfu), turbidity, and optical density at 600 nm (OD600) measurements were used to evaluate Mycobacterium tuberculosis growth. Turbidity and OD600 measurements displayed similar growth curves, while cfu quantification showed a continuous growth curve. We determined the cfu equivalents to McFarland and OD600 units. PMID:24159318

  13. Primary and acquired drug resistance in Mycobacterium tuberculosis strains in western region of Libyan Arab Jamahiriya.

    PubMed

    Elghoul, M T; Joshi, R M; Rizghalla, T

    1989-10-01

    Drug resistance in Mycobacterium tuberculosis strains prevalent in the Western Region of Libyan Arab Jamahiriya was studied for the years 1984, 1985 and 1986 at the regional tuberculosis control centre at Gurgi, Tripoli. Records of resistance to streptomycin, isoniazid, ethambutol and rifampicin were analysed. Whereas primary drug resistance was observed in 5.1%, 19.5% and 3.8%, acquired drug resistance was found in 12.2%, 34.0% and 15.3% of the strains in 1984, 1985 and 1986 respectively. Only 3 out of 598 strains (1.2%) were found to show acquired resistance to rifampicin. No primary resistance to rifampicin was observed. The situation of drug resistance in pulmonary tuberculosis in the Jamahiriya is discussed.

  14. Pathogenic Gene Screening of Mycobacterium tuberculosis by Literature Data Mining and Information Pathway Enrichment Analysis.

    PubMed

    Xu, Guangyu; Wen, Simin; Pan, Yuchen; Zhang, Nan; Wang, Yuanyi

    2018-05-01

    Recent studies have unraveled mutations which have led to changes in the original conformation of functional proteins targeted by frontline drugs against Mycobacterium tuberculosis. These mutations are likely responsible for the emergence of drug-resistant strains of M. tuberculosis. Identification of new therapeutic targets is fundamental to the development of novel anti-TB drugs. Boost evolution analysis of interactome data with use of high-throughput biological experimental technologies provides opportunities for identification of pathogenic genes and for screening out novel therapeutic targets. In this study, we identified 584 proven pathogenic genes of M. tuberculosis and new pathogenic genes via bibliometrics and relevant websites such as PubMed, KEGG, and DOOR websites. We identified 13 new genes that are most likely to be pathogenic. This study may contribute to the discovery of new pathogenic genes and help unravel new functions of known pathogenic genes of M. tuberculosis.

  15. Characterization of phenotypic and genotypic drug resistance patterns of Mycobacterium tuberculosis isolates from a city in Mexico.

    PubMed

    Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor Raúl; Mendoza-Olazarán, Soraya; Balderas-Rentería, Isaías; González, Gloria María; Garza-González, Elvira

    2015-03-01

    The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains has become a worldwide health care problem, making treatment of tuberculosis difficult. The aim of this study was to determine phenotypic resistance and gene mutations associated with MDR of clinical isolates of Mycobacterium tuberculosis from Guadalajara, Mexico. One hundred and five isolates were subjected to drug susceptibility testing to first line drugs using the proportion and Mycobacteria Growth Indicator Tube (MGIT) methods. Genes associated with isoniazid (inhA, katG, ahpC) and rifampicin (rpoB) resistance were analyzed by either pyrosequencing or PCR-RFLP. Resistance to any drug was detected in 48.6% of isolates, of which 40% were isoniazid-resistant, 20% were rifampicin-resistant and 19% were MDR. Drug-resistant isolates had the following frequency of mutations in rpoB (48%), katG (14%), inhA (26%), ahpC (26%). Susceptible isolates also had a mutation in ahpC (29%). This is the first analysis of mutations associated with MDR of M. tuberculosis in Guadalajara. Commonly reported mutations worldwide were found in rpoB, katG and inhA genes. Substitution C to T in position -15 of the ahpC gene may possibly be a polymorphism. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  16. Long-Chain Fatty Acyl Coenzyme A Ligase FadD2 Mediates Intrinsic Pyrazinamide Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rosen, Brandon C.; Dillon, Nicholas A.; Peterson, Nicholas D.; Minato, Yusuke

    2016-01-01

    ABSTRACT Pyrazinamide (PZA) is a first-line tuberculosis (TB) drug that has been in clinical use for 60 years yet still has an unresolved mechanism of action. Based upon the observation that the minimum concentration of PZA required to inhibit the growth of Mycobacterium tuberculosis is approximately 1,000-fold higher than that of other first-line drugs, we hypothesized that M. tuberculosis expresses factors that mediate intrinsic resistance to PZA. To identify genes associated with intrinsic PZA resistance, a library of transposon-mutagenized Mycobacterium bovis BCG strains was screened for strains showing hypersusceptibility to the active form of PZA, pyrazinoic acid (POA). Disruption of the long-chain fatty acyl coenzyme A (CoA) ligase FadD2 enhanced POA susceptibility by 16-fold on agar medium, and the wild-type level of susceptibility was restored upon expression of fadD2 from an integrating mycobacterial vector. Consistent with the recent observation that POA perturbs mycobacterial CoA metabolism, the fadD2 mutant strain was more vulnerable to POA-mediated CoA depletion than the wild-type strain. Ectopic expression of the M. tuberculosis pyrazinamidase PncA, necessary for conversion of PZA to POA, in the fadD2 transposon insertion mutant conferred at least a 16-fold increase in PZA susceptibility under active growth conditions in liquid culture at neutral pH. Importantly, deletion of fadD2 in M. tuberculosis strain H37Rv also resulted in enhanced susceptibility to POA. These results indicate that FadD2 is associated with intrinsic PZA and POA resistance and provide a proof of concept for the target-based potentiation of PZA activity in M. tuberculosis. PMID:27855077

  17. Microevolution of the Direct Repeat Locus of Mycobacterium tuberculosis in a Strain Prevalent in San Francisco

    PubMed Central

    Aga, Roxanne S.; Fair, Elizabeth; Abernethy, Neil F.; DeRiemer, Kathryn; Paz, E. Antonio; Kawamura, L. Masae; Small, Peter M.; Kato-Maeda, Midori

    2006-01-01

    We describe a microevolutionary event of a prevalent strain of Mycobacterium tuberculosis that caused two outbreaks in San Francisco. During the second outbreak, a direct variable repeat was lost. We discuss the mechanisms of this change and the implications of analyzing multiple genetic loci in this context. PMID:16597893

  18. L-form transformation phenomenon in Mycobacterium tuberculosis associated with drug tolerance to ethambutol.

    PubMed

    Slavchev, Georgi; Michailova, Lilia; Markova, Nadya

    2016-12-01

    Cell wall-deficient bacterial forms (L-forms) may occur along with resistance to factors that trigger their appearance. It is of interest to study the relationship between the L-form transformation of Mycobacterium tuberculosis and the exhibition of drug tolerance to ethambutol (EMB), an inhibitor of cell wall synthesis. L-form variant was produced from a sensitive EMB strain of M. tuberculosis through a cryogenic stress treatment protocol and was subsequently cultivated in Middlebrook 7H9 semisolid medium, containing EMB in a minimal inhibitory concentration of 2mg/L. Susceptibility to EMB of the parental strain and its L-form variant was evaluated phenotypically and using polymerase chain reaction-restriction fragment length polymorphism assay targeting a mutation in the embB306 gene fragment. In contrast to the sensitivity to EMB of the parental strain, its L-form variant showed phenotypic resistance to high concentrations of EMB (16mg/L), but the mutation in embB306 was not found. Electron microscopy observation of the L-form variant showed a heterogenic population of bacteria, with different degrees of cell wall deficiency, as well as cells of protoplastic type without cell walls. Of special interest were the observed capsule-like structures around the L-form cells and the biofilm-like matrix produced by the L-form population. We suggest that the expression of phenotypic resistance to EMB in M. tuberculosis can be associated with alterations or loss of cell walls in L-form bacteria, respectively, which results in a lack of a specific target for EMB action. In addition, production of capsule-like structures and biofilm matrix by L-forms could contribute to their resistance and survival in the presence of antibacterial agents. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  19. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review.

    PubMed

    Papaventsis, D; Casali, N; Kontsevaya, I; Drobniewski, F; Cirillo, D M; Nikolayevskyy, V

    2017-02-01

    We conducted a systematic review to determine the diagnostic accuracy of whole genome sequencing (WGS) of Mycobacterium tuberculosis for the detection of resistance to first- and second-line anti-tuberculosis (TB) drugs. The study was conducted according to the criteria of the Preferred Reporting Items for Systematic Reviews group. A total of 20 publications were included. The sensitivity, specificity, positive-predictive value and negative-predictive value of WGS using phenotypic drug susceptibility testing methods as a reference standard were determined. Anti-TB agents tested included all first-line drugs, a variety of reserve drugs, as well as new drugs. Polymorphisms in a total of 53 genes were tested for associations with drug resistance. Pooled sensitivity and specificity values for detection of resistance to selected first-line drugs were 0.98 (95% CI 0.93-0.98) and 0.98 (95% CI 0.98-1.00) for rifampicin and 0.97 (95% CI 0.94-0.99) and 0.93 (95% CI 0.91-0.96) for isoniazid, respectively. Due to high heterogeneity in study designs, lack of data, knowledge of resistance mechanisms and clarity on exclusion of phylogenetic markers, there was a significant variation in analytical performance of WGS for the remaining first-line, reserved drugs and new drugs. Whole genome sequencing could be considered a promising alternative to existing phenotypic and molecular drug susceptibility testing methods for rifampicin and isoniazid pending standardization of analytical pipelines. To ensure clinical relevance of WGS for detection of M. tuberculosis complex drug resistance, future studies should include information on clinical outcomes. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  20. Comprehensive definition of human immunodominant CD8 antigens in tuberculosis.

    PubMed

    Lewinsohn, Deborah A; Swarbrick, Gwendolyn M; Park, Byung; Cansler, Meghan E; Null, Megan D; Toren, Katelynne G; Baseke, Joy; Zalwango, Sarah; Mayanja-Kizza, Harriet; Malone, LaShaunda L; Nyendak, Melissa; Wu, Guanming; Guinn, Kristi; McWeeney, Shannon; Mori, Tomi; Chervenak, Keith A; Sherman, David R; Boom, W Henry; Lewinsohn, David M

    2017-01-01

    Despite widespread use of the Bacillus Calmette-Guerin vaccine, tuberculosis, caused by infection with Mycobacterium tuberculosis , remains a leading cause of morbidity and mortality worldwide. As CD8 + T cells are critical to tuberculosis host defense and a phase 2b vaccine trial of modified vaccinia Ankara expressing Ag85a that failed to demonstrate efficacy, also failed to induce a CD8 + T cell response, an effective tuberculosis vaccine may need to induce CD8 + T cells. However, little is known about CD8, as compared to CD4, antigens in tuberculosis. Herein, we report the results of the first ever HLA allele independent genome-wide CD8 antigen discovery program. Using CD8 + T cells derived from humans with latent tuberculosis infection or tuberculosis and an interferon-γ ELISPOT assay, we screened a synthetic peptide library representing 10% of the Mycobacterium tuberculosis proteome, selected to be enriched for Mycobacterium tuberculosis antigens. We defined a set of immunodominant CD8 antigens including part or all of 74 Mycobacterium tuberculosis proteins, only 16 of which are previously known CD8 antigens. Immunogenicity was associated with the degree of expression of mRNA and protein. Immunodominant antigens were enriched in cell wall proteins with preferential recognition of Esx protein family members, and within proteins comprising the Mycobacterium tuberculosis secretome. A validation study of immunodominant antigens demonstrated that these antigens were strongly recognized in Mycobacterium tuberculosis -infected individuals from a tuberculosis endemic region in Africa. The tuberculosis vaccine field will likely benefit from this greatly increased known repertoire of CD8 immunodominant antigens and definition of properties of Mycobacterium tuberculosis proteins important for CD8 antigenicity.