Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)
NASA Technical Reports Server (NTRS)
Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)
2004-01-01
These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.
NASA Astrophysics Data System (ADS)
Gromek, Katherine Emily
A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.
Access Control for Cooperation Systems Based on Group Situation
NASA Astrophysics Data System (ADS)
Kim, Minsoo; Joshi, James B. D.; Kim, Minkoo
Cooperation systems characterize many emerging environments such as ubiquitous and pervasive systems. Agent based cooperation systems have been proposed in the literature to address challenges of such emerging application environments. A key aspect of such agent based cooperation system is the group situation that changes dynamically and governs the requirements of the cooperation. While individual agent context is important, the overall cooperation behavior is more driven by the group context because of relationships and interactions between agents. Dynamic access control based on group situation is a crucial challenge in such cooperation systems. In this paper we propose a dynamic role based access control model for cooperation systems based on group situation. The model emphasizes capability based agent to role mapping and group situation based permission assignment to allow capturing dynamic access policies that evolve continuously.
Modelling of robotic work cells using agent based-approach
NASA Astrophysics Data System (ADS)
Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.
2016-08-01
In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.
Bosse, Stefan
2015-01-01
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550
Bosse, Stefan
2015-02-16
Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.
NASA Astrophysics Data System (ADS)
Zhao, J.; Cai, X.; Wang, Z.
2009-12-01
It also has been well recognized that market-based systems can have significant advantages over administered systems for water allocation. However there are not many successful water markets around the world yet and administered systems exist commonly in water allocation management practice. This paradox has been under discussion for decades and still calls for attention for both research and practice. This paper explores some insights for the paradox and tries to address why market systems have not been widely implemented for water allocation. Adopting the theory of agent-based system we develop a consistent analytical model to interpret both systems. First we derive some theorems based on the analytical model, with respect to the necessary conditions for economic efficiency of water allocation. Following that the agent-based model is used to illustrate the coherence and difference between administered and market-based systems. The two systems are compared from three aspects: 1) the driving forces acting on the system state, 2) system efficiency, and 3) equity. Regarding economic efficiency, penalty on the violation of water use permits (or rights) under an administered system can lead to system-wide economic efficiency, as well as being acceptable by some agents, which follows the theory of the so-call rational violation. Ideal equity will be realized if penalty equals incentive with an administered system and if transaction costs are zero with a market system. The performances of both agents and the over system are explained with an administered system and market system, respectively. The performances of agents are subject to different mechanisms of interactions between agents under the two systems. The system emergency (i.e., system benefit, equilibrium market price, etc), resulting from the performance at the agent level, reflects the different mechanism of the two systems, the “invisible hand” with the market system and administrative measures (penalty and subsidy) with the administered system. Furthermore, the impact of hydrological uncertainty on the performance of water users under the two systems is analyzed by extending the deterministic model to a stochastic one subject to the uncertainty of water availability. It is found that the system response to hydrologic uncertainty depends on risk management mechanics - sharing risk equally among the agents or by prescribed priorities on some agents. Figure1. Agent formulation and its implications in administered system and market-based system
The selection of adhesive systems for resin-based luting agents.
Carville, Rebecca; Quinn, Frank
2008-01-01
The use of resin-based luting agents is ever expanding with the development of adhesive dentistry. A multitude of different adhesive systems are used with resin-based luting agents, and new products are introduced to the market frequently. Traditional adhesives generally required a multiple step bonding procedure prior to cementing with active resin-based luting materials; however, combined agents offer a simple application procedure. Self-etching 'all-in-one' systems claim that there is no need for the use of a separate adhesive process. The following review addresses the advantages and disadvantages of the available adhesive systems used with resin-based luting agents.
A New Approach To Secure Federated Information Bases Using Agent Technology.
ERIC Educational Resources Information Center
Weippi, Edgar; Klug, Ludwig; Essmayr, Wolfgang
2003-01-01
Discusses database agents which can be used to establish federated information bases by integrating heterogeneous databases. Highlights include characteristics of federated information bases, including incompatible database management systems, schemata, and frequently changing context; software agent technology; Java agents; system architecture;…
New approaches in agent-based modeling of complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2017-12-01
Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.
Pattern-oriented modeling of agent-based complex systems: Lessons from ecology
Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.
2005-01-01
Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology
NASA Astrophysics Data System (ADS)
Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.
2005-11-01
Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
The highly intelligent virtual agents for modeling financial markets
NASA Astrophysics Data System (ADS)
Yang, G.; Chen, Y.; Huang, J. P.
2016-02-01
Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.
A Distributed Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care
NASA Astrophysics Data System (ADS)
Tapia, Dante I.; RodríGuez, Sara; Corchado, Juan M.
This chapter presents ALZ-MAS (Alzheimer multi-agent system), an ambient intelligence (AmI)-based multi-agent system aimed at enhancing the assistance and health care for Alzheimer patients. The system makes use of several context-aware technologies that allow it to automatically obtain information from users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence, mobility, etc., all of which are concepts defined by AmI. ALZ-MAS makes use of a services oriented multi-agent architecture, called flexible user and services oriented multi-agent architecture, to distribute resources and enhance its performance. It is demonstrated that a SOA approach is adequate to build distributed and highly dynamic AmI-based multi-agent systems.
Integrating CLIPS applications into heterogeneous distributed systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.
An immunity-based anomaly detection system with sensor agents.
Okamoto, Takeshi; Ishida, Yoshiteru
2009-01-01
This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.
Consensus pursuit of heterogeneous multi-agent systems under a directed acyclic graph
NASA Astrophysics Data System (ADS)
Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan
2011-04-01
This paper is concerned with the cooperative target pursuit problem by multiple agents based on directed acyclic graph. The target appears at a random location and moves only when sensed by the agents, and agents will pursue the target once they detect its existence. Since the ability of each agent may be different, we consider the heterogeneous multi-agent systems. According to the topology of the multi-agent systems, a novel consensus-based control law is proposed, where the target and agents are modeled as a leader and followers, respectively. Based on Mason's rule and signal flow graph analysis, the convergence conditions are provided to show that the agents can catch the target in a finite time. Finally, simulation studies are provided to verify the effectiveness of the proposed approach.
A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture
NASA Technical Reports Server (NTRS)
Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.
2005-01-01
Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.
Distributed Cooperation Solution Method of Complex System Based on MAS
NASA Astrophysics Data System (ADS)
Weijin, Jiang; Yuhui, Xu
To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Currently, spacecraft ground systems have a well defined and somewhat standard architecture and operations concept. Based on domain analysis studies of various control centers conducted over the years it is clear that ground systems have core capabilities and functionality that are common across all ground systems. This observation alone supports the realization of reuse. Additionally, spacecraft ground systems are increasing in their ability to do things autonomously. They are being engineered using advanced expert systems technology to provide automated support for operators. A clearer understanding of the possible roles of agent technology is advancing the prospects of greater autonomy for these systems. Many of their functional and management tasks are or could be supported by applied agent technology, the dynamics of the ground system's infrastructure could be monitored by agents, there are intelligent agent-based approaches to user-interfaces, etc. The premise of this paper is that the concepts associated with software reuse, applicable in consideration of classically-engineered ground systems, can be updated to address their application in highly agent-based realizations of future ground systems. As a somewhat simplified example consider the following situation, involving human agents in a ground system context. Let Group A of controllers be working on Mission X. They are responsible for the command, control and health and safety of the Mission X spacecraft. Let us suppose that mission X successfully completes it mission and is turned off. Group A could be dispersed or perhaps move to another Mission Y. In this case there would be reuse of the human agents from Mission X to Mission Y. The Group A agents perform their well-understood functions in a somewhat but related context. There will be a learning or familiarization process that the group A agents go through to make the new context, determined by the new Mission Y, understood. This simplified scenario highlights some of the major issues that need to be addressed when considering the situation where Group A is composed of software-based agents (not their human counterparts) and they migrate from one mission support system to another. This paper will address: - definition of an agent architecture appropriate to support reuse; - identification of non-mission-specific agent capabilities required; - appropriate knowledge representation schemes for mission-specific knowledge; - agent interface with mission-specific knowledge (a type of Learning); development of a fully-operational group of cooperative software agents for ground system support; architecture and operation of a repository of reusable agents that could be the source of intelligent components for realizing an autonomous (or nearly autonomous) agent-based ground system, and an agent-based approach to repository management and operation (an intelligent interface for human use of the repository in a ground-system development activity).
Agents in bioinformatics, computational and systems biology.
Merelli, Emanuela; Armano, Giuliano; Cannata, Nicola; Corradini, Flavio; d'Inverno, Mark; Doms, Andreas; Lord, Phillip; Martin, Andrew; Milanesi, Luciano; Möller, Steffen; Schroeder, Michael; Luck, Michael
2007-01-01
The adoption of agent technologies and multi-agent systems constitutes an emerging area in bioinformatics. In this article, we report on the activity of the Working Group on Agents in Bioinformatics (BIOAGENTS) founded during the first AgentLink III Technical Forum meeting on the 2nd of July, 2004, in Rome. The meeting provided an opportunity for seeding collaborations between the agent and bioinformatics communities to develop a different (agent-based) approach of computational frameworks both for data analysis and management in bioinformatics and for systems modelling and simulation in computational and systems biology. The collaborations gave rise to applications and integrated tools that we summarize and discuss in context of the state of the art in this area. We investigate on future challenges and argue that the field should still be explored from many perspectives ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages to be used by information agents, and to the adoption of agents for computational grids.
NASA Technical Reports Server (NTRS)
Callantine, Todd J.
2002-01-01
This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.
Agent-based models of cellular systems.
Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca
2013-01-01
Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
The Impact of a Peer-Learning Agent Based on Pair Programming in a Programming Course
ERIC Educational Resources Information Center
Han, Keun-Woo; Lee, EunKyoung; Lee, YoungJun
2010-01-01
This paper analyzes the educational effects of a peer-learning agent based on pair programming in programming courses. A peer-learning agent system was developed to facilitate the learning of a programming language through the use of pair programming strategies. This system is based on the role of a peer-learning agent from pedagogical and…
Research on Production Scheduling System with Bottleneck Based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke
Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
Brahms Mobile Agents: Architecture and Field Tests
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron
2002-01-01
We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, rover/All-Terrain Vehicle (ATV), robotic assistant, other personnel in a local habitat, and a remote mission support team (with time delay). Software processes, called agents, implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system (e.g., return here later and bring this back to the habitat ). This combination of agents, rover, and model-based spoken dialogue interface constitutes a personal assistant. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a run-time system.
Internet-enabled collaborative agent-based supply chains
NASA Astrophysics Data System (ADS)
Shen, Weiming; Kremer, Rob; Norrie, Douglas H.
2000-12-01
This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.
Review of the systems biology of the immune system using agent-based models.
Shinde, Snehal B; Kurhekar, Manish P
2018-06-01
The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.
A Cybernetic Approach to the Modeling of Agent Communities
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Karlin, Jay
2000-01-01
In an earlier paper [1] examples of agent technology in a NASA context were presented. Both groundbased and space-based applications were addressed. This paper continues the discussion of one aspect of the Goddard Space Flight Center's continuing efforts to develop a community of agents that can support both ground-based and space-based systems autonomy. The paper focuses on an approach to agent-community modeling based on the theory of viable systems developed by Stafford Beer. It gives the status of an initial attempt to capture some of the agent-community behaviors in a viable system context. This paper is expository in nature and focuses on a discussion of the modeling of some of the underlying concepts and infrastructure that will serve as the basis of more detailed investigative work into the behavior of agent communities. The paper is organized as follows. First, a general introduction to agent community requirements is presented. Secondly, a brief introduction to the cybernetic concept of a viable system is given. This concept forms the foundation of the modeling approach. Then the concept of an agent community is modeled in the cybernetic context.
NASA Technical Reports Server (NTRS)
Lee, S. Daniel
1990-01-01
We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
2015-10-30
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul M. Torrens; Atsushi Nara; Xun Li
2012-01-01
Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-usedmore » methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be 'good enough' for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.« less
Controllability of multi-agent systems with time-delay in state and switching topology
NASA Astrophysics Data System (ADS)
Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen
2010-02-01
In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.
A Multi-Agent System for Intelligent Online Education.
ERIC Educational Resources Information Center
O'Riordan, Colm; Griffith, Josephine
1999-01-01
Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…
An Application of Artificial Intelligence to the Implementation of Electronic Commerce
NASA Astrophysics Data System (ADS)
Srivastava, Anoop Kumar
In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.
Xu, Xiaole; Chen, Shengyong
2014-01-01
This paper investigates the finite-time consensus problem of leader-following multiagent systems. The dynamical models for all following agents and the leader are assumed the same general form of linear system, and the interconnection topology among the agents is assumed to be switching and undirected. We mostly consider the continuous-time case. By assuming that the states of neighbouring agents are known to each agent, a sufficient condition is established for finite-time consensus via a neighbor-based state feedback protocol. While the states of neighbouring agents cannot be available and only the outputs of neighbouring agents can be accessed, the distributed observer-based consensus protocol is proposed for each following agent. A sufficient condition is provided in terms of linear matrix inequalities to design the observer-based consensus protocol, which makes the multiagent systems achieve finite-time consensus under switching topologies. Then, we discuss the counterparts for discrete-time case. Finally, we provide an illustrative example to show the effectiveness of the design approach. PMID:24883367
ERIC Educational Resources Information Center
Thompson, Kate; Reimann, Peter
2010-01-01
A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…
Reflexive reasoning for distributed real-time systems
NASA Technical Reports Server (NTRS)
Goldstein, David
1994-01-01
This paper discusses the implementation and use of reflexive reasoning in real-time, distributed knowledge-based applications. Recently there has been a great deal of interest in agent-oriented systems. Implementing such systems implies a mechanism for sharing knowledge, goals and other state information among the agents. Our techniques facilitate an agent examining both state information about other agents and the parameters of the knowledge-based system shell implementing its reasoning algorithms. The shell implementing the reasoning is the Distributed Artificial Intelligence Toolkit, which is a derivative of CLIPS.
Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B
2013-01-01
The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.
An Agent-Based Data Mining System for Ontology Evolution
NASA Astrophysics Data System (ADS)
Hadzic, Maja; Dillon, Darshan
We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.
NASA Astrophysics Data System (ADS)
Cenek, Martin; Dahl, Spencer K.
2016-11-01
Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.
Cenek, Martin; Dahl, Spencer K
2016-11-01
Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.
Evaluating Water Demand Using Agent-Based Modeling
NASA Astrophysics Data System (ADS)
Lowry, T. S.
2004-12-01
The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage based on its own condition and the condition of the world around it. For example, residential agents can make decisions to convert to or from xeriscaping and/or low-flow appliances based on policy implementation, economic status, weather, and climatic conditions. Agricultural agents may vary their usage by making decisions on crop distribution and irrigation design. Preliminary results show that water usage can be highly irrational under certain conditions. Results also identify sub-sectors within each group that have the highest influence on ensemble group behavior, providing a means for policy makers to target their efforts. Finally, the model is able to predict the impact of low-probability, high-impact events such as catastrophic denial of service due to natural and/or man-made events.
Advantages of Brahms for Specifying and Implementing a Multiagent Human-Robotic Exploration System
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron
2003-01-01
We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, all-terrain vehicles, robotic assistant, crew in a local habitat, and mission support team. Software processes ('agents') implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a runtime system Thus, Brahms provides a language, engine, and system builder's toolkit for specifying and implementing multiagent systems.
An Active Learning Exercise for Introducing Agent-Based Modeling
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2013-01-01
Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…
Cardoso de Moraes, João Luís; de Souza, Wanderley Lopes; Pires, Luís Ferreira; do Prado, Antonio Francisco
2016-10-01
In Pervasive Healthcare, novel information and communication technologies are applied to support the provision of health services anywhere, at anytime and to anyone. Since health systems may offer their health records in different electronic formats, the openEHR Foundation prescribes the use of archetypes for describing clinical knowledge in order to achieve semantic interoperability between these systems. Software agents have been applied to simulate human skills in some healthcare procedures. This paper presents a methodology, based on the use of openEHR archetypes and agent technology, which aims to overcome the weaknesses typically found in legacy healthcare systems, thereby adding value to the systems. This methodology was applied in the design of an agent-based system, which was used in a realistic healthcare scenario in which a medical staff meeting to prepare a cardiac surgery has been supported. We conducted experiments with this system in a distributed environment composed by three cardiology clinics and a center of cardiac surgery, all located in the city of Marília (São Paulo, Brazil). We evaluated this system according to the Technology Acceptance Model. The case study confirmed the acceptance of our agent-based system by healthcare professionals and patients, who reacted positively with respect to the usefulness of this system in particular, and with respect to task delegation to software agents in general. The case study also showed that a software agent-based interface and a tools-based alternative must be provided to the end users, which should allow them to perform the tasks themselves or to delegate these tasks to other people. A Pervasive Healthcare model requires efficient and secure information exchange between healthcare providers. The proposed methodology allows designers to build communication systems for the message exchange among heterogeneous healthcare systems, and to shift from systems that rely on informal communication of actors to a more automated and less error-prone agent-based system. Our methodology preserves significant investment of many years in the legacy systems and allows developers to extend them adding new features to these systems, by providing proactive assistance to the end-users and increasing the user mobility with an appropriate support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ecology Based Decentralized Agent Management System
NASA Technical Reports Server (NTRS)
Peysakhov, Maxim D.; Cicirello, Vincent A.; Regli, William C.
2004-01-01
The problem of maintaining a desired number of mobile agents on a network is not trivial, especially if we want a completely decentralized solution. Decentralized control makes a system more r e bust and less susceptible to partial failures. The problem is exacerbated on wireless ad hoc networks where host mobility can result in significant changes in the network size and topology. In this paper we propose an ecology-inspired approach to the management of the number of agents. The approach associates agents with living organisms and tasks with food. Agents procreate or die based on the abundance of uncompleted tasks (food). We performed a series of experiments investigating properties of such systems and analyzed their stability under various conditions. We concluded that the ecology based metaphor can be successfully applied to the management of agent populations on wireless ad hoc networks.
Disaggregation and Refinement of System Dynamics Models via Agent-based Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutaro, James J; Ozmen, Ozgur; Schryver, Jack C
System dynamics models are usually used to investigate aggregate level behavior, but these models can be decomposed into agents that have more realistic individual behaviors. Here we develop a simple model of the STEM workforce to illuminate the impacts that arise from the disaggregation and refinement of system dynamics models via agent-based modeling. Particularly, alteration of Poisson assumptions, adding heterogeneity to decision-making processes of agents, and discrete-time formulation are investigated and their impacts are illustrated. The goal is to demonstrate both the promise and danger of agent-based modeling in the context of a relatively simple model and to delineate themore » importance of modeling decisions that are often overlooked.« less
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.
Research of negotiation in network trade system based on multi-agent
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Guozheng; Wu, Haiyan
2009-07-01
A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.
Elements of decisional dynamics: An agent-based approach applied to artificial financial market
NASA Astrophysics Data System (ADS)
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
2018-02-01
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
Elements of decisional dynamics: An agent-based approach applied to artificial financial market.
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
2018-02-01
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
Agent-based model for rural-urban migration: A dynamic consideration
NASA Astrophysics Data System (ADS)
Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid
2015-10-01
This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.
HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica
Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Organization-based Model-driven Development of High-assurance Multiagent Systems
2009-02-27
based Model -driven Development of High-assurance Multiagent Systems " performed by Dr. Scott A . DeLoach and Dr Robby at Kansas State University... A Capabilities Based Model for Artificial Organizations. Journal of Autonomous Agents and Multiagent Systems . Volume 16, no. 1, February 2008, pp...Matson, E . T. (2007). A capabilities based theory of artificial organizations. Journal of Autonomous Agents and Multiagent Systems
An Agent-Based Cockpit Task Management System
NASA Technical Reports Server (NTRS)
Funk, Ken
1997-01-01
An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.
ERIC Educational Resources Information Center
Chadli, Abdelhafid; Bendella, Fatima; Tranvouez, Erwan
2015-01-01
In this paper we present an Agent-based evaluation approach in a context of Multi-agent simulation learning systems. Our evaluation model is based on a two stage assessment approach: (1) a Distributed skill evaluation combining agents and fuzzy sets theory; and (2) a Negotiation based evaluation of students' performance during a training…
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
Multi-Agent Framework for Virtual Learning Spaces.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Nunez, Gustavo
1999-01-01
Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…
Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike
2004-01-01
To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie
2003-01-01
A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.
Agent-based method for distributed clustering of textual information
Potok, Thomas E [Oak Ridge, TN; Reed, Joel W [Knoxville, TN; Elmore, Mark T [Oak Ridge, TN; Treadwell, Jim N [Louisville, TN
2010-09-28
A computer method and system for storing, retrieving and displaying information has a multiplexing agent (20) that calculates a new document vector (25) for a new document (21) to be added to the system and transmits the new document vector (25) to master cluster agents (22) and cluster agents (23) for evaluation. These agents (22, 23) perform the evaluation and return values upstream to the multiplexing agent (20) based on the similarity of the document to documents stored under their control. The multiplexing agent (20) then sends the document (21) and the document vector (25) to the master cluster agent (22), which then forwards it to a cluster agent (23) or creates a new cluster agent (23) to manage the document (21). The system also searches for stored documents according to a search query having at least one term and identifying the documents found in the search, and displays the documents in a clustering display (80) of similarity so as to indicate similarity of the documents to each other.
Marckmann, Peter; Logager, Vibeke B.
2007-01-01
Abstract Until recently it was believed that extracellular gadolinium based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium based contrast agents may trigger the development of nephrogenic systemic fibrosis, a generalised fibrotic disorder, in renal failure patients. Accordingly, the use of gadodiamide and gadopentate dimeglumine for renal failure patients was banned in Europe in spring 2007. The same two compounds should only be used cautiously in patients with moderate renal dysfunction. The current paper reviews the situation (July 2007) regarding gadolinium based contrast agent and the severe delayed reaction to some of these agents. The fear of nephrogenic systemic fibrosis should not lead to a denial of a well indicated enhanced magnetic resonance imaging examination. PMID:17905680
A Decentralized Framework for Multi-Agent Robotic Systems
2018-01-01
Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles. PMID:29389849
An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources
NASA Astrophysics Data System (ADS)
Esmaeili, N.; Kanta, L.
2017-12-01
Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.
ERIC Educational Resources Information Center
Gu, X.; Blackmore, K. L.
2015-01-01
This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…
Agent Based Fault Tolerance for the Mobile Environment
NASA Astrophysics Data System (ADS)
Park, Taesoon
This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.
NASA Astrophysics Data System (ADS)
Wattawa, Scott
1995-11-01
Offering interactive services and data in a hybrid fiber/coax cable system requires the coordination of a host of operations and business support systems. New service offerings and network growth and evolution create never-ending changes in the network infrastructure. Agent-based enterprise models provide a flexible mechanism for systems integration of service and support systems. Agent models also provide a mechanism to decouple interactive services from network architecture. By using the Java programming language, agents may be made safe, portable, and intelligent. This paper investigates the application of the Object Management Group's Common Object Request Brokering Architecture to the integration of a multiple services metropolitan area network.
Building an adaptive agent to monitor and repair the electrical power system of an orbital satellite
NASA Technical Reports Server (NTRS)
Tecuci, Gheorghe; Hieb, Michael R.; Dybala, Tomasz
1995-01-01
Over several years we have developed a multistrategy apprenticeship learning methodology for building knowledge-based systems. Recently we have developed and applied our methodology to building intelligent agents. This methodology allows a subject matter expert to build an agent in the same way in which the expert would teach a human apprentice. The expert will give the agent specific examples of problems and solutions, explanations of these solutions, or supervise the agent as it solves new problems. During such interactions, the agent learns general rules and concepts, continuously extending and improving its knowledge base. In this paper we present initial results on applying this methodology to build an intelligent adaptive agent for monitoring and repair of the electrical power system of an orbital satellite, stressing the interaction with the expert during apprenticeship learning.
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
IPA (v1): a framework for agent-based modelling of soil water movement
NASA Astrophysics Data System (ADS)
Mewes, Benjamin; Schumann, Andreas H.
2018-06-01
In the last decade, agent-based modelling (ABM) became a popular modelling technique in social sciences, medicine, biology, and ecology. ABM was designed to simulate systems that are highly dynamic and sensitive to small variations in their composition and their state. As hydrological systems, and natural systems in general, often show dynamic and non-linear behaviour, ABM can be an appropriate way to model these systems. Nevertheless, only a few studies have utilized the ABM method for process-based modelling in hydrology. The percolation of water through the unsaturated soil is highly responsive to the current state of the soil system; small variations in composition lead to major changes in the transport system. Hence, we present a new approach for modelling the movement of water through a soil column: autonomous water agents that transport water through the soil while interacting with their environment as well as with other agents under physical laws.
Personalized E- learning System Based on Intelligent Agent
NASA Astrophysics Data System (ADS)
Duo, Sun; Ying, Zhou Cai
Lack of personalized learning is the key shortcoming of traditional e-Learning system. This paper analyzes the personal characters in e-Learning activity. In order to meet the personalized e-learning, a personalized e-learning system based on intelligent agent was proposed and realized in the paper. The structure of system, work process, the design of intelligent agent and the realization of intelligent agent were introduced in the paper. After the test use of the system by certain network school, we found that the system could improve the learner's initiative participation, which can provide learners with personalized knowledge service. Thus, we thought it might be a practical solution to realize self- learning and self-promotion in the lifelong education age.
2008-06-01
postponed the fulfillment of her own Masters Degree by at least 18 months so that I would have the opportunity to earn mine. She is smart , lovely...GENETIC ALGORITHM AND MULTI AGENT SYSTEM TO EXPLORE EMERGENT PATTERNS OF SOCIAL RATIONALITY AND A DISTRESS-BASED MODEL FOR DECEIT IN THE WORKPLACE...of a Genetic Algorithm and Mutli Agent System to Explore Emergent Patterns of Social Rationality and a Distress-Based Model for Deceit in the
Observer-based distributed adaptive iterative learning control for linear multi-agent systems
NASA Astrophysics Data System (ADS)
Li, Jinsha; Liu, Sanyang; Li, Junmin
2017-10-01
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.
NASA Astrophysics Data System (ADS)
Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao
A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.
Agent Reward Shaping for Alleviating Traffic Congestion
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2006-01-01
Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.
Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems
ERIC Educational Resources Information Center
Ham, MyungJoo
2009-01-01
We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…
Developing Secure Agent Systems Using Delegation Based Trust Management
2005-01-01
delegation rules, so that the information in the SCM may be accessed only by authorized agents. Special intelligent agents called security agents are re... Bluetooth , IEEE 802.11, or Infrared, via any hand-held device, within a Vigil can also be used in wired systems, but the focal point of our re- search is
Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises.
Borrajo, M Lourdes; Baruque, Bruno; Corchado, Emilio; Bajo, Javier; Corchado, Juan M
2011-08-01
During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.
Unsilencing Critical Conversations in Social-Studies Teacher Education Using Agent-Based Modeling
ERIC Educational Resources Information Center
Hostetler, Andrew; Sengupta, Pratim; Hollett, Ty
2018-01-01
In this article, we argue that when complex sociopolitical issues such as ethnocentrism and racial segregation are represented as complex, emergent systems using agent-based computational models (in short agent-based models or ABMs), discourse about these representations can disrupt social studies teacher candidates' dispositions of teaching…
Intelligent agent-based intrusion detection system using enhanced multiclass SVM.
Ganapathy, S; Yogesh, P; Kannan, A
2012-01-01
Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.
Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM
Ganapathy, S.; Yogesh, P.; Kannan, A.
2012-01-01
Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036
Agent-based services for B2B electronic commerce
NASA Astrophysics Data System (ADS)
Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun
2000-12-01
The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.
Programming secure mobile agents in healthcare environments using role-based permissions.
Georgiadis, C K; Baltatzis, J; Pangalos, G I
2003-01-01
The healthcare environment consists of vast amounts of dynamic and unstructured information, distributed over a large number of information systems. Mobile agent technology is having an ever-growing impact on the delivery of medical information. It supports acquiring and manipulating information distributed in a large number of information systems. Moreover is suitable for the computer untrained medical stuff. But the introduction of mobile agents generates advanced threads to the sensitive healthcare information, unless the proper countermeasures are taken. By applying the role-based approach to the authorization problem, we ease the sharing of information between hospital information systems and we reduce the administering part. The different initiative of the agent's migration method, results in different methods of assigning roles to the agent.
NASA Astrophysics Data System (ADS)
Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf
2018-01-01
We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.
Cultural Geography Modeling and Analysis in Helmand Province
2010-10-01
the application of an agent-based model called “Cultural Geography” to represent the civilian populace. This project uses a multi-agent system ...represent the civilian populace. This project uses a multi-agent system consisting of an environment, agents, objects (things), operations that can be...environments[1]. The model is patterned after the conflict eco- system described by Kilcullen[2] in an attempt to capture the complexities of irregular
Data-driven agent-based modeling, with application to rooftop solar adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua
Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less
Data-driven agent-based modeling, with application to rooftop solar adoption
Zhang, Haifeng; Vorobeychik, Yevgeniy; Letchford, Joshua; ...
2016-01-25
Agent-based modeling is commonly used for studying complex system properties emergent from interactions among many agents. We present a novel data-driven agent-based modeling framework applied to forecasting individual and aggregate residential rooftop solar adoption in San Diego county. Our first step is to learn a model of individual agent behavior from combined data of individual adoption characteristics and property assessment. We then construct an agent-based simulation with the learned model embedded in artificial agents, and proceed to validate it using a holdout sequence of collective adoption decisions. We demonstrate that the resulting agent-based model successfully forecasts solar adoption trends andmore » provides a meaningful quantification of uncertainty about its predictions. We utilize our model to optimize two classes of policies aimed at spurring solar adoption: one that subsidizes the cost of adoption, and another that gives away free systems to low-income house- holds. We find that the optimal policies derived for the latter class are significantly more efficacious, whereas the policies similar to the current California Solar Initiative incentive scheme appear to have a limited impact on overall adoption trends.« less
Agent Based Modeling Applications for Geosciences
NASA Astrophysics Data System (ADS)
Stein, J. S.
2004-12-01
Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in a thermodynamic framework as a set of reactions that roll-up the integrated effect that diverse biological communities exert on a geological system. This approach may work well to predict the effect of certain biological communities in specific environments in which experimental data is available. However, it does not further our knowledge of how the geobiological system actually functions on a micro scale. Agent-based techniques may provide a framework to explore the fundamental interactions required to explain the system-wide behavior. This presentation will present a survey of several promising applications of agent-based modeling approaches to problems in the geosciences and describe specific contributions to some of the inherent challenges facing this approach.
NASA Astrophysics Data System (ADS)
Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.
2016-05-01
This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.
Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers
NASA Technical Reports Server (NTRS)
Tumer, K.; Lawson, J.
2003-01-01
Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.
Engineering large-scale agent-based systems with consensus
NASA Technical Reports Server (NTRS)
Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.
1994-01-01
The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.
Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banaś, W.
2016-08-01
The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.
NASA Astrophysics Data System (ADS)
Zhang, Jiancheng; Zhu, Fanglai
2018-03-01
In this paper, the output consensus of a class of linear heterogeneous multi-agent systems with unmatched disturbances is considered. Firstly, based on the relative output information among neighboring agents, we propose an asymptotic sliding-mode based consensus control scheme, under which, the output consensus error can converge to zero by removing the disturbances from output channels. Secondly, in order to reach the consensus goal, we design a novel high-order unknown input observer for each agent. It can estimate not only each agent's states and disturbances, but also the disturbances' high-order derivatives, which are required in the control scheme aforementioned above. The observer-based consensus control laws and the convergence analysis of the consensus error dynamics are given. Finally, a simulation example is provided to verify the validity of our methods.
Agent-based modeling as a tool for program design and evaluation.
Lawlor, Jennifer A; McGirr, Sara
2017-12-01
Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effective Coordination of Multiple Intelligent Agents for Command and Control
2003-09-01
System Architecture As an initial problem domain in E - commerce , we chose collective book purchasing. In the university setting, relatively large numbers... a coalition server, an auctioneer agent, a set of supplier agents, and a web- based interface 9 for end users. The system is based on a simple...buyers are able to request and sellers to respond to a list of items, within a particular category. Sellers present
Integrated control of lateral and vertical vehicle dynamics based on multi-agent system
NASA Astrophysics Data System (ADS)
Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia
2014-03-01
The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.
Multi-Agent Architecture with Support to Quality of Service and Quality of Control
NASA Astrophysics Data System (ADS)
Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique
Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.
An Agent-Based Interface to Terrestrial Ecological Forecasting
NASA Technical Reports Server (NTRS)
Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren
2004-01-01
This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.
Adaptive tracking control of leader-following linear multi-agent systems with external disturbances
NASA Astrophysics Data System (ADS)
Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen
2016-10-01
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.
Stability of subsystem solutions in agent-based models
NASA Astrophysics Data System (ADS)
Perc, Matjaž
2018-01-01
The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.
An Approach to Model Based Testing of Multiagent Systems
Nadeem, Aamer
2015-01-01
Autonomous agents perform on behalf of the user to achieve defined goals or objectives. They are situated in dynamic environment and are able to operate autonomously to achieve their goals. In a multiagent system, agents cooperate with each other to achieve a common goal. Testing of multiagent systems is a challenging task due to the autonomous and proactive behavior of agents. However, testing is required to build confidence into the working of a multiagent system. Prometheus methodology is a commonly used approach to design multiagents systems. Systematic and thorough testing of each interaction is necessary. This paper proposes a novel approach to testing of multiagent systems based on Prometheus design artifacts. In the proposed approach, different interactions between the agent and actors are considered to test the multiagent system. These interactions include percepts and actions along with messages between the agents which can be modeled in a protocol diagram. The protocol diagram is converted into a protocol graph, on which different coverage criteria are applied to generate test paths that cover interactions between the agents. A prototype tool has been developed to generate test paths from protocol graph according to the specified coverage criterion. PMID:25874263
A Real-Time Rover Executive based On Model-Based Reactive Planning
NASA Technical Reports Server (NTRS)
Bias, M. Bernardine; Lemai, Solange; Muscettola, Nicola; Korsmeyer, David (Technical Monitor)
2003-01-01
This paper reports on the experimental verification of the ability of IDEA (Intelligent Distributed Execution Architecture) effectively operate at multiple levels of abstraction in an autonomous control system. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting control agents, each organized around the same fundamental structure. Two IDEA agents, a system-level agent and a mission-level agent, are designed and implemented to autonomously control the K9 rover in real-time. The system is evaluated in the scenario where the rover must acquire images from a specified set of locations. The IDEA agents are responsible for enabling the rover to achieve its goals while monitoring the execution and safety of the rover and recovering from dangerous states when necessary. Experiments carried out both in simulation and on the physical rover, produced highly promising results.
NASA Astrophysics Data System (ADS)
Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.
2017-11-01
For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.
Security patterns and a weighting scheme for mobile agents
NASA Astrophysics Data System (ADS)
Walker, Jessie J.
The notion of mobility has always been a prime factor in human endeavor and achievement. This need to migrate by humans has been distilled into software entities, which are their representatives on distant environments. Software agents are developed to act on behalf of a user. Mobile agents were born from the understanding that many times it was much more useful to move the code (program) to where the resources are located, instead of connecting remotely. Within the mobile agent research community, security has traditionally been the most defining issue facing the community and preventing the paradigm from gaining wide acceptance. There are still numerous difficult problems being addressed with very few practical solutions, such as the malicious host and agent problems. These problems are some of the most active areas of research within the mobile agent community. The major principles, facets, fundamental concepts, techniques and architectures of the field are well understood within the community. This is evident by the many mobile agent systems developed in the last decade that share common core components such as agent management, communication facilities, and mobility services. In other words new mobile agent systems and frameworks do not provide any new insights into agent system architecture or mobility services, agent coordination, communication that could be useful to the agent research community, although these new mobile agent systems do in many instances validate, refine, demonstrate the reuse of many previously proposed and discussed mobile agent research elements. Since mobile agent research for the last decade has been defined by security and related issues, our research into security patterns are within this narrow arena of mobile agent research. The research presented in this thesis examines the issue of mobile agent security from the standpoint of security pattern documented from the universe of mobile agent systems. In addition, we explore how these documented security patterns can be quantitatively compared based on a unique weighting scheme. The scheme is formalized into a theory that can be used improve the development of secure mobile agents and agent-based systems.
NASA Technical Reports Server (NTRS)
Wakim, Nagi T.; Srivastava, Sadanand; Bousaidi, Mehdi; Goh, Gin-Hua
1995-01-01
Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents.
Using Agent Base Models to Optimize Large Scale Network for Large System Inventories
NASA Technical Reports Server (NTRS)
Shameldin, Ramez Ahmed; Bowling, Shannon R.
2010-01-01
The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.
Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model
2009-08-01
has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System
Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs
NASA Technical Reports Server (NTRS)
Raimondi, Franco; Lomunscio, Alessio
2004-01-01
We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.
A Novel Network Attack Audit System based on Multi-Agent Technology
NASA Astrophysics Data System (ADS)
Jianping, Wang; Min, Chen; Xianwen, Wu
A network attack audit system which includes network attack audit Agent, host audit Agent and management control center audit Agent is proposed. And the improved multi-agent technology is carried out in the network attack audit Agent which has achieved satisfactory audit results. The audit system in terms of network attack is just in-depth, and with the function improvement of network attack audit Agent, different attack will be better analyzed and audit. In addition, the management control center Agent should manage and analyze audit results from AA (or HA) and audit data on time. And the history files of network packets and host log data should also be audit to find deeper violations that cannot be found in real time.
KODAMA and VPC based Framework for Ubiquitous Systems and its Experiment
NASA Astrophysics Data System (ADS)
Takahashi, Kenichi; Amamiya, Satoshi; Iwao, Tadashige; Zhong, Guoqiang; Kainuma, Tatsuya; Amamiya, Makoto
Recently, agent technologies have attracted a lot of interest as an emerging programming paradigm. With such agent technologies, services are provided through collaboration among agents. At the same time, the spread of mobile technologies and communication infrastructures has made it possible to access the network anytime and from anywhere. Using agents and mobile technologies to realize ubiquitous computing systems, we propose a new framework based on KODAMA and VPC. KODAMA provides distributed management mechanisms by using the concept of community and communication infrastructure to deliver messages among agents without agents being aware of the physical network. VPC provides a method of defining peer-to-peer services based on agent communication with policy packages. By merging the characteristics of both KODAMA and VPC functions, we propose a new framework for ubiquitous computing environments. It provides distributed management functions according to the concept of agent communities, agent communications which are abstracted from the physical environment, and agent collaboration with policy packages. Using our new framework, we conducted a large-scale experiment in shopping malls in Nagoya, which sent advertisement e-mails to users' cellular phones according to user location and attributes. The empirical results showed that our new framework worked effectively for sales in shopping malls.
Multi-agent Reinforcement Learning Model for Effective Action Selection
NASA Astrophysics Data System (ADS)
Youk, Sang Jo; Lee, Bong Keun
Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
Explor@ Advisory Agent: Tracing the Student's Trail.
ERIC Educational Resources Information Center
Lundgren-Cayrol, Karin; Paquette, Gilbert; Miara, Alexis; Bergeron, Frederick; Rivard, Jacques; Rosca, Ioan
This paper presents research and development of an adaptive World Wide Web-based system called Explor@ Advisory Agent, capable of tailoring advice to the individual student's needs, actions, and reactions toward pedagogical events, as well as according to diagnosis of content acquisition. Explor@ Advisory Agent consists of two sub-systems, the…
Chronic Heart Failure Follow-up Management Based on Agent Technology.
Mohammadzadeh, Niloofar; Safdari, Reza
2015-10-01
Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making.
Agent-Based Scientific Workflow Composition
NASA Astrophysics Data System (ADS)
Barker, A.; Mann, B.
2006-07-01
Agents are active autonomous entities that interact with one another to achieve their objectives. This paper addresses how these active agents are a natural fit to consume the passive Service Oriented Architecture which is found in Internet and Grid Systems, in order to compose, coordinate and execute e-Science experiments. A framework is introduced which allows an e-Science experiment to be described as a MultiAgent System.
Verifying Multi-Agent Systems via Unbounded Model Checking
NASA Technical Reports Server (NTRS)
Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.
2004-01-01
We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems
Literature Review on Systems of Systems (SoS): A Methodology With Preliminary Results
2013-11-01
Appendix H. The Enhanced ISAAC Neural Simulation Toolkit (EINSTein) 73 Appendix I. The Map Aware Nonuniform Automata (MANA) Agent-Based Model 81...83 Figure I-3. Quadrant chart addressing SoS and associated SoSA designs for the Map Aware Nonuniform Automata (MANA) agent...Map Aware Nonuniform Automata (MANA) agent-based model. 85 Table I-2. SoS and SoSA software component maturation scores associated with the Map
The distributed agent-based approach in the e-manufacturing environment
NASA Astrophysics Data System (ADS)
Sękala, A.; Kost, G.; Dobrzańska-Danikiewicz, A.; Banaś, W.; Foit, K.
2015-11-01
The deficiency of a coherent flow of information from a production department causes unplanned downtime and failures of machines and their equipment, which in turn results in production planning process based on incorrect and out-of-date information. All of these factors entail, as the consequence, the additional difficulties associated with the process of decision-making. They concern, among other, the coordination of components of a distributed system and providing the access to the required information, thereby generating unnecessary costs. The use of agent technology significantly speeds up the flow of information within the virtual enterprise. This paper includes the proposal of a multi-agent approach for the integration of processes within the virtual enterprise concept. The presented concept was elaborated to investigate the possible solutions of the ways of transmission of information in the production system taking into account the self-organization of constituent components. Thus it implicated the linking of the concept of multi-agent system with the system of managing the production information, based on the idea of e-manufacturing. The paper presents resulting scheme that should be the base for elaborating an informatics model of the target virtual system. The computer system itself is intended to be developed next.
Intelligent agents for adaptive security market surveillance
NASA Astrophysics Data System (ADS)
Chen, Kun; Li, Xin; Xu, Baoxun; Yan, Jiaqi; Wang, Huaiqing
2017-05-01
Market surveillance systems have increasingly gained in usage for monitoring trading activities in stock markets to maintain market integrity. Existing systems primarily focus on the numerical analysis of market activity data and generally ignore textual information. To fulfil the requirements of information-based surveillance, a multi-agent-based architecture that uses agent intercommunication and incremental learning mechanisms is proposed to provide a flexible and adaptive inspection process. A prototype system is implemented using the techniques of text mining and rule-based reasoning, among others. Based on experiments in the scalping surveillance scenario, the system can identify target information evidence up to 87.50% of the time and automatically identify 70.59% of cases depending on the constraints on the available information sources. The results of this study indicate that the proposed information surveillance system is effective. This study thus contributes to the market surveillance literature and has significant practical implications.
2012-09-30
System N Agent « datatype » SoS Architecture -Receives Capabilities1 -Provides Capabilities1 1 -Provides Capabilities1 1 -Provides Capabilities1 -Updates 1...fitness, or objective function. The structure of the SoS Agent is depicted in Figure 10. SoS Agent Architecture « datatype » Initial SoS...Architecture «subsystem» Fuzzy Inference Engine FAM « datatype » Affordability « datatype » Flexibility « datatype » Performance « datatype » Robustness Input Input
Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih
2016-11-01
Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.
A Mechanism to Avoid Collusion Attacks Based on Code Passing in Mobile Agent Systems
NASA Astrophysics Data System (ADS)
Jaimez, Marc; Esparza, Oscar; Muñoz, Jose L.; Alins-Delgado, Juan J.; Mata-Díaz, Jorge
Mobile agents are software entities consisting of code, data, state and itinerary that can migrate autonomously from host to host executing their code. Despite its benefits, security issues strongly restrict the use of code mobility. The protection of mobile agents against the attacks of malicious hosts is considered the most difficult security problem to solve in mobile agent systems. In particular, collusion attacks have been barely studied in the literature. This paper presents a mechanism that avoids collusion attacks based on code passing. Our proposal is based on a Multi-Code agent, which contains a different variant of the code for each host. A Trusted Third Party is responsible for providing the information to extract its own variant to the hosts, and for taking trusted timestamps that will be used to verify time coherence.
NASA Astrophysics Data System (ADS)
Hu, Y.; Quinn, C.; Cai, X.
2015-12-01
One major challenge of agent-based modeling is to derive agents' behavioral rules due to behavioral uncertainty and data scarcity. This study proposes a new approach to combine a data-driven modeling based on the directed information (i.e., machine intelligence) with expert domain knowledge (i.e., human intelligence) to derive the behavioral rules of agents considering behavioral uncertainty. A directed information graph algorithm is applied to identifying the causal relationships between agents' decisions (i.e., groundwater irrigation depth) and time-series of environmental, socio-economical and institutional factors. A case study is conducted for the High Plains aquifer hydrological observatory (HO) area, U.S. Preliminary results show that four factors, corn price (CP), underlying groundwater level (GWL), monthly mean temperature (T) and precipitation (P) have causal influences on agents' decisions on groundwater irrigation depth (GWID) to various extents. Based on the similarity of the directed information graph for each agent, five clusters of graphs are further identified to represent all the agents' behaviors in the study area as shown in Figure 1. Using these five representative graphs, agents' monthly optimal groundwater pumping rates are derived through the probabilistic inference. Such data-driven relationships and probabilistic quantifications are then coupled with a physically-based groundwater model to investigate the interactions between agents' pumping behaviors and the underlying groundwater system in the context of coupled human and natural systems.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
Vera, Javier
2018-01-01
What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.
Providing Effective Access to Shared Resources: A COIN Approach
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.
2004-01-01
Managers of systems of shared resources typically have many separate goals. Examples are efficient utilization of the resources among its users and ensuring no user s satisfaction in the system falls below a preset minimal level. Since such goals will usually conflict with one another, either implicitly or explicitly the manager must determine the relative importance of the goals, encapsulating that into an overall utility function rating the possible behaviors of the entire system. Here we demonstrate a distributed, robust, and adaptive way to optimize that overall function. Our approach is to interpose adaptive agents between each user and the system, where each such agent is working to maximize its own private utility function. In turn, each such agent's function should be both relatively easy for the agent to learn to optimize, and "aligned" with the overall utility function of the system manager - an overall function that is based on but in general different from the satisfaction functions of the individual users. To ensure this we enhance the Collective INtelligence (COIN) framework to incorporate user satisfaction functions in the overall utility function of the system manager and accordingly in the associated private utility functions assigned to the users agents. We present experimental evaluations of different COIN-based private utility functions and demonstrate that those COIN-based functions outperform some natural alternatives.
Providing Effective Access to Shared Resources: A COIN Approach
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.; Sen, Sandip; Tumer, Kagan
2003-01-01
Managers of systems of shared resources typically have many separate goals. Examples are efficient utilization of the resources among its users and ensuring no user's satisfaction in the system falls below a preset minimal level. Since such goals will usually conflict with one another, either implicitly or explicitly the manager must determine the relative importance of the goals, encapsulating that into an overall utility function rating the possible behaviors of the entire system. Here we demonstrate a distributed, robust, and adaptive way to optimize that overall function. Our approach is to interpose adaptive agents between each user and the system, where each such agent is working to maximize its own private utility function. In turn, each such agent's function should be both relatively easy for the agent to learn to optimize, and 'aligned' with the overall utility function of the system manager - an overall function that is based on but in general different from the satisfaction functions of the individual users. To ensure this we enhance the COllective INtelligence (COIN) framework to incorporate user satisfaction functions in the overall utility function of the system manager and accordingly in the associated private utility functions assigned to the users agents. We present experimental evaluations of different COIN-based private utility functions and demonstrate that those COIN-based functions outperform some natural alternatives.
Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan
2015-11-01
This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Formal Assurance for Cognitive Architecture Based Autonomous Agent
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Eskridge, Thomas; Neogi, Natasha; Carvalho, Marco
2017-01-01
Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.
Electrostatic thin film chemical and biological sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.
A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less
Integration agent-based models and GIS as a virtual urban dynamic laboratory
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Miaolong
2007-06-01
Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.
Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang
2014-08-01
This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.
Lu, Jing; Lu, Jin; Liu, Aijun; Fu, Weijun; Du, Juan; Huang, Xiaojun; Chen, Wenming; Hou, Jian
2015-01-01
The International Staging System (ISS) is the most important prognostic system for multiple myeloma (MM). It was identified in the era of conventional agents. The outcome of MM has significantly changed by novel agents. Thus the applicability of ISS system in the era of novel agents in Chinese patients needs to be demonstrated. We retrospectively analyzed the clinical outcomes and prognostic significance of ISS system in 1016 patients with newly diagnosed multiple myeloma in Chinese patients between 2008 and 2012, who received bortezomib- or thalidomide-based regimens as first-line therapy. The median overall survival (OS) of patients for ISS stages I/II/III was not reached/55.4 months/41.7 months (p < 0.001), and the median progression-free survival (PFS) was 30/29.5/25 months (p = 0.072), respectively. Statistically significant difference in survival was confirmed among three ISS stages in thalidomide-based group, but not between ISS stages I and II in bortezomib-based group. These findings suggest that ISS system can predict the survival in the era of novel agents in Chinese MM patients, and bortezomib may have the potential to partially overcome adverse effect of risk factors on survival, especially in higher stage of ISS system. PMID:26640799
Efficient Agent-Based Models for Non-Genomic Evolution
NASA Technical Reports Server (NTRS)
Gupta, Nachi; Agogino, Adrian; Tumer, Kagan
2006-01-01
Modeling dynamical systems composed of aggregations of primitive proteins is critical to the field of astrobiological science involving early evolutionary structures and the origins of life. Unfortunately traditional non-multi-agent methods either require oversimplified models or are slow to converge to adequate solutions. This paper shows how to address these deficiencies by modeling the protein aggregations through a utility based multi-agent system. In this method each agent controls the properties of a set of proteins assigned to that agent. Some of these properties determine the dynamics of the system, such as the ability for some proteins to join or split other proteins, while additional properties determine the aggregation s fitness as a viable primitive cell. We show that over a wide range of starting conditions, there are mechanisins that allow protein aggregations to achieve high values of overall fitness. In addition through the use of agent-specific utilities that remain aligned with the overall global utility, we are able to reach these conclusions with 50 times fewer learning steps.
BTFS: The Border Trade Facilitation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, L.R.
The author demonstrates the Border Trade Facilitation System (BTFS), an agent-based bilingual e-commerce system built to expedite the regulation, control, and execution of commercial trans-border shipments during the delivery phase. The system was built to serve maquila industries at the US/Mexican border. The BTFS uses foundation technology developed here at Sandia Laboratories' Advanced Information Systems Lab (AISL), including a distributed object substrate, a general-purpose agent development framework, dynamically generated agent-human interaction via the World-Wide Web, and a collaborative agent architecture. This technology is also the substrate for the Multi-Agent Simulation Management System (MASMAS) proposed for demonstration at this conference. Themore » BTFS executes authenticated transactions among agents performing open trading over the Internet. With the BTFS in place, one could conduct secure international transactions from any site with an Internet connection and a web browser. The BTFS is currently being evaluated for commercialization.« less
Effects of Cueing by a Pedagogical Agent in an Instructional Animation: A Cognitive Load Approach
ERIC Educational Resources Information Center
Yung, Hsin I.; Paas, Fred
2015-01-01
This study investigated the effects of a pedagogical agent that cued relevant information in a story-based instructional animation on the cardiovascular system. Based on cognitive load theory, it was expected that the experimental condition with the pedagogical agent would facilitate students to distinguish between relevant and irrelevant…
Integrating GIS and ABM to Explore Spatiotemporal Dynamics
NASA Astrophysics Data System (ADS)
Sun, M.; Jiang, Y.; Yang, C.
2013-12-01
Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.
Time-Extended Payoffs for Collectives of Autonomous Agents
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2002-01-01
A collective is a set of self-interested agents which try to maximize their own utilities, along with a a well-defined, time-extended world utility function which rates the performance of the entire system. In this paper, we use theory of collectives to design time-extended payoff utilities for agents that are both aligned with the world utility, and are "learnable", i.e., the agents can readily see how their behavior affects their utility. We show that in systems where each agent aims to optimize such payoff functions, coordination arises as a byproduct of the agents selfishly pursuing their own goals. A game theoretic analysis shows that such payoff functions have the net effect of aligning the Nash equilibrium, Pareto optimal solution and world utility optimum, thus eliminating undesirable behavior such as agents working at cross-purposes. We then apply collective-based payoff functions to the token collection in a gridworld problem where agents need to optimize the aggregate value of tokens collected across an episode of finite duration (i.e., an abstracted version of rovers on Mars collecting scientifically interesting rock samples, subject to power limitations). We show that, regardless of the initial token distribution, reinforcement learning agents using collective-based payoff functions significantly outperform both natural extensions of single agent algorithms and global reinforcement learning solutions based on "team games".
Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll
2000-01-01
An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
Demeter, persephone, and the search for emergence in agent-based models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M. J.; Howe, T. R.; Collier, N. T.
2006-01-01
In Greek mythology, the earth goddess Demeter was unable to find her daughter Persephone after Persephone was abducted by Hades, the god of the underworld. Demeter is said to have embarked on a long and frustrating, but ultimately successful, search to find her daughter. Unfortunately, long and frustrating searches are not confined to Greek mythology. In modern times, agent-based modelers often face similar troubles when searching for agents that are to be to be connected to one another and when seeking appropriate target agents while defining agent behaviors. The result is a 'search for emergence' in that many emergent ormore » potentially emergent behaviors in agent-based models of complex adaptive systems either implicitly or explicitly require search functions. This paper considers a new nested querying approach to simplifying such agent-based modeling and multi-agent simulation search problems.« less
Shen, Ying; Colloc, Joël; Jacquet-Andrieu, Armelle; Lei, Kai
2015-08-01
This research aims to depict the methodological steps and tools about the combined operation of case-based reasoning (CBR) and multi-agent system (MAS) to expose the ontological application in the field of clinical decision support. The multi-agent architecture works for the consideration of the whole cycle of clinical decision-making adaptable to many medical aspects such as the diagnosis, prognosis, treatment, therapeutic monitoring of gastric cancer. In the multi-agent architecture, the ontological agent type employs the domain knowledge to ease the extraction of similar clinical cases and provide treatment suggestions to patients and physicians. Ontological agent is used for the extension of domain hierarchy and the interpretation of input requests. Case-based reasoning memorizes and restores experience data for solving similar problems, with the help of matching approach and defined interfaces of ontologies. A typical case is developed to illustrate the implementation of the knowledge acquisition and restitution of medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.
Influences of Agents with a Self-Reputation Awareness Component in an Evolutionary Spatial IPD Game
Huang, Chung-Yuan; Lee, Chun-Liang
2014-01-01
Iterated prisoner’s dilemma (IPD) researchers have shown that strong positive reputations plus an efficient reputation evaluation system encourages both sides to pursue long-term collaboration and to avoid falling into mutual defection cycles. In agent-based environments with reliable reputation rating systems, agents interested in maximizing their private interests must show concern for other agents as well as their own self-reputations–an important capability that standard IPD game agents lack. Here we present a novel learning agent model possessing self-reputation awareness. Agents in our proposed model are capable of evaluating self-behaviors based on a mix of public and private interest considerations, and of testing various solutions aimed at meeting social standards. Simulation results indicate multiple outcomes from the addition of a small percentage of self-reputation awareness agents: faster cooperation, faster movement toward stability in an agent society, a higher level of public interest in the agent society, the resolution of common conflicts between public and private interests, and a lower potential for rational individual behavior to transform into irrational group behavior. PMID:24945966
Workload-Based Automated Interface Mode Selection
2012-03-22
Process . . . . . . . . . . . . . . . . . . . . . 31 3.5.10 Agent Reward Function . . . . . . . . . . . . . . . . 31 3.5.11 Accelerated Learning... Strategies . . . . . . . . . . . . 31 4. Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 System Engineering Methodology...26 5. Agent state function. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6. Agent reward function
Cooperative peer-to-peer multiagent-based systems
NASA Astrophysics Data System (ADS)
Caram, L. F.; Caiafa, C. F.; Ausloos, M.; Proto, A. N.
2015-08-01
A multiagent based model for a system of cooperative agents aiming at growth is proposed. This is based on a set of generalized Verhulst-Lotka-Volterra differential equations. In this study, strong cooperation is allowed among agents having similar sizes, and weak cooperation if agents have markedly different "sizes", thus establishing a peer-to-peer modulated interaction scheme. A rigorous analysis of the stable configurations is presented first examining the fixed points of the system, next determining their stability as a function of the model parameters. It is found that the agents are self-organizing into clusters. Furthermore, it is demonstrated that, depending on parameter values, multiple stable configurations can coexist. It occurs that only one of them always emerges with probability close to one, because its associated attractor dominates over the rest. This is shown through numerical integrations and simulations, after analytic developments. In contrast to the competitive case, agents are able to increase their capacity beyond the no-interaction case limit. In other words, when some collaborative partnership among a relatively small number of partners takes place, all agents act in good faith prioritizing the common good, when receiving a mutual benefit allowing them to surpass their capacity.
Cooperative peer-to-peer multiagent-based systems.
Caram, L F; Caiafa, C F; Ausloos, M; Proto, A N
2015-08-01
A multiagent based model for a system of cooperative agents aiming at growth is proposed. This is based on a set of generalized Verhulst-Lotka-Volterra differential equations. In this study, strong cooperation is allowed among agents having similar sizes, and weak cooperation if agents have markedly different "sizes", thus establishing a peer-to-peer modulated interaction scheme. A rigorous analysis of the stable configurations is presented first examining the fixed points of the system, next determining their stability as a function of the model parameters. It is found that the agents are self-organizing into clusters. Furthermore, it is demonstrated that, depending on parameter values, multiple stable configurations can coexist. It occurs that only one of them always emerges with probability close to one, because its associated attractor dominates over the rest. This is shown through numerical integrations and simulations, after analytic developments. In contrast to the competitive case, agents are able to increase their capacity beyond the no-interaction case limit. In other words, when some collaborative partnership among a relatively small number of partners takes place, all agents act in good faith prioritizing the common good, when receiving a mutual benefit allowing them to surpass their capacity.
NASA Astrophysics Data System (ADS)
Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher
2018-01-01
This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.
Theory of networked minority games based on strategy pattern dynamics.
Lo, T S; Chan, H Y; Hui, P M; Johnson, N F
2004-11-01
We formulate a theory of agent-based models in which agents compete to be in a winning group. The agents may be part of a network or not, and the winning group may be a minority group or not. An important feature of the present formalism is its focus on the dynamical pattern of strategy rankings, and its careful treatment of the strategy ties which arise during the system's temporal evolution. We apply it to the minority game with connected populations. Expressions for the mean success rate among the agents and for the mean success rate for agents with k neighbors are derived. We also use the theory to estimate the value of connectivity p above which the binary-agent-resource system with high resource levels makes the transition into the high-connectivity state.
NASA Astrophysics Data System (ADS)
Alexandridis, Konstantinos T.
This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.
ERIC Educational Resources Information Center
Martins, Rosane Maria; Chaves, Magali Ribeiro; Pirmez, Luci; Rust da Costa Carmo, Luiz Fernando
2001-01-01
Discussion of the need to filter and retrieval relevant information from the Internet focuses on the use of mobile agents, specific software components which are based on distributed artificial intelligence and integrated systems. Surveys agent technology and discusses the agent building package used to develop two applications using IBM's Aglet…
OntoTrader: An Ontological Web Trading Agent Approach for Environmental Information Retrieval
Iribarne, Luis; Padilla, Nicolás; Ayala, Rosa; Asensio, José A.; Criado, Javier
2014-01-01
Modern Web-based Information Systems (WIS) are becoming increasingly necessary to provide support for users who are in different places with different types of information, by facilitating their access to the information, decision making, workgroups, and so forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system, which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture, an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system agents to communicate with the trading agent and the behavioral framework for the SOLERES OntoTrader agent, an Environmental Management Information System (EMIS). This framework implements a “Query-Searching/Recovering-Response” information retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool which allows our proposal to be evaluated and validated. PMID:24977211
OntoTrader: an ontological Web trading agent approach for environmental information retrieval.
Iribarne, Luis; Padilla, Nicolás; Ayala, Rosa; Asensio, José A; Criado, Javier
2014-01-01
Modern Web-based Information Systems (WIS) are becoming increasingly necessary to provide support for users who are in different places with different types of information, by facilitating their access to the information, decision making, workgroups, and so forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system, which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture, an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system agents to communicate with the trading agent and the behavioral framework for the SOLERES OntoTrader agent, an Environmental Management Information System (EMIS). This framework implements a "Query-Searching/Recovering-Response" information retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool which allows our proposal to be evaluated and validated.
Multi-agent cooperation rescue algorithm based on influence degree and state prediction
NASA Astrophysics Data System (ADS)
Zheng, Yanbin; Ma, Guangfu; Wang, Linlin; Xi, Pengxue
2018-04-01
Aiming at the multi-agent cooperative rescue in disaster, a multi-agent cooperative rescue algorithm based on impact degree and state prediction is proposed. Firstly, based on the influence of the information in the scene on the collaborative task, the influence degree function is used to filter the information. Secondly, using the selected information to predict the state of the system and Agent behavior. Finally, according to the result of the forecast, the cooperative behavior of Agent is guided and improved the efficiency of individual collaboration. The simulation results show that this algorithm can effectively solve the cooperative rescue problem of multi-agent and ensure the efficient completion of the task.
Development and Evaluation of Intelligent Agent-Based Teaching Assistant in e-Learning Portals
ERIC Educational Resources Information Center
Rouhani, Saeed; Mirhosseini, Seyed Vahid
2015-01-01
Today, several educational portals established by organizations to enhance web E-learning. Intelligence agent's usage is necessary to improve the system's quality and cover limitations such as face-to-face relation. In this research, after finding two main approaches in this field that are fundamental use of intelligent agents in systems design…
Knowledge Management in Role Based Agents
NASA Astrophysics Data System (ADS)
Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz
In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.
Chronic Heart Failure Follow-up Management Based on Agent Technology
Safdari, Reza
2015-01-01
Objectives Monitoring heart failure patients through continues assessment of sign and symptoms by information technology tools lead to large reduction in re-hospitalization. Agent technology is one of the strongest artificial intelligence areas; therefore, it can be expected to facilitate, accelerate, and improve health services especially in home care and telemedicine. The aim of this article is to provide an agent-based model for chronic heart failure (CHF) follow-up management. Methods This research was performed in 2013-2014 to determine appropriate scenarios and the data required to monitor and follow-up CHF patients, and then an agent-based model was designed. Results Agents in the proposed model perform the following tasks: medical data access, communication with other agents of the framework and intelligent data analysis, including medical data processing, reasoning, negotiation for decision-making, and learning capabilities. Conclusions The proposed multi-agent system has ability to learn and thus improve itself. Implementation of this model with more and various interval times at a broader level could achieve better results. The proposed multi-agent system is no substitute for cardiologists, but it could assist them in decision-making. PMID:26618038
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions
Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.
2016-01-01
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.
Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A
2016-05-26
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.
ERIC Educational Resources Information Center
Ahmed, Iftikhar; Sadeq, Muhammad Jafar
2006-01-01
Current distance learning systems are increasingly packing highly data-intensive contents on servers, resulting in the congestion of network and server resources at peak service times. A distributed learning system based on faded information field (FIF) architecture that employs mobile agents (MAs) has been proposed and simulated in this work. The…
Agent-based models in translational systems biology
An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram
2013-01-01
Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989
NASA Astrophysics Data System (ADS)
Shevchuk, G. K.; Berg, D. B.; Zvereva, O. M.; Medvedeva, M. A.
2017-11-01
This article is devoted to the study of a supply chain disturbance impact on manufacturing volumes in a production system network. Each network agent's product can be used as a resource by other system agents (manufacturers). A supply chain disturbance can lead to operating cease of the entire network. Authors suggest using of short-term partial resources reservation to mitigate negative consequences of such disturbances. An agent-based model with a reservation algorithm compatible with strategies for resource procurement in terms of financial constraints was engineered. This model works in accordance with the static input-output Leontief 's model. The results can be used for choosing the ways of system's stability improving, and protecting it from various disturbances and imbalance.
NASA Astrophysics Data System (ADS)
Zhang, Daili
Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.
Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A
2015-09-01
This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.
Agent Architectures for Compliance
NASA Astrophysics Data System (ADS)
Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua
A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.
The comparison of the use of holonic and agent-based methods in modelling of manufacturing systems
NASA Astrophysics Data System (ADS)
Foit, K.; Banaś, W.; Gwiazda, A.; Hryniewicz, P.
2017-08-01
The rapid evolution in the field of industrial automation and manufacturing is often called the 4th Industry Revolution. Worldwide availability of the internet access contributes to the competition between manufacturers, gives the opportunity for buying materials, parts and for creating the partnership networks, like cloud manufacturing, grid manufacturing (MGrid), virtual enterprises etc. The effect of the industry evolution is the need to search for new solutions in the field of manufacturing systems modelling and simulation. During the last decade researchers have developed the agent-based approach of modelling. This methodology have been taken from the computer science, but was adapted to the philosophy of industrial automation and robotization. The operation of the agent-based system depends on the simultaneous acting of different agents that may have different roles. On the other hand, there is the holon-based approach that uses the structures created by holons. It differs from the agent-based structure in some aspects, while the other ones are quite similar in both methodologies. The aim of this paper is to present the both methodologies and discuss the similarities and the differences. This may could help to select the optimal method of modelling, according to the considered problem and software resources.
Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology
Marshall, Brandon D. L.; Galea, Sandro
2015-01-01
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821
Information of Complex Systems and Applications in Agent Based Modeling.
Bao, Lei; Fritchman, Joseph C
2018-04-18
Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.
Apoptosis and Self-Destruct: A Contribution to Autonomic Agents?
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2004-01-01
Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward in designing reliable systems. Agent technologies have been identified as a key enabler for engineering autonomicity in systems, both in terms of retrofitting autonomicity into legacy systems and designing new systems. The AC initiative provides an opportunity to consider other biological systems and principles in seeking new design strategies. This paper reports on one such investigation; utilizing the apoptosis metaphor of biological systems to provide a dynamic health indicator signal between autonomic agents.
NASA Astrophysics Data System (ADS)
Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun
2017-08-01
Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)
2015-01-01
A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
Biological and Clinical Aspects of Lanthanide Coordination Compounds
Misra, Sudhindra N.; M., Indira Devi; Shukla, Ram S.
2004-01-01
The coordinating chemistry of lanthanides, relevant to the biological, biochemical and medical aspects, makes a significant contribution to understanding the basis of application of lanthanides, particularly in biological and medical systems. The importance of the applications of lanthanides, as an excellent diagnostic and prognostic probe in clinical diagnostics, and an anticancer material, is remarkably increasing. Lanthanide complexes based X-ray contrast imaging and lanthanide chelates based contrast enhancing agents for magnetic resonance imaging (MRI) are being excessively used in radiological analysis in our body systems. The most important property of the chelating agents, in lanthanide chelate complex, is its ability to alter the behaviour of lanthanide ion with which it binds in biological systems, and the chelation markedly modifies the biodistribution and excretion profile of the lanthanide ions. The chelating agents, especially aminopoly carboxylic acids, being hydrophilic, increase the proportion of their complex excreted from complexed lanthanide ion form biological systems. Lanthanide polyamino carboxylate-chelate complexes are used as contrast enhancing agents for Magnetic Resonance Imaging. Conjugation of antibodies and other tissue specific molecules to lanthanide chelates has led to a new type of specific MRI contrast agents and their conjugated MRI contrast agents with improved relaxivity, functioning in the body similar to drugs. Many specific features of contrast agent assisted MRI make it particularly effective for musculoskeletal and cerebrospinal imaging. Lanthanide-chelate contrast agents are effectively used in clinical diagnostic investigations involving cerebrospinal diseases and in evaluation of central nervous system. Chelated lanthanide complexes shift reagent aided 23Na NMR spectroscopic analysis is used in cellular, tissue and whole organ systems. PMID:18365075
Agent-Based Models in Social Physics
NASA Astrophysics Data System (ADS)
Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo
2018-06-01
We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.
When more of the same is better
NASA Astrophysics Data System (ADS)
Fontanari, José F.
2016-01-01
Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem-solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system —the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize the performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.
Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.
Atar, Eli
2004-07-01
Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.
Self-Calibrating, Variable-Flow Pumping System
NASA Technical Reports Server (NTRS)
Walls, Joe T.
1994-01-01
Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.
2013-03-29
Assessor that is in the SoS agent. Figure 31. Fuzzy Assessor for the SoS Agent for Assessment of SoS Architecture «subsystem» Fuzzy Rules « datatype ...Affordability « datatype » Flexibility « datatype » Performance « datatype » Robustness Input Input Input Input « datatype » Architecture QualityOutput Fuzzy
Application of agent-based system for bioprocess description and process improvement.
Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J
2010-01-01
Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers
Davies, Jim; Michaelian, Kourken
2016-08-01
This article argues for a task-based approach to identifying and individuating cognitive systems. The agent-based extended cognition approach faces a problem of cognitive bloat and has difficulty accommodating both sub-individual cognitive systems ("scaling down") and some supra-individual cognitive systems ("scaling up"). The standard distributed cognition approach can accommodate a wider variety of supra-individual systems but likewise has difficulties with sub-individual systems and faces the problem of cognitive bloat. We develop a task-based variant of distributed cognition designed to scale up and down smoothly while providing a principled means of avoiding cognitive bloat. The advantages of the task-based approach are illustrated by means of two parallel case studies: re-representation in the human visual system and in a biomedical engineering laboratory.
Agent-Based Modeling in Systems Pharmacology.
Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M
2015-11-01
Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.
Design and Implementation of Context-Aware Musuem Guide Agents
NASA Astrophysics Data System (ADS)
Satoh, Ichiro
This paper presents an agent-based system for building and operating context-aware services in public spaces, including museums. The system provides users with agents and detects the locations of users and deploys location-aware user-assistant agents at computers near the their current locations by using active RFID-tags. When a visitor moves between exhibits in a museum, this dynamically deploys his/her agent at the computers close to the exhibits by using mobile agent technology. It annotates the exhibits in his/her personalized form and navigate him/her user to the next exhibits along his/her routes. It also introduces user movement as a natural approach to interacting between users and agents. To demonstrate the utility and effectiveness of the system, we constructed location/user-aware visitor-guide services and experimented them for two weeks in a public museum.
Agent-based power sharing scheme for active hybrid power sources
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.
Community-aware task allocation for social networked multiagent systems.
Wang, Wanyuan; Jiang, Yichuan
2014-09-01
In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.
The Next Generation of Interoperability Agents in Healthcare
Cardoso, Luciana; Marins, Fernando; Portela, Filipe; Santos, Manuel ; Abelha, António; Machado, José
2014-01-01
Interoperability in health information systems is increasingly a requirement rather than an option. Standards and technologies, such as multi-agent systems, have proven to be powerful tools in interoperability issues. In the last few years, the authors have worked on developing the Agency for Integration, Diffusion and Archive of Medical Information (AIDA), which is an intelligent, agent-based platform to ensure interoperability in healthcare units. It is increasingly important to ensure the high availability and reliability of systems. The functions provided by the systems that treat interoperability cannot fail. This paper shows the importance of monitoring and controlling intelligent agents as a tool to anticipate problems in health information systems. The interaction between humans and agents through an interface that allows the user to create new agents easily and to monitor their activities in real time is also an important feature, as health systems evolve by adopting more features and solving new problems. A module was installed in Centro Hospitalar do Porto, increasing the functionality and the overall usability of AIDA. PMID:24840351
NASA Technical Reports Server (NTRS)
Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna;
2000-01-01
Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control
NASA Astrophysics Data System (ADS)
Ma, Tiedong; Li, Teng; Cui, Bing
2018-01-01
The coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control method is studied in this paper. Based on the theory of impulsive differential equations, algebraic graph theory, Lyapunov stability theory and Mittag-Leffler function, two novel sufficient conditions for achieving the cooperative control of a class of fractional-order nonlinear multi-agent systems are derived. Finally, two numerical simulations are verified to illustrate the effectiveness and feasibility of the proposed method.
Dynamic electronic institutions in agent oriented cloud robotic systems.
Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice
2015-01-01
The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
Imbalance detection in a manufacturing system: An agent-based model usage
NASA Astrophysics Data System (ADS)
Shevchuk, G. K.; Zvereva, O. M.; Medvedev, M. A.
2017-11-01
This paper delivers the results of the research work targeted at communications in a manufacturing system. A computer agent-based model which simulates manufacturing system functioning has been engineered. The system lifecycle consists of two recursively repeated stages: a communication stage and a production stage. Model data sets were estimated with the static Leontief's equilibrium equation usage. In experiments relationships between the manufacturing system lifecycle time and conditions of equilibrium violations have been identified. The research results are to be used to propose violation negative influence compensation methods.
Brief introductory guide to agent-based modeling and an illustration from urban health research.
Auchincloss, Amy H; Garcia, Leandro Martin Totaro
2015-11-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.
Brief introductory guide to agent-based modeling and an illustration from urban health research
Auchincloss, Amy H.; Garcia, Leandro Martin Totaro
2017-01-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364
NASA Astrophysics Data System (ADS)
Bosse, Stefan
2013-05-01
Sensorial materials consisting of high-density, miniaturized, and embedded sensor networks require new robust and reliable data processing and communication approaches. Structural health monitoring is one major field of application for sensorial materials. Each sensor node provides some kind of sensor, electronics, data processing, and communication with a strong focus on microchip-level implementation to meet the goals of miniaturization and low-power energy environments, a prerequisite for autonomous behaviour and operation. Reliability requires robustness of the entire system in the presence of node, link, data processing, and communication failures. Interaction between nodes is required to manage and distribute information. One common interaction model is the mobile agent. An agent approach provides stronger autonomy than a traditional object or remote-procedure-call based approach. Agents can decide for themselves, which actions are performed, and they are capable of flexible behaviour, reacting on the environment and other agents, providing some degree of robustness. Traditionally multi-agent systems are abstract programming models which are implemented in software and executed on program controlled computer architectures. This approach does not well scale to micro-chip level and requires full equipped computers and communication structures, and the hardware architecture does not consider and reflect the requirements for agent processing and interaction. We propose and demonstrate a novel design paradigm for reliable distributed data processing systems and a synthesis methodology and framework for multi-agent systems implementable entirely on microchip-level with resource and power constrained digital logic supporting Agent-On-Chip architectures (AoC). The agent behaviour and mobility is fully integrated on the micro-chip using pipelined communicating processes implemented with finite-state machines and register-transfer logic. The agent behaviour, interaction (communication), and mobility features are modelled and specified on a machine-independent abstract programming level using a state-based agent behaviour language (APL). With this APL a high-level agent compiler is able to synthesize a hardware model (RTL, VHDL), a software model (C, ML), or a simulation model (XML) suitable to simulate a multi-agent system using the SeSAm simulator framework. Agent communication is provided by a simple tuple-space database implemented on node level providing fault tolerant access of global data. A novel synthesis development kit (SynDK) based on a graph-structured database approach is introduced to support the rapid development of compilers and synthesis tools, used for example for the design and implementation of the APL compiler.
TOXICITY-BASED CHEMICAL AGENT DETECTION SYSTEMS: CONTINUOUS MONITOR AND EXPOSURE HISTORY
This project will develop and characterize chemical agent detection systems that will provide broad toxicological screening information to first responders and building decontamination personnel. The primary goal for this technology is to detect the presence of airborne chemic...
Vincenot, Christian E
2018-03-14
Progress in understanding and managing complex systems comprised of decision-making agents, such as cells, organisms, ecosystems or societies, is-like many scientific endeavours-limited by disciplinary boundaries. These boundaries, however, are moving and can actively be made porous or even disappear. To study this process, I advanced an original bibliometric approach based on network analysis to track and understand the development of the model-based science of agent-based complex systems (ACS). I analysed research citations between the two communities devoted to ACS research, namely agent-based (ABM) and individual-based modelling (IBM). Both terms refer to the same approach, yet the former is preferred in engineering and social sciences, while the latter prevails in natural sciences. This situation provided a unique case study for grasping how a new concept evolves distinctly across scientific domains and how to foster convergence into a universal scientific approach. The present analysis based on novel hetero-citation metrics revealed the historical development of ABM and IBM, confirmed their past disjointedness, and detected their progressive merger. The separation between these synonymous disciplines had silently opposed the free flow of knowledge among ACS practitioners and thereby hindered the transfer of methodological advances and the emergence of general systems theories. A surprisingly small number of key publications sparked the ongoing fusion between ABM and IBM research. Beside reviews raising awareness of broad-spectrum issues, generic protocols for model formulation and boundary-transcending inference strategies were critical means of science integration. Accessible broad-spectrum software similarly contributed to this change. From the modelling viewpoint, the discovery of the unification of ABM and IBM demonstrates that a wide variety of systems substantiate the premise of ACS research that microscale behaviours of agents and system-level dynamics are inseparably bound. © 2018 The Author(s).
Construction and Evaluation of Animated Teachable Agents
ERIC Educational Resources Information Center
Bodenheimer, Bobby; Williams, Betsy; Kramer, Mattie Ruth; Viswanath, Karun; Balachandran, Ramya; Belynne, Kadira; Biswas, Gautam
2009-01-01
This article describes the design decisions, technical approach, and evaluation of the animation and interface components for an agent-based system that allows learners to learn by teaching. Students learn by teaching an animated agent using a visual representation. The agent can answer questions about what she has been taught and take quizzes.…
Metareasoning and Social Evaluations in Cognitive Agents
NASA Astrophysics Data System (ADS)
Pinyol, Isaac; Sabater-Mir, Jordi
Reputation mechanisms have been recognized one of the key technologies when designing multi-agent systems. They are specially relevant in complex open environments, becoming a non-centralized mechanism to control interactions among agents. Cognitive agents tackling such complex societies must use reputation information not only for selecting partners to interact with, but also in metareasoning processes to change reasoning rules. This is the focus of this paper. We argue about the necessity to allow, as a cognitive systems designers, certain degree of freedom in the reasoning rules of the agents. We also describes cognitive approaches of agency that support this idea. Furthermore, taking as a base the computational reputation model Repage, and its integration in a BDI architecture, we use the previous ideas to specify metarules and processes to modify at run-time the reasoning paths of the agent. In concrete we propose a metarule to update the link between Repage and the belief base, and a metarule and a process to update an axiom incorporated in the belief logic of the agent. Regarding this last issue we also provide empirical results that show the evolution of agents that use it.
NASA Astrophysics Data System (ADS)
Nagata, Takeshi; Tao, Yasuhiro; Utatani, Masahiro; Sasaki, Hiroshi; Fujita, Hideki
This paper proposes a multi-agent approach to maintenance scheduling in restructured power systems. The restructuring of electric power industry has resulted in market-based approaches for unbundling a multitude of service provided by self-interested entities such as power generating companies (GENCOs), transmission providers (TRANSCOs) and distribution companies (DISCOs). The Independent System Operator (ISO) is responsible for the security of the system operation. The schedule submitted to ISO by GENCOs and TRANSCOs should satisfy security and reliability constraints. The proposed method consists of several GENCO Agents (GAGs), TARNSCO Agents (TAGs) and a ISO Agent(IAG). The IAG’s role in maintenance scheduling is limited to ensuring that the submitted schedules do not cause transmission congestion or endanger the system reliability. From the simulation results, it can be seen the proposed multi-agent approach could coordinate between generation and transmission maintenance schedules.
Consentaneous Agent-Based and Stochastic Model of the Financial Markets
Gontis, Vygintas; Kononovicius, Aleksejus
2014-01-01
We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation. PMID:25029364
NASA Astrophysics Data System (ADS)
Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.
2015-12-01
Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.
Knowledge focus via software agents
NASA Astrophysics Data System (ADS)
Henager, Donald E.
2001-09-01
The essence of military Command and Control (C2) is making knowledge intensive decisions in a limited amount of time using uncertain, incorrect, or outdated information. It is essential to provide tools to decision-makers that provide: * Management of friendly forces by treating the "friendly resources as a system". * Rapid assessment of effects of military actions againt the "enemy as a system". * Assessment of how an enemy should, can, and could react to friendly military activities. Software agents in the form of mission agents, target agents, maintenance agents, and logistics agents can meet this information challenge. The role of each agent is to know all the details about its assigned mission, target, maintenance, or logistics entity. The Mission Agent would fight for mission resources based on the mission priority and analyze the effect that a proposed mission's results would have on the enemy. The Target Agent (TA) communicates with other targets to determine its role in the system of targets. A system of TAs would be able to inform a planner or analyst of the status of a system of targets, the effect of that status, adn the effect of attacks on that system. The system of TAs would also be able to analyze possible enemy reactions to attack by determining ways to minimize the effect of attack, such as rerouting traffic or using deception. The Maintenance Agent would scheudle maintenance events and notify the maintenance unit. The Logistics Agent would manage shipment and delivery of supplies to maintain appropriate levels of weapons, fuel and spare parts. The central idea underlying this case of software agents is knowledge focus. Software agents are createad automatically to focus their attention on individual real-world entities (e.g., missions, targets) and view the world from that entities perspective. The agent autonomously monitors the entity, identifies problems/opportunities, formulates solutions, and informs the decision-maker. The agent must be able to communicate to receive and disseminate information and provide the decision-maker with assistance via focused knowledge. THe agent must also be able to monitor the state of its own environment and make decisions necessary to carry out its delegated tasks. Agents bring three elements to the C2 domain that offer to improve decision-making. First, they provide higher-quality feedback and provide it more often. In doing so, the feedback loop becomes nearly continuous, reducing or eliminating delays in situation updates to decision-makers. Working with the most current information possible improves the control process, thus enabling effects based operations. Second, the agents accept delegation of actions and perform those actions following an established process. Agents' consistent actions reduce the variability of human input and stabilize the control process. Third, through the delegation of actions, agents ensure 100 percent consideration of plan details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.
Model of mobile agents for sexual interactions networks
NASA Astrophysics Data System (ADS)
González, M. C.; Lind, P. G.; Herrmann, H. J.
2006-02-01
We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
Learning Sequences of Actions in Collectives of Autonomous Agents
NASA Technical Reports Server (NTRS)
Turner, Kagan; Agogino, Adrian K.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)
2001-01-01
In this paper we focus on the problem of designing a collective of autonomous agents that individually learn sequences of actions such that the resultant sequence of joint actions achieves a predetermined global objective. We are particularly interested in instances of this problem where centralized control is either impossible or impractical. For single agent systems in similar domains, machine learning methods (e.g., reinforcement learners) have been successfully used. However, applying such solutions directly to multi-agent systems often proves problematic, as agents may work at cross-purposes, or have difficulty in evaluating their contribution to achievement of the global objective, or both. Accordingly, the crucial design step in multiagent systems centers on determining the private objectives of each agent so that as the agents strive for those objectives, the system reaches a good global solution. In this work we consider a version of this problem involving multiple autonomous agents in a grid world. We use concepts from collective intelligence to design goals for the agents that are 'aligned' with the global goal, and are 'learnable' in that agents can readily see how their behavior affects their utility. We show that reinforcement learning agents using those goals outperform both 'natural' extensions of single agent algorithms and global reinforcement, learning solutions based on 'team games'.
A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling
NASA Astrophysics Data System (ADS)
Jaxa-Rozen, M.
2016-12-01
The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).
Agent-based modeling: Methods and techniques for simulating human systems
Bonabeau, Eric
2002-01-01
Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407
Multi Agent Systems with Symbiotic Learning and Evolution using GNP
NASA Astrophysics Data System (ADS)
Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi
Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.
Agent-based modeling of the immune system: NetLogo, a promising framework.
Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco
2014-01-01
Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.
Intelligent web agents for a 3D virtual community
NASA Astrophysics Data System (ADS)
Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar
2003-08-01
In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.
Comparative advantage between traditional and smart navigation systems
NASA Astrophysics Data System (ADS)
Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan
2013-03-01
The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).
Liposome-based drug co-delivery systems in cancer cells.
Zununi Vahed, Sepideh; Salehi, Roya; Davaran, Soodabeh; Sharifi, Simin
2017-02-01
Combination therapy and nanotechnology offer a promising therapeutic method in cancer treatment. By improving drug's pharmacokinetics, nanoparticulate systems increase the drug's therapeutic effects while decreasing its adverse side effects related to high dosage. Liposomes are extensively used as drug delivery systems and several liposomal nanomedicines have been approved for clinical applications. In this regard, liposome-based combination chemotherapy (LCC) opens a novel avenue in drug delivery research and has increasingly become a significant approach in clinical cancer treatment. This review paper focuses on LCC strategies including co-delivery of: two chemotherapeutic drugs, chemotherapeutic agent with anti-cancer metals, and chemotherapeutic agent with gene agents and ligand-targeted liposome for co-delivery of chemotherapeutic agents. Definitely, the multidisciplinary method may help improve the efficacy of cancer therapy. An extensive literature review was performed mainly using PubMed. Copyright © 2016 Elsevier B.V. All rights reserved.
Mission planning and simulation via intelligent agents
NASA Technical Reports Server (NTRS)
Gargan, Robert A., Jr.; Tilley, Randall W.
1987-01-01
A system that can operate from a flight manifest to plan and simulate payload preparation and transport via Shuttle flights is described. The design alternatives and the prototype implementation of the payload hardware and inventory tracking system are discussed. It is shown how intelligent agents can be used to generate mission schedules, and how, through the use of these intelligent agents, knowledge becomes separated into small manageable knowledge bases.
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
Agent-based modelling in synthetic biology.
Gorochowski, Thomas E
2016-11-30
Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
2017-01-01
Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques. PMID:28776023
Smart Aerospace eCommerce: Using Intelligent Agents in a NASA Mission Services Ordering Application
NASA Technical Reports Server (NTRS)
Moleski, Walt; Luczak, Ed; Morris, Kim; Clayton, Bill; Scherf, Patricia; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This paper describes how intelligent agent technology was successfully prototyped and then deployed in a smart eCommerce application for NASA. An intelligent software agent called the Intelligent Service Validation Agent (ISVA) was added to an existing web-based ordering application to validate complex orders for spacecraft mission services. This integration of intelligent agent technology with conventional web technology satisfies an immediate NASA need to reduce manual order processing costs. The ISVA agent checks orders for completeness, consistency, and correctness, and notifies users of detected problems. ISVA uses NASA business rules and a knowledge base of NASA services, and is implemented using the Java Expert System Shell (Jess), a fast rule-based inference engine. The paper discusses the design of the agent and knowledge base, and the prototyping and deployment approach. It also discusses future directions and other applications, and discusses lessons-learned that may help other projects make their aerospace eCommerce applications smarter.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Dual Rationality and Deliberative Agents
NASA Astrophysics Data System (ADS)
Debenham, John; Sierra, Carles
Human agents deliberate using models based on reason for only a minute proportion of the decisions that they make. In stark contrast, the deliberation of artificial agents is heavily dominated by formal models based on reason such as game theory, decision theory and logic—despite that fact that formal reasoning will not necessarily lead to superior real-world decisions. Further the Nobel Laureate Friedrich Hayek warns us of the ‘fatal conceit’ in controlling deliberative systems using models based on reason as the particular model chosen will then shape the system’s future and either impede, or eventually destroy, the subtle evolutionary processes that are an integral part of human systems and institutions, and are crucial to their evolution and long-term survival. We describe an architecture for artificial agents that is founded on Hayek’s two rationalities and supports the two forms of deliberation used by mankind.
Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.
Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad
2018-02-12
Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anticancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or - coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and its importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials in the design of efficient nanocarriers for anti-cancer biopharmaceuticals including peptide and proteins or nucleic acid-based therapeutics. Then, the importance of various polysaccharide co-polymers in the drug delivery approaches was illustrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
Consensus-Based Formation Control of a Class of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh; Gonzalez, Oscar R.
2014-01-01
This paper presents a consensus-based formation control scheme for autonomous multi-agent systems represented by double integrator dynamics. Assuming that the information graph topology consists of an undirected connected graph, a leader-based consensus-type control law is presented and shown to provide asymptotic formation stability when subjected to piecewise constant formation velocity commands. It is also shown that global asymptotic stability is preserved in the presence of (0, infinity)- sector monotonic non-decreasing actuator nonlinearities.
Home Energy Management System - VOLTTRON Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zandi, Helia
In most Home Energy Management Systems (HEMS) available in the market, different devices running different communication protocols cannot interact with each other and exchange information. As a result of this integration, the information about different devices running different communication protocol can be accessible by other agents and devices running on VOLTTRON platform. The integration process can be used by any HEMS available in the market regardless of the programming language they use. If the existing HEMS provides an Application Programming Interface (API) based on the RESTFul architecture, that API can be used for integration. Our candidate HEMS in this projectmore » is home-assistant (Hass). An agent is implemented which can communicate with the Hass API and receives information about the devices loaded on the API. The agent publishes the information it receives on the VOLTTRON message bus so other agents can have access to this information. On the other side, for each type of devices, an agent is implemented such as Climate Agent, Lock Agent, Switch Agent, Light Agent, etc. Each of these agents is subscribed to the messages published on the message bus about their associated devices. These agents can also change the status of the devices by sending appropriate service calls to the API. Other agents and services on the platform can also access this information and coordinate their decision-making process based on this information.« less
The Evolution of Sonic Ecosystems
NASA Astrophysics Data System (ADS)
McCormack, Jon
This chapter describes a novel type of artistic artificial life software environment. Agents that have the ability to make and listen to sound populate a synthetic world. An evolvable, rule-based classifier system drives agent behavior. Agents compete for limited resources in a virtual environment that is influenced by the presence and movement of people observing the system. Electronic sensors create a link between the real and virtual spaces, virtual agents evolve implicitly to try to maintain the interest of the human audience, whose presence provides them with life-sustaining food.
Developing framework for agent- based diabetes disease management system: user perspective.
Mohammadzadeh, Niloofar; Safdari, Reza; Rahimi, Azin
2014-02-01
One of the characteristics of agents is mobility which makes them very suitable for remote electronic health and tele medicine. The aim of this study is developing a framework for agent based diabetes information management at national level through identifying required agents. The main tool is a questioner that is designed in three sections based on studying library resources, performance of major organizations in the field of diabetes in and out of the country and interviews with experts in the medical, health information management and software fields. Questionnaires based on Delphi methods were distributed among 20 experts. In order to design and identify agents required in health information management for the prevention and appropriate and rapid treatment of diabetes, the results were analyzed using SPSS 17 and Results were plotted with FREEPLANE mind map software. ACCESS TO DATA TECHNOLOGY IN PROPOSED FRAMEWORK IN ORDER OF PRIORITY IS: mobile (mean 1/80), SMS, EMAIL (mean 2/80), internet, web (mean 3/30), phone (mean 3/60), WIFI (mean 4/60). In delivering health care to diabetic patients, considering social and human aspects is essential. Having a systematic view for implementation of agent systems and paying attention to all aspects such as feedbacks, user acceptance, budget, motivation, hierarchy, useful standards, affordability of individuals, identifying barriers and opportunities and so on, are necessary.
2014-11-05
usable simulations. This procedure was to be tested using real-world data collected from open-source venues. The final system would support rapid...assess social change. Construct is an agent-based dynamic-network simulation system design to allow the user to assess the spread of information and...protest or violence. Technical Challenges Addressed Re‐use: Most agent-based simulation ( ABM ) in use today are one-off. In contrast, we
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
A technology path to tactical agent-based modeling
NASA Astrophysics Data System (ADS)
James, Alex; Hanratty, Timothy P.
2017-05-01
Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.
Stojanovska, Vanesa; McQuade, Rachel; Rybalka, Emma; Nurgali, Kulmira
2017-01-01
Platinum-based anti-cancer agents, which include cisplatin, carboplatin and oxaliplatin, are an important class of drugs used in clinical setting to treat a variety of cancers. The cytotoxic efficacy of these drugs is mediated by the formation of inter-strand and intrastrand crosslinks, or platinum adducts on nuclear DNA. There is also evidence demonstrating that mitochondrial DNA is susceptible to platinum-adduct damage in dorsal root ganglia neurons. Although all platinum-based agents form similar DNA adducts, they are quite different in terms of activation, systemic toxicity and tolerance. Platinum-based agents are well known for their neurotoxicity and gastrointestinal side-effects which are major causes for dose limitation and treatment discontinuation compromising the efficacy of anti-cancer treatment. Accumulating evidence in non-neuronal cells shows that the copper transport system is associated with platinum drug sensitivity and resistance. There is minimal research concerning the role of copper transporters within the central and peripheral nervous systems. It is unclear whether neurons are more sensitive to platinum-based drugs, are insufficient in drug clearance, or whether platinum accumulation affects intracellular copper status and coppermediated functions. Understanding these mechanisms is important as neurotoxicity is the predominant side-effect of platinum-based chemotherapy. This review highlights the role of copper transpor ters in drug influx, differences in drug activation and side-effects caused by platinum-based agents, as well as their association with central and peripheral neuropathies and gastrointestinal toxicities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Delay-dependent coupling for a multi-agent LTI consensus system with inter-agent delays
NASA Astrophysics Data System (ADS)
Qiao, Wei; Sipahi, Rifat
2014-01-01
Delay-dependent coupling (DDC) is considered in this paper in a broadly studied linear time-invariant multi-agent consensus system in which agents communicate with each other under homogeneous delays, while attempting to reach consensus. The coupling among the agents is designed here as an explicit parameter of this delay, allowing couplings to autonomously adapt based on the delay value, and in order to guarantee stability and a certain degree of robustness in the network despite the destabilizing effect of delay. Design procedures, analysis of convergence speed of consensus, comprehensive numerical studies for the case of time-varying delay, and limitations are presented.
An agent based architecture for high-risk neonate management at neonatal intensive care unit.
Malak, Jaleh Shoshtarian; Safdari, Reza; Zeraati, Hojjat; Nayeri, Fatemeh Sadat; Mohammadzadeh, Niloofar; Farajollah, Seide Sedighe Seied
2018-01-01
In recent years, the use of new tools and technologies has decreased the neonatal mortality rate. Despite the positive effect of using these technologies, the decisions are complex and uncertain in critical conditions when the neonate is preterm or has a low birth weight or malformations. There is a need to automate the high-risk neonate management process by creating real-time and more precise decision support tools. To create a collaborative and real-time environment to manage neonates with critical conditions at the NICU (Neonatal Intensive Care Unit) and to overcome high-risk neonate management weaknesses by applying a multi agent based analysis and design methodology as a new solution for NICU management. This study was a basic research for medical informatics method development that was carried out in 2017. The requirement analysis was done by reviewing articles on NICU Decision Support Systems. PubMed, Science Direct, and IEEE databases were searched. Only English articles published after 1990 were included; also, a needs assessment was done by reviewing the extracted features and current processes at the NICU environment where the research was conducted. We analyzed the requirements and identified the main system roles (agents) and interactions by a comparative study of existing NICU decision support systems. The Universal Multi Agent Platform (UMAP) was applied to implement a prototype of our multi agent based high-risk neonate management architecture. Local environment agents interacted inside a container and each container interacted with external resources, including other NICU systems and consultation centers. In the NICU container, the main identified agents were reception, monitoring, NICU registry, and outcome prediction, which interacted with human agents including nurses and physicians. Managing patients at the NICU units requires online data collection, real-time collaboration, and management of many components. Multi agent systems are applied as a well-known solution for management, coordination, modeling, and control of NICU processes. We are currently working on an outcome prediction module using artificial intelligence techniques for neonatal mortality risk prediction. The full implementation of the proposed architecture and evaluation is considered the future work.
A spatial web/agent-based model to support stakeholders' negotiation regarding land development.
Pooyandeh, Majeed; Marceau, Danielle J
2013-11-15
Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second scenario. The proposed web/agent-based model facilitates the interaction and learning among stakeholders when facing multiple alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.
An integrative assessment of the commercial air transportation system via adaptive agents
NASA Astrophysics Data System (ADS)
Lim, Choon Giap
The overarching research objective is to address the tightly-coupled interactions between the demand-side and supply-side components of the United States Commercial Air Transportation System (CATS) in a time-variant environment. A system-of-system perspective is adopted, where the scope is extended beyond the National Airspace System (NAS) level to the National Transportation System (NTS) level to capture the intermodal and multimodal relationships between the NTS stakeholders. The Agent-Based Modeling and Simulation technique is employed where the NTS/NAS is treated as an integrated Multi-Agent System comprising of consumer and service provider agents, representing the demand-side and supply-side components respectively. Successful calibration and validation of both model components against the observable real world data resulted in a CATS simulation tool where the aviation demand is estimated from socioeconomic and demographic properties of the population instead of merely based on enplanement growth multipliers. This valuable achievement enabled a 20-year outlook simulation study to investigate the implications of a global fuel price hike on the airline industry and the U.S. CATS at large. Simulation outcomes revealed insights into the airline competitive behaviors and the subsequent responses from transportation consumers.
Origin of Money: Dynamic Duality Between Necessity and Unnecessity
NASA Astrophysics Data System (ADS)
Tauchi, Yuka; Kamiura, Moto; Haruna, Taichi; Gunji, Yukio-Pegio
2008-10-01
We propose a mathematical model of economic agents to study origin of money. This multi-agent model is based on commodity theory of money, which says that a commodity used as money emerges from barter transaction. Each agent has a different value system which is given by a Heyting algebra, and exchanges one's commodities based on the value system. In each value system, necessity and unnecessity of commodities are expressed by some elements and their compliments on a Heyting Algebra. Moreover, the concept of the compliment is extended. Consequently, the duality of the necessity-unnecessity is weakened, and the exchanges of the commodities are promoted. The commodities which keeps being exchanged for a long time can correspond to money.
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Biocompatible blood pool MRI contrast agents based on hyaluronan
Zhu, Wenlian; Artemov, Dmitri
2010-01-01
Biocompatible gadolinium blood pool contrast agents based on a biopolymer, hyaluronan, were investigated for magnetic resonance angiography application. Hyaluronan, a non-sulfated linear glucosaminoglycan composed of 2000–25,000 repeating disaccharide subunits of D-glucuronic acid and N-acetylglucosamine with molecular weight up to 20 MDa, is a major component of the extracellular matrix. Two gadolinium contrast agents based on 16 and 74 kDa hyaluronan were synthesized, both with R1 relaxivity around 5 mM−1 s−1 per gadolinium at 9.4 T at 25°C. These two hyaluronan based agents show significant enhancement of the vasculature for an extended period of time. Initial excretion was primarily through the renal system. Later uptake was observed in the stomach and lower gastrointestinal tract. Macromolecular hyaluronan-based gadolinium agents have a high clinical translation potential as hyaluronan is already approved by FDA for a variety of medical applications. PMID:21504061
A physical data model for fields and agents
NASA Astrophysics Data System (ADS)
de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek
2016-04-01
Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
NASA Astrophysics Data System (ADS)
Zhang, Zhong
In this work, motivated by the need to coordinate transmission maintenance scheduling among a multiplicity of self-interested entities in restructured power industry, a distributed decision support framework based on multiagent negotiation systems (MANS) is developed. An innovative risk-based transmission maintenance optimization procedure is introduced. Several models for linking condition monitoring information to the equipment's instantaneous failure probability are presented, which enable quantitative evaluation of the effectiveness of maintenance activities in terms of system cumulative risk reduction. Methodologies of statistical processing, equipment deterioration evaluation and time-dependent failure probability calculation are also described. A novel framework capable of facilitating distributed decision-making through multiagent negotiation is developed. A multiagent negotiation model is developed and illustrated that accounts for uncertainty and enables social rationality. Some issues of multiagent negotiation convergence and scalability are discussed. The relationships between agent-based negotiation and auction systems are also identified. A four-step MAS design methodology for constructing multiagent systems for power system applications is presented. A generic multiagent negotiation system, capable of inter-agent communication and distributed decision support through inter-agent negotiations, is implemented. A multiagent system framework for facilitating the automated integration of condition monitoring information and maintenance scheduling for power transformers is developed. Simulations of multiagent negotiation-based maintenance scheduling among several independent utilities are provided. It is shown to be a viable alternative solution paradigm to the traditional centralized optimization approach in today's deregulated environment. This multiagent system framework not only facilitates the decision-making among competing power system entities, but also provides a tool to use in studying competitive industry relative to monopolistic industry.
Constructing Agent Model for Virtual Training Systems
NASA Astrophysics Data System (ADS)
Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru
Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.
Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhao, T. H.; Yin, Z.; Song, Y. Z.
2012-11-01
The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.
Low-temperature thermally regenerative electrochemical system
Loutfy, R.O.; Brown, A.P.; Yao, N.P.
1982-04-21
A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
Low temperature thermally regenerative electrochemical system
Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping
1983-01-01
A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So
2009-01-01
Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.
Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.
ERIC Educational Resources Information Center
Solomos, Konstantinos; Avouris, Nikolaos
1999-01-01
Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)
Market-oriented Programming Using Small-world Networks for Controlling Building Environments
NASA Astrophysics Data System (ADS)
Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa
The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.
Plan execution monitoring with distributed intelligent agents for battle command
NASA Astrophysics Data System (ADS)
Allen, James P.; Barry, Kevin P.; McCormick, John M.; Paul, Ross A.
2004-07-01
As military tactics evolve toward execution centric operations the ability to analyze vast amounts of mission relevant data is essential to command and control decision making. To maintain operational tempo and achieve information superiority we have developed Vigilant Advisor, a mobile agent-based distributed Plan Execution Monitoring system. It provides military commanders with continuous contingency monitoring tailored to their preferences while overcoming the network bandwidth problem often associated with traditional remote data querying. This paper presents an overview of Plan Execution Monitoring as well as a detailed view of the Vigilant Advisor system including key features and statistical analysis of resource savings provided by its mobile agent-based approach.
Global optimization of minority game by intelligent agents
NASA Astrophysics Data System (ADS)
Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao
2005-10-01
We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.
Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.
Kovanis, Michail; Porcher, Raphaël; Ravaud, Philippe; Trinquart, Ludovic
Scientific peer-review and publication systems incur a huge burden in terms of costs and time. Innovative alternatives have been proposed to improve the systems, but assessing their impact in experimental studies is not feasible at a systemic level. We developed an agent-based model by adopting a unified view of peer review and publication systems and calibrating it with empirical journal data in the biomedical and life sciences. We modeled researchers, research manuscripts and scientific journals as agents. Researchers were characterized by their scientific level and resources, manuscripts by their scientific value, and journals by their reputation and acceptance or rejection thresholds. These state variables were used in submodels for various processes such as production of articles, submissions to target journals, in-house and external peer review, and resubmissions. We collected data for a sample of biomedical and life sciences journals regarding acceptance rates, resubmission patterns and total number of published articles. We adjusted submodel parameters so that the agent-based model outputs fit these empirical data. We simulated 105 journals, 25,000 researchers and 410,000 manuscripts over 10 years. A mean of 33,600 articles were published per year; 19 % of submitted manuscripts remained unpublished. The mean acceptance rate was 21 % after external peer review and rejection rate 32 % after in-house review; 15 % publications resulted from the first submission, 47 % the second submission and 20 % the third submission. All decisions in the model were mainly driven by the scientific value, whereas journal targeting and persistence in resubmission defined whether a manuscript would be published or abandoned after one or many rejections. This agent-based model may help in better understanding the determinants of the scientific publication and peer-review systems. It may also help in assessing and identifying the most promising alternative systems of peer review.
Resilient distributed control in the presence of misbehaving agents in networked control systems.
Zeng, Wente; Chow, Mo-Yuen
2014-11-01
In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.
Integration of the Remote Agent for the NASA Deep Space One Autonomy Experiment
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Bernard, Douglas E.; Gamble, Edward B., Jr.; Kanefsky, Bob; Kurien, James; Muscettola, Nicola; Nayak, P. Pandurang; Rajan, Kanna; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes the integration of the Remote Agent (RA), a spacecraft autonomy system which is scheduled to control the Deep Space 1 spacecraft during a flight experiment in 1999. The RA is a reusable, model-based autonomy system that is quite different from software typically used to control an aerospace system. We describe the integration challenges we faced, how we addressed them, and the lessons learned. We focus on those aspects of integrating the RA that were either easier or more difficult than integrating a more traditional large software application because the RA is a model-based autonomous system. A number of characteristics of the RA made integration process easier. One example is the model-based nature of RA. Since the RA is model-based, most of its behavior is not hard coded into procedural program code. Instead, engineers specify high level models of the spacecraft's components from which the Remote Agent automatically derives correct system-wide behavior on the fly. This high level, modular, and declarative software description allowed some interfaces between RA components and between RA and the flight software to be automatically generated and tested for completeness against the Remote Agent's models. In addition, the Remote Agent's model-based diagnosis system automatically diagnoses when the RA models are not consistent with the behavior of the spacecraft. In flight, this feature is used to diagnose failures in the spacecraft hardware. During integration, it proved valuable in finding problems in the spacecraft simulator or flight software. In addition, when modifications are made to the spacecraft hardware or flight software, the RA models are easily changed because they only capture a description of the spacecraft. one does not have to maintain procedural code that implements the correct behavior for every expected situation. On the other hand, several features of the RA made it more difficult to integrate than typical flight software. For example, the definition of correct behavior is more difficult to specify for a system that is expected to reason about and flexibly react to its environment than for a traditional flight software system. Consequently, whenever a change is made to the RA it is more time consuming to determine if the resulting behavior is correct. We conclude the paper with a discussion of future work on the Remote Agent as well as recommendations to ease integration of similar autonomy projects.
A practical approach for active camera coordination based on a fusion-driven multi-agent system
NASA Astrophysics Data System (ADS)
Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.
2014-04-01
In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.
ICCE/ICCAI 2000 Full & Short Papers (Educational Agent).
ERIC Educational Resources Information Center
2000
This document contains the full text of the following papers on educational agent from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "An Agent-Based Intelligent Tutoring System" (C.M. Bruff and M.A. Williams); (2) "Design of Systematic Concept…
Role-based access control permissions
Staggs, Kevin P.; Markham, Thomas R.; Hull Roskos, Julie J.; Chernoguzov, Alexander
2017-04-25
Devices, systems, and methods for role-based access control permissions are disclosed. One method includes a policy decision point that receives up-to-date security context information from one or more outside sources to determine whether to grant access for a data client to a portion of the system and creates an access vector including the determination; receiving, via a policy agent, a request by the data client for access to the portion of the computing system by the data client, wherein the policy agent checks to ensure there is a session established with communications and user/application enforcement points; receiving, via communications policy enforcement point, the request from the policy agent, wherein the communications policy enforcement point determines whether the data client is an authorized node, based upon the access vector received from the policy decision point; and receiving, via the user/application policy enforcement point, the request from the communications policy enforcement point.
NASA Astrophysics Data System (ADS)
Park, Sangsoo; Miura, Yushi; Ise, Toshifumi
This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.
Model of load balancing using reliable algorithm with multi-agent system
NASA Astrophysics Data System (ADS)
Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.
2017-04-01
Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.
A coupled modeling framework for sustainable watershed management in transboundary river basins
NASA Astrophysics Data System (ADS)
Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia
2017-12-01
There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco-hydrological indicators at both the agent and basin-wide levels to shed light on holistic FWEE management policies in these two basins.
Analysis of decentralized variable structure control for collective search by mobile robots
NASA Astrophysics Data System (ADS)
Goldsmith, Steven Y.; Feddema, John T.; Robinett, Rush D., III
1998-10-01
This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha- beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roles. In an alpha- beta team, alpha agents are motivated to improve their status by exploring new regions of the search space. Beta agents are conservative, and rely on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its current role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws. In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha- beta algorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.
Simulating Microdosimetry of Environmental Chemicals for EPA’s Virtual Liver
US EPA Virtual Liver (v-Liver) is a cellular systems model of hepatic tissues aimed at predicting chemical-induced adverse effects through agent-based modeling. A primary objective of the project is to extrapolate in vitro data to in vivo outcomes. Agent-based approaches to tissu...
Formalizing the role of agent-based modeling in causal inference and epidemiology.
Marshall, Brandon D L; Galea, Sandro
2015-01-15
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Using an agent-based model to analyze the dynamic communication network of the immune response
2011-01-01
Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes. Conclusions An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies. PMID:21247471
[Gadolinium-based contrast agents for magnetic resonance imaging].
Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J
2014-06-01
Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.
Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun; Niu, Hongli
2015-10-01
Based on the epidemic dynamical system, we construct a new agent-based financial time series model. In order to check and testify its rationality, we compare the statistical properties of the time series model with the real stock market indices, Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Component Index. For analyzing the statistical properties, we combine the multi-parameter analysis with the tail distribution analysis, the modified rescaled range analysis, and the multifractal detrended fluctuation analysis. For a better perspective, the three-dimensional diagrams are used to present the analysis results. The empirical research in this paper indicates that the long-range dependence property and the multifractal phenomenon exist in the real returns and the proposed model. Therefore, the new agent-based financial model can recurrence some important features of real stock markets.
MonALISA, an agent-based monitoring and control system for the LHC experiments
NASA Astrophysics Data System (ADS)
Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.
2017-10-01
MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.
A Multi Agent Based Approach for Prehospital Emergency Management.
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-07-01
To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement.
A Multi Agent Based Approach for Prehospital Emergency Management
Safdari, Reza; Shoshtarian Malak, Jaleh; Mohammadzadeh, Niloofar; Danesh Shahraki, Azimeh
2017-01-01
Objective: To demonstrate an architecture to automate the prehospital emergency process to categorize the specialized care according to the situation at the right time for reducing the patient mortality and morbidity. Methods: Prehospital emergency process were analyzed using existing prehospital management systems, frameworks and the extracted process were modeled using sequence diagram in Rational Rose software. System main agents were identified and modeled via component diagram, considering the main system actors and by logically dividing business functionalities, finally the conceptual architecture for prehospital emergency management was proposed. The proposed architecture was simulated using Anylogic simulation software. Anylogic Agent Model, State Chart and Process Model were used to model the system. Results: Multi agent systems (MAS) had a great success in distributed, complex and dynamic problem solving environments, and utilizing autonomous agents provides intelligent decision making capabilities. The proposed architecture presents prehospital management operations. The main identified agents are: EMS Center, Ambulance, Traffic Station, Healthcare Provider, Patient, Consultation Center, National Medical Record System and quality of service monitoring agent. Conclusion: In a critical condition like prehospital emergency we are coping with sophisticated processes like ambulance navigation health care provider and service assignment, consultation, recalling patients past medical history through a centralized EHR system and monitoring healthcare quality in a real-time manner. The main advantage of our work has been the multi agent system utilization. Our Future work will include proposed architecture implementation and evaluation of its impact on patient quality care improvement. PMID:28795061
Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation
NASA Astrophysics Data System (ADS)
Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.
2014-12-01
Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.
A Scalable and Robust Multi-Agent Approach to Distributed Optimization
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.
Enterprise Management Network Architecture Distributed Knowledge Base Support
1990-11-01
Advantages Potentially, this makes a distributed system more powerful than a conventional, centralized one in two ways: " First, it can be more reliable...does not completely apply [35]. The grain size of the processors measures the individual problem-solving power of the agents. In this definition...problem-solving power amounts to the conceptual size of a single action taken by an agent visible to the other agents in the system. If the grain is coarse
An Agent-Based Model for Studying Child Maltreatment and Child Maltreatment Prevention
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard W.
This paper presents an agent-based model that simulates the dynamics of child maltreatment and child maltreatment prevention. The developed model follows the principles of complex systems science and explicitly models a community and its families with multi-level factors and interconnections across the social ecology. This makes it possible to experiment how different factors and prevention strategies can affect the rate of child maltreatment. We present the background of this work and give an overview of the agent-based model and show some simulation results.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Study on system dynamics of evolutionary mix-game models
NASA Astrophysics Data System (ADS)
Gou, Chengling; Guo, Xiaoqian; Chen, Fang
2008-11-01
Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.
Emergence of heterogeneity and political organization in information exchange networks
NASA Astrophysics Data System (ADS)
Guttenberg, Nicholas; Goldenfeld, Nigel
2010-04-01
We present a simple model of the emergence of the division of labor and the development of a system of resource subsidy from an agent-based model of directed resource production with variable degrees of trust between the agents. The model has three distinct phases corresponding to different forms of societal organization: disconnected (independent agents), homogeneous cooperative (collective state), and inhomogeneous cooperative (collective state with a leader). Our results indicate that such levels of organization arise generically as a collective effect from interacting agent dynamics and may have applications in a variety of systems including social insects and microbial communities.
Ultraviolet Raman scattering from persistent chemical warfare agents
NASA Astrophysics Data System (ADS)
Kullander, Fredrik; Wästerby, Pär.; Landström, Lars
2016-05-01
Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.
Emergence of heterogeneity and political organization in information exchange networks.
Guttenberg, Nicholas; Goldenfeld, Nigel
2010-04-01
We present a simple model of the emergence of the division of labor and the development of a system of resource subsidy from an agent-based model of directed resource production with variable degrees of trust between the agents. The model has three distinct phases corresponding to different forms of societal organization: disconnected (independent agents), homogeneous cooperative (collective state), and inhomogeneous cooperative (collective state with a leader). Our results indicate that such levels of organization arise generically as a collective effect from interacting agent dynamics and may have applications in a variety of systems including social insects and microbial communities.
NASA Astrophysics Data System (ADS)
Shughrue, C. M.; Werner, B.; Nugnug, P. T.
2010-12-01
The catastrophic Deepwater Horizon oil spill highlights the risks for widespread environmental damage resulting from petroleum resource extraction. Possibilities for amelioration of these risks depend critically on understanding the dynamics and nonlinear interactions between various components of the coupled human-environmental resource extraction system. We use a complexity analysis to identify the levels of description and time scales at which these interactions are strongest, and then use the analysis as the basis for an agent-based numerical model with which decadal trends can be analyzed. Oil industry economic and technological activity and associated oil spills are components of a complex system that is coupled to natural environment, legislation, regulation, media, and resistance systems over annual to decadal time scales. In the model, oil spills are produced stochastically with a range of magnitudes depending on a reliability-engineering-based assessment of failure for the technology employed, human factors including compliance with operating procedures, and risks associated with the drilling environment. Oil industry agents determine drilling location and technological investment using a cost-benefit analysis relating projected revenue from added production to technology cost and government regulation. Media outlet agents reporting on the oil industry and environmental damage from oil spills assess the impacts of aggressively covering a story on circulation increases, advertiser concerns and potential loss of information sources. Environmental advocacy group agents increase public awareness of environmental damage (through media and public contact), solicit memberships and donations, and apply direct pressure on legislators for policy change. Heterogeneous general public agents adjust their desire for change in the level of regulation, contact their representatives or participate in resistance via protest by considering media sources, personal experiences with oil spills and individual predispositions toward the industry. Legislator agents pass legislation and influence regulator agents based on interaction with oil industry, media and general public agents. Regulator agents generate and enforce regulations by responding to pressure from legislator and oil industry agents. Oil spill impacts on the natural environment are related to number and magnitude of spills, drilling locations, and spill response methodology, determined collaboratively by government and oil company agents. Agents at the corporate and government levels use heterogeneous prediction models combined with a constant absolute risk aversion utility for wealth. This model simulates a nonlinear adaptive system with mechanisms to self-regulate oil industry activity, environmental damage and public response. A comparison of model output with historical oil industry development and environmental damage; the sensitivity of oil spill damage to economic, political and social factors; the potential for the emergence of new and possibly unstable behaviors; and opportunities for intervening in system dynamics to alter expected outcomes will be discussed. Supported by NSF: Geomorphology and Land Use Dynamics Program
Environmental dilemma game to establish a sustainable society dealing with an emergent value system
NASA Astrophysics Data System (ADS)
Tanimoto, Jun
2005-01-01
To induce whether we can obtain a sustainable society by shifting our paradigm from the materialistic to the eco-conscientious, we established a multi-agent simulation model. The model primarily featured a dilemma structure encouraged by a conflict between each agent's private desire to earn more and the need for environmental conservation. Another important feature is that the model has two evolutionary layers. The subordinate layer is a learning system comprised of a finite state machine (FSM) and a genetic algorithm (GA) primarily, which is carried with each individual agent to determine his/her next behavior and how much he/she must earn to maximize an individual fitness function. The supra layer is the so-called value system, the gene pool of which is shared within the society. The value system stipulates an agent's fitness function, which in turn affects the agent's behavior. The value system of each agent was set up to be entirely ego-oriented at the beginning of the simulation episode. A numerical experiment based on the model reveals a scene in which, under a certain condition related to assumptions of the value system, a group of agents undergoes a paradigm shift from the ego-oriented materialism to the eco-conscious sustainable society. The key condition is a latent existence of several values that ultimately lead to sustainability, even though they do not work at all at the beginning of the episode. In terms of the evolutionary game theory, this implies that changing game structure on the way of a simulation episode by transforming the fitness function seems to be much powerful measures for the emergent collective cooperation among the agents than ordinal options to support cooperation. In addition, we made a detailed analysis on how assumed agents have obtained a sustainable value system. Each agent has an individual decision-making process based on the input with a learning mechanism. We focus here on two types of learning system, the finite state machine (FSM) plus genetic algorithm (GA), and profit shearing (PS). Observation of the generative trails of FSM and the value table of PS lead us to a profound understanding of what kind of inception triggers the emergence of a sustainable society.
A study on agent-based secure scheme for electronic medical record system.
Chen, Tzer-Long; Chung, Yu-Fang; Lin, Frank Y S
2012-06-01
Patient records, including doctors' diagnoses of diseases, trace of treatments and patients' conditions, nursing actions, and examination results from allied health profession departments, are the most important medical records of patients in medical systems. With patient records, medical staff can instantly understand the entire medical information of a patient so that, according to the patient's conditions, more accurate diagnoses and more appropriate in-depth treatments can be provided. Nevertheless, in such a modern society with booming information technologies, traditional paper-based patient records have faced a lot of problems, such as lack of uniform formats, low data mobility, slow data transfer, illegible handwritings, enormous and insufficient storage space, difficulty of conservation, being easily damaged, and low transferability. To improve such drawbacks, reduce medical costs, and advance medical quality, paper-based patient records are modified into electronic medical records and reformed into electronic patient records. However, since electronic patient records used in various hospitals are diverse and different, in consideration of cost, it is rather difficult to establish a compatible and complete integrated electronic patient records system to unify patient records from heterogeneous systems in hospitals. Moreover, as the booming of the Internet, it is no longer necessary to build an integrated system. Instead, doctors can instantly look up patients' complete information through the Internet access to electronic patient records as well as avoid the above difficulties. Nonetheless, the major problem of accessing to electronic patient records cross-hospital systems exists in the security of transmitting and accessing to the records in case of unauthorized medical personnels intercepting or stealing the information. This study applies the Mobile Agent scheme to cope with the problem. Since a Mobile Agent is a program, which can move among hosts and automatically disperse arithmetic processes, and moves from one host to another in heterogeneous network systems with the characteristics of autonomy and mobility, decreasing network traffic, reducing transfer lag, encapsulating protocol, availability on heterogeneous platforms, fault-tolerance, high flexibility, and personalization. However, since a Mobile Agent contacts and exchanges information with other hosts or agents on the Internet for rapid exchange and access to medical information, the security is threatened. In order to solve the problem, this study proposes a key management scheme based on Lagrange interpolation formulas and hierarchical management structure to make Mobile Agents a more secure and efficient access control scheme for electronic patient record systems when applied to the access of patients' personal electronic patient records cross hospitals. Meanwhile, with the comparison of security and efficacy analyses being the feasibility of validation scheme and the basis of better efficiency, the security of Mobile Agents in the process of operation can be guaranteed, key management efficacy can be advanced, and the security of the Mobile Agent system can be protected.
Managing the Evolution of an Enterprise Architecture using a MAS-Product-Line Approach
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Resinas, manuel; Sterritt, Roy; Rash, James L.
2006-01-01
We view an evolutionary system ns being n software product line. The core architecture is the unchanging part of the system, and each version of the system may be viewed as a product from the product line. Each "product" may be described as the core architecture with sonre agent-based additions. The result is a multiagent system software product line. We describe an approach to such n Software Product Line-based approach using the MaCMAS Agent-Oriented nzethoclology. The approach scales to enterprise nrchitectures as a multiagent system is an approprinre means of representing a changing enterprise nrchitectclre nnd the inferaction between components in it.
Modeling of a production system using the multi-agent approach
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Sękala, A.; Banaś, W.
2017-08-01
The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the other type of agent that are utilized in the described simulation. The article presents the idea of an integrated program approach and shows the resulting production layout as a virtual model. This model was developed in the NetLogo multi-agent program environment.
Learning Agents for Autonomous Space Asset Management (LAASAM)
NASA Astrophysics Data System (ADS)
Scally, L.; Bonato, M.; Crowder, J.
2011-09-01
Current and future space systems will continue to grow in complexity and capabilities, creating a formidable challenge to monitor, maintain, and utilize these systems and manage their growing network of space and related ground-based assets. Integrated System Health Management (ISHM), and in particular, Condition-Based System Health Management (CBHM), is the ability to manage and maintain a system using dynamic real-time data to prioritize, optimize, maintain, and allocate resources. CBHM entails the maintenance of systems and equipment based on an assessment of current and projected conditions (situational and health related conditions). A complete, modern CBHM system comprises a number of functional capabilities: sensing and data acquisition; signal processing; conditioning and health assessment; diagnostics and prognostics; and decision reasoning. In addition, an intelligent Human System Interface (HSI) is required to provide the user/analyst with relevant context-sensitive information, the system condition, and its effect on overall situational awareness of space (and related) assets. Colorado Engineering, Inc. (CEI) and Raytheon are investigating and designing an Intelligent Information Agent Architecture that will provide a complete range of CBHM and HSI functionality from data collection through recommendations for specific actions. The research leverages CEI’s expertise with provisioning management network architectures and Raytheon’s extensive experience with learning agents to define a system to autonomously manage a complex network of current and future space-based assets to optimize their utilization.
NASA Astrophysics Data System (ADS)
Brax, Christoffer; Niklasson, Lars
2009-05-01
Maritime Domain Awareness is important for both civilian and military applications. An important part of MDA is detection of unusual vessel activities such as piracy, smuggling, poaching, collisions, etc. Today's interconnected sensorsystems provide us with huge amounts of information over large geographical areas which can make the operators reach their cognitive capacity and start to miss important events. We propose and agent-based situation management system that automatically analyse sensor information to detect unusual activity and anomalies. The system combines knowledge-based detection with data-driven anomaly detection. The system is evaluated using information from both radar and AIS sensors.
Wiltshire, Serge W
2018-01-01
An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents' contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments-defined by one-phase, two-phase, and three-phase production systems-a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer-producer edges may be largely responsible for the superior disease resilience of single-phase "farrow to finish" production systems.
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Pena, Joaquin (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which an evolutionary system is managed and viewed as a software product line. In some embodiments, the core architecture is a relatively unchanging part of the system, and each version of the system is viewed as a product from the product line. Each software product is generated from the core architecture with some agent-based additions. The result may be a multi-agent system software product line.
Research and application of multi-agent genetic algorithm in tower defense game
NASA Astrophysics Data System (ADS)
Jin, Shaohua
2018-04-01
In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.
A Distributed Intelligent E-Learning System
ERIC Educational Resources Information Center
Kristensen, Terje
2016-01-01
An E-learning system based on a multi-agent (MAS) architecture combined with the Dynamic Content Manager (DCM) model of E-learning, is presented. We discuss the benefits of using such a multi-agent architecture. Finally, the MAS architecture is compared with a pure service-oriented architecture (SOA). This MAS architecture may also be used within…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.
Potential Use of Alginate-Based Carriers As Antifungal Delivery System
Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly
2017-01-01
Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145
Consensus for second-order multi-agent systems with position sampled data
NASA Astrophysics Data System (ADS)
Wang, Rusheng; Gao, Lixin; Chen, Wenhai; Dai, Dameng
2016-10-01
In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated. The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13F030005) and the National Natural Science Foundation of China (Grant No. 61501331).
Enabling private and public sector organizations as agents of homeland security
NASA Astrophysics Data System (ADS)
Glassco, David H. J.; Glassco, Jordan C.
2006-05-01
Homeland security and defense applications seek to reduce the risk of undesirable eventualities across physical space in real-time. With that functional requirement in mind, our work focused on the development of IP based agent telecommunication solutions for heterogeneous sensor / robotic intelligent "Things" that could be deployed across the internet. This paper explains how multi-organization information and device sharing alliances may be formed to enable organizations to act as agents of homeland security (in addition to other uses). Topics include: (i) using location-aware, agent based, real-time information sharing systems to integrate business systems, mobile devices, sensor and actuator based devices and embedded devices used in physical infrastructure assets, equipment and other man-made "Things"; (ii) organization-centric real-time information sharing spaces using on-demand XML schema formatted networks; (iii) object-oriented XML serialization as a methodology for heterogeneous device glue code; (iv) how complex requirements for inter / intra organization information and device ownership and sharing, security and access control, mobility and remote communication service, tailored solution life cycle management, service QoS, service and geographic scalability and the projection of remote physical presence (through sensing and robotics) and remote informational presence (knowledge of what is going elsewhere) can be more easily supported through feature inheritance with a rapid agent system development methodology; (v) how remote object identification and tracking can be supported across large areas; (vi) how agent synergy may be leveraged with analytics to complement heterogeneous device networks.
A multi-agent architecture for geosimulation of moving agents
NASA Astrophysics Data System (ADS)
Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem
2015-10-01
In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.
NASA Astrophysics Data System (ADS)
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
Distributed event-triggered consensus strategy for multi-agent systems under limited resources
NASA Astrophysics Data System (ADS)
Noorbakhsh, S. Mohammad; Ghaisari, Jafar
2016-01-01
The paper proposes a distributed structure to address an event-triggered consensus problem for multi-agent systems which aims at concurrent reduction in inter-agent communication, control input actuation and energy consumption. Following the proposed approach, asymptotic convergence of all agents to consensus requires that each agent broadcasts its sampled-state to the neighbours and updates its control input only at its own triggering instants, unlike the existing related works. Obviously, it decreases the network bandwidth usage, sensor energy consumption, computation resources usage and actuator wears. As a result, it facilitates the implementation of the proposed consensus protocol in the real-world applications with limited resources. The stability of the closed-loop system under an event-based protocol is proved analytically. Some numerical results are presented which confirm the analytical discussion on the effectiveness of the proposed design.
Protecting software agents from malicious hosts using quantum computing
NASA Astrophysics Data System (ADS)
Reisner, John; Donkor, Eric
2000-07-01
We evaluate how quantum computing can be applied to security problems for software agents. Agent-based computing, which merges technological advances in artificial intelligence and mobile computing, is a rapidly growing domain, especially in applications such as electronic commerce, network management, information retrieval, and mission planning. System security is one of the more eminent research areas in agent-based computing, and the specific problem of protecting a mobile agent from a potentially hostile host is one of the most difficult of these challenges. In this work, we describe our agent model, and discuss the capabilities and limitations of classical solutions to the malicious host problem. Quantum computing may be extremely helpful in addressing the limitations of classical solutions to this problem. This paper highlights some of the areas where quantum computing could be applied to agent security.
iCrowd: agent-based behavior modeling and crowd simulator
NASA Astrophysics Data System (ADS)
Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.
2016-05-01
Initially designed in the context of the TASS (Total Airport Security System) FP-7 project, the Crowd Simulation platform developed by the Integrated Systems Lab of the Institute of Informatics and Telecommunications at N.C.S.R. Demokritos, has evolved into a complete domain-independent agent-based behavior simulator with an emphasis on crowd behavior and building evacuation simulation. Under continuous development, it reflects an effort to implement a modern, multithreaded, data-oriented simulation engine employing latest state-of-the-art programming technologies and paradigms. It is based on an extensible architecture that separates core services from the individual layers of agent behavior, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal is to deliver an abstract platform to facilitate implementation of several Agent-Based Simulation solutions with applicability in several domains of knowledge, such as: (i) Crowd behavior simulation during [in/out] door evacuation. (ii) Non-Player Character AI for Game-oriented applications and Gamification activities. (iii) Vessel traffic modeling and simulation for Maritime Security and Surveillance applications. (iv) Urban and Highway Traffic and Transportation Simulations. (v) Social Behavior Simulation and Modeling.
Agent-Based Crowd Simulation Considering Emotion Contagion for Emergency Evacuation Problem
NASA Astrophysics Data System (ADS)
Faroqi, H.; Mesgari, M.-S.
2015-12-01
During emergencies, emotions greatly affect human behaviour. For more realistic multi-agent systems in simulations of emergency evacuations, it is important to incorporate emotions and their effects on the agents. In few words, emotional contagion is a process in which a person or group influences the emotions or behavior of another person or group through the conscious or unconscious induction of emotion states and behavioral attitudes. In this study, we simulate an emergency situation in an open square area with three exits considering Adults and Children agents with different behavior. Also, Security agents are considered in order to guide Adults and Children for finding the exits and be calm. Six levels of emotion levels are considered for each agent in different scenarios and situations. The agent-based simulated model initialize with the random scattering of agent populations and then when an alarm occurs, each agent react to the situation based on its and neighbors current circumstances. The main goal of each agent is firstly to find the exit, and then help other agents to find their ways. Numbers of exited agents along with their emotion levels and damaged agents are compared in different scenarios with different initialization in order to evaluate the achieved results of the simulated model. NetLogo 5.2 is used as the multi-agent simulation framework with R language as the developing language.
Multiagent intelligent systems
NASA Astrophysics Data System (ADS)
Krause, Lee S.; Dean, Christopher; Lehman, Lynn A.
2003-09-01
This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of "what if" analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the "family" would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent "publishes" its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.
Model-free learning on robot kinematic chains using a nested multi-agent topology
NASA Astrophysics Data System (ADS)
Karigiannis, John N.; Tzafestas, Costas S.
2016-11-01
This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state-action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.
NASA Astrophysics Data System (ADS)
Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana
2013-10-01
Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.
Using Ontologies to Formalize Services Specifications in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann
2004-01-01
One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.
This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less
Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.
2016-08-10
This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less
NASA Astrophysics Data System (ADS)
Ramalingam, Srikumar
2001-11-01
A highly secure mobile agent system is very important for a mobile computing environment. The security issues in mobile agent system comprise protecting mobile hosts from malicious agents, protecting agents from other malicious agents, protecting hosts from other malicious hosts and protecting agents from malicious hosts. Using traditional security mechanisms the first three security problems can be solved. Apart from using trusted hardware, very few approaches exist to protect mobile code from malicious hosts. Some of the approaches to solve this problem are the use of trusted computing, computing with encrypted function, steganography, cryptographic traces, Seal Calculas, etc. This paper focuses on the simulation of some of these existing techniques in the designed mobile language. Some new approaches to solve malicious network problem and agent tampering problem are developed using public key encryption system and steganographic concepts. The approaches are based on encrypting and hiding the partial solutions of the mobile agents. The partial results are stored and the address of the storage is destroyed as the agent moves from one host to another host. This allows only the originator to make use of the partial results. Through these approaches some of the existing problems are solved.
Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun
2013-01-01
Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472
Bouzguenda, Lotfi; Turki, Manel
2014-04-01
This paper shows how the combined use of agent and web services technologies can help to design an architectural style for dynamic medical Cross-Organizational Workflow (COW) management system. Medical COW aims at supporting the collaboration between several autonomous and possibly heterogeneous medical processes, distributed over different organizations (Hospitals, Clinic or laboratories). Dynamic medical COW refers to occasional cooperation between these health organizations, free of structural constraints, where the medical partners involved and their number are not pre-defined. More precisely, this paper proposes a new architecture style based on agents and web services technologies to deal with two key coordination issues of dynamic COW: medical partners finding and negotiation between them. It also proposes how the proposed architecture for dynamic medical COW management system can connect to a multi-agent system coupling the Clinical Decision Support System (CDSS) with Computerized Prescriber Order Entry (CPOE). The idea is to assist the health professionals such as doctors, nurses and pharmacists with decision making tasks, as determining diagnosis or patient data analysis without stopping their clinical processes in order to act in a coherent way and to give care to the patient.
Emergence of trend trading and its effects in minority game
NASA Astrophysics Data System (ADS)
Liu, Xing-Hua; Liang, Xiao-Bei; Wang, Nai-Jing
2006-09-01
In this paper, we extended Minority Game (MG) by equipping agents with both value and trend strategies. In the new model, agents (we call them strong-adaptation agents) can autonomically select to act as trend trader or value trader when they game and learn in system. So the new model not only can reproduce stylized factors but also has the potential to investigate into the process of some problems of securities market. We investigated the dynamics of trend trading and its impacts on securities market based on the new model. Our research found that trend trading is inevitable when strong-adaptation agents make decisions by inductive reasoning. Trend trading (of strong-adaptation agents) is not irrational behavior but shows agent's strong-adaptation intelligence, because strong-adaptation agents can take advantage of the pure value agents when they game together in hybrid system. We also found that strong-adaptation agents do better in real environment. The results of our research are different with those of behavior finance researches.
Coordination of heterogeneous nonlinear multi-agent systems with prescribed behaviours
NASA Astrophysics Data System (ADS)
Tang, Yutao
2017-10-01
In this paper, we consider a coordination problem for a class of heterogeneous nonlinear multi-agent systems with a prescribed input-output behaviour which was represented by another input-driven system. In contrast to most existing multi-agent coordination results with an autonomous (virtual) leader, this formulation takes possible control inputs of the leader into consideration. First, the coordination was achieved by utilising a group of distributed observers based on conventional assumptions of model matching problem. Then, a fully distributed adaptive extension was proposed without using the input of this input-output behaviour. An example was given to verify their effectiveness.
Multi-agent systems and their applications
Xie, Jing; Liu, Chen-Ching
2017-07-14
The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less
Multi-agent systems and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Liu, Chen-Ching
The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less
Nasal-nanotechnology: revolution for efficient therapeutics delivery.
Kumar, Amrish; Pandey, Aditya Nath; Jain, Sunil Kumar
2016-01-01
In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.
Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J
2015-03-15
This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee
2018-01-01
Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.
Research on monocentric model of urbanization by agent-based simulation
NASA Astrophysics Data System (ADS)
Xue, Ling; Yang, Kaizhong
2008-10-01
Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.
Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank
2017-01-01
Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Agent-based approach for generation of a money-centered star network
NASA Astrophysics Data System (ADS)
Yang, Jae-Suk; Kwon, Okyu; Jung, Woo-Sung; Kim, In-mook
2008-09-01
The history of trade is a progression from a pure barter system. A medium of exchange emerges autonomously in the market, a position currently occupied by money. We investigate an agent-based computational economics model consisting of interacting agents considering distinguishable properties of commodities which represent salability. We also analyze the properties of the commodity network using a spanning tree. We find that the “storage fee” is more crucial than “demand” in determining which commodity is used as a medium of exchange.
NASA Astrophysics Data System (ADS)
McKane, Alan
2003-12-01
This is a book about the modelling of complex systems and, unlike many books on this subject, concentrates on the discussion of specific systems and gives practical methods for modelling and simulating them. This is not to say that the author does not devote space to the general philosophy and definition of complex systems and agent-based modelling, but the emphasis is definitely on the development of concrete methods for analysing them. This is, in my view, to be welcomed and I thoroughly recommend the book, especially to those with a theoretical physics background who will be very much at home with the language and techniques which are used. The author has developed a formalism for understanding complex systems which is based on the Langevin approach to the study of Brownian motion. This is a mesoscopic description; details of the interactions between the Brownian particle and the molecules of the surrounding fluid are replaced by a randomly fluctuating force. Thus all microscopic detail is replaced by a coarse-grained description which encapsulates the essence of the interactions at the finer level of description. In a similar way, the influences on Brownian agents in a multi-agent system are replaced by stochastic influences which sum up the effects of these interactions on a finer scale. Unlike Brownian particles, Brownian agents are not structureless particles, but instead have some internal states so that, for instance, they may react to changes in the environment or to the presence of other agents. Most of the book is concerned with developing the idea of Brownian agents using the techniques of statistical physics. This development parallels that for Brownian particles in physics, but the author then goes on to apply the technique to problems in biology, economics and the social sciences. This is a clear and well-written book which is a useful addition to the literature on complex systems. It will be interesting to see if the use of Brownian agents becomes a standard tool in the study of complex systems in the future.
NASA Astrophysics Data System (ADS)
Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.
2010-12-01
Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of new information. The results provide insights on how differences in the way farmers learn and adapt affect their forecasts of the future, and hence, decisions. Farmers who are interacting, less risk averse, quick to adjust their expectations with new observations, and slow to reduce their forecast confidence when there are unexpected changes are more likely to practice conservation tillage (farmers may claim carbon credits for sale when practicing conservation tillage), and switch from conventional crops to miscanthus. The results, though empirically untested, appear plausible and consistent with general behavior by farmers. All this demonstrates the ability and potential of ABM to capture, at least partially, the complexities of human decision-making.
NASA Astrophysics Data System (ADS)
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
Distributed, cooperating knowledge-based systems
NASA Technical Reports Server (NTRS)
Truszkowski, Walt
1991-01-01
Some current research in the development and application of distributed, cooperating knowledge-based systems technology is addressed. The focus of the current research is the spacecraft ground operations environment. The underlying hypothesis is that, because of the increasing size, complexity, and cost of planned systems, conventional procedural approaches to the architecture of automated systems will give way to a more comprehensive knowledge-based approach. A hallmark of these future systems will be the integration of multiple knowledge-based agents which understand the operational goals of the system and cooperate with each other and the humans in the loop to attain the goals. The current work includes the development of a reference model for knowledge-base management, the development of a formal model of cooperating knowledge-based agents, the use of testbed for prototyping and evaluating various knowledge-based concepts, and beginning work on the establishment of an object-oriented model of an intelligent end-to-end (spacecraft to user) system. An introductory discussion of these activities is presented, the major concepts and principles being investigated are highlighted, and their potential use in other application domains is indicated.
Can human-like Bots control collective mood: agent-based simulations of online chats
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Šuvakov, Milovan
2013-10-01
Using an agent-based modeling approach, in this paper, we study self-organized dynamics of interacting agents in the presence of chat Bots. Different Bots with tunable ‘human-like’ attributes, which exchange emotional messages with agents, are considered, and the collective emotional behavior of agents is quantitatively analyzed. In particular, using detrended fractal analysis we determine persistent fluctuations and temporal correlations in time series of agent activity and statistics of avalanches carrying emotional messages of agents when Bots favoring positive/negative affects are active. We determine the impact of Bots and identify parameters that can modulate that impact. Our analysis suggests that, by these measures, the emotional Bots induce collective emotion among interacting agents by suitably altering the fractal characteristics of the underlying stochastic process. Positive emotion Bots are slightly more effective than negative emotion Bots. Moreover, Bots which periodically alternate between positive and negative emotion can enhance fluctuations in the system, leading to avalanches of agent messages that are reminiscent of self-organized critical states.
Adapting an Agent-Based Model of Socio-Technical Systems to Analyze Security Failures
2016-10-17
total number of non-blackouts differed from the total number in the baseline data to a statistically significant extent with a p- valueɘ.0003...the total number of non-blackouts differed from the total number in the baseline data to a statistically significant extent with a p-valueɘ.0003...I. Nikolic, and Z. Lukszo, Eds., Agent-based modelling of socio-technical systems. Springer Science & Business Media, 2013, vol. 9. [12] A. P. Shaw
van Voorn, George A. K.; Ligtenberg, Arend; Molenaar, Jaap
2017-01-01
Adaptation of agents through learning or evolution is an important component of the resilience of Complex Adaptive Systems (CAS). Without adaptation, the flexibility of such systems to cope with outside pressures would be much lower. To study the capabilities of CAS to adapt, social simulations with agent-based models (ABMs) provide a helpful tool. However, the value of ABMs for studying adaptation depends on the availability of methodologies for sensitivity analysis that can quantify resilience and adaptation in ABMs. In this paper we propose a sensitivity analysis methodology that is based on comparing time-dependent probability density functions of output of ABMs with and without agent adaptation. The differences between the probability density functions are quantified by the so-called earth-mover’s distance. We use this sensitivity analysis methodology to quantify the probability of occurrence of critical transitions and other long-term effects of agent adaptation. To test the potential of this new approach, it is used to analyse the resilience of an ABM of adaptive agents competing for a common-pool resource. Adaptation is shown to contribute positively to the resilience of this ABM. If adaptation proceeds sufficiently fast, it may delay or avert the collapse of this system. PMID:28196372
Resilience through adaptation.
Ten Broeke, Guus A; van Voorn, George A K; Ligtenberg, Arend; Molenaar, Jaap
2017-01-01
Adaptation of agents through learning or evolution is an important component of the resilience of Complex Adaptive Systems (CAS). Without adaptation, the flexibility of such systems to cope with outside pressures would be much lower. To study the capabilities of CAS to adapt, social simulations with agent-based models (ABMs) provide a helpful tool. However, the value of ABMs for studying adaptation depends on the availability of methodologies for sensitivity analysis that can quantify resilience and adaptation in ABMs. In this paper we propose a sensitivity analysis methodology that is based on comparing time-dependent probability density functions of output of ABMs with and without agent adaptation. The differences between the probability density functions are quantified by the so-called earth-mover's distance. We use this sensitivity analysis methodology to quantify the probability of occurrence of critical transitions and other long-term effects of agent adaptation. To test the potential of this new approach, it is used to analyse the resilience of an ABM of adaptive agents competing for a common-pool resource. Adaptation is shown to contribute positively to the resilience of this ABM. If adaptation proceeds sufficiently fast, it may delay or avert the collapse of this system.
Zhang, Donglan; Giabbanelli, Philippe J; Arah, Onyebuchi A; Zimmerman, Frederick J
2014-07-01
Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems.
NASA Astrophysics Data System (ADS)
Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent
2003-10-01
In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain computational resources. The system demonstrates the viability of biologically inspired systems in a real time tracking. In future work we plan on implementing additional biological mechanisms for cooperative management of both the sensor and processing resources in this system that include top down biasing for target specificity as well as novelty and the activity of the tracked object in relation to sensitive features of the environment.
Adaptive, Distributed Control of Constrained Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PO) theory was recently developed as a broad framework for analyzing and optimizing distributed systems. Here we demonstrate its use for adaptive distributed control of Multi-Agent Systems (MASS), i.e., for distributed stochastic optimization using MAS s. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (Probability dist&&on on the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. One common way to find that equilibrium is to have each agent run a Reinforcement Learning (E) algorithm. PD theory reveals this to be a particular type of search algorithm for minimizing the Lagrangian. Typically that algorithm i s quite inefficient. A more principled alternative is to use a variant of Newton's method to minimize the Lagrangian. Here we compare this alternative to RL-based search in three sets of computer experiments. These are the N Queen s problem and bin-packing problem from the optimization literature, and the Bar problem from the distributed RL literature. Our results confirm that the PD-theory-based approach outperforms the RL-based scheme in all three domains.
Aspen: A microsimulation model of the economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, N.; Pryor, R.J.; Quint, T.
1996-10-01
This report presents, Aspen. Sandia National Laboratories is developing this new agent-based microeconomic simulation model of the U.S. economy. The model is notable because it allows a large number of individual economic agents to be modeled at a high level of detail and with a great degree of freedom. Some features of Aspen are (a) a sophisticated message-passing system that allows individual pairs of agents to communicate, (b) the use of genetic algorithms to simulate the learning of certain agents, and (c) a detailed financial sector that includes a banking system and a bond market. Results from runs of themore » model are also presented.« less
Agent independent task planning
NASA Technical Reports Server (NTRS)
Davis, William S.
1990-01-01
Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.
Blaptica dubia as sentinels for exposure to chemical warfare agents - a pilot study.
Worek, Franz; Seeger, Thomas; Neumaier, Katharina; Wille, Timo; Thiermann, Horst
2016-11-16
The increased interest of terrorist groups in toxic chemicals and chemical warfare agents presents a continuing threat to our societies. Early warning and detection is a key component for effective countermeasures against such deadly agents. Presently available and near term solutions have a number of major drawbacks, e.g. lack of automated, remote warning and detection of primarily low volatile chemical warfare agents. An alternative approach is the use of animals as sentinels for exposure to toxic chemicals. To overcome disadvantages of vertebrates the present pilot study was initiated to investigate the suitability of South American cockroaches (Blaptica dubia) as warning system for exposure to chemical warfare nerve and blister agents. Initial in vitro experiments with nerve agents showed an increasing inhibitory potency in the order tabun - cyclosarin - sarin - soman - VX of cockroach cholinesterase. Exposure of cockroaches to chemical warfare agents resulted in clearly visible and reproducible reactions, the onset being dependent on the agent and dose. With nerve agents the onset was related to the volatility of the agents. The blister agent lewisite induced signs largely comparable to those of nerve agents while sulfur mustard exposed animals exhibited a different sequence of events. In conclusion, this first pilot study indicates that Blaptica dubia could serve as a warning system to exposure of chemical warfare agents. A cockroach-based system will not detect or identify a particular chemical warfare agent but could trigger further actions, e.g. specific detection and increased protective status. By designing appropriate boxes with (IR) motion sensors and remote control (IR) camera automated off-site warning systems could be realized. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
2018-01-01
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884
oRis: multiagents approach for image processing
NASA Astrophysics Data System (ADS)
Rodin, Vincent; Harrouet, Fabrice; Ballet, Pascal; Tisseau, Jacques
1998-09-01
In this article, we present a parallel image processing system based on the concept of reactive agents. This means that, in our system, each agent has a very simple behavior which allows it to take a decision (find out an edge, a region, ...) according to its position in the image and to the information enclosed in it. Our system lies in the oRis language, which allows to describe very finely and simply the agents' behaviors. In fact, oRis is an interpreted and dynamic multiagent language. First of all, oRis is an object language with the use of classes regrouping attributes and methods. The syntax is close to the C++ language and includes notions of multiple inheritance, oRis is also an agent language: every object with a method `main()' becomes an agent. This method is cyclically executed by the system scheduler and corresponds to the agent behavior. We also present an application made with oRis. This application allows to detect concentric striae located on different natural `objects' (age-rings of tree, fish otolith growth rings, striae of some minerals, ...). The stopping of the multiagent system is implemented through a technique issued from immunology: the apoptosis.
Error Generation in CATS-Based Agents
NASA Technical Reports Server (NTRS)
Callantine, Todd
2003-01-01
This research presents a methodology for generating errors from a model of nominally preferred correct operator activities, given a particular operational context, and maintaining an explicit link to the erroneous contextual information to support analyses. It uses the Crew Activity Tracking System (CATS) model as the basis for error generation. This report describes how the process works, and how it may be useful for supporting agent-based system safety analyses. The report presents results obtained by applying the error-generation process and discusses implementation issues. The research is supported by the System-Wide Accident Prevention Element of the NASA Aviation Safety Program.
Agent-based modeling in ecological economics.
Heckbert, Scott; Baynes, Tim; Reeson, Andrew
2010-01-01
Interconnected social and environmental systems are the domain of ecological economics, and models can be used to explore feedbacks and adaptations inherent in these systems. Agent-based modeling (ABM) represents autonomous entities, each with dynamic behavior and heterogeneous characteristics. Agents interact with each other and their environment, resulting in emergent outcomes at the macroscale that can be used to quantitatively analyze complex systems. ABM is contributing to research questions in ecological economics in the areas of natural resource management and land-use change, urban systems modeling, market dynamics, changes in consumer attitudes, innovation, and diffusion of technology and management practices, commons dilemmas and self-governance, and psychological aspects to human decision making and behavior change. Frontiers for ABM research in ecological economics involve advancing the empirical calibration and validation of models through mixed methods, including surveys, interviews, participatory modeling, and, notably, experimental economics to test specific decision-making hypotheses. Linking ABM with other modeling techniques at the level of emergent properties will further advance efforts to understand dynamics of social-environmental systems.
An Evolvable Multi-Agent Approach to Space Operations Engineering
NASA Technical Reports Server (NTRS)
Mandutianu, Sanda; Stoica, Adrian
1999-01-01
A complex system of spacecraft and ground tracking stations, as well as a constellation of satellites or spacecraft, has to be able to reliably withstand sudden environment changes, resource fluctuations, dynamic resource configuration, limited communication bandwidth, etc., while maintaining the consistency of the system as a whole. It is not known in advance when a change in the environment might occur or when a particular exchange will happen. A higher degree of sophistication for the communication mechanisms between different parts of the system is required. The actual behavior has to be determined while the system is performing and the course of action can be decided at the individual level. Under such circumstances, the solution will highly benefit from increased on-board and on the ground adaptability and autonomy. An evolvable architecture based on intelligent agents that communicate and cooperate with each other can offer advantages in this direction. This paper presents an architecture of an evolvable agent-based system (software and software/hardware hybrids) as well as some plans for further implementation.
MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection Using Stochastic Search
2012-03-01
attacks that are distributed in nature , but may not protect individual systems effectively without incurring large bandwidth penalties while collecting...system-level information to help prepare for more significant attacks. The type of information potentially revealed by footprinting includes account...key areas where MAS may be appropriate: • The environment is open, highly dynamic, uncertain, or complex • Agents are a natural metaphor—Many
Axelrod Model of Social Influence with Cultural Hybridization
NASA Astrophysics Data System (ADS)
Radillo-Díaz, Alejandro; Pérez, Luis A.; Del Castillo-Mussot, Marcelo
2012-10-01
Since cultural interactions between a pair of social agents involve changes in both individuals, we present simulations of a new model based on Axelrod's homogenization mechanism that includes hybridization or mixture of the agents' features. In this new hybridization model, once a cultural feature of a pair of agents has been chosen for the interaction, the average of the values for this feature is reassigned as the new value for both agents after interaction. Moreover, a parameter representing social tolerance is implemented in order to quantify whether agents are similar enough to engage in interaction, as well as to determine whether they belong to the same cluster of similar agents after the system has reached the frozen state. The transitions from a homogeneous state to a fragmented one decrease in abruptness as tolerance is increased. Additionally, the entropy associated to the system presents a maximum within the transition, the width of which increases as tolerance does. Moreover, a plateau was found inside the transition for a low-tolerance system of agents with only two cultural features.
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2006-01-01
Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.
Model-Drive Architecture for Agent-Based Systems
NASA Technical Reports Server (NTRS)
Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.
2004-01-01
The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.
Application of Complex Adaptive Systems in Portfolio Management
ERIC Educational Resources Information Center
Su, Zheyuan
2017-01-01
Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…
On the use of multi-agent systems for the monitoring of industrial systems
NASA Astrophysics Data System (ADS)
Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil
2016-03-01
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.
Advances in drug delivery system for platinum agents based combination therapy.
Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu
2015-12-01
Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy.
Kinetic theory of situated agents applied to pedestrian flow in a corridor
NASA Astrophysics Data System (ADS)
Rangel-Huerta, A.; Muñoz-Meléndez, A.
2010-03-01
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.
Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level
NASA Astrophysics Data System (ADS)
Fakhrazari, Amin; Boroushaki, Mehrdad
2008-06-01
In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Agent based modeling of the coevolution of hostility and pacifism
NASA Astrophysics Data System (ADS)
Dalmagro, Fermin; Jimenez, Juan
2015-01-01
We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.
NASA Astrophysics Data System (ADS)
Chen, Jiaxi; Li, Junmin
2018-02-01
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T-S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.
Effect of reinforcement learning on coordination of multiangent systems
NASA Astrophysics Data System (ADS)
Bukkapatnam, Satish T. S.; Gao, Greg
2000-12-01
For effective coordination of distributed environments involving multiagent systems, learning ability of each agent in the environment plays a crucial role. In this paper, we develop a simple group learning method based on reinforcement, and study its effect on coordination through application to a supply chain procurement scenario involving a computer manufacturer. Here, all parties are represented by self-interested, autonomous agents, each capable of performing specific simple tasks. They negotiate with each other to perform complex tasks and thus coordinate supply chain procurement. Reinforcement learning is intended to enable each agent to reach a best negotiable price within a shortest possible time. Our simulations of the application scenario under different learning strategies reveals the positive effects of reinforcement learning on an agent's as well as the system's performance.
Liu, Shiyong; Triantis, Konstantinos P; Zhao, Li; Wang, Youfa
2018-01-01
In practical research, it was found that most people made health-related decisions not based on numerical data but on perceptions. Examples include the perceptions and their corresponding linguistic values of health risks such as, smoking, syringe sharing, eating energy-dense food, drinking sugar-sweetened beverages etc. For the sake of understanding the mechanisms that affect the implementations of health-related interventions, we employ fuzzy variables to quantify linguistic variable in healthcare modeling where we employ an integrated system dynamics and agent-based model. In a nonlinear causal-driven simulation environment driven by feedback loops, we mathematically demonstrate how interventions at an aggregate level affect the dynamics of linguistic variables that are captured by fuzzy agents and how interactions among fuzzy agents, at the same time, affect the formation of different clusters(groups) that are targeted by specific interventions. In this paper, we provide an innovative framework to capture multi-stage fuzzy uncertainties manifested among interacting heterogeneous agents (individuals) and intervention decisions that affect homogeneous agents (groups of individuals) in a hybrid model that combines an agent-based simulation model (ABM) and a system dynamics models (SDM). Having built the platform to incorporate high-dimension data in a hybrid ABM/SDM model, this paper demonstrates how one can obtain the state variable behaviors in the SDM and the corresponding values of linguistic variables in the ABM. This research provides a way to incorporate high-dimension data in a hybrid ABM/SDM model. This research not only enriches the application of fuzzy set theory by capturing the dynamics of variables associated with interacting fuzzy agents that lead to aggregate behaviors but also informs implementation research by enabling the incorporation of linguistic variables at both individual and institutional levels, which makes unstructured linguistic data meaningful and quantifiable in a simulation environment. This research can help practitioners and decision makers to gain better understanding on the dynamics and complexities of precision intervention in healthcare. It can aid the improvement of the optimal allocation of resources for targeted group (s) and the achievement of maximum utility. As this technology becomes more mature, one can design policy flight simulators by which policy/intervention designers can test a variety of assumptions when they evaluate different alternatives interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, Steven Y.; Spires, Shannon V.
There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementationmore » up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.« less
Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.
Chen, Liyan; Wu, Di; Yoon, Juyoung
2018-01-26
The extreme toxicity and ready accessibility of nerve agents and phosgene has caused an increase in the demand to develop effective systems for the detection of these substances. Among the traditional platforms utilized for this purpose, chemosensors including surface acoustic wave (SAW) sensors, enzymes, carbon nanotubes, nanoparticles, and chromophore based sensors have attracted increasing attention. In this review, we describe in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene. This review comprises two sections focusing on studies of the development of chemosensors for nerve agents (mimic) and phosgene. In each of the sections, the discussion follows a format which concentrates on different reaction sites/mechanisms involved in the sensing processes. Finally, chemosensors uncovered in these efforts are compared with those based on other sensing methods and challenges facing the design of more effective chemosensors for the detection of nerve agents (mimic) and phosgene are discussed.
Scoping Planning Agents With Shared Models
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Frank, Jeremy D.; Jonsson, Ari K.; McGann, Conor
2003-01-01
In this paper we provide a formal framework to define the scope of planning agents based on a single declarative model. Having multiple agents sharing a single model provides numerous advantages that lead to reduced development costs and increase reliability of the system. We formally define planning in terms of extensions of an initial partial plan, and a set of flaws that make the plan unacceptable. A Flaw Filter (FF) allows us to identify those flaws relevant to an agent. Flaw filters motivate the Plan Identification Function (PIF), which specifies when an agent is is ready hand control to another agent for further work. PIFs define a set of plan extensions that can be generated from a model and a plan request. FFs and PIFs can be used to define the scope of agents without changing the model. We describe an implementation of PIFsand FFswithin the context of EUROPA, a constraint-based planning architecture, and show how it can be used to easily design many different agents.
Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems
NASA Astrophysics Data System (ADS)
Rimer, S.; Mullapudi, A. M.; Kerkez, B.
2017-12-01
The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting stormwater elements.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A
2007-08-01
For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.
Access Scheme for Controlling Mobile Agents and its Application to Share Medical Information.
Liao, Yu-Ting; Chen, Tzer-Shyong; Chen, Tzer-Long; Chung, Yu-Fang; Chen, Yu- Xin; Hwang, Jen-Hung; Wang, Huihui; Wei, Wei
2016-05-01
This study is showing the advantage of mobile agents to conquer heterogeneous system environments and contribute to a virtual integrated sharing system. Mobile agents will collect medical information from each medical institution as a method to achieve the medical purpose of data sharing. Besides, this research also provides an access control and key management mechanism by adopting Public key cryptography and Lagrange interpolation. The safety analysis of the system is based on a network attacker's perspective. The achievement of this study tries to improve the medical quality, prevent wasting medical resources and make medical resources access to appropriate configuration.
NASA Astrophysics Data System (ADS)
Croitoru, Madalina; Oren, Nir; Miles, Simon; Luck, Michael
Norms impose obligations, permissions and prohibitions on individual agents operating as part of an organisation. Typically, the purpose of such norms is to ensure that an organisation acts in some socially (or mutually) beneficial manner, possibly at the expense of individual agent utility. In this context, agents are normaware if they are able to reason about which norms are applicable to them, and to decide whether to comply with or ignore them. While much work has focused on the creation of norm-aware agents, much less has been concerned with aiding system designers in understanding the effects of norms on a system. The ability to understand such norm effects can aid the designer in avoiding incorrect norm specification, eliminating redundant norms and reducing normative conflict. In this paper, we address the problem of norm understanding by providing explanations as to why a norm is applicable, violated, or in some other state. We make use of conceptual graph based semantics to provide a graphical representation of the norms within a system. Given knowledge of the current and historical state of the system, such a representation allows for explanation of the state of norms, showing for example why they may have been activated or violated.
Analysis of Decentralized Variable Structure Control for Collective Search by Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feddema, J.; Goldsmith, S.; Robinett, R.
1998-11-04
This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roIes. In an alpha-beta team. alpha agents are motivated to improve their status by exploring new regions of the search space. Beta a~ents are conservative, and reiy on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its currentmore » role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta aIgorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.« less
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1995-01-01
This paper presents an architecture for satellites regarded as intercommunicating agents. The architecture is based upon a postmodern paradigm of artificial intelligence in which represented knowledge is regarded as text, inference procedures are regarded as social discourse and decision making conventions and the semantics of representations are grounded in the situated behaviour and activity of agents. A particular protocol is described for agent participation in distributed search and retrieval operations conducted as joint activities.
Hyperspectral fluorescence imaging with multi wavelength LED excitation
NASA Astrophysics Data System (ADS)
Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.
2016-04-01
Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.
Liu, Ming; Xu, Yang; Mohammed, Abdul-Wahid
2016-01-01
Limited communication resources have gradually become a critical factor toward efficiency of decentralized large scale multi-agent coordination when both system scales up and tasks become more complex. In current researches, due to the agent's limited communication and observational capability, an agent in a decentralized setting can only choose a part of channels to access, but cannot perceive or share global information. Each agent's cooperative decision is based on the partial observation of the system state, and as such, uncertainty in the communication network is unavoidable. In this situation, it is a major challenge working out cooperative decision-making under uncertainty with only a partial observation of the environment. In this paper, we propose a decentralized approach that allows agents cooperatively search and independently choose channels. The key to our design is to build an up-to-date observation for each agent's view so that a local decision model is achievable in a large scale team coordination. We simplify the Dec-POMDP model problem, and each agent can jointly work out its communication policy in order to improve its local decision utilities for the choice of communication resources. Finally, we discuss an implicate resource competition game, and show that, there exists an approximate resources access tradeoff balance between agents. Based on this discovery, the tradeoff between real-time decision-making and the efficiency of cooperation using these channels can be well improved.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
Ma, Yakun; Ge, Yanxiu; Li, Lingbing
2017-02-01
Nanogel-based multifunctional drug delivery systems, especially hybrid nanogels and multicompartment nanogels have drawn more and more extensive attention from the researchers in pharmacy because it can result in achieving a superior functionality through the synergistic property enhancement of each component. The unique hybrid and compartmentalized structures provide the great potential for co-delivery of multiple agents even the multiple agents with different physicochemical properties. Otherwise the hybrid nanogel encapsulating optical and magnetic resonance imaging contrast can be utilized in imaging technique for disease diagnosis. More importantly through nanogel-based multifunctional drug delivery systems the stimuli-responsive features might be easily employed for the design of targeted release of drug. This review summarizes the construction of diverse hybrid nanogels and multicompartment nanogels. The application in co-delivery of multiple agents and imaging agents for diagnosis as well as the application in the design of stimuli-responsive multifunctional nanogels as drug delivery are also reviewed and discussed. The future prospects in application of multifunctional nanogels will be also discussed in this review. Copyright © 2016 Elsevier B.V. All rights reserved.
Petri Nets as Modeling Tool for Emergent Agents
NASA Technical Reports Server (NTRS)
Bergman, Marto
2004-01-01
Emergent agents, those agents whose local interactions can cause unexpected global results, require a method of modeling that is both dynamic and structured Petri Nets, a modeling tool developed for dynamic discrete event system of mainly functional agents, provide this, and have the benefit of being an established tool. We present here the details of the modeling method here and discuss how to implement its use for modeling agent-based systems. Petri Nets have been used extensively in the modeling of functional agents, those agents who have defined purposes and whose actions should result in a know outcome. However, emergent agents, those agents who have a defined structure but whose interaction causes outcomes that are unpredictable, have not yet found a modeling style that suits them. A problem with formally modeling emergent agents that any formal modeling style usually expects to show the results of a problem and the results of problems studied using emergent agents are not apparent from the initial construction. However, the study of emergent agents still requires a method to analyze the agents themselves, and have sensible conversation about the differences and similarities between types of emergent agents. We attempt to correct this problem by applying Petri Nets to the characterization of emergent agents. In doing so, the emergent properties of these agents can be highlighted, and conversation about the nature and compatibility of the differing methods of agent creation can begin.
An agent-based hydroeconomic model to evaluate water policies in Jordan
NASA Astrophysics Data System (ADS)
Yoon, J.; Gorelick, S.
2014-12-01
Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.
Validating agent oriented methodology (AOM) for netlogo modelling and simulation
NASA Astrophysics Data System (ADS)
WaiShiang, Cheah; Nissom, Shane; YeeWai, Sim; Sharbini, Hamizan
2017-10-01
AOM (Agent Oriented Modeling) is a comprehensive and unified agent methodology for agent oriented software development. AOM methodology was proposed to aid developers with the introduction of technique, terminology, notation and guideline during agent systems development. Although AOM methodology is claimed to be capable of developing a complex real world system, its potential is yet to be realized and recognized by the mainstream software community and the adoption of AOM is still at its infancy. Among the reason is that there are not much case studies or success story of AOM. This paper presents two case studies on the adoption of AOM for individual based modelling and simulation. It demonstrate how the AOM is useful for epidemiology study and ecological study. Hence, it further validate the AOM in a qualitative manner.
An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy.
Day, Theodore Eugene; Ravi, Nathan; Xian, Hong; Brugh, Ann
2013-01-01
Agent-based models are valuable for examining systems where large numbers of discrete individuals interact with each other, or with some environment. Diabetic Veterans seeking eye care at a Veterans Administration hospital represent one such cohort. The objective of this study was to develop an agent-based template to be used as a model for a patient with diabetic retinopathy (DR). This template may be replicated arbitrarily many times in order to generate a large cohort which is representative of a real-world population, upon which in-silico experimentation may be conducted. Agent-based template development was performed in java-based computer simulation suite AnyLogic Professional 6.6. The model was informed by medical data abstracted from 535 patient records representing a retrospective cohort of current patients of the VA St. Louis Healthcare System Eye clinic. Logistic regression was performed to determine the predictors associated with advancing stages of DR. Predicted probabilities obtained from logistic regression were used to generate the stage of DR in the simulated cohort. The simulated cohort of DR patients exhibited no significant deviation from the test population of real-world patients in proportion of stage of DR, duration of diabetes mellitus (DM), or the other abstracted predictors. Simulated patients after 10 years were significantly more likely to exhibit proliferative DR (P<0.001). Agent-based modeling is an emerging platform, capable of simulating large cohorts of individuals based on manageable data abstraction efforts. The modeling method described may be useful in simulating many different conditions where course of disease is described in categorical stages.
Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2006-01-01
Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Lian, Jianming; Kalsi, Karanjit
The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power)more » flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.« less
The Peace Mediator effect: Heterogeneous agents can foster consensus in continuous opinion models
NASA Astrophysics Data System (ADS)
Vilone, Daniele; Carletti, Timoteo; Bagnoli, Franco; Guazzini, Andrea
2016-11-01
Statistical mechanics has proven to be able to capture the fundamental rules underlying phenomena of social aggregation and opinion dynamics, well studied in disciplines like sociology and psychology. This approach is based on the underlying paradigm that the interesting dynamics of multi-agent systems emerge from the correct definition of few parameters governing the evolution of each individual. In this context, we propose a particular model of opinion dynamics based on the psychological construct named ;cognitive dissonance;. Our system is made of interacting individuals, the agents, each bearing only two dynamical variables (respectively ;opinion; and ;affinity;) self-consistently adjusted during time evolution. We also define two special classes of interacting entities, both acting for a peace mediation process but via different course of action: ;diplomats; and ;auctoritates;. The behavior of the system with and without peace mediators (PMs) is investigated and discussed with reference to corresponding psychological and social implications.
NASA Astrophysics Data System (ADS)
Kanta, L.; Berglund, E. Z.
2015-12-01
Urban water supply systems may be managed through supply-side and demand-side strategies, which focus on water source expansion and demand reductions, respectively. Supply-side strategies bear infrastructure and energy costs, while demand-side strategies bear costs of implementation and inconvenience to consumers. To evaluate the performance of demand-side strategies, the participation and water use adaptations of consumers should be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to simulate consumer agents that change their consumption to affect the withdrawal from the water supply system, which, in turn influences operational policies and long-term resource planning. Agent-based models are encoded to represent consumers and a policy maker agent and are coupled with water resources system simulation models. The CAS framework is coupled with an evolutionary computation-based multi-objective methodology to explore tradeoffs in cost, inconvenience to consumers, and environmental impacts for both supply-side and demand-side strategies. Decisions are identified to specify storage levels in a reservoir that trigger (1) increases in the volume of water pumped through inter-basin transfers from an external reservoir and (2) drought stages, which restrict the volume of water that is allowed for residential outdoor uses. The proposed methodology is demonstrated for Arlington, Texas, water supply system to identify non-dominated strategies for an historic drought decade. Results demonstrate that pumping costs associated with maximizing environmental reliability exceed pumping costs associated with minimizing restrictions on consumer water use.
Peer, Xavier; An, Gary
2014-10-01
Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine.
Peer, Xavier; An, Gary
2014-01-01
Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the Clostridium difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, Fecal Microbial Transplant (FMT). The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of personalized medicine. PMID:25168489
A multi-agent system for coordinating international shipping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, S.Y.; Phillips, L.R.; Spires, S.V.
1998-05-01
Moving commercial cargo across the US-Mexico border is currently a complex, paper-based, error-prone process that incurs expensive inspections and delays at several ports of entry in the Southwestern US. Improved information handling will dramatically reduce border dwell time, variation in delivery time, and inventories, and will give better control of the shipment process. The Border Trade Facilitation System (BTFS) is an agent-based collaborative work environment that assists geographically distributed commercial and government users with transshipment of goods across the US-Mexico border. Software agents mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, usingmore » the World Wide Web to interface with human actors. Agents are organized into Agencies. Each agency represents a commercial or government agency. Agents perform four specific functions on behalf of their user organizations: (1) agents with domain knowledge elicit commercial and regulatory information from human specialists through forms presented via web browsers; (2) agents mediate information from forms with diverse otologies, copying invariant data from one form to another thereby eliminating the need for duplicate data entry; (3) cohorts of distributed agents coordinate the work flow among the various information providers and they monitor overall progress of the documentation and the location of the shipment to ensure that all regulatory requirements are met prior to arrival at the border; (4) agents provide status information to human actors and attempt to influence them when problems are predicted.« less
Decoupling Coupled Constraints Through Utility Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, N; Marden, JR
2014-08-01
Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning tomore » derive a distributed process that guarantees the agents will reach such an equilibrium.« less
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schrenkenghost, Debra K.
2001-01-01
The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.
Systemic use of tumor necrosis factor alpha as an anticancer agent
Roberts, Nicholas J.; Zhou, Shibin; Diaz, Luis A.; Holdhoff, Matthias
2011-01-01
Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors. PMID:22036896
Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer.
Grundy, Megan; Coussios, Constantin; Carlisle, Robert
2016-07-01
The successful treatment of metastatic cancer is refractory to strategies employed to treat confined, primary lesions, such as surgical resection and radiation therapy, and thus must be addressed by systemic delivery of anti-cancer agents. Conventional systemically administered chemotherapeutics are often ineffective and come with severe dose-limiting toxicities. This review focuses on the recent developments in systemic therapy for metastatic cancer. Firstly, the strategies employed to improve the efficacy of conventional chemotherapeutics by 'passively' and 'actively' targeting them to tumors are discussed. Secondly, recent advances in the use of biologics to better target cancer and to instigate anti-tumor immunity are reviewed. Under the label of 'biologics', antibody-therapies, T cell engaging therapies, oncolytic virotherapies and cell-based therapies are examined and evaluated. Improving specificity of action, and engaging the immune system appear to be key goals in the development of novel or reformulated anti-cancer agents for the treatment of metastatic cancer. One of the largest areas of opportunity in this field will be the identification of robust predictive biomarkers for use in conjunction with these agents. Treatment regimens that combine an agent to elicit an immune response (such as an oncolytic virus), and an agent to potentiate/mediate that immune response (such as immune checkpoint inhibitors) are predicted to be more effective than treatment with either agent alone.
Zhou, Yinjian; Zhang, Chunling; Liang, Wei
2014-11-10
RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.
Laghari, Samreen; Niazi, Muaz A
2016-01-01
Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.
Clustering recommendations to compute agent reputation
NASA Astrophysics Data System (ADS)
Bedi, Punam; Kaur, Harmeet
2005-03-01
Traditional centralized approaches to security are difficult to apply to multi-agent systems which are used nowadays in e-commerce applications. Developing a notion of trust that is based on the reputation of an agent can provide a softer notion of security that is sufficient for many multi-agent applications. Our paper proposes a mechanism for computing reputation of the trustee agent for use by the trustier agent. The trustier agent computes the reputation based on its own experience as well as the experience the peer agents have with the trustee agents. The trustier agents intentionally interact with the peer agents to get their experience information in the form of recommendations. We have also considered the case of unintentional encounters between the referee agents and the trustee agent, which can be directly between them or indirectly through a set of interacting agents. The clustering is done to filter off the noise in the recommendations in the form of outliers. The trustier agent clusters the recommendations received from referee agents on the basis of the distances between recommendations using the hierarchical agglomerative method. The dendogram hence obtained is cut at the required similarity level which restricts the maximum distance between any two recommendations within a cluster. The cluster with maximum number of elements denotes the views of the majority of recommenders. The center of this cluster represents the reputation of the trustee agent which can be computed using c-means algorithm.
Nature as a network of morphological infocomputational processes for cognitive agents
NASA Astrophysics Data System (ADS)
Dodig-Crnkovic, Gordana
2017-01-01
This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted.
Evolvable social agents for bacterial systems modeling.
Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry
2004-09-01
We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.
Rational Constraints and the Evolution of Fairness in the Ultimatum Game.
Tomlin, Damon
2015-01-01
Behavior in the Ultimatum Game has been well-studied experimentally, and provides a marked contrast between the theoretical model of a self-interested economic agent and that of an actual human concerned with social norms such as fairness. How did such norms evolve, when punishing unfair behavior can be costly to the punishing agent? The work described here simulated a series of Ultimatum Games, in which populations of agents earned resources based on their preferences for proposing and accepting (or rejecting) offers of various sizes. Two different systems governing the acceptance or rejection of offers were implemented. Under one system, the probability that an agent accepted an offer of a given size was independent of the probabilities of accepting the other possible offers. Under the other system, a simple, ordinal constraint was placed on the acceptance probabilities such that a given offer was at least as likely to be accepted as a smaller offer. For simulations under either system, agents' preferences and their corresponding behavior evolved over multiple generations. Populations without the ordinal constraint came to emulate maximizing economic agents, while populations with the constraint came to resemble the behavior of human players.
Laskowski, Marek; Demianyk, Bryan C P; Witt, Julia; Mukhi, Shamir N; Friesen, Marcia R; McLeod, Robert D
2011-11-01
The objective of this paper was to develop an agent-based modeling framework in order to simulate the spread of influenza virus infection on a layout based on a representative hospital emergency department in Winnipeg, Canada. In doing so, the study complements mathematical modeling techniques for disease spread, as well as modeling applications focused on the spread of antibiotic-resistant nosocomial infections in hospitals. Twenty different emergency department scenarios were simulated, with further simulation of four infection control strategies. The agent-based modeling approach represents systems modeling, in which the emergency department was modeled as a collection of agents (patients and healthcare workers) and their individual characteristics, behaviors, and interactions. The framework was coded in C++ using Qt4 libraries running under the Linux operating system. A simple ordinary least squares (OLS) regression was used to analyze the data, in which the percentage of patients that became infected in one day within the simulation was the dependent variable. The results suggest that within the given instance context, patient-oriented infection control policies (alternate treatment streams, masking symptomatic patients) tend to have a larger effect than policies that target healthcare workers. The agent-based modeling framework is a flexible tool that can be made to reflect any given environment; it is also a decision support tool for practitioners and policymakers to assess the relative impact of infection control strategies. The framework illuminates scenarios worthy of further investigation, as well as counterintuitive findings.
From Here to Autonomicity: Self-Managing Agents and the Biological Metaphors that Inspire Them
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2005-01-01
We seek inspiration for self-managing systems from (obviously, pre-existing) biological mechanisms. Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward for integrating and designing reliable systems, while agent technologies have been identified as a key enabler for engineering autonomicity in systems. This paper looks at other biological metaphors such as reflex and healing, heart- beat monitors, pulse monitors and apoptosis for assisting in the realization of autonomicity.
Agent-based human-robot interaction of a combat bulldozer
NASA Astrophysics Data System (ADS)
Granot, Reuven; Feldman, Maxim
2004-09-01
A small-scale supervised autonomous bulldozer in a remote site was developed to experience agent based human intervention. The model is based on Lego Mindstorms kit and represents combat equipment, whose job performance does not require high accuracy. The model enables evaluation of system response for different operator interventions, as well as for a small colony of semiautonomous dozers. The supervising human may better react than a fully autonomous system to unexpected contingent events, which are a major barrier to implement full autonomy. The automation is introduced as improved Man Machine Interface (MMI) by developing control agents as intelligent tools to negotiate between human requests and task level controllers as well as negotiate with other elements of the software environment. Current UGVs demand significant communication resources and constant human operation. Therefore they will be replaced by semi-autonomous human supervisory controlled systems (telerobotic). For human intervention at the low layers of the control hierarchy we suggest a task oriented control agent to take care of the fluent transition between the state in which the robot operates and the one imposed by the human. This transition should take care about the imperfections, which are responsible for the improper operation of the robot, by disconnecting or adapting them to the new situation. Preliminary conclusions from the small-scale experiments are presented.
Agent-based Model for the Coupled Human-Climate System
NASA Astrophysics Data System (ADS)
Zvoleff, A.; Werner, B.
2006-12-01
Integrated assessment models have been used to predict the outcome of coupled economic growth, resource use, greenhouse gas emissions and climate change, both for scientific and policy purposes. These models generally have employed significant simplifications that suppress nonlinearities and the possibility of multiple equilibria in both their economic (DeCanio, 2005) and climate (Schneider and Kuntz-Duriseti, 2002) components. As one step toward exploring general features of the nonlinear dynamics of the coupled system, we have developed a series of variations on the well studied RICE and DICE models, which employ different forms of agent-based market dynamics and "climate surprises." Markets are introduced through the replacement of the production function of the DICE/RICE models with an agent-based market modeling the interactions of producers, policymakers, and consumer agents. Technological change and population growth are treated endogenously. Climate surprises are representations of positive (for example, ice sheet collapse) or negative (for example, increased aerosols from desertification) feedbacks that are turned on with probability depending on warming. Initial results point toward the possibility of large amplitude instabilities in the coupled human-climate system owing to the mismatch between short outlook market dynamics and long term climate responses. Implications for predictability of future climate will be discussed. Supported by the Andrew W Mellon Foundation and the UC Academic Senate.
Giabbanelli, Philippe J.; Arah, Onyebuchi A.; Zimmerman, Frederick J.
2014-01-01
Objectives. Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. Methods. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Results. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Conclusions. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems. PMID:24832414
Toward Value-Based Pricing to Boost Cancer Research and Innovation.
Ocana, Alberto; Amir, Eitan; Tannock, Ian F
2016-06-01
The high market price of new anticancer agents has stimulated debate about the long-term sustainability of healthcare systems and whether these new agents can continue to be supported by public healthcare or by private insurers. In addition, some drugs have been approved with limited clinical benefit, raising concerns about setting a minimum requirement for medical benefit. Options to resolve these problems include raising the bar for approval of new drugs and/or pricing of new agents based on the medical benefit that they offer to patients. In this commentary, we suggest that new agents should be marketed in a two-step process that would include first the approval of the new drug by the regulatory agencies and second the introduction of a market price based on the medical benefit that the new intervention offers to patients. Introduction of value-based pricing would maintain the sustainability of health care systems and would improve drug development, as it would pressure pharmaceutical companies to become more innovative and avoid the development of compounds with limited benefit. Value-based pricing could also stimulate the funding of research directed to development of new anticancer drugs with novel mechanisms of action. Cancer Res; 76(11); 3127-9. ©2016 AACR. ©2016 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Sui, Xin; Yang, Yongqing; Xu, Xianyun; Zhang, Shuai; Zhang, Lingzhong
2018-02-01
This paper investigates the consensus of multi-agent systems with probabilistic time-varying delays and packet losses via sampled-data control. On the one hand, a Bernoulli-distributed white sequence is employed to model random packet losses among agents. On the other hand, a switched system is used to describe packet dropouts in a deterministic way. Based on the special property of the Laplacian matrix, the consensus problem can be converted into a stabilization problem of a switched system with lower dimensions. Some mean square consensus criteria are derived in terms of constructing an appropriate Lyapunov function and using linear matrix inequalities (LMIs). Finally, two numerical examples are given to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Patil, Riya Raghuvir
Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.
NASA Astrophysics Data System (ADS)
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
This paper introduces the implementation of a computational agent-based financial market model in which the system is described on both microscopic and macroscopic levels. This artificial financial market model is used to study the system response when a shock occurs. Indeed, when a market experiences perturbations, financial systems behavior can exhibit two different properties: resilience and robustness. Through simulations and different scenarios of market shocks, these system properties are studied. The results notably show that the emergence of collective herding behavior when market shock occurs leads to a temporary disruption of the system self-organization. Numerical simulations highlight that the market can absorb strong mono-shocks but can also be led to rupture by low but repeated perturbations.
SiC: An Agent Based Architecture for Preventing and Detecting Attacks to Ubiquitous Databases
NASA Astrophysics Data System (ADS)
Pinzón, Cristian; de Paz, Yanira; Bajo, Javier; Abraham, Ajith; Corchado, Juan M.
One of the main attacks to ubiquitous databases is the structure query language (SQL) injection attack, which causes severe damages both in the commercial aspect and in the user’s confidence. This chapter proposes the SiC architecture as a solution to the SQL injection attack problem. This is a hierarchical distributed multiagent architecture, which involves an entirely new approach with respect to existing architectures for the prevention and detection of SQL injections. SiC incorporates a kind of intelligent agent, which integrates a case-based reasoning system. This agent, which is the core of the architecture, allows the application of detection techniques based on anomalies as well as those based on patterns, providing a great degree of autonomy, flexibility, robustness and dynamic scalability. The characteristics of the multiagent system allow an architecture to detect attacks from different types of devices, regardless of the physical location. The architecture has been tested on a medical database, guaranteeing safe access from various devices such as PDAs and notebook computers.
Computing with motile bio-agents
NASA Astrophysics Data System (ADS)
Nicolau, Dan V., Jr.; Burrage, Kevin; Nicolau, Dan V.
2007-12-01
We describe a model of computation of the parallel type, which we call 'computing with bio-agents', based on the concept that motions of biological objects such as bacteria or protein molecular motors in confined spaces can be regarded as computations. We begin with the observation that the geometric nature of the physical structures in which model biological objects move modulates the motions of the latter. Consequently, by changing the geometry, one can control the characteristic trajectories of the objects; on the basis of this, we argue that such systems are computing devices. We investigate the computing power of mobile bio-agent systems and show that they are computationally universal in the sense that they are capable of computing any Boolean function in parallel. We argue also that using appropriate conditions, bio-agent systems can solve NP-complete problems in probabilistic polynomial time.
Perugini, P; Simeoni, S; Scalia, S; Genta, I; Modena, T; Conti, B; Pavanetto, F
2002-10-10
The aim of this study was to investigate the influence of nanoparticle-based systems on the light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC). Ethylcellulose (EC) and poly-D,L-lactide-co-glycolide (PLGA) were used as biocompatible polymers for the preparation of the particulate systems. The "salting out" method was used for nanoparticle preparation and several variables were evaluated in order to optimize product characteristics. The photodegradation of the sunscreen agent in emulsion vehicles was reduced by encapsulation into the PLGA nanoparticles (the extent of degradation was 35.3% for the sunscreen-loaded nanoparticles compared to 52.3% for free trans-EHMC) whereas the EC nanoparticle system had no significant effect. Therefore, PLGA nanoparticles loaded with trans-EHMC improve the photostability of the sunscreen agent.
Method, apparatus and system for managing queue operations of a test bench environment
Ostler, Farrell Lynn
2016-07-19
Techniques and mechanisms for performing dequeue operations for agents of a test bench environment. In an embodiment, a first group of agents are each allocated a respective ripe reservation and a second set of agents are each allocated a respective unripe reservation. Over time, queue management logic allocates respective reservations to agents and variously changes one or more such reservations from unripe to ripe. In another embodiment, an order of servicing agents allocated unripe reservations is based on relative priorities of the unripe reservations with respect to one another. An order of servicing agents allocated ripe reservations is on a first come, first served basis.
Ambient agents: embedded agents for remote control and monitoring using the PANGEA platform.
Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier; Corchado, Juan M
2014-07-31
Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation.
Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform
Villarrubia, Gabriel; De Paz, Juan F.; Bajo, Javier; Corchado, Juan M.
2014-01-01
Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation. PMID:25090416
Oral (Systemic) Botanical Agents for the Treatment of Psoriasis: A Review.
Farahnik, Benjamin; Sharma, Divya; Alban, Joseph; Sivamani, Raja
2017-06-01
Patients with psoriasis often use botanical therapies as part of their treatment. It is important for clinicians to be aware of the current evidence regarding these agents as they treat patients. A systematic literature search was conducted using the PubMed, MEDLINE, and EMBASE database for randomized clinical trials assessing the use of botanical therapeutics for psoriasis. The search included the following keywords: "psoriasis" and "plant" or "herbal" or "botanical." Citations within articles were also reviewed to identify relevant sources. The results were then further refined by route of administration, and the oral (systemic) botanical agents are reviewed herein. A total of 12 controlled and uncontrolled clinical trials addressing the use of oral, systemic botanical agents for psoriasis were assessed in this review. While overall evidence is limited in quantity and quality, HESA-A, curcumin, neem extract, and, to a lesser degree, Traditional Chinese Medicine seem to be the most efficacious agents. The literature addresses a large amount of studies in regards to botanicals for the treatment of psoriasis. While most agents appear to be safe, further research is necessary for evidence-based recommendation of oral botanical agents to psoriasis patients.
Model-based synthesis of locally contingent responses to global market signals
NASA Astrophysics Data System (ADS)
Magliocca, N. R.
2015-12-01
Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.
Contrast-enhanced peripheral MRA: technique and contrast agents.
Nielsen, Yousef W; Thomsen, Henrik S
2012-09-01
In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X-ray angiography.
Agent Model Development for Assessing Climate-Induced Geopolitical Instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boslough, Mark B.; Backus, George A.
2005-12-01
We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such modelsmore » do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3« less
Thomas A. Spies; Eric White; Alan Ager; Jeffrey D. Kline; John P. Bolte; Emily K. Platt; Keith A. Olsen; Robert J. Pabst; Ana M. G. Barros; John D. Bailey; Susan Charnley; Anita T. Morzillo; Jennifer Koch; Michelle M. Steen-Adams; Peter H. Singleton; James Sulzman; Cynthia Schwartz; Blair Csuti
2017-01-01
Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern...
Sensor Systems for Biological Agent Attacks: Protecting Buildings and Military Bases
2004-01-01
simple aerosol detectors, to those that identify an agent based on its genetic, structural, or chemical properties , to so- called "functional...Cytometry, 122 Target Binding That Changes Detectable Properties of Smart Sensor Surfaces, 124 Colorimetric Detection, 124 Fluorescence Detection, 125 One...microscopy. In addition to particles directly derived from living organisms, other particles in air may also share properties with the bioaerosols
A cognitive information processing framework for distributed sensor networks
NASA Astrophysics Data System (ADS)
Wang, Feiyi; Qi, Hairong
2004-09-01
In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.
Workflow Agents vs. Expert Systems: Problem Solving Methods in Work Systems Design
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Seah, Chin
2009-01-01
During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods as part of an effort called "second generation expert systems" (2nd GES). How do the motivations and results of this research relate to building tools for the workplace today? We provide an historical review of how the theory of expertise has developed, a progress report on a tool for designing and implementing model-based automation (Brahms), and a concrete example how we apply 2nd GES concepts today in an agent-based system for space flight operations (OCAMS). Brahms incorporates an ontology for modeling work practices, what people are doing in the course of a day, characterized as "activities." OCAMS was developed using a simulation-to-implementation methodology, in which a prototype tool was embedded in a simulation of future work practices. OCAMS uses model-based methods to interactively plan its actions and keep track of the work to be done. The problem solving methods of practice are interactive, employing reasoning for and through action in the real world. Analogously, it is as if a medical expert system were charged not just with interpreting culture results, but actually interacting with a patient. Our perspective shifts from building a "problem solving" (expert) system to building an actor in the world. The reusable components in work system designs include entire "problem solvers" (e.g., a planning subsystem), interoperability frameworks, and workflow agents that use and revise models dynamically in a network of people and tools. Consequently, the research focus shifts so "problem solving methods" include ways of knowing that models do not fit the world, and ways of interacting with other agents and people to gain or verify information and (ultimately) adapt rules and procedures to resolve problematic situations.
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
Use of agents to implement an integrated computing environment
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.
1995-01-01
Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.
NASA Astrophysics Data System (ADS)
Haghnevis, Moeed
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment
NASA Astrophysics Data System (ADS)
Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro
The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.
PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.
Wu, Huizi; Huang, Jiaguo
2016-01-01
Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on their target capability, clearance kinetics and metabolic stability are depicted. Problems and issues relating to the pharmacokinetic and optimization design of peptide-based imaging agents are also discussed.
NASA Technical Reports Server (NTRS)
Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan
2014-01-01
Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
iMuseumA: an agent-based context-aware intelligent museum system.
Ayala, Inmaculada; Amor, Mercedes; Pinto, Mónica; Fuentes, Lidia; Gámez, Nadia
2014-11-10
Currently, museums provide their visitors with interactive tour guide applications that can be installed in mobile devices and provide timely tailor-made multimedia information about exhibits on display. In this paper, we argue that mobile devices not only could provide help to visitors, but also to museum staff. Our goal is to integrate, within the same system, multimedia tour guides with the management facilities required by museums. In this paper, we present iMuseumA (intelligent museum with agents), a mobile-based solution to customize visits and perform context-aware management tasks. iMuseumA follows an agent-based approach, which makes it possible to interact easily with the museum environment and make decisions based on its current status. This system is currently deployed in the Museum of Informatics at the Informatics School of the University of Málaga, and its main contributions are: (i) a mobile application that provides management facilities to museum staff by means of sensing and processing environmental data; (ii) providing an integrated solution for visitors, tour guides and museum staff that allows coordination and communication enrichment among different groups of users; (iii) using and benefiting from group communication for heterogeneous groups of users that can be created on demand.
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
Contrast-enhanced photoacoustic tomography of human joints
NASA Astrophysics Data System (ADS)
Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding
2016-03-01
Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.
Adaptive consensus of scale-free multi-agent system by randomly selecting links
NASA Astrophysics Data System (ADS)
Mou, Jinping; Ge, Huafeng
2016-06-01
This paper investigates an adaptive consensus problem for distributed scale-free multi-agent systems (SFMASs) by randomly selecting links, where the degree of each node follows a power-law distribution. The randomly selecting links are based on the assumption that every agent decides to select links among its neighbours according to the received data with a certain probability. Accordingly, a novel consensus protocol with the range of the received data is developed, and each node updates its state according to the protocol. By the iterative method and Cauchy inequality, the theoretical analysis shows that all errors among agents converge to zero, and in the meanwhile, several criteria of consensus are obtained. One numerical example shows the reliability of the proposed methods.
Distributed environmental control
NASA Technical Reports Server (NTRS)
Cleveland, Gary A.
1992-01-01
We present an architecture of distributed, independent control agents designed to work with the Computer Aided System Engineering and Analysis (CASE/A) simulation tool. CASE/A simulates behavior of Environmental Control and Life Support Systems (ECLSS). We describe a lattice of agents capable of distributed sensing and overcoming certain sensor and effector failures. We address how the architecture can achieve the coordinating functions of a hierarchical command structure while maintaining the robustness and flexibility of independent agents. These agents work between the time steps of the CASE/A simulation tool to arrive at command decisions based on the state variables maintained by CASE/A. Control is evaluated according to both effectiveness (e.g., how well temperature was maintained) and resource utilization (the amount of power and materials used).
An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures
NASA Astrophysics Data System (ADS)
Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.
2009-07-01
A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.
Evacuation Simulation in Kalayaan Residence Hall, up Diliman Using Gama Simulation Software
NASA Astrophysics Data System (ADS)
Claridades, A. R. C.; Villanueva, J. K. S.; Macatulad, E. G.
2016-09-01
Agent-Based Modeling (ABM) has recently been adopted in some studies for the modelling of events as a dynamic system given a set of events and parameters. In principle, ABM employs individual agents with assigned attributes and behaviors and simulates their behavior around their environment and interaction with other agents. This can be a useful tool in both micro and macroscale-applications. In this study, a model initially created and applied to an academic building was implemented in a dormitory. In particular, this research integrates three-dimensional Geographic Information System (GIS) with GAMA as the multi-agent based evacuation simulation and is implemented in Kalayaan Residence Hall. A three-dimensional GIS model is created based on the floor plans and demographic data of the dorm, including respective pathways as networks, rooms, floors, exits and appropriate attributes. This model is then re-implemented in GAMA. Different states of the agents and their effect on their evacuation time were then observed. GAMA simulation with varying path width was also implemented. It has been found out that compared to their original states, panic, eating and studying will hasten evacuation, and on the other hand, sleeping and being on the bathrooms will be impedances. It is also concluded that evacuation time will be halved when path widths are doubled, however it is recommended for further studies for pathways to be modeled as spaces instead of lines. A more scientific basis for predicting agent behavior in these states is also recommended for more realistic results.
Adapting an Agent-Based Model of Socio-Technical Systems to Analyze System and Security Failures
2016-05-09
statistically significant amount, which it did with a p-valueɘ.0003 on a simulation of 3125 iterations; the data is shown in the Delegation 1 column of...Blackout metric to a statistically significant amount, with a p-valueɘ.0003 on a simulation of 3125 iterations; the data is shown in the Delegation 2...Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pp. 1007- 1014 . International Foundation
A therapy inactivating the tumor angiogenic factors.
Morales-Rodrigo, Cristian
2013-02-01
This paper is devoted to a nonlinear system of partial differential equations modeling the effect of an anti-angiogenic therapy based on an agent that binds to the tumor angiogenic factors. The main feature of the model under consideration is a nonlinear flux production of tumor angiogenic factors at the boundary of the tumor. It is proved the global existence for the nonlinear system and the effect in the large time behavior of the system for high doses of the therapeutic agent.
NASA Technical Reports Server (NTRS)
Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter;
2008-01-01
This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.
Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities
2009-01-01
Background This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. Methods As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. Results An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. Conclusion This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it. PMID:19922684
Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities.
Borkowski, Maciej; Podaima, Blake W; McLeod, Robert D
2009-11-18
This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it.
A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass.
Sánchez, Jesús M; Carrera, Álvaro; Iglesias, Carlos Á; Serrano, Emilio
2016-08-24
Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones) with an agent-based social simulator and indoor tracking services.
Wash water waste pretreatment system
NASA Technical Reports Server (NTRS)
1977-01-01
Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
[Study on expert system of infrared spectral characteristic of combustible smoke agent].
Song, Dong-ming; Guan, Hua; Hou, Wei; Pan, Gong-pei
2009-05-01
The present paper studied the application of expert system in prediction of infrared spectral characteristic of combustible anti-infrared smoke agent. The construction of the expert system was founded, based on the theory of minimum free energy and infrared spectral addition. After the direction of smoke agent was input, the expert system could figure out the final combustion products. Then infrared spectrogram of smoke could also be simulated by adding the spectra of all of the combustion products. Meanwhile, the screening index of smoke was provided in the wave bands of 3-5 im and 8-14 microm. FTIR spectroscope was used to investigate the performance of one kind of HC smoke. The combustion products calculated by the expert system were coincident with the actual data, and the simulant infrared spectrum was also similar to the real one of the smoke. The screening index given by the system was consistent with the known facts. It was showed that a new approach was offered for the fast discrimination of varieties of directions of smoke agent.
Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview
Dutse, Sabo Wada; Yusof, Nor Azah
2011-01-01
Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment. PMID:22163925
McClure, Leslie A; Harrington, Kathy F; Graham, Holli; Gerald, Lynn B
2009-01-01
Background Asthma is the most common chronic childhood disease and has significant impact on morbidity and mortality in children. Proper adherence to asthma medication has been shown to reduce morbidity among those with asthma; however, adherence to medications is known to be low, especially among low-income urban populations. We conducted a randomized clinical trial to examine the effectiveness of an intervention designed to increase adherence to asthma medication among children with asthma that required daily collection of data. Purpose and Methods A specifically designed web-based data collection system, the Asthma Agents System, was used to collect daily data from participant children at school. These data were utilized to examine the intervention’s effectiveness in reducing the frequency of asthma exacerbations. This study examines the Asthma Agents System’s effect on the frequency of missing data. Data collection methods are discussed in detail, as well as the processes for retrieving missing data. Results For the 290 children randomized, 97% of the daily data expected were available. Of the outcome data retrieved via the Asthma Agents System, 5% of those expected were missing during the period examined. Limitations Challenges encountered in this study include issues regarding the use of technology in urban school settings, transfer of data between study sites, and availability of data during school breaks. Conclusions Use of the Asthma Agents System resulted in lower rates of missing data than rates reported elsewhere in the literature. PMID:18283077
NASA Astrophysics Data System (ADS)
Narayan Ray, Dip; Majumder, Somajyoti
2014-07-01
Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.
TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds
ERIC Educational Resources Information Center
Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien
2013-01-01
Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…
Nahmias, André J.; Nahmias, Susanne Beckman; Danielsson, Dan
2006-01-01
Proof of causality of most neuromental disorders (NMD's) is largely unavailable. Lessons from four-decade investigations of the epidemiology, immunology, pathogenesis, prevention and therapy of perinatal infectious agents, which invade directly the nervous system, have led us to propose a new indirect effect hypothesis: maternal transplacentally-acquired antibodies, to agents with epitope molecular mimicry with the developing nervous system, can cross the fetus/infant's blood–nervous system barriers to cause NMD's, clinically manifest years later.Further rationale is provided by relevant evolutionary/developmental (EVO–DEVO) considerations—applicable also to some vaccines. The hypothesis is being tested in: (a) older pregnancy studies with available maternal and newborn sera, and follow-up of the progeny for NMD's; and (b) NMD registry individuals linked to their stored newborn blood spots. Preliminary results support a possible role for schizophrenia of high-tittered antibodies to some agents (toxoplasma, influenza and herpes simplex type 2 virus).A model that includes likely genetic and postnatal influences is schematized and a list of putative agents and factors, based on varying rationales, is tabulated. In case pilot studies are confirmed, the identified agent(s) and antibodies would need to be tested in new prospectively enrolled pregnant women, so as to establish further risk factors leading to possible preventive modalities. PMID:17162360
Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come
Yingchoncharoen, Phatsapong; Kalinowski, Danuta S.
2016-01-01
Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. PMID:27363439
Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems
NASA Astrophysics Data System (ADS)
Zhao, Xiaomin; Chen, Y. H.; Zhao, Han
2017-05-01
We consider the control design of artificial swarm systems with emphasis on four characteristics. First, the agent is made of mechanical components. As a result, the motion of each agent is subject to physical laws that govern mechanical systems. Second, both nonlinearity and uncertainty of the mechanical system are taken into consideration. Third, the ideal agent kinematic performance is treated as a desired d'Alembert constraint. This in turn suggests a creative way of embedding the constraint into the control design. Fourth, two types of adaptive robust control schemes are designed. They both contain leakage and dead-zone. However, one design suggests a trade-off between the amount of leakage and the size of dead-zone, in exchange for a simplified dead-zone structure.
2016-01-01
Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235
Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.
Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla
2014-12-01
This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.
Building distributed rule-based systems using the AI Bus
NASA Technical Reports Server (NTRS)
Schultz, Roger D.; Stobie, Iain C.
1990-01-01
The AI Bus software architecture was designed to support the construction of large-scale, production-quality applications in areas of high technology flux, running heterogeneous distributed environments, utilizing a mix of knowledge-based and conventional components. These goals led to its current development as a layered, object-oriented library for cooperative systems. This paper describes the concepts and design of the AI Bus and its implementation status as a library of reusable and customizable objects, structured by layers from operating system interfaces up to high-level knowledge-based agents. Each agent is a semi-autonomous process with specialized expertise, and consists of a number of knowledge sources (a knowledge base and inference engine). Inter-agent communication mechanisms are based on blackboards and Actors-style acquaintances. As a conservative first implementation, we used C++ on top of Unix, and wrapped an embedded Clips with methods for the knowledge source class. This involved designing standard protocols for communication and functions which use these protocols in rules. Embedding several CLIPS objects within a single process was an unexpected problem because of global variables, whose solution involved constructing and recompiling a C++ version of CLIPS. We are currently working on a more radical approach to incorporating CLIPS, by separating out its pattern matcher, rule and fact representations and other components as true object oriented modules.
Agent-Based Modeling in Molecular Systems Biology.
Soheilypour, Mohammad; Mofrad, Mohammad R K
2018-07-01
Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.
Investigating accident causation through information network modelling.
Griffin, T G C; Young, M S; Stanton, N A
2010-02-01
Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.
Agent-Based Simulation and Analysis of a Defensive UAV Swarm Against an Enemy UAV Swarm
2011-06-01
de Investigacion, Programas y Desarrollo de la Armada Armada de Chile CHILE 10. CAPT Jeffrey Kline, USN(ret.) Naval Postgraduate School Monterey, California 91 ...this de - fensive swarm system, an agent-based simulation model is developed, and appropriate designs of experiments and statistical analyses are... de - velopment and implementation of counter UAV technology from readily-available commercial products. The organization leverages the “largest
Sustainable Society Formed by Unselfish Agents
NASA Astrophysics Data System (ADS)
Kikuchi, Toshiko
It has been pointed out that if the social configuration of the three relations (market, communal and obligatory relations) is not balanced, a market based society as a total system fails. Using multi-agent simulations, this paper shows that a sustainable society is formed when all three relations are integrated and function respectively. When agent trades are based on the market mechanism (i.e., agents act in their own interest and thus only market relations exist), weak agents who cannot perform transactions die. If a compulsory tax is imposed to enable all weak agents to survive (i.e., obligatory relations exist), then the fiscal deficit increases. On the other hand, if agents who have excess income undertake the unselfish action of distributing their surplus to the weak agents (i.e., communal relations exist), then trade volume increases. It is shown that the existence of unselfish agents is necessary for the realization of a sustainable society. However, the survival of all agents is difficult in a communal society. In an artificial society, for all agents survive and fiscal balance to be maintained, all three social relations need to be fully integrated. These results show that adjusting the balance of the three social relations well lead to the realization of a sustainable society.
Distributed Adaptive Control: Beyond Single-Instant, Discrete Variables
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Bieniawski, Stefan
2005-01-01
In extensive form noncooperative game theory, at each instant t, each agent i sets its state x, independently of the other agents, by sampling an associated distribution, q(sub i)(x(sub i)). The coupling between the agents arises in the joint evolution of those distributions. Distributed control problems can be cast the same way. In those problems the system designer sets aspects of the joint evolution of the distributions to try to optimize the goal for the overall system. Now information theory tells us what the separate q(sub i) of the agents are most likely to be if the system were to have a particular expected value of the objective function G(x(sub 1),x(sub 2), ...). So one can view the job of the system designer as speeding an iterative process. Each step of that process starts with a specified value of E(G), and the convergence of the q(sub i) to the most likely set of distributions consistent with that value. After this the target value for E(sub q)(G) is lowered, and then the process repeats. Previous work has elaborated many schemes for implementing this process when the underlying variables x(sub i) all have a finite number of possible values and G does not extend to multiple instants in time. That work also is based on a fixed mapping from agents to control devices, so that the the statistical independence of the agents' moves means independence of the device states. This paper also extends that work to relax all of these restrictions. This extends the applicability of that work to include continuous spaces and Reinforcement Learning. This paper also elaborates how some of that earlier work can be viewed as a first-principles justification of evolution-based search algorithms.
Kumar, Pramod; Singh, Sanjay; Mishra, Brahmeshwar
2008-09-01
Colon targeted delivery systems of metronidazole (MTZ) based on osmotic technology were developed. The developed systems consisted of osmotic core (drug, osmotic agent and wicking agent), coated with semipermeable membrane (SPM) containing guar gum as pore former, coated core were then further coated with enteric coating to protect the system from acidic environment of stomach. The effect of various formulation variables namely the level of wicking agent (sodium lauryl sulphate), osmotic agent in the osmotic core, the level of pore former (guar gum) in SPM, and the thickness of SPM, were studied on physical parameters and drug release characteristics of developed formulations. MTZ release was inversely proportional to SPM thickness, but directly related to the level of pore former, wicking agent and osmotic agent. On the other hand burst strength of the exhausted shells was decreased with the increase in level of pore former in the membrane but increased with the increase in the thickness of SPM. The drug release from the developed formulations was independent of pH, and agitation intensity, but dependent on the osmotic pressure of the release media. The thickness of enteric coating could prevent formation of delivery pores before contact with simulated colonic fluid, but had no effect on drug release. Result of SEM studies showed the formation of in-situ delivery pores in the membrane from where the drug release occurred, and the number of pores formed were directly related to the initial level of pore former (guar gum) in SPM. The manufacturing procedure was found to be reproducible and formulations were found to be stable during 3 months of accelerated stability studies.
2013-03-01
function is based on how individualistic or collectivistic a system is. Low individualism values mean the system is more collective and is less likely...Hofstede’s cultural dimensions, integrated with a modified version of the Bak- Sneppen biological evolutionary model, this research highlights which set...14 Hofstede’s Cultural Dimensions
Cooperating systems: Layered MAS
NASA Technical Reports Server (NTRS)
Rochowiak, Daniel
1990-01-01
Distributed intelligent systems can be distinguished by the models that they use. The model developed focuses on layered multiagent system conceived of as a bureaucracy in which a distributed data base serves as a central means of communication. The various generic bureaus of such a system is described and a basic vocabulary for such systems is presented. In presenting the bureaus and vocabularies, special attention is given to the sorts of reasonings that are appropriate. A bureaucratic model has a hierarchy of master system and work group that organizes E agents and B agents. The master system provides the administrative services and support facilities for the work groups.
The Mobile Agents Integrated Field Test: Mars Desert Research Station April 2003
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ron
2003-01-01
The Mobile Agents model-based, distributed architecture, which integrates diverse components in a system for lunar and planetary surface operations, was extensively tested in a two-week field "technology retreat" at the Mars Society s Desert Research Station (MDRS) during April 2003. More than twenty scientists and engineers from three NASA centers and two universities refined and tested the system through a series of incremental scenarios. Agent software, implemented in runtime Brahms, processed GPS, health data, and voice commands-monitoring, controlling and logging science data throughout simulated EVAs with two geologists. Predefined EVA plans, modified on the fly by voice command, enabled the Mobile Agents system to provide navigation and timing advice. Communications were maintained over five wireless nodes distributed over hills and into canyons for 5 km; data, including photographs and status was transmitted automatically to the desktop at mission control in Houston. This paper describes the system configurations, communication protocols, scenarios, and test results.
NASA Astrophysics Data System (ADS)
Poplin, A.; Shenk, L.; Krejci, C.; Passe, U.
2017-09-01
The main goal of this paper is to present the conceptual framework for engaging youth in urban planning activities that simultaneously create locally meaningful positive change. The framework for engaging youth interlinks the use of IT tools such as geographic information systems (GIS), agent-based modelling (ABM), online serious games, and mobile participatory geographic information systems with map-based storytelling and action projects. We summarize the elements of our framework and the first results gained in the program Community Growers established in a neighbourhood community of Des Moines, the capital of Iowa, USA. We conclude the paper with a discussion and future research directions.
I-SCAD® standoff chemical agent detector overview
NASA Astrophysics Data System (ADS)
Popa, Mirela O.; Griffin, Matthew T.
2012-06-01
This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.
The potential for neurovascular intravenous angiography using K-edge digital subtraction angiography
NASA Astrophysics Data System (ADS)
Schültke, E.; Fiedler, S.; Kelly, M.; Griebel, R.; Juurlink, B.; LeDuc, G.; Estève, F.; Le Bas, J.-F.; Renier, M.; Nemoz, C.; Meguro, K.
2005-08-01
Background: Catheterization of small-caliber blood vessels in the central nervous system can be extremely challenging. Alternatively, intravenous (i.v.) administration of contrast agent is minimally invasive and therefore carries a much lower risk for the patient. With conventional X-ray equipment, volumes of contrast agent that could be safely administered to the patient do not allow acquisition of high-quality images after i.v. injection, because the contrast bolus is extremely diluted by passage through the heart. However, synchrotron-based digital K-edge subtraction angiography does allow acquisition of high-quality images after i.v. administration of relatively small doses of contrast agent. Materials and methods: Eight adult male New Zealand rabbits were used for our experiments. Animals were submitted to both angiography with conventional X-ray equipment and synchrotron-based digital subtraction angiography. Results: With conventional X-ray equipment, no contrast was seen in either cerebral or spinal blood vessels after i.v. injection of iodinated contrast agent. However, using K-edge digital subtraction angiography, as little as 1 ml iodinated contrast agent, when administered as i.v. bolus, yielded images of small-caliber blood vessels in the central nervous system (both brain and spinal cord). Conclusions: If it would be possible to image blood vessels of the same diameter in the central nervous system of human patients, the synchrotron-based technique could yield high-quality images at a significantly lower risk for the patient than conventional X-ray imaging. Images could be acquired where catheterization of feeding blood vessels has proven impossible.
Proteinaceous Resin and Hydrophilic Encapsulation: A Self-Healing-Related Study
NASA Astrophysics Data System (ADS)
Zheng, Ting
Inspired by living organisms, self-healing materials have been designed as smart materials. Their automatic healing nature is achieved through the use of capsule in which the healing agent is encapsulated. The occurrence of cracks leads to ripping of the capsule, along with crack propagation and release of the healing agent that wets the crack surface to eventually heal (bond) the crack. Such automatic repair of the crack significantly extends the service life of the material. A vast majority of existing self-healing systems have been designed for the epoxy matrix - the most common commercially used thermoset - that possesses low crack resistance. Currently, self-healing systems have not yet been introduced for fully protein-based materials, despite their great potential to replace currently used synthesis precursors for the latter and the eco-friendly nature of self-healing materials. This has been probably due to two major obstacles: poor mechanical properties of the protein-based matrix, and extreme difficulty associated with the encapsulation of hydrophilic healing agents suitable for the protein-based matrix. This study provides possible solutions towards addressing both these obstacles. To improve the inherent mechanical properties of protein-based resin, soy protein isolate (SPI) was chosen as the model in this study. Dialdehyde carboxymethyl cellulose (DCMC) was synthesized and used as the crosslinking agent to modify the SPI film. As-synthesized DCMC - a fully bio-based material - exhibited high mechanical strength, excellent thermal stability, and reduced moisture sensitivity. Good compatibility and effective crosslinking were believed to be the key reasons for such property enhancements. However, these were accompanied by poor crack resistance, where self-healing is a pertinent solution. A novel healing system for the protein matrix was designed in this work via the use of formaldehyde as a healing agent. Subsequently, the well-acknowledged challenge, e.g. hydrophilic agent encapsulation, was addressed through the development of novel polyurethane-Poly(melamine-formaldehyde) (PU-PMF) dual-component capsules. Remarkably, the external PU insulation layer was fabricated through interfacial polymerization based on a water-in-oil-in-oil (W/O/O) emulsion template. Surface tension was identified as the main driving factor for the formation of the external oil phase. The internal PMF layer was observed to strongly influence the internal morphology of the capsule. A protocol was developed, and a typical capsule with dense and neat shell morphology with a shell/capsule diameter (around 3 %) was fabricated. This study provides solutions for the two aforementioned obstacles related to the development of the healing system for the protein-based materials.
Evolutionary Agent-based Models to design distributed water management strategies
NASA Astrophysics Data System (ADS)
Giuliani, M.; Castelletti, A.; Reed, P. M.
2012-12-01
There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a synthetic case study, representing a Y-shaped system composed by two regulated lakes, whose releases merge just upstream of a city. Each reservoir is operated by an agent in order to prevent floods along the lake shores (local objective). However, the optimal operation of the reservoirs with respect to the local objectives is conflicting with the minimization of floods in the city (global objective). The evolution of the Agent-based Model from individualistic management strategies of the reservoirs toward a global compromise that reduces the costs for the city is analysed.
Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices
Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo
2011-01-01
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Condensation in AN Economic Model with Brand Competition
NASA Astrophysics Data System (ADS)
Casillas, L.; Espinosa, F. J.; Huerta-Quintanilla, R.; Rodriguez-Achach, M.
We present a linear agent based model on brand competition. Each agent belongs to one of the two brands and interacts with its nearest neighbors. In the process the agent can decide to change to the other brand if the move is beneficial. The numerical simulations show that the systems always condenses into a state when all agents belong to a single brand. We study the condensation times for different parameters of the model and the influence of different mechanisms to avoid condensation, like anti monopoly rules and brand fidelity.
Addressing Production System Failures Using Multi-agent Control
NASA Astrophysics Data System (ADS)
Gautam, Rajesh; Miyashita, Kazuo
Output in high-volume production facilities is limited by bottleneck machines. We propose a control mechanism by modeling workstations as agents that pull jobs from other agents based on their current WIP level and requirements. During failures, when flows of some jobs are disrupted, the agents pull alternative jobs to maintain utilization of their capacity at a high level. In this paper, we empirically demonstrate that the proposed mechanism can react to failures more appropriately than other control mechanisms using a benchmark problem of a semiconductor manufacturing process.
Nanoplatforms for Detection, Remediation and Protection Against Chem-Bio Warfare
NASA Astrophysics Data System (ADS)
Denkbaş, E. B.; Bayram, C.; Kavaz, D.; Çirak, T.; Demirbilek, M.
Chemical and biological substances have been used as warfare agents by terrorists by varying degree of sophistication. It is critical that these agents be detected in real-time with high level of sensitively, specificity, and accuracy. Many different types of techniques and systems have been developed to detect these agents. But there are some limitations in these conventional techniques and systems. Limitations include the collection, handling and sampling procedures, detection limits, sample transfer, expensive equipment, personnel training, and detection materials. Due to the unique properties such as quantum effect, very high surface/volume ratio, enhanced surface reactivity, conductivity, electrical and magnetic properties of the nanomaterials offer great opportunity to develop very fast, sensitive, accurate and cost effective detection techniques and systems to detect chemical and biological (chem.-bio) warfare agents. Furthermore, surface modification of the materials is very easy and effective way to get functional or smart surfaces to be used as nano-biosensor platform. In that respect many different types of nanomaterials have been developed and used for the detection, remediation and protection, such as gold and silver nanoparticles, quantum dots, Nano chips and arrays, fluorescent polymeric and magnetic nanoparticles, fiber optic and cantilever based nanobiosensors, nanofibrillar nanostructures etc. This study summarizes preparation and characterization of nanotechnology based approaches for the detection of and remediation and protection against chem.-bio warfare agents.
Deep Reinforcement Learning of Cell Movement in the Early Stage of C. elegans Embryogenesis.
Wang, Zi; Wang, Dali; Li, Chengcheng; Xu, Yichi; Li, Husheng; Bao, Zhirong
2018-04-25
Cell movement in the early phase of C. elegans development is regulated by a highly complex process in which a set of rules and connections are formulated at distinct scales. Previous efforts have demonstrated that agent-based, multi-scale modeling systems can integrate physical and biological rules and provide new avenues to study developmental systems. However, the application of these systems to model cell movement is still challenging and requires a comprehensive understanding of regulatory networks at the right scales. Recent developments in deep learning and reinforcement learning provide an unprecedented opportunity to explore cell movement using 3D time-lapse microscopy images. We present a deep reinforcement learning approach within an agent-based modeling system to characterize cell movement in the embryonic development of C. elegans. Our modeling system captures the complexity of cell movement patterns in the embryo and overcomes the local optimization problem encountered by traditional rule-based, agent-based modeling that uses greedy algorithms. We tested our model with two real developmental processes: the anterior movement of the Cpaaa cell via intercalation and the rearrangement of the superficial left-right asymmetry. In the first case, the model results suggested that Cpaaa's intercalation is an active directional cell movement caused by the continuous effects from a longer distance (farther than the length of two adjacent cells), as opposed to a passive movement caused by neighbor cell movements. In the second case, a leader-follower mechanism well explained the collective cell movement pattern in the asymmetry rearrangement. These results showed that our approach to introduce deep reinforcement learning into agent-based modeling can test regulatory mechanisms by exploring cell migration paths in a reverse engineering perspective. This model opens new doors to explore the large datasets generated by live imaging. Source code is available at https://github.com/zwang84/drl4cellmovement. dwang7@utk.edu, baoz@mskcc.org. Supplementary data are available at Bioinformatics online.
Mobile Router Developed and Tested
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2002-01-01
The NASA Glenn Research Center, under a NASA Space Act Agreement with Cisco Systems, has been performing joint networking research to apply Internet-based technologies and protocols to space-based communications. As a result of this research, NASA performed stringent performance testing of the mobile router, including the interaction of routing and the transport-level protocol. In addition, Cisco Systems developed the mobile router for both commercial and Government markets. The code has become part of the Cisco Systems Internetworking Operating System (IOS) as of release 12.2 (4) T--which will make this capability available to the community at large. The mobile router is software code that resides in a network router and enables entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both Government and commercial sectors, including the "wireless battlefield." NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is also a key enabling technology for aviation-based information applications. Mobile routing will make it possible for information such as weather, air traffic control, voice, and video to be transmitted to aircraft using Internet-based protocols. This technology shows great promise in reducing congested airways and mitigating aviation disasters due to bad weather. The mobile router can also be incorporated into emergency vehicles (such as ambulances and life-flight aircraft) to provide real-time connectivity back to the hospital and health-care experts, enabling the timely application of emergency care. Commercial applications include entertainment services, Internet protocol (IP) telephone, and Internet connectivity for cruise ships, commercial shipping, tour buses, aircraft, and eventually cars. A mobile router, which is based on mobile IP, allows hosts (mobile nodes) to seamlessly "roam" among various IP subnetworks. This is essential in many wireless networks. A mobile router, unlike a mobile IP node, allows entire networks to roam. Hence, a device connected to the mobile router does not need to be a mobile node because the mobile router provides the roaming capabilities. There are three basic elements in the mobile IP: the home agent, the foreign agent, and the mobile node. The home agent is a router on a mobile node's home network that tunnels datagrams for delivery to the mobile node when it is away from home. The foreign agent is a router on a remote network that provides routing services to a registered mobile node. The mobile node is a host or router that changes its point of attachment from one network or subnetwork to another. In mobile routing, virtual communications are maintained by the home agent, which forwards all packets for the mobile networks to the foreign agent. The foreign agent passes the packets to the mobile router, which then forwards the packets to the devices on its networks. As the mobile router moves, it will register with its home agent on its whereabouts via the foreign agent to assure continuous connectivity.
Complexities, Catastrophes and Cities: Emergency Dynamics in Varying Scenarios and Urban Topologies
NASA Astrophysics Data System (ADS)
Narzisi, Giuseppe; Mysore, Venkatesh; Byeon, Jeewoong; Mishra, Bud
Complex Systems are often characterized by agents capable of interacting with each other dynamically, often in non-linear and non-intuitive ways. Trying to characterize their dynamics often results in partial differential equations that are difficult, if not impossible, to solve. A large city or a city-state is an example of such an evolving and self-organizing complex environment that efficiently adapts to different and numerous incremental changes to its social, cultural and technological infrastructure [1]. One powerful technique for analyzing such complex systems is Agent-Based Modeling (ABM) [9], which has seen an increasing number of applications in social science, economics and also biology. The agent-based paradigm facilitates easier transfer of domain specific knowledge into a model. ABM provides a natural way to describe systems in which the overall dynamics can be described as the result of the behavior of populations of autonomous components: agents, with a fixed set of rules based on local information and possible central control. As part of the NYU Center for Catastrophe Preparedness and Response (CCPR1), we have been exploring how ABM can serve as a powerful simulation technique for analyzing large-scale urban disasters. The central problem in Disaster Management is that it is not immediately apparent whether the current emergency plans are robust against such sudden, rare and punctuated catastrophic events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargupta, H.; Stafford, B.; Hamzaoglu, I.
This paper describes an experimental parallel/distributed data mining system PADMA (PArallel Data Mining Agents) that uses software agents for local data accessing and analysis and a web based interface for interactive data visualization. It also presents the results of applying PADMA for detecting patterns in unstructured texts of postmortem reports and laboratory test data for Hepatitis C patients.
de Azevedo Cubas, Gloria Beatriz; Camacho, Guilherme Brião; Demarco, Flávio Fernando; Pereira-Cenci, Tatiana
2011-01-01
Objectives: The aim of this study was to assess the influence of various ceramic thicknesses and luting agents on color variation in five ceramic systems. Methods: Fifteen disc-shaped ceramic specimens (11 mm diameter; shade A3) were fabricated with each of the six veneering ceramics tested, with 1, 1.5, or 2 mm thickness (n=5). Resin composite discs (Z-250, shade C4) were used as bases to simulate a chromatic background. The cementation of the veneers was carried out with an opaque resin-based cement (Enforce, shade C4), a resin-based cement (Enforce, shade A3), or without cement (C4, control group). Color differences (ΔE*) were determined using a colorimeter. Three-way ANOVA was used to analyze the data, followed by a Tukey post-hoc test (α=.05). Results: The L*a*b* values of the ceramic systems were affected by both the luting agent and the ceramic thickness (P<.05). In general, there was no difference between the control group and the group using the resin-based cement. The use of an opaque luting agent resulted in an increase of the color coordinates a*, b*, L*, producing differences in ΔE* values for all ceramics tested, regardless of the thickness (P<.05). For the 2-mm thick veneers, higher values in the color parameters were obtained for all ceramics and were independent of the luting agent used. Conclusions: The association of 2-mm thickness with opaque cement presented the strongest masking ability of a dark colored background when compared to a non- opaque luting agent and the other thicknesses tested. PMID:21769264
Seal, John B; Alverdy, John C; Zaborina, Olga; An, Gary
2011-09-19
There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed--i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data--i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design--i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research.
2011-01-01
Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Conclusions/Significance Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research. PMID:21929759
Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.
Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C
2016-01-01
This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.
Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments
2016-01-01
This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691
A problem of optimal control and observation for distributed homogeneous multi-agent system
NASA Astrophysics Data System (ADS)
Kruglikov, Sergey V.
2017-12-01
The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.
Clashes in the Infosphere, General Intelligence, and Metacognition
2012-12-13
robotic agents . We also implemented the Mars Rover domain and integrated it with MonCon. Finally, the work with AIML chatbots , including human subjects...Park, MD 20742 Abstract Humans confront the unexpected every day, deal with it, and often learn from it. AI agents , on the other hand, are...call the Metacognitive Loop or MCL. To do this, we have implemented MCL- based systems that enable agents to help themselves; they must establish
Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T
2016-04-22
Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment.
Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T.
2016-01-01
Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment. PMID:27110790
Agent-Based Intelligent Interface for Wheelchair Movement Control
Barriuso, Alberto L.; De Paz, Juan F.
2018-01-01
People who suffer from any kind of motor difficulty face serious complications to autonomously move in their daily lives. However, a growing number research projects which propose different powered wheelchairs control systems are arising. Despite of the interest of the research community in the area, there is no platform that allows an easy integration of various control methods that make use of heterogeneous sensors and computationally demanding algorithms. In this work, an architecture based on virtual organizations of agents is proposed that makes use of a flexible and scalable communication protocol that allows the deployment of embedded agents in computationally limited devices. In order to validate the proper functioning of the proposed system, it has been integrated into a conventional wheelchair and a set of alternative control interfaces have been developed and deployed, including a portable electroencephalography system, a voice interface or as specifically designed smartphone application. A set of tests were conducted to test both the platform adequacy and the accuracy and ease of use of the proposed control systems yielding positive results that can be useful in further wheelchair interfaces design and implementation. PMID:29751603
An agent-oriented approach to automated mission operations
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Odubiyi, Jide
1994-01-01
As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.
Opportunistic Behavior in Motivated Learning Agents.
Graham, James; Starzyk, Janusz A; Jachyra, Daniel
2015-08-01
This paper focuses on the novel motivated learning (ML) scheme and opportunistic behavior of an intelligent agent. It extends previously developed ML to opportunistic behavior in a multitask situation. Our paper describes the virtual world implementation of autonomous opportunistic agents learning in a dynamically changing environment, creating abstract goals, and taking advantage of arising opportunities to improve their performance. An opportunistic agent achieves better results than an agent based on ML only. It does so by minimizing the average value of all need signals rather than a dominating need. This paper applies to the design of autonomous embodied systems (robots) learning in real-time how to operate in a complex environment.
Imaging-related medications: a class overview
2007-01-01
Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119
Nanostructured thermites based on iodine pentoxide for bio agent defeat systems.
NASA Astrophysics Data System (ADS)
Hobosyan, Mkhitar; Kazansky, Alexander; Martirosyan, Karen
2011-10-01
The risk for bioterrorist events involving the intentional airborne release of contagious agents has led to development of new approaches for bio agent defeat technologies both indoors and outdoors. Novel approaches to defeat harmful biological agents have generated a strong demand for new active materials. The preferred solutions are to neutralize the biological agents within the immediate target area by using aerosolized biocidal substances released in situ by high energetic reactions. By using nano-thermite reactions, with energy release up to 25 kJ/cc, based on I2O5/Al nanoparticles we intend to generate high quantity of vaporized iodine for spatial deposition onto harmful bacteria for their destruction. In this report, the effect of reaction product on growth and survival of Escherichia coli (E-coli) expressing GFP (Green Fluorescent Protein) was investigated. Moreover, we developed an approach to increase sensitivity of the detection. The study has shown that I2O5/Al nanosystem is extremely effective to disinfect harmful biological agents such (E-coli) bacteria in seconds.
Method and apparatus for enhanced detection of toxic agents
Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong
2013-10-01
A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.
Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.
Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth
2017-03-01
Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Gregorio, Massimo De
In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.
Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.
Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P
2010-02-18
Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.
The WorkQueue project - a task queue for the CMS workload management system
NASA Astrophysics Data System (ADS)
Ryu, S.; Wakefield, S.
2012-12-01
We present the development and first experience of a new component (termed WorkQueue) in the CMS workload management system. This component provides a link between a global request system (Request Manager) and agents (WMAgents) which process requests at compute and storage resources (known as sites). These requests typically consist of creation or processing of a data sample (possibly terabytes in size). Unlike the standard concept of a task queue, the WorkQueue does not contain fully resolved work units (known typically as jobs in HEP). This would require the WorkQueue to run computationally heavy algorithms that are better suited to run in the WMAgents. Instead the request specifies an algorithm that the WorkQueue uses to split the request into reasonable size chunks (known as elements). An advantage of performing lazy evaluation of an element is that expanding datasets can be accommodated by having job details resolved as late as possible. The WorkQueue architecture consists of a global WorkQueue which obtains requests from the request system, expands them and forms an element ordering based on the request priority. Each WMAgent contains a local WorkQueue which buffers work close to the agent, this overcomes temporary unavailability of the global WorkQueue and reduces latency for an agent to begin processing. Elements are pulled from the global WorkQueue to the local WorkQueue and into the WMAgent based on the estimate of the amount of work within the element and the resources available to the agent. WorkQueue is based on CouchDB, a document oriented NoSQL database. The WorkQueue uses the features of CouchDB (map/reduce views and bi-directional replication between distributed instances) to provide a scalable distributed system for managing large queues of work. The project described here represents an improvement over the old approach to workload management in CMS which involved individual operators feeding requests into agents. This new approach allows for a system where individual WMAgents are transient and can be added or removed from the system as needed.
A Multi-Agent Approach to the Simulation of Robotized Manufacturing Systems
NASA Astrophysics Data System (ADS)
Foit, K.; Gwiazda, A.; Banaś, W.
2016-08-01
The recent years of eventful industry development, brought many competing products, addressed to the same market segment. The shortening of a development cycle became a necessity if the company would like to be competitive. Because of switching to the Intelligent Manufacturing model the industry search for new scheduling algorithms, while the traditional ones do not meet the current requirements. The agent-based approach has been considered by many researchers as an important way of evolution of modern manufacturing systems. Due to the properties of the multi-agent systems, this methodology is very helpful during creation of the model of production system, allowing depicting both processing and informational part. The complexity of such approach makes the analysis impossible without the computer assistance. Computer simulation still uses a mathematical model to recreate a real situation, but nowadays the 2D or 3D virtual environments or even virtual reality have been used for realistic illustration of the considered systems. This paper will focus on robotized manufacturing system and will present the one of possible approaches to the simulation of such systems. The selection of multi-agent approach is motivated by the flexibility of this solution that offers the modularity, robustness and autonomy.
Mother ship and physical agents collaboration
NASA Astrophysics Data System (ADS)
Young, Stuart H.; Budulas, Peter P.; Emmerman, Philip J.
1999-07-01
This paper discusses ongoing research at the U.S. Army Research Laboratory that investigates the feasibility of developing a collaboration architecture between small physical agents and a mother ship. This incudes the distribution of planning, perception, mobility, processing and communications requirements between the mother ship and the agents. Small physical agents of the future will be virtually everywhere on the battlefield of the 21st century. A mother ship that is coupled to a team of small collaborating physical agents (conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); logistics; sentry; and communications relay) will be used to build a completely effective and mission capable intelligent system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the smaller agents. The mother ship also establishes a robust communications network between the agents and is the primary information disseminating and receiving point to the external world. Because of its global knowledge and processing power, the mother ship does the high-level control and planning for the collaborative physical agents. This high level control and interaction between the mother ship and its agents (including inter agent collaboration) will be software agent architecture based. The mother ship incorporates multi-resolution battlefield visualization and analysis technology, which aids in mission planning and sensor fusion.
Multiagent data warehousing and multiagent data mining for cerebrum/cerebellum modeling
NASA Astrophysics Data System (ADS)
Zhang, Wen-Ran
2002-03-01
An algorithm named Neighbor-Miner is outlined for multiagent data warehousing and multiagent data mining. The algorithm is defined in an evolving dynamic environment with autonomous or semiautonomous agents. Instead of mining frequent itemsets from customer transactions, the new algorithm discovers new agents and mining agent associations in first-order logic from agent attributes and actions. While the Apriori algorithm uses frequency as a priory threshold, the new algorithm uses agent similarity as priory knowledge. The concept of agent similarity leads to the notions of agent cuboid, orthogonal multiagent data warehousing (MADWH), and multiagent data mining (MADM). Based on agent similarities and action similarities, Neighbor-Miner is proposed and illustrated in a MADWH/MADM approach to cerebrum/cerebellum modeling. It is shown that (1) semiautonomous neurofuzzy agents can be identified for uniped locomotion and gymnastic training based on attribute relevance analysis; (2) new agents can be discovered and agent cuboids can be dynamically constructed in an orthogonal MADWH, which resembles an evolving cerebrum/cerebellum system; and (3) dynamic motion laws can be discovered as association rules in first order logic. Although examples in legged robot gymnastics are used to illustrate the basic ideas, the new approach is generally suitable for a broad category of data mining tasks where knowledge can be discovered collectively by a set of agents from a geographically or geometrically distributed but relevant environment, especially in scientific and engineering data environments.