Science.gov

Sample records for agent temozolomide tmz

  1. TMZ-BioShuttle – a reformulated Temozolomide

    PubMed Central

    Waldeck, Waldemar; Wiessler, Manfred; Ehemann, Volker; Pipkorn, Ruediger; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Mueller, Gabriele; Langowski, Joerg; Braun, Klaus

    2008-01-01

    There is a large number of effective cytotoxic drugs whose side effect profile, efficacy, and long-term use in man are well understood and documented over decades of use in clinical routine e.g. in the treatment of recurrent glioblastoma multiforme (GBM) and the hormone-refractory prostate cancer (HRPC). Both cancers are insensitive against most chemotherapeutic interventions; they have low response rates and poor prognoses. Some cytotoxic agents can be significantly improved by using modern technology of drug delivery or formulation. We succeeded to enhance the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic temozolomide (TMZ) as an example. The TMZ connection to transporter molecules (TMZ-BioShuttle) resulted in a much higher pharmacological effect in glioma cell lines while using reduced doses. This permits the conclusion that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The re-formulation of TMZ to TMZ-BioShuttle achieved a nearly 10-fold potential of the established pharmaceutic TMZ far beyond the treatment of brain tumors cells and results in an attractive reformulated drug with enhanced therapeutic index. PMID:18797509

  2. Phase II Study of Temozolomide (TMZ) and Everolimus (RAD001) Therapy for Metastatic Melanoma

    PubMed Central

    Dronca, Roxana S.; Allred, Jacob B.; Perez, Domingo G.; Nevala, Wendy K.; Lieser, Elizabeth A.T.; Thompson, Michael; Maples, William J.; Creagan, Edward T.; Pockaj, Barbara A.; Kaur, Judith S.; Moore, Timothy D.; Marchello, Benjamin T.; Markovic, Svetomir N.

    2014-01-01

    Objective Mammalian target of rapamycin (mTOR) pathway is activated in malignant melanoma and in situ lesions as opposed to benign nevi. Inhibition of PI3K-Akt-mTOR signaling is implicated in sensitization of melanoma cells to alkylating agents [temozolomide (TMZ)] and inhibition of tumor angiogenesis. Methods We conducted a single-arm phase II multi-institution cooperative group study to assess the antitumor activity and safety profile of the combination of TMZ and the rapamycin derivative everolimus in patients with metastatic unresectable malignant melanoma. Patients received 10 mg/d of RAD001 for 5 of 7 days (ie, 50 mg/ wk) and 200 mg/m2/d of TMZ for 5 days each cycle. Results Of the first 39 eligible patients, 17 were PFS-9 successes, for a predetermined threshold of 18/39 patients for a positive trial. Overall, 21 of 48 patients were progression free at 9 weeks, for an event-free survival rate of 44% (95% confidence interval, 29%–59%). The median progression-free survival was 2.4 months and the median overall survival was 8.6 months. Four patients achieved a partial response; the median duration of response was 15.1 months. No complete remissions were observed. Treatment was in general well tolerated with only 1 patient discontinuing therapy due to toxicity (hyperlipidemia). Conclusions The combination of TMZ and RAD001 was well tolerated but failed to meet/exceed our study threshold for promising clinical activity in patients with metastatic melanoma. PMID:23357973

  3. Effective sensitization of temozolomide by ABT-888 is lost with development of TMZ resistance in glioblastoma xenograft lines

    PubMed Central

    Clarke, Michelle J.; Mulligan, Evan A.; Grogan, Patrick T.; Mladek, Ann C.; Carlson, Brett L.; Schroeder, Mark A.; Curtin, Nicola J.; Lou, Zhenkun; Decker, Paul A.; Wu, Wenting; Plummer, E. Ruth; Sarkaria, Jann N.

    2009-01-01

    Resistance to temozolomide (TMZ) and radiotherapy (RT) is a major problem for patients with GBM but may be overcome using the PARP-inhibitor ABT-888. Using two primary GBM xenografts, the efficacy of ABT-888 combined with RT and/or TMZ was evaluated. Treatment with ABT-888 combined with TMZ resulted in significant survival prolongation (GBM12: 55.1%, p=0.005; GBM22: 54.4%, p=0.043). ABT-888 had no effect with RT alone, but significantly enhanced survival in GBM12 when combined with concurrent RT/TMZ. With multi-cycle therapy, ABT-888 further extended the survival benefit of TMZ in the inherently sensitive GBM12 and GBM22 xenograft lines. However, after in vivo selection for TMZ resistance, the derivative GBM12TMZ and GBM22TMZ lines were no longer sensitized by ABT-888 in combination with TMZ, and a similar lack of efficacy was observed in two other TMZ resistant tumor lines. Thus, the sensitizing effects of ABT-888 were limited to tumor lines that had not been previously exposed to TMZ, and these results suggest that patients with newly diagnosed GBM may be more likely to respond to combined TMZ/PARP inhibitor therapy than patients with recurrent disease. PMID:19174557

  4. An efficient and practical radiosynthesis of [11C]temozolomide

    PubMed Central

    Moseley, Christian K.; Carlin, Stephen M.; Neelamegam, Ramesh

    2014-01-01

    Temozolomide (TMZ) is a prodrug for an alkylating agent used for the treatment of malignant brain tumors. A positron emitting version, [11C]TMZ, has been utilized to help elucidate the mechanism and biodistribution of TMZ. Challenges in [11C]TMZ synthesis and reformulation make it difficult for routine production. Herein we report a highly reproducible one-pot radiosynthesis of [11C]TMZ with a radiochemical yield of 17±5% and >97% radiochemical purity. PMID:23151019

  5. Temozolomide

    MedlinePlus

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called ... same time every day. For some types of brain tumors, temozolomide is taken daily for 42–49 days. ...

  6. Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide.

    PubMed

    Murphy, Susan F; Varghese, Robin T; Lamouille, Samy; Guo, Sujuan; Pridham, Kevin J; Kanabur, Pratik; Osimani, Alyssa M; Sharma, Shaan; Jourdan, Jane; Rodgers, Cara M; Simonds, Gary R; Gourdie, Robert G; Sheng, Zhi

    2016-01-01

    Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ-blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM, and perhaps other TMZ-resistant cancers. PMID:26542214

  7. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation

    PubMed Central

    Grogan, Patrick T.; Sarkaria, Jann N.; Timmermann, Barbara N.; Cohen, Mark S.

    2014-01-01

    Temozolomide (TMZ) has remained the chemotherapy of choice in patients with glioblastoma multiforme (GBM) primarily due to the lack of more effective drugs. Tumors, however, quickly develop resistance to this line of treatment creating a critical need for alternative approaches and strategies to resensitize the cells. Withaferin A (WA), a steroidal lactone derived from several genera of the Solanaceae plant family has previously demonstrated potent anti-cancer activity in multiple tumor models. Here, we examine the effects of WA against TMZ-resistant GBM cells as a monotherapy and in combination with TMZ. WA prevented GBM cell proliferation by dose-dependent G2/M cell cycle arrest and cell death through both intrinsic and extrinsic apoptotic pathways. This effect correlated with depletion of principle proteins of the Akt/mTOR and MAPK survival and proliferation pathways with diminished phosphorylation of Akt, mTOR, and p70 S6K but compensatory activation of ERK1/2. Depletion of tyrosine kinase cell surface receptors c-Met, EGFR, and Her2 was also observed. WA demonstrated induction of N-acetyl-L-cysteine-repressible oxidative stress as measured directly and through a subsequent heat shock response with HSP32 and HSP70 upregulation and decreased HSF1. Finally, pretreatment of TMZ-resistant GBM cells with WA was associated with O6-methylguanine-DNA methyltransferase (MGMT) depletion which potentiated TMZ-mediated MGMT degradation. Combination treatment with both WA and TMZ resulted in resensitization of MGMT-mediated TMZ-resistance but not resistance through mismatch repair mutations. These studies suggest great clinical potential for the utilization of WA in TMZ-resistant GBM as both a monotherapy and a resensitizer in combination with the standard chemotherapeutic agent TMZ. PMID:24718901

  8. High-Resolution Flow Cytometry: a Suitable Tool for Monitoring Aneuploid Prostate Cancer Cells after TMZ and TMZ-BioShuttle Treatment

    PubMed Central

    Braun, Klaus; Ehemann, Volker; Wiessler, Manfred; Pipkorn, Ruediger; Didinger, Bernd; Mueller, Gabriele; Waldeck, Waldemar

    2009-01-01

    If metastatic prostate cancer gets resistant to antiandrogen therapy, there are few treatment options, because prostate cancer is not very sensitive to cytostatic agents. Temozolomide (TMZ) as an orally applicable chemotherapeutic substance has been proven to be effective and well tolerated with occasional moderate toxicity especially for brain tumors and an application to prostate cancer cells seemed to be promising. Unfortunately, TMZ was inefficient in the treatment of symptomatic progressive hormone-refractory prostate cancer (HRPC). The reasons could be a low sensitivity against TMZ the short plasma half-life of TMZ, non-adapted application regimens and additionally, the aneuploid DNA content of prostate cancer cells suggesting different sensitivity against therapeutical interventions e.g. radiation therapy or chemotherapy. Considerations to improve this unsatisfying situation resulted in the realization of higher local TMZ concentrations, sufficient to kill cells regardless of intrinsic cellular sensitivity and cell DNA-index. Therefore, we reformulated the TMZ by ligation to a peptide-based carrier system called TMZ-BioShuttle for intervention. The modular-composed carrier consists of a transmembrane transporter (CPP), connected to a nuclear localization sequence (NLS) cleavably-bound, which in turn was coupled with TMZ. The NLS-sequence allows an active delivery of the TMZ into the cell nucleus after transmembrane passage of the TMZ-BioShuttle and intra-cytoplasm enzymatic cleavage and separation from the CPP. This TMZ-BioShuttle could contribute to improve therapeutic options exemplified by the hormone refractory prostate cancer. The next step was to syllogize a qualified method monitoring cell toxic effects in a high sensitivity under consideration of the ploidy status. The high-resolution flow cytometric analysis showed to be an appropriate system for a better detection and distinction of several cell populations dependent on their different DNA

  9. Rational Incorporation of Selenium into Temozolomide Elicits Superior Antitumor Activity Associated with Both Apoptotic and Autophagic Cell Death

    PubMed Central

    Cheng, Yan; Sk, Ugir Hossain; Zhang, Yi; Ren, Xingcong; Zhang, Li; Huber-Keener, Kathryn J.; Sun, Yuan-Wan; Liao, Jason; Amin, Shantu; Sharma, Arun K.; Yang, Jin-Ming

    2012-01-01

    Background The DNA alkylating agent temozolomide (TMZ) is widely used in the treatment of human malignancies such as glioma and melanoma. On the basis of previous structure-activity studies, we recently synthesized a new TMZ selenium analog by rationally introducing an N-ethylselenocyanate extension to the amide functionality in TMZ structure. Principal Findings This TMZ-Se analog showed a superior cytotoxicity to TMZ in human glioma and melanoma cells and a more potent tumor-inhibiting activity than TMZ in mouse glioma and melanoma xenograft model. TMZ-Se was also effective against a TMZ-resistant glioma cell line. To explore the mechanism underlying the superior antitumor activity of TMZ-Se, we compared the effects of TMZ and TMZ-Se on apoptosis and autophagy. Apoptosis was significantly increased in tumor cells treated with TMZ-Se in comparison to those treated with TMZ. TMZ-Se also triggered greater autophagic response, as compared with TMZ, and suppressing autophagy partly rescued cell death induced by TMZ-Se, indicating that TMZ-Se-triggered autophagy contributed to cell death. Although mRNA level of the key autophagy gene, Beclin 1, was increased, Beclin 1 protein was down-regulated in the cells treated with TMZ-Se. The decrease in Beclin 1 following TMZ-Se treatment were rescued by the calpain inhibitors and the calpain-mediated degradation of Beclin1 had no effect on autophagy but promoted apoptosis in cells treated with TMZ-Se. Conclusions Our study indicates that incorporation of Se into TMZ can render greater potency to this chemotherapeutic drug. PMID:22496897

  10. Dose-dense Temozolomide: Is It Still Promising?

    PubMed

    Nagane, Motoo

    2015-01-01

    Glioblastoma (GBM) has proven to be incurable despite recent progress on its standard of care using temozolomide (TMZ) as the main trunk of initial therapy for newly diagnosed GBM. One of the main reasons accounting for the dismal prognosis is attributed to lack of active therapeutic regimens at recurrence. Since TMZ is the most active cytotoxic agent against GBM, and the standard dosing of TMZ has shown favorable safety profile in clinical trials, re-challenge with TMZ in increased dose density schedules for recurrent tumors that have evaded from prior standard TMZ therapy appears to be a rational approach and has been intensively exploited. A number of phase II clinical trials using different alternating scheduling of dose-dense TMZ (ddTMZ) have shown superior efficacy over the standard TMZ or historical controls with other alkylating agents including nitrosoureas and procarbazine. One ddTMZ schedule, consisting of a 21-days on/7-days off regimen was applied to newly-diagnosed GBM as the adjuvant monotherapy after completion of combined radiation and TMZ and failed to demonstrate survival benefit in a large phase III trial (RTOG 0525). Thus its role in TMZ-pretreated, recurrent GBM should be carefully pursuit in randomized trials, e.g., planned JCOG 1308 trial comparing a 7-days on/7-days off ddTMZ regimen used upfront at the first relapse followed by bevacizumab on progression versus bevacizumab alone, investigating whether insertion of ddTMZ prior to bevacizumab could bestow better outcome in the recurrent setting. In this article, mode of action, past trials, and future directions of ddTMZ therapy are discussed. PMID:26236801

  11. DNA ligase IV as a new molecular target for temozolomide

    SciTech Connect

    Kondo, Natsuko; Department of Neurosurgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 ; Takahashi, Akihisa; Mori, Eiichiro; Ohnishi, Ken; McKinnon, Peter J.; Sakaki, Toshisuke; Nakase, Hiroyuki; Ohnishi, Takeo

    2009-10-02

    Temozolomide (TMZ) is a methylating agent used in chemotherapy against glioblastoma. This work was designed to clarify details in repair pathways acting to remove DNA double-strand breaks (DSBs) induced by TMZ. Cultured mouse embryonic fibroblasts were used which were deficient in DSB repair genes such as homologous recombination repair-related genes X-ray repair cross-complementing group 2 (XRCC2)and radiation sensitive mutant54 (Rad54), non-homologous end joining repair-related gene DNAligase IV (Lig4). Cell sensitivity to drug treatments was assessed using colony forming assays. The most effective molecular target which was correlated with TMZ cell sensitivity was Lig4. In addition, it was found that small interference RNAs (siRNA) for Lig4 efficiently enhanced cell lethality induced by TMZ in human glioblastoma A172 cells. These findings suggest that down regulation of Lig4 might provide a useful tool for cell sensitization during TMZ chemotherapy.

  12. Temozolomide is an active agent in children with recurrent medulloblastoma/primitive neuroectodermal tumor: an Italian multi-institutional phase II trial

    PubMed Central

    Cefalo, Graziella; Massimino, Maura; Ruggiero, Antonio; Barone, Giuseppe; Ridola, Vita; Spreafico, Filippo; Potepan, Paolo; Abate, Massimo E.; Mascarin, Maurizio; Garrè, Maria Luisa; Perilongo, Giorgio; Madon, Enrico; Colosimo, Cesare; Riccardi, Riccardo

    2014-01-01

    Background The aim of this study was to assess the objective response rate (ORR) of children and young adults with recurrent medulloblastoma/primitive neuroectodermal tumor (MB/PNET) treated with temozolomide (TMZ). The secondary purpose was to analyze the toxicity profile of TMZ when administered orally for 5 days in 3 divided daily doses every 28 days. Methods Forty-two patients with recurrent MB/PNET, aged 21 years and younger, were recruited. Patients were treated with oral TMZ. Starting doses ranged from 120 to 200 mg/m2/day based on previous treatments. A craniospinal MRI was performed prior to the first cycle of TMZ and following every 2 cycles of treatment. Results Median age was 10 years (range, 2–21 years). Forty of 42 patients were assessed for response and toxicity. The objective response rate was 42.5%: 6 patients achieved a complete response, 11 had a partial response, and 10 had stable disease. Progression-free survival rates for all patients at 6 and 12 months were 30% and 7.5%, respectively. Their median overall survival rates at 6 and 12 months were 42.5% and 17.5%, respectively. No major extrahematological effects or life-threatening events were reported. The most common grade 3/4 toxicity included thrombocytopenia (17.5%), neutropenia (7.5%), and anemia (2.5%). Conclusions TMZ proved to be an effective agent in children and young adults with MB/PNET, heavily pre-treated, with a tolerable toxicity profile. PMID:24482446

  13. The Synergistic Effect of Combination Progesterone and Temozolomide on Human Glioblastoma Cells

    PubMed Central

    Atif, Fahim; Patel, Neil R.; Yousuf, Seema; Stein, Donald G.

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant brain tumor. Despite optimal treatment and evolving standard of care, the median survival of patients diagnosed with GBM is only 12–15 months. In this study, we combined progesterone (PROG) and temozolomide (TMZ), a standard chemotherapeutic agent for human GBM, to test whether PROG enhances the antitumor effects of TMZ and reduces its side effects. Two WHO grade IV human GBM cells lines (U87MG and U118MG) and primary human dermal fibroblasts (HDFs) were repeatedly exposed to PROG and TMZ either alone or in combination for 3 and 6 days. Cell death was measured by MTT reduction assay. PROG and TMZ individually induced tumor cell death in a dose-dependent manner. PROG at high doses produced more cell death than TMZ alone. When combined, PROG enhanced the cell death-inducing effect of TMZ. In HDFs, PROG did not reduce viability even at the same high cytotoxic doses, but TMZ did so in a dose-dependent manner. In combination, PROG reduced TMZ toxicity in HDFs. PROG alone and in combination with TMZ suppressed the EGFR/PI3K/Akt/mTOR signaling pathway and MGMT expression in U87MG cells, thus suppressing cell proliferation. PROG and TMZ individually reduced cell migration in U87MG cells but did so more effectively in combination. PROG enhances the cytotoxic effects of TMZ in GBM cells and reduces its toxic side effects in healthy primary cells. PMID:26110872

  14. A combined preclinical therapy of cannabinoids and temozolomide against glioma.

    PubMed

    Torres, Sofía; Lorente, Mar; Rodríguez-Fornés, Fátima; Hernández-Tiedra, Sonia; Salazar, María; García-Taboada, Elena; Barcia, Juan; Guzmán, Manuel; Velasco, Guillermo

    2011-01-01

    Glioblastoma multiforme (GBM) is highly resistant to current anticancer treatments, which makes it crucial to find new therapeutic strategies aimed at improving the poor prognosis of patients suffering from this disease. Δ(9)-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoid receptor agonists inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. Here, we show that the combined administration of THC and temozolomide (TMZ; the benchmark agent for the management of GBM) exerts a strong antitumoral action in glioma xenografts, an effect that is also observed in tumors that are resistant to TMZ treatment. Combined administration of THC and TMZ enhanced autophagy, whereas pharmacologic or genetic inhibition of this process prevented TMZ + THC-induced cell death, supporting that activation of autophagy plays a crucial role on the mechanism of action of this drug combination. Administration of submaximal doses of THC and cannabidiol (CBD; another plant-derived cannabinoid that also induces glioma cell death through a mechanism of action different from that of THC) remarkably reduces the growth of glioma xenografts. Moreover, treatment with TMZ and submaximal doses of THC and CBD produced a strong antitumoral action in both TMZ-sensitive and TMZ-resistant tumors. Altogether, our findings support that the combined administration of TMZ and cannabinoids could be therapeutically exploited for the management of GBM. PMID:21220494

  15. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting-Ideal Versus Reality.

    PubMed

    Lee, Chooi Yeng; Ooi, Ing Hong

    2016-01-01

    Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ's efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach. PMID:27618068

  16. Autophagy enhancement contributes to the synergistic effect of vitamin D in temozolomide-based glioblastoma chemotherapy

    PubMed Central

    BAK, DONG-HO; KANG, SEONG HEE; CHOI, DU RI; GIL, MI NA; YU, KWANG SIK; JEONG, JI HEUN; LEE, NAM-SEOB; LEE, JE-HUN; JEONG, YOUNG-GIL; KIM, DONG KWAN; KIM, DO-KYUNG; KIM, JWA-JIN; HAN, SEUNG-YUN

    2016-01-01

    Temozolomide (TMZ), an alkylating agent, is recommended as the initial treatment for high-grade glioblastoma. TMZ is widely used, but its short half-life and the frequency of tumor resistance limit its therapeutic efficacy. In the present study, the anticancer effect of vitamin D (VD) combined with TMZ upon glioblastoma was determined, and the underlying mechanism of this effect was identified. Through cell viability, clonogenic and wound healing assays, the current study demonstrated that treatment of a C6 glioblastoma cell line with TMZ and VD resulted in significantly increased in vitro antitumor effects compared with either VD or TMZ alone. Autophagy, hypothesized to be the dominant mechanism underlying TMZ-based tumor cell death, was maximally activated in TMZ and VD co-treated C6 cells. This was demonstrated by ultrastructural observations of autophagosomes, increased size and number of microtubule-associated protein 1 light chain 3 (LC3) puncta and increased conversion of LC3-I to LC3-II. However, the extent of apoptosis was not significantly different between cells treated with TMZ and VD and those treated with TMZ alone. Addition of the autophagy inhibitor 3-methyladenine markedly inhibited the anticancer effect of TMZ and VD treatment, indicating that the chemosensitizing effect of VD in TMZ-based glioblastoma therapy is generated through enhancement of cytotoxic autophagy. TMZ and VD co-treatment also significantly inhibited tumor progression and prolonged survival duration in rat glioblastoma orthotopic xenograft models when compared with TMZ treatment alone. These in vivo results are concordant with the aforementioned in vitro results, together revealing that the combined use of TMZ and VD exerts synergistic antitumor effects on rat models of glioblastoma and may represent an effective therapeutic strategy. PMID:27313664

  17. Tuberculosis in a patient on temozolomide: a case report.

    PubMed

    de Paiva, Tadeu Ferreira; de Barros e Silva, Milton José; Rinck, José Augusto; Fanelli, Marcello Ferreti; Gimenes, Daniel Luiz

    2009-03-01

    Temozolomide (TMZ) is a cytotoxic agent of the imidazotetrazine class, chemically related to dacarbazine. Its use poses higher risks of lymphopenia and opportunistic infections. Prophylaxis for Pneumocystis jiroveci must be considered up to 12 months after treatment discontinuation. The due literature (MEDLINE) makes no mention of a possible connection between the use of TMZ and tuberculosis (TB). A female patient, aged 59, featuring glioblastoma multiforme and having undergone solely a brain biopsy, was submitted to TMZ along with radiotherapy. After the first TMZ maintenance cycle, the referred patient was admitted displaying a background of a 40-day afternoon fever and productive coughing. She was thus submitted to a bronchoscopy and LBA, which resulted BAAR 1+/4+. TMZ was then suspended, and rifampicin, isoniazid, and pyrazinamide introduced. Considerations on prophylaxis with isoniazide in cancer patients are long-lived and scarce. Some subgroups are likely to benefit from the prophylactic administration of isoniazide during TMZ treatment, such as those patients under high doses of corticoids, patients with past medical history of TB, the malnourished, patients from endemic regions, and patients with highly reactive tuberculinic tests. That, nevertheless, must not restrict the administration of TMZ, but, rather, stand for a warning about its possible toxicity, and thus mitigate complications. PMID:18974931

  18. A New Epigenetic Mechanism of Temozolomide Action in Glioma Cells

    PubMed Central

    Barciszewska, Anna-Maria; Gurda, Dorota; Głodowicz, Paweł; Nowak, Stanisław; Naskręt-Barciszewska, Mirosława Z

    2015-01-01

    Temozolomide (TMZ) is an oral alkylating chemotherapeutic agent that prolongs the survival of patients with glioblastoma (GBM). Despite that high TMZ potential, progression of disease and recurrence are still observed. Therefore a better understanding of the mechanism of action of this drug is necessary and may allow more durable benefit from its anti-glioma properties. Using nucleotide post-labelling method and separation on thin-layer chromatography we measured of global changes of 5-methylcytosine (m5C) in DNA of glioma cells treated with TMZ. Although m5C is not a product of TMZ methylation reaction of DNA, we analysed the effects of the drug action on different glioma cell lines through global changes at the level of the DNA main epigenetic mark. The first effect of TMZ action we observed is DNA hypermethylation followed by global demethylation. Therefore an increase of DNA methylation and down regulation of some genes expression can be ascribed to activation of DNA methyltransferases (DNMTs). On the other hand hypomethylation is induced by oxidative stress and causes uncontrolled expression of pathologic protein genes. The results of brain tumours treatment with TMZ suggest the new mechanism of modulation epigenetic marker in cancer cells. A high TMZ concentration induced a significant increase of m5C content in DNA in the short time, but a low TMZ concentration at longer time hypomethylation is observed for whole range of TMZ concentrations. Therefore TMZ administration with low doses of the drug and short time should be considered as optimal therapy. PMID:26309255

  19. Analyzing temozolomide medication errors: potentially fatal.

    PubMed

    Letarte, Nathalie; Gabay, Michael P; Bressler, Linda R; Long, Katie E; Stachnik, Joan M; Villano, J Lee

    2014-10-01

    The EORTC-NCIC regimen for glioblastoma requires different dosing of temozolomide (TMZ) during radiation and maintenance therapy. This complexity is exacerbated by the availability of multiple TMZ capsule strengths. TMZ is an alkylating agent and the major toxicity of this class is dose-related myelosuppression. Inadvertent overdose can be fatal. The websites of the Institute for Safe Medication Practices (ISMP), and the Food and Drug Administration (FDA) MedWatch database were reviewed. We searched the MedWatch database for adverse events associated with TMZ and obtained all reports including hematologic toxicity submitted from 1st November 1997 to 30th May 2012. The ISMP describes errors with TMZ resulting from the positioning of information on the label of the commercial product. The strength and quantity of capsules on the label were in close proximity to each other, and this has been changed by the manufacturer. MedWatch identified 45 medication errors. Patient errors were the most common, accounting for 21 or 47% of errors, followed by dispensing errors, which accounted for 13 or 29%. Seven reports or 16% were errors in the prescribing of TMZ. Reported outcomes ranged from reversible hematological adverse events (13%), to hospitalization for other adverse events (13%) or death (18%). Four error reports lacked detail and could not be categorized. Although the FDA issued a warning in 2003 regarding fatal medication errors and the product label warns of overdosing, errors in TMZ dosing occur for various reasons and involve both healthcare professionals and patients. Overdosing errors can be fatal. PMID:25026995

  20. Double Blockade of Glioma Cell Proliferation and Migration by Temozolomide Conjugated with NPPB, a Chloride Channel Blocker.

    PubMed

    Park, Miri; Song, Chiman; Yoon, Hojong; Choi, Kee-Hyun

    2016-03-16

    Glioblastoma is the most common and aggressive primary malignant brain tumor. Temozolomide (TMZ), a chemotherapeutic agent combined with radiation therapy, is used as a standard treatment. The infiltrative nature of glioblastoma, however, interrupts effective treatment with TMZ and increases the tendency to relapse. Voltage-gated chloride channels have been identified as crucial regulators of glioma cell migration and invasion by mediating cell shape and volume change. Accordingly, chloride current inhibition by 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), a chloride channel blocker, suppresses cell movement by diminishing the osmotic cell volume regulation. In this study, we developed a novel compound, TMZ conjugated with NPPB (TMZ-NPPB), as a potential anticancer drug. TMZ-NPPB blocked chloride currents in U373MG, a severely invasive human glioma cell line, and suppressed migration and invasion of U373MG cells. Moreover, TMZ-NPPB exhibited DNA modification activity similar to that of TMZ, and surprisingly showed remarkably enhanced cytotoxicity relative to TMZ by inducing apoptotic cell death via DNA damage. These findings indicate that TMZ-NPPB has a dual function in blocking both proliferation and migration of human glioma cells, thereby suggesting its potential to overcome challenges in current glioblastoma therapy. PMID:26711895

  1. Ursolic acid attenuates temozolomide resistance in glioblastoma cells by downregulating O6-methylguanine-DNA methyltransferase (MGMT) expression

    PubMed Central

    Zhu, Zhongling; Du, Shuangshuang; Ding, Fengxia; Guo, Shanshan; Ying, Guoguang; Yan, Zhao

    2016-01-01

    The DNA-alkylating agent temozolomide (TMZ) is an effective chemotherapeutic agent against malignant glioma, including glioblastoma multiforme (GBM). However, the clinical efficacy of TMZ is limited in many patients because of O6-methylguanine-DNA methyltransferase (MGMT)-driven resistance. Thus, new strategies to overcome TMZ resistance are urgently needed. Ursolic acid (UA) is a naturally derived pentacyclic triterpene acid that exerts broad anticancer effects, and shows capability to cross the blood-brain barrier. In this study, we evaluated the possible synergistic effect of TMZ and UA in resistant GBM cell lines. The results showed that UA prevented the proliferation of resistant GBM cells in a concentration-dependent manner. Compared with TMZ or UA treatment alone, the combination treatment of TMZ and UA synergistically enhanced cytotoxicity and senescence in TMZ-resistant GBM cells. This effect was correlated with the downregulation of MGMT. Moreover, experimental results with an in vivo mouse xenograft model showed that the combination treatment of UA and TMZ reduced tumor volumes by depleting MGMT. Therefore, UA as both a monotherapy and a resensitizer, might be a candidate agent for patients with refractory malignant gliomas. PMID:27508051

  2. Effect of temozolomide on the viability of musculoskeletal sarcoma cells

    PubMed Central

    KUSABE, YUTA; KAWASHIMA, HIROYUKI; OGOSE, AKIRA; SASAKI, TARO; ARIIZUMI, TAKASHI; HOTTA, TETSUO; ENDO, NAOTO

    2015-01-01

    Musculoskeletal sarcomas (MSS) are a heterogeneous group of malignancies with relatively high mortality rates. The prognosis for patients with MSS is poor, with few drugs inducing measurable activity. Alkylating agents, namely ifosfamide and dacarbazine, which act nonspecifically on proliferating cells, are the typical therapy prescribed for advanced MSS. A novel alkylating agent, temozolomide (TMZ), has several advantages over existing alkylating agents. TMZ induces the formation of O6-methylguanine in DNA, thereby inducing mismatches during DNA replication and the subsequent activation of apoptotic pathways. However, due to conflicting data in the literature, the mechanism of TMZ action has remained elusive. Therefore, the present study aimed to evaluate apoptosis in MSS cells treated with TMZ, and to evaluate the correlation between TMZ action and survival pathways, including the phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 mitogen activated protein kinase (MAPK) pathways. Cell proliferation was evaluated by performing an XTT (sodium 3′-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate) assay. Apoptotic morphological changes, for example chromatin condensation, were evaluated by fluorescence confocal microscopy. The expression of the apoptosis-associated proteins caspase-3, poly adenosine diphosphate ribose polymerase (PARP), Akt and ERK1/2, was determined by western blotting. The results of the present study indicated that, in certain MSS cells, the IC50 value was lower than that in TMZ-sensitive U-87 MG cells. Furthermore, TMZ treatment was associated with apoptotic morphological changes and the expression levels of pro-apoptotic cleaved caspase-3 and PARP were also increased in TMZ-treated MSS cells. In addition, the results indicated that PI3K/Akt and ERK1/2 MAPK were constitutively phosphorylated in MSS cells, and phosphorylation of PI3K/Akt was suppressed in certain

  3. Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma

    PubMed Central

    Gratas, Catherine; Séry, Quentin; Rabé, Marion; Oliver, Lisa; Vallette, François M.

    2014-01-01

    Temozolomide (TMZ) is an alkylating agent used for the treatment of glioblastoma multiforme (GBM), the main form of human brain tumours in adults. It has been reported that TMZ induced DNA lesions that subsequently trigger cell death but the actual mechanisms involved in the process are still unclear. We investigated the implication of major proteins of the Bcl-2 family in TMZ-induced cell death in GBM cell lines at concentrations closed to that reached in the brain during the treatments. We did not observe modulation of autophagy at these concentrations but we found an induction of apoptosis. Using RNA interference, we showed that TMZ induced apoptosis is dependent on the pro-apoptotic protein Bak but independent of the pro-apoptotic protein Bax. Apoptosis was not enhanced by ABT-737, an inhibitor of Bcl-2/Bcl-Xl/Bcl-W but not Mcl-1. The knock-down of Mcl-1 expression increased TMZ induced apoptosis. Our results identify a Mcl-1/Bak axis for TMZ induced apoptosis in GBM and thus unravel a target to overcome therapeutic resistance toward TMZ. PMID:24811082

  4. Cytotoxic Effects of Temozolomide and Radiation are Additive- and Schedule-Dependent

    SciTech Connect

    Chalmers, Anthony J.; Ruff, Elliot M.; Martindale, Christine; Lovegrove, Nadia; Short, Susan C.

    2009-12-01

    Purpose: Despite aggressive therapy comprising radical radiation and temozolomide (TMZ) chemotherapy, the prognosis for patients with glioblastoma multiforme (GBM) remains poor, particularly if tumors express O{sup 6}-methylguanine-DNA-methyltransferase (MGMT). The interactions between radiation and TMZ remain unclear and have important implications for scheduling and for developing strategies to improve outcomes. Methods and Materials: Factors determining the effects of combination therapy on clonogenic survival, cell-cycle checkpoint signaling and DNA repair were investigated in four human glioma cell lines (T98G, U373-MG, UVW, U87-MG). Results: Combining TMZ and radiation yielded additive cytotoxicity, but only when TMZ was delivered 72 h before radiation. Radiosensitization was not observed. TMZ induced G2/M cell-cycle arrest at 48-72 h, coincident with phosphorylation of Chk1 and Chk2. Additive G2/M arrest and Chk1/Chk2 phosphorylation was only observed when TMZ preceded radiation by 72 h. The ataxia-telangiectasia mutated (ATM) inhibitor KU-55933 increased radiation sensitivity and delayed repair of radiation-induced DNA breaks, but did not influence TMZ effects. The multiple kinase inhibitor caffeine enhanced the cytotoxicity of chemoradiation and exacerbated DNA damage. Conclusions: TMZ is not a radiosensitizing agent but yields additive cytotoxicity in combination with radiation. Our data indicate that TMZ treatment should commence at least 3 days before radiation to achieve maximum benefit. Activation of G2/M checkpoint signaling by TMZ and radiation has a cytoprotective effect that can be overcome by dual inhibition of ATM and ATR. More specific inhibition of checkpoint signaling will be required to increase treatment efficacy without exacerbating toxicity.

  5. Inhibition of Sonic Hedgehog and Notch Pathways Enhances Sensitivity of CD133+ Glioma Stem Cells to Temozolomide Therapy

    PubMed Central

    Ulasov, Ilya V; Nandi, Suvobroto; Dey, Mahua; Sonabend, Adam M; Lesniak, Maciej S

    2011-01-01

    Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133+ cancer stem cells, a population believed to contribute to the tumor’s chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133+-enriched glioma cell populations showed the activity of these pathways. CD133+ cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133+ glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133+ glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133+ glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133+ glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ. PMID:20957337

  6. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy.

    PubMed

    Ulasov, Ilya V; Nandi, Suvobroto; Dey, Mahua; Sonabend, Adam M; Lesniak, Maciej S

    2011-01-01

    Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133(+) cancer stem cells, a population believed to contribute to the tumor's chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133(+)-enriched glioma cell populations showed the activity of these pathways. CD133(+) cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133(+) glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133(+) glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133(+) glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133(+) glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ. PMID:20957337

  7. Aspergillosis in a Patient Receiving Temozolomide for the Treatment of Glioblastoma

    PubMed Central

    Munhoz, Rodrigo Ramella; Pereira Picarelli, Andrea Arvai; Troques Mitteldorf, Cristina Aparecida; Feher, Olavo

    2013-01-01

    Leukopenia and selective CD4+ lymphopenia represent major adverse events associated with the use of temozolomide (TMZ), an oral alkylating agent incorporated in the treatment of glioblastoma (GBM). The increased risk of opportunistic infections, including those caused by Pneumocystis jiroveci and cytomegalovirus, has been previously described in the literature. Here we report the case, the first to our knowledge, of a patient with pulmonary invasive aspergillosis immediately after the completion of chemoradiation with TMZ for GBM. Diagnosis was confirmed through a CT-guided lung biopsy, and the patient had excellent response to systemic voriconazole. This case illustrates that TMZ can be associated with severe opportunistic infections, presumably associated with T lymphocyte immune dysfunction, and patients exposed to this agent should be carefully monitored. PMID:24019780

  8. Radiosensitizing effects of TMZ observed in vivo only in a subset of MGMT methylated GBM xenografts

    PubMed Central

    Carlson, Brett L.; Grogan, Patrick T.; Mladek, Ann C.; Schroeder, Mark A.; Kitange, Gaspar J.; Decker, Paul A.; Giannini, Caterina; Wu, Wenting; Ballman, Karla A.; James, C. David; Sarkaria, Jann N.

    2009-01-01

    Purpose Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with GBM, although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested in a panel of 20 primary GBM xenografts. Methods and Materials Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. Results The median survival ratio was significantly higher for MGMT methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio 3.6 vs. 1.5, respectively; p=0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p=0.001), but not RT alone (1.7 vs. 1.6; p=0.47). In an ANOVA analysis, MGMT methylation status and p53 mutation status were significantly associated with treatment response. In analyzing the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment, in which RT (week 1) was followed by TMZ (week 2), proved significantly less effective than TMZ followed by RT or concurrent TMZ / RT (survival ratios of 4.0, 9.6, and 12.9, respectively; p<0.0001). Conclusions Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors, and provides superior anti-tumor activity relative to sequential administration of RT and TMZ. PMID:19695438

  9. A novel temozolomide analog, NEO212, with enhanced activity against MGMT-positive melanoma in vitro and in vivo.

    PubMed

    Chen, Thomas C; Cho, Hee-Yeon; Wang, Weijun; Nguyen, Jenny; Jhaveri, Niyati; Rosenstein-Sisson, Rachel; Hofman, Florence M; Schönthal, Axel H

    2015-03-28

    The alkylating agent temozolomide (TMZ) represents an important component of current melanoma therapy, but overexpression of O6-methyl-guanine DNA methyltransferase (MGMT) in tumor cells confers resistance to TMZ and impairs therapeutic outcome. We investigated a novel perillyl alcohol (POH)-conjugated analog of TMZ, NEO212, for its ability to exert anticancer activity against MGMT-positive melanoma cells. Human melanoma cells with variable MGMT expression levels were treated with NEO212, TMZ, or perillyl alcohol in vitro and in vivo, and markers of DNA damage and apoptosis, and tumor cell growth were investigated. NEO212 displayed substantially greater anticancer activity than any of the other treatments. It reduced colony formation of MGMT-positive cells up to eight times more effectively than TMZ, and much more potently induced DNA damage and cell death. In a nude mouse tumor model, NEO212 showed significant activity against MGMT-positive melanoma, whereas TMZ, or a mix of TMZ plus POH, was ineffective. At the same time, NEO212 was well tolerated. NEO212 may have potential as a more effective therapy for advanced melanoma, and should become particularly suitable for the treatment of patients with MGMT-positive tumors. PMID:25524552

  10. Temozolomide Nanoparticles for Targeted Glioblastoma Therapy

    PubMed Central

    Fang, Chen; Wang, Kui; Stephen, Zachary R.; Mu, Qingxin; Kievit, Forrest M.; Chiu, Daniel T.; Press, Oliver W.; Zhang, Miqin

    2015-01-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with temozolomide (TMZ). Treatment of GBMs remains a challenge, largely due to the fast degradation of TMZ, inability to deliver an effective dose of TMZ to tumors, and lack of target specificity which may cause systemic toxicity. Here, we present a simple method to synthesize a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of less than 100 nm, exhibited sustained stability in cell culture media for up to two weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed much higher stability at physiological pH, with a half-life 7-fold greater than free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2–6-fold higher uptake and 50–90% reduction of IC50 at 72 h post-treatment as compared to non-targeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a high therapeutic dose of TMZ to GBM cells, and could serve as a template for targeted delivery of other therapeutics. PMID:25751368

  11. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells

    SciTech Connect

    Papait, Roberto; Magrassi, Lorenzo; Rigamonti, Dorotea; Cattaneo, Elena

    2009-02-06

    Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Here we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1{alpha} bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.

  12. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide.

    PubMed

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J; Margison, Geoffrey P; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R; Macaulay, Valentine M

    2015-11-24

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  13. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  14. Temozolomide Injection

    MedlinePlus

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called ... injected once a day. For some types of brain tumors, temozolomide is given daily for 42 to 49 ...

  15. miR-487b-5p Regulates Temozolomide Resistance of Lung Cancer Cells Through LAMP2-Medicated Autophagy.

    PubMed

    Bao, Liang; Lv, Lei; Feng, Jinping; Chen, Yuyu; Wang, Xinhua; Han, Shuguang; Zhao, Hongqing

    2016-08-01

    Temozolomide (TMZ) is a standard agent used in the treatment of various types of cancers, including lung carcinoma, but TMZ resistance is common and accounts for many treatment failures. We investigated miRNA-487b-5p (miR-487b-5p) was highly expressed in A549 and H1299 cells which acquired TMZ resistance. Suppression of miR-487b-5p had overt effects on cellular proliferation and migration in the presence of TMZ. On the other hand, knockdown of miR-487b-5p resulted in increased survival and moderate tumor growth in vivo. In addition, the decreased cellular proliferation following miR-487b-5p suppression was linked to enhanced autophagy, evident by drastically increased levels of LC3-II, BECLIN1, and LAMP2 when miR-487b-5p was knocked down. Further analysis revealed that LAMP2 might be the target gene of miR-487b-5p. In conclusion, our study suggested that miR-487b-5p may be a potential biomarker of acquired TMZ resistance in lung cancer cells, and miR-487b-5p inhibition can be further explored as a chemotherapy target in the treatment of TMZ-resistant lung carcinoma. PMID:27097129

  16. Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide.

    PubMed

    Chai, Kit Man; Wang, Chih-Yen; Liaw, Hung-Jiun; Fang, Kuan-Min; Yang, Chung-Shi; Tzeng, Shun-Fen

    2014-11-15

    We previously found that BRCA1-BRCA2-containing complex subunit 3 (BRCC3) was highly expressed in tumorigenic rat glioma cells. However, the functional role of BRCC3 in human glioma cells remains to be characterized. This study indicated that the upregulation of BRCC3 expression was induced in two human malignant glioblastoma U251 and A172 cell lines following exposure to the alkylating agent, temozolomide (TMZ). Homologous recombination (HR)-dependent DNA repair-associated genes (i.e. BRCA1, BRCA2, RAD51 and FANCD2) were also increased in U251 and A172 cells after treatment with TMZ. BRCC3 gene knockdown through lentivirus-mediated gene knockdown approach not only significantly reduced the clonogenic and migratory abilities of U251 and A172 cells, but also enhanced their sensitization to TMZ. The increase in phosphorylated H2AX foci (γH2AX) formation, an indicator of DNA damage, persisted in TMZ-treated glioma cells with stable knockdown BRCC3 expression, suggesting that BRCC3 gene deficiency is associated with DNA repair impairment. In summary, we demonstrate that by inducing DNA repair, BRCC3 renders glioma cells resistant to TMZ. The findings point to BRCC3 as a potential target for treatment of alkylating drug-resistant glioma. PMID:25337721

  17. Therapeutic approach beyond conventional temozolomide for newly diagnosed glioblastoma: Review of the present evidence and future direction

    PubMed Central

    Mallick, Supriya; Gandhi, Ajeet Kumar; Rath, Goura Kishor

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor. Maximal safe surgical resection followed by adjuvant partial brain radiation with concurrent and adjuvant temozolomide (TMZ) (oral alkylating agent) is the standard of care. Five years survival in TMZ treated patient reaches 9.8%. We aimed to summarize the changes in the management of GBM beyond conventional temozolomide based adjuvant treatment. We searched the PUBMED with the following key words: Glioblastoma, phase III trial, Phase II trial, adjuvant treatment in GBM. Clinical research has found a wide range of molecular aberrations in GBM and attempts are being made to further improve survival with the addition of different classes of drugs. Angiogenesis inhibitors, oncolytic vaccines, dose dense TMZ, and anti-epidermal growth factor receptor monoclonal antibody in phase III trials have failed to improve survival. Recent studies have also shown that the management strategies might be different and needs to be customized as per the age of patients such as pediatric and elderly patients. In addition, treatments should be personalized depending on the molecular aberrations. We reviewed all published phase III trials for newly diagnosed GBM as well as also looked into possible future directions in this review. Limited progress has happed beyond conventional TMZ in the adjuvant treatment of GBM. Newer insights are emerging about treatment intensification and introduction of newer molecular targeted drugs with more information about molecular aberrations. PMID:26811592

  18. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma

    PubMed Central

    Penas-Prado, Marta; Hess, Kenneth R.; Fisch, Michael J.; Lagrone, Lore W.; Groves, Morris D.; Levin, Victor A.; De Groot, John F.; Puduvalli, Vinay K.; Colman, Howard; Volas-Redd, Gena; Giglio, Pierre; Conrad, Charles A.; Salacz, Michael E.; Floyd, Justin D.; Loghin, Monica E.; Hsu, Sigmund H.; Gonzalez, Javier; Chang, Eric L.; Woo, Shiao Y.; Mahajan, Anita; Aldape, Kenneth D.; Yung, W. K. Alfred; Gilbert, Mark R.

    2015-01-01

    Background Chemoradiation, followed by adjuvant temozolomide, is the standard treatment for newly diagnosed glioblastoma. Adding other active agents may enhance treatment efficacy. Methods The primary objective of this factorial phase II study was to determine if one of 3 potential chemotherapy agents added to dose-dense temozolomide (ddTMZ) improves progression-free survival (PFS) for patients with newly diagnosed glioblastoma. A prior phase I trial established the safety of combining ddTMZ with isotretinoin, celecoxib, and/or thalidomide. Adults with good performance status and no evidence of progression post chemoradiation were randomized into 8 arms: ddTMZ alone (7 days on/7 days off) or doublet, triplet, and quadruplet combinations with isotretinoin, celecoxib, and thalidomide. Results The study enrolled 155 participants with a median age of 53 years (range, 18-84 y). None of the agents demonstrated improved PFS when compared with arms not containing that specific agent. There was no difference in PFS for triplet compared with doublet regimens, although a trend for improved overall survival (OS) was seen (20.1 vs 17.0 months, P = .15). Compared with ddTMZ, the ddTMZ + isotretinoin doublet had worse PFS (10.5 vs 6.5 months, P = .043) and OS (21.2 vs 11.7 months, P = .037). Trends were also seen for worse outcomes with isotretinoin-containing regimens, but there was no impact with celecoxib or thalidomide combinations. Treatment was well tolerated with expected high rates of lymphopenia. Conclusions The results do not establish a benefit for these combinations but indicate that adding isotretinoin to ddTMZ may be detrimental. This study demonstrated the feasibility and utility of the factorial design in efficiently testing drug combinations in newly diagnosed glioblastoma. Clinicaltrials.gov identifier NCT00112502. PMID:25239666

  19. Therapeutic effect of TMZ-POH on human nasopharyngeal carcinoma depends on reactive oxygen species accumulation

    PubMed Central

    Guo, Wei; Wang, Xingwu; Wei, Ling; Li, Yang; Lv, Liyan; Wang, Weijun; Chen, Thomas C.; Song, Xianrang

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy without efficient chemotherapeutic agents for it. In our current study, we demonstrated the cytotoxicity effects of a newly patented compound temozolomide–perillyl alcohol (TMZ-POH) on NPC in vitro and in vivo, and the possible mechanisms involved. Human NPC cell lines CNE1, CNE2, HNE2, and SUME-α were treated with control (DMSO), TMZ, POH, TMZ plus POH, and TMZ-POH. Our data indicated that TMZ-POH could inhibit NPC cell proliferation, cause G2/M arrest and DNA damage. TMZ-POH triggered apoptosis in NPC cells via significant activation of caspase-3 and poly(ADP-ribose) polymerase (PARP). Importantly, TMZ-POH-induced cell death was found to be associated with (i) the loss of inner mitochondrial membrane potential (ΔΨm) and release of mitochondrial Cytochrome c, (ii) the increase in ROS generation, and (iii) the activation of stress-activated protein kinases (SAPK)/c-Jun N-terminal kinases (JNK) signaling pathway. The generation of ROS in response to TMZ-POH seems to play a crucial role in the cell death process since the blockage of ROS production using the antioxidant N-acetyl-L-cysteine or catalase reversed the TMZ-POH-induced JNK activation, DNA damage, and cancer cell apoptosis. These results provide the rationale for further research and preclinical investigation of the antitumor effect of TMZ-POH against human NPC. PMID:26625208

  20. A novel temozolomide-perillyl alcohol conjugate exhibits superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo.

    PubMed

    Chen, Thomas C; Cho, Hee-Yeon; Wang, Weijun; Barath, Manasi; Sharma, Natasha; Hofman, Florence M; Schönthal, Axel H

    2014-05-01

    There is no effective therapy for breast cancer that has spread to the brain. A major roadblock is the blood-brain barrier (BBB), which prevents the usual breast cancer drugs from effectively reaching intracranial metastases. The alkylating agent temozolomide (TMZ) is able to penetrate the BBB and has become the gold standard for chemotherapeutic treatment of glioblastoma. However, when it was tested in clinical trials for activity against brain metastases of breast cancer, the results were mixed and ranged from "encouraging activity" to "no objective responses." In an effort to generate an agent with greater activity against intracranial breast metastases, we synthesized a TMZ analog where the natural product perillyl alcohol (POH) was covalently linked to TMZ's amide functionality. The resulting novel compound, called TMZ-POH (T-P), displayed greatly increased anticancer activity in a variety of breast cancer cell lines, inclusive of TMZ-resistant ones. It caused DNA damage and cell death much more efficiently than its parental compound TMZ, because linkage with POH increased its biologic half-life and thus provided greater opportunity for placement of cytotoxic DNA lesions. In an intracranial mouse tumor model with triple-negative breast cancer, T-P revealed considerably greater therapeutic efficacy than TMZ, where a single cycle of treatment extended median survival benefit from 6 days (in the case of TMZ) to 28 days. At the same time, T-P seemed to be well tolerated by the animals. Thus, T-P may have potential as a novel therapy for brain-targeted breast cancer metastases. PMID:24623736

  1. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy

    PubMed Central

    Jiang, Pengfei; Wang, Ping; Sun, Xiaoling; Yuan, Zhongshun; Zhan, Rucai; Ma, Xiangyu; Li, Weiguo

    2016-01-01

    Temozolomide (TMZ) is commonly used in glioma chemotherapy. However, a great clinical challenge for TMZ is chemoresistance. H19 transcripts are recognized as long noncoding RNAs, which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Our data based on glioma patients showed that the expression of H19 was significantly upregulated in TMZ-resistant tumors compared with the TMZ-sensitive tumors. To determine the function of H19 in glioma, cell lines U87 and U251 were exposed to TMZ to establish TMZ-resistant clones U87TMZ and U251TMZ. In U87TMZ and U251TMZ, the expression level of H19 transcripts was increased compared to wild-type or nonresistant clones, as determined by real-time quantitative reverse transcription polymerase chain reaction. Concomitant treatment with small interfering RNA specifically targeting H19 and TMZ in resistant glioma clones resulted in decreased IC50 values for TMZ, and increased apoptotic rates than control small interfering RNA-treated cells. This was also evident by the increased PARP cleavage in resistant cells exposed to TMZ + si-H19. Furthermore, the reduced expression of H19 altered major drug resistance genes, such as MDR, MRP, and ABCG2, both at the mRNA and protein levels. Taken together, these findings suggest that H19 plays an important role in the development of TMZ resistance, and may represent a novel therapeutic target for TMZ-resistant gliomas. PMID:27366087

  2. TEMOZOLOMIDE FOR RECURRENT INTRACRANIAL EPENDYMOMA OF THE ADULT: PATTERNS OF RESPONSE, SURVIVAL AND CORRELATIONS WITH MGMT PROMOTER METHYLATION

    PubMed Central

    Soffietti, Riccardo; Bosa, Chiara; Bertero, Luca; Trevisan, Elisa; Cassoni, Paola; Morra, Isabella; Rudà, Roberta

    2014-01-01

    BACKGROUND: A variety of agents have been investigated with modest results in recurrent grade II and III ependymomas failing surgery and/or radiotherapy. Few data are available on the role of temozolomide (TMZ). We investigated patterns of response, outcome and correlations with MGMT promoter methylation in a cohort of patients with recurrent ependymomas of the adult receiving temozolomide as salvage therapy. METHODS: We retrospectively studied all patients aged ≥18 years with recurrent intracranial ependymoma, who received as part of their treatment standard temozolomide between 1999 and 2011. Clinical information were retrieved from the database and follow-up visits, while MRI images were reviewd by an investigator blind to patients' outcome. Response to TMZ on MRI was evaluated according to Macdonald Criteria. An analysis of MGMT gene promoter methylation by PCR was performed. RESULTS: We found 18 evaluable patients of whom 12 were males and 6 females, and 10 (56%) were of grade III and 8 (44%) of grade II. Tumor location at initial surgery was supratentorial in 11 (61%) patients and infratentorial in 7 (39%), and type of progression before TMZ was local in 10 (56%), local and spinal in 6 (33%) and spinal alone in 2 (11%). Median age was 42 years (18-61) and median KPS 70 (60-90). Previous treatments consisted of radiotherapy (either adjuvant or at relapse) in 17/18 (94%) patients, and chemotherapy (cisplatin + VP16, PCV, BCNU) in 6/18 (33%). A median of 8 cycles of TMZ (1-24) were administered. Best response to TMZ was as follows: CR 1/18 (5%) and PR 3/18 (17%), with an overall RR of 22%; SD 7/18 (39%) and PD 7/18 (39%). Maximum reponse in 3 out of 4 patients was observed after 10, 14 and 15 cycles, respectively. All 4 responding patients were chemotherapy-naive. Responses occurred in both anaplastic (2) and low grade (2) tumors. Median PFS was 9 months (1 month-13 years), while PFS 6 and 12 were 72% and 39%, respectively. Median OS was 31 months (3 months-14

  3. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    PubMed Central

    Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P < 0.05). However, there was no significant difference in the 50% inhibition concentration (IC50) of TMZ between MGMT-positive and MGMT-negative GSCs (P > 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs. PMID:23958055

  4. p53 upregulated modulator of apoptosis sensitizes drug-resistant U251 glioblastoma stem cells to temozolomide through enhanced apoptosis

    PubMed Central

    MIAO, WANG; LIU, XIAODONG; WANG, HONGQIN; FAN, YIMIN; LIAN, SHIZHONG; YANG, XIN; WANG, XINXING; GUO, GENG; LI, QICHAO; WANG, SIFEI

    2015-01-01

    Malignant glioma is a highly aggressive brain tumor with a poor prognosis. Chemotherapy has been observed to prolong overall survival rate and temozolomide (TMZ), a promising chemotherapeutic agent for treating glioblastoma (GBM), possesses the most effective clinical activity at present, although drug resistance limits its clinical outcome. Growing evidence supports the concept that initial and recurrent GBM may derive from glioblastoma stem cells, which may be responsible for drug resistance. However, the molecular mechanisms underlying this resistance remain to be elucidated. In the present study, a TMZ-resistant GBM cell line, U251R, was developed and subsequently divided into two subpopulations according to the CD133 immunophenotype. No significant difference was identified in the expression of O6-methylguanine-DNA-methyltransferase (MGMT) between CD133+ U251R cells and CD133− U251R cells, whereas the CD133+ cell population was more resistant to TMZ-induced growth inhibition and cell death. TMZ achieves its cytotoxic effect by inducing DNA lesions and p53 upregulated modulator of apoptosis (PUMA) is an essential mediator of DNA damage-induced apoptosis independently of p53 status. Therefore, whether PUMA effectively enhances growth suppression and induces apoptosis when combined with TMZ was investigated. Consequently, it was found that adenoviruses expressing wild-type-PUMA not only lead to the apoptosis of CD133+ U251R cells alone, but also significantly increase their sensitivity toward TMZ by elevating the Bcl-2-associated X protein/B-cell lymphoma-2 ratio without alterations in MGMT expression. Therefore, PUMA may be a suitable target for intervention to improve the therapeutic efficacy of TMZ. PMID:25625235

  5. Radiotherapy plus concomitant temozolomide in primary gliosarcoma.

    PubMed

    Adeberg, Sebastian; Bernhardt, Denise; Harrabi, Semi Ben; Diehl, Christian; Koelsche, Christian; Rieken, Stefan; Unterberg, Andreas; von Deimling, Andreas; Debus, Juergen

    2016-06-01

    Clinical guidelines for gliosarcoma (GSM) are poorly defined and GSM patients are usually treated in accordance with existing guidelines for glioblastoma (GBM), with maximal surgical resection followed by chemoradiation with temozolomide (TMZ). However, it is not clear yet if GSM patients profit from TMZ therapy and if O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation is crucial. We retrospectively evaluated 37 patients with histologically proven, primary GSM who had received radiation therapy since the temozolomide era (post-2005). Twenty-five patients (67.6 %) received combined chemoradiation with temozolomide, and 12 cases (32.4 %) received radiation therapy alone. Molecular markers were determined retrospectively. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. All cases were isocitrate dehydrogenase 1 (IDH1) wildtype, MGMT promoter methylation could be observed in 33.3 % of the assessable cases (10/30) and TERT promoter mutation was seen in a high frequency of 86.7 % (26/30). The influence of TMZ therapy on overall survival (OS) was significantly improved compared with cases in which radiation therapy alone was performed (13.9 vs. 9.9 months; p = 0.045), independently of MGMT promoter methylation. The positive effect of TMZ on OS was confirmed in this study's multivariate analyses (p = 0.04), after adjusting our results for potential confounders. In conclusion, this study demonstrates that concomitant TMZ together with radiation therapy increases GSM-patient survival independent of MGMT promoter methylation. Thus, GSM can be treated in accordance to GBM guidelines. MGMT promoter methylation was infrequent and TERT promoter mutation common without influencing the survival rates. The mechanisms of TMZ effects in GSM are still not fully understood and merit further clinical and molecular-genetic and -biological evaluation. PMID:27025857

  6. Drugs targeting the mitochondrial pore act as citotoxic and cytostatic agents in temozolomide-resistant glioma cells

    PubMed Central

    Lena, Annalisa; Rechichi, Mariarosa; Salvetti, Alessandra; Bartoli, Barbara; Vecchio, Donatella; Scarcelli, Vittoria; Amoroso, Rosina; Benvenuti, Lucia; Gagliardi, Rolando; Gremigni, Vittorio; Rossi, Leonardo

    2009-01-01

    Background High grade gliomas are one of the most difficult cancers to treat and despite surgery, radiotherapy and temozolomide-based chemotherapy, the prognosis of glioma patients is poor. Resistance to temozolomide is the major barrier to effective therapy. Alternative therapeutic approaches have been shown to be ineffective for the treatment of genetically unselected glioma patients. Thus, novel therapies are needed. Mitochondria-directed chemotherapy is an emerging tool to combat cancer, and inner mitochondrial permeability transition (MPT) represents a target for the development of cytotoxic drugs. A number of agents are able to induce MPT and some of them target MPT-pore (MPTP) components that are selectively up-regulated in cancer, making these agents putative cancer cell-specific drugs. Objective The aim of this paper is to report a comprehensive analysis of the effects produced by selected MPT-inducing drugs (Betulinic Acid, Lonidamine, CD437) in a temozolomide-resistant glioblastoma cell line (ADF cells). Methods EGFRvIII expression has been assayed by RT-PCR. EGFR amplification and PTEN deletion have been assayed by differential-PCR. Drugs effect on cell viability has been tested by crystal violet assay. MPT has been tested by JC1 staining. Drug cytostatic effect has been tested by mitotic index analysis. Drug cytotoxic effect has been tested by calcein AM staining. Apoptosis has been assayed by Hoechst incorporation and Annexine V binding assay. Authophagy has been tested by acridine orange staining. Results We performed a molecular and genetic characterization of ADF cells and demonstrated that this line does not express the EGFRvIII and does not show EGFR amplification. ADF cells do not show PTEN mutation but differential PCR data indicate a hemizygous deletion of PTEN gene. We analyzed the response of ADF cells to Betulinic Acid, Lonidamine, and CD437. Our data demonstrate that MPT-inducing agents produce concentration-dependent cytostatic and

  7. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve

    PubMed Central

    Koukourakis, Michael I; Mitrakas, Achilleas G; Giatromanolaki, Alexandra

    2016-01-01

    Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death. PMID:26889975

  8. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve.

    PubMed

    Koukourakis, Michael I; Mitrakas, Achilleas G; Giatromanolaki, Alexandra

    2016-03-01

    Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death. PMID:26889975

  9. In vivo Selection of Autologous MGMT Gene-Modified Cells Following Reduced Intensity Conditioning with BCNU and Temozolomide in the Dog Model

    PubMed Central

    Gori, Jennifer L.; Beard, Brian C.; Ironside, Christina; Karponi, Garyfalia; Kiem, Hans-Peter

    2012-01-01

    Chemotherapy with BCNU and temozolomide (TMZ) is commonly used for the treatment of glioblastoma multiforme (GBM) and other cancers. In preparation for a clinical gene therapy study in patients with glioblastoma, we wished to study whether these reagents could be used as a reduced-intensity conditioning regimen for autologous transplantation of gene-modified cells. We used an MGMT(P140K)-expressing lentivirus vector to modify dog CD34+ cells and tested in 4 dogs whether these autologous cells engraft and provide chemoprotection after transplantation. Treatment with O6-benzylguanine (O6BG)/TMZ after transplantation resulted in gene marking levels up to 75%, without significant hematopoietic cytopenia, which is consistent with hematopoietic chemoprotection. Retrovirus integration analysis showed that multiple clones contribute to hematopoiesis. These studies demonstrate the ability to achieve stable engraftment of MGMT(P140K)-modified autologous HSCs after a novel reduced-intensity conditioning protocol using a combination of BCNU and TMZ. Furthermore, we show that MGMT(P140K)-HSC engraftment provides chemoprotection during TMZ dose escalation. Clinically, chemoconditioning with BCNU and TMZ should facilitate engraftment of MGMT(P140K)-modified cells while providing anti-tumor activity for patients with poor prognosis glioblastoma or alkylating agent sensitive tumors, thereby supporting dose-intensified chemotherapy regimens. PMID:22627392

  10. NF-κB is activated in response to temozolomide in an AKT-dependent manner and confers protection against the growth suppressive effect of the drug

    PubMed Central

    2012-01-01

    Background Most DNA-damaging chemotherapeutic agents activate the transcription factor nuclear factor κB (NF-κB). However, NF-κB activation can either protect from or contribute to the growth suppressive effects of the agent. We previously showed that the DNA-methylating drug temozolomide (TMZ) activates AKT, a positive modulator of NF-κB, in a mismatch repair (MMR) system-dependent manner. Here we investigated whether NF-κB is activated by TMZ and whether AKT is involved in this molecular event. We also evaluated the functional consequence of inhibiting NF-κB on tumor cell response to TMZ. Methods AKT phosphorylation, NF-κB transcriptional activity, IκB-α degradation, NF-κB2/p52 generation, and RelA and NF-κB2/p52 nuclear translocation were investigated in TMZ-treated MMR-deficient (HCT116, 293TLα-) and/or MMR-proficient (HCT116/3-6, 293TLα+, M10) cells. AKT involvement in TMZ-induced activation of NF-κB was addressed in HCT116/3-6 and M10 cells transiently transfected with AKT1-targeting siRNA or using the isogenic MMR-proficient cell lines pUSE2 and KD12, expressing wild type or kinase-dead mutant AKT1. The effects of inhibiting NF-κB on sensitivity to TMZ were investigated in HCT116/3-6 and M10 cells using the NF-κB inhibitor NEMO-binding domain (NBD) peptide or an anti-RelA siRNA. Results TMZ enhanced NF-κB transcriptional activity, activated AKT, induced IκB-α degradation and RelA nuclear translocation in HCT116/3-6 and M10 but not in HCT116 cells. In M10 cells, TMZ promoted NF-κB2/p52 generation and nuclear translocation and enhanced the secretion of IL-8 and MCP-1. TMZ induced RelA nuclear translocation also in 293TLα+ but not in 293TLα- cells. AKT1 silencing inhibited TMZ-induced IκB-α degradation and NF-κB2/p52 generation. Up-regulation of NF-κB transcriptional activity and nuclear translocation of RelA and NF-κB2/p52 in response to TMZ were impaired in KD12 cells. RelA silencing in HCT116/3-6 and M10 cells increased TMZ

  11. Pharmacodynamic and Therapeutic Investigation of Focused Ultrasound-Induced Blood-Brain Barrier Opening for Enhanced Temozolomide Delivery in Glioma Treatment

    PubMed Central

    Liu, Hao-Li; Huang, Chiung-Yin; Chen, Ju-Yu; Wang, Hay-Yan Jack; Chen, Pin-Yuan; Wei, Kuo-Chen

    2014-01-01

    Focused ultrasound (FUS) exposure with the presence of microbubbles has been shown to transiently open the blood-brain barrier (BBB), and thus has potential to enhance the delivery of various kinds of therapeutic agents into brain tumors. The purpose of this study was to assess the preclinical therapeutic efficacy of FUS-BBB opening for enhanced temozolomide (TMZ) delivery in glioma treatment. FUS exposure with microbubbles was delivered to open the BBB of nude mice that were either normal or implanted with U87 human glioma cells. Different TMZ dose regimens were tested, ranging from 2.5 to 25 mg/kg. Plasma and brain samples were obtained at different time-points ranging from 0.5 to 4 hours, and the TMZ concentration within samples was quantitated via a developed LC-MS/MS procedure. Tumor progression was followed with T2-MRI, and animal survival and brain tissue histology were conducted. Results demonstrated that FUS-BBB opening caused the local TMZ accumulation in the brain to increase from 6.98 to 19 ng/mg. TMZ degradation time in the tumor core was found to increase from 1.02 to 1.56 hours. Improved tumor progression and animal survival were found at different TMZ doses (up to 15% and 30%, respectively). In conclusion, this study provides preclinical evidence that FUS-BBB opening increases the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting the potential for clinical application to improve current brain tumor treatment. PMID:25490097

  12. Do Glioma Patients Derive Any Therapeutic Benefit From Taking a Higher Cumulative Dose of Temozolomide Regimens?

    PubMed Central

    Sun, Hao; Du, Shasha; Liao, Guixiang; Xie, Xiao; Ren, Chen; Yuan, Ya Wei

    2015-01-01

    Abstract Temozolomide (TMZ) is an oral alkylating agent with established effects on the central nervous system of glioblastoma (GBM) patients. Clinical trials have demonstrated a significant impact on overall survival (OS) with TMZ. Ever since, several TMZ regimens have been designed to improve treatment efficacy by increasing the cumulative dose per cycle. We report a meta-analysis to systematically evaluate different treatment schedules of TMZ in GBM patients. All searches that were conducted in the Cochrane library, Science Direct, and PubMed Databases, and 3 randomized controlled trials (1141 patients) were included. OS and progression-free survival (PFS) were the primary outcomes to be pooled. Unexpectedly, this analysis did not reveal any OS or PFS advantage for the high cumulative dose (HCD) regimen compared with the normal cumulative dose regimen (1141 total patients; hazard ratio [HR] 1.07, 95% CI 0.94–1.22, P = 0.31). Then after analyzing the characteristics of the results from each trial, we found that the regimen with a higher peak concentration during a short-term period (daily doses ≥150 mg/m2/d within ≤7 days/cycle) always had a more superior clinical benefit. So we generated a new pooled HR of 1.10 with a 95% CI of 0.96–1.25 (P = 0.17), which prefers the high peak concentration schedule even without a significant difference. The adverse outcome also indicates a significant increased risk of leukopenia (risk ratio 1.59, 95% CI 1.03–2.46, P = 0.04) among the HCD group. Our study suggests that increasing the cumulative dose per cycle is not an ideal way to improve the efficacy of TMZ, and it will lead to increased risk for leukopenia. Future trials should be designed to examine schedules of higher peak concentration rather than the cumulative dose per cycle. PMID:25997057

  13. Temozolomide Treatment for Pediatric Refractory Anaplastic Ependymoma with Low MGMT Protein Expression.

    PubMed

    Komori, Kazutoshi; Yanagisawa, Ryu; Miyairi, Yosuke; Sakashita, Kazuo; Shiohara, Masaaki; Fujihara, Ikuko; Morita, Daisuke; Nakamura, Tomohiko; Ogiso, Yoshifumi; Sano, Kenji; Shirahata, Mitsuaki; Fukuoka, Kohei; Ichimura, Koichi; Shigeta, Hiroaki

    2016-01-01

    The benefit of postoperative chemotherapy for anaplastic ependymoma remains unknown. We report two pediatric patients with refractory anaplastic ependymoma treated with temozolomide (TMZ). We did not detect O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation in tumor samples; however, MGMT protein expression was low. With TMZ treatment, one patient had a 7-month complete remission; the other, stable disease for 15 months. Three other patients did not respond to TMZ; two had high and one low MGMT expression, and two showed no MGMT promoter methylation. These findings suggest that TMZ may be effective for pediatric refractory anaplastic ependymoma with low MGMT protein expression. PMID:26305586

  14. Theranostic cRGD-BioShuttle Constructs Containing Temozolomide- and Cy7 For NIR-Imaging and Therapy

    PubMed Central

    Wiessler, Manfred; Hennrich, Ute; Pipkorn, Rüdiger; Waldeck, Waldemar; Cao, Liji; Peter, Jörg; Ehemann, Volker; Semmler, Wolfhard; Lammers, Twan; Braun, Klaus

    2011-01-01

    Innovative and personalized therapeutic approaches result from the identification and control of individual aberrantly expressed genes at the transcriptional and post-transcriptional level. Therefore, it is of high interest to establish diagnostic, therapeutic and theranostic strategies at these levels. In the present study, we used the Diels-Alder Reaction with inverse electron demand (DARinv) click chemistry to prepare a series of cyclic RGD-BioShuttle constructs. These constructs carry the near-infrared (NIR) imaging agent Cy7 and the chemotherapeutic agent temozolomide (TMZ). We evaluated their uptake by and their efficacy against integrin αvβ3-expressing MCF7 human breast carcinoma cells. In addition, using a mouse phantom, we analyzed the suitability of this targeted theranostic agent for NIR optical imaging. We observed that the cyclic RGD-based carriers containing TMZ and/or Cy7 were effectively taken up by αvβ3-expressing cells, that they were more effective than free TMZ in inducing cell death, and that they could be quantitatively visualized using NIR fluorescence imaging. Therefore, these targeted theranostic agents are considered to be highly suitable systems for improving disease diagnosis and therapy. PMID:22211144

  15. MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma.

    PubMed

    Tuominen, Rainer; Jewell, Rosalyn; van den Oord, Joost J; Wolter, Pascal; Stierner, Ulrika; Lindholm, Christer; Hertzman Johansson, Carolina; Lindén, Diana; Johansson, Hemming; Frostvik Stolt, Marianne; Walker, Christy; Snowden, Helen; Newton-Bishop, Julia; Hansson, Johan; Egyházi Brage, Suzanne

    2015-06-15

    To investigate the predictive and prognostic value of O(6) -methylguanine DNA methyltransferase (MGMT) inactivation by analyses of promoter methylation in pretreatment tumor biopsies from patients with cutaneous melanoma treated with dacarbazine (DTIC) or temozolomide (TMZ) were performed. The patient cohorts consisted of Belgian and Swedish disseminated melanoma patients. Patients were subdivided into those receiving single-agent treatment with DTIC/TMZ (cohort S, n = 74) and those treated with combination chemotherapy including DTIC/TMZ (cohort C, n = 79). Median follow-up was 248 and 336 days for cohort S and cohort C, respectively. MGMT promoter methylation was assessed by three methods. The methylation-related transcriptional silencing of MGMT mRNA expression was assessed by real-time RT-PCR. Response to chemotherapy and progression-free survival (PFS) and overall survival were correlated to MGMT promoter methylation status. MGMT promoter methylation was detected in tumor biopsies from 21.5 % of the patients. MGMT mRNA was found to be significantly lower in tumors positive for MGMT promoter methylation compared to tumors without methylation in both treatment cohorts (p < 0.005). DTIC/TMZ therapy response rate was found to be significantly associated with MGMT promoter methylation in cohort S (p = 0.0005), but did not reach significance in cohort C (p = 0.16). Significantly longer PFS was observed among patients with MGMT promoter-methylated tumors (p = 0.002). Multivariate Cox regression analysis identified presence of MGMT promoter methylation as an independent variable associated with longer PFS. Together, this implies that MGMT promoter methylation is associated with response to single-agent DTIC/TMZ and longer PFS in disseminated cutaneous melanoma. PMID:25400033

  16. Combination of anti-VEGF therapy and temozolomide in two experimental human glioma models.

    PubMed

    Grossman, Rachel; Brastianos, Harry; Blakeley, Jaishri O; Mangraviti, Antonella; Lal, Bachchu; Zadnik, Patti; Hwang, Lee; Wicks, Robert T; Goodwin, Rory C; Brem, Henry; Tyler, Betty

    2014-01-01

    Anti-angiogenic agents, such as bevacizumab (BEV), can induce normalization of the blood brain barrier, which may influence the penetration and activity of a co-administered cytotoxic drug. However, it is unknown whether this effect is associated with a benefit in overall survival. This study employed intracranial human glioma models to evaluate the effect of BEV alone and in combination with temozolomide (TMZ) and/or radiation therapy (XRT) on overall survival. One hundred eight male athymic rats were intracranially injected with either U251 or U87 human glioma. Ten or eleven days after tumor inoculation, animals bearing U251 and U87, respectively, were treated with: TMZ alone (50 mg/kg for 5 consecutive days, P.O.), BEV alone (15 mg/kg, I.V.), a combination of TMZ and BEV, or a combination of TMZ, BEV, and a single fraction of XRT (20 Gy). Controls received no treatment. The U87 experiment was repeated and the relationship between survival and the extent of anti-angiogenesis via anti-laminin antibodies for the detection of blood vessels was assessed. In both U87 glioma experiments, all of the treatment groups had a statistically significant increase in survival as compared to the control groups. Also, for both U87 experiments the combination groups of TMZ and BEV had significantly better survival when compared to either treatment administered alone, with 75% of animals demonstrating long-term survival (LTS) (defined as animals alive 120 days after tumor implantation) in one experiment and 25% LTS in the repeat experiment. In the U251 glioma experiment, all treated groups (except BEV alone) had significantly improved survival as compared to controls with minimal statistical variance among groups. The percent vessel area was lowest in the group of animals treated with BEV alone. The addition of BEV to TMZ and/or XRT had variable effect on prolonging survival in the two human glioma models tested with reduced tumor vascularity in groups treated with BEV. These

  17. Ultrasound-induced opening of the blood-brain barrier to enhance temozolomide and irinotecan delivery: an experimental study in rabbits.

    PubMed

    Beccaria, Kevin; Canney, Michael; Goldwirt, Lauriane; Fernandez, Christine; Piquet, Julie; Perier, Marie-Cécile; Lafon, Cyril; Chapelon, Jean-Yves; Carpentier, Alexandre

    2016-06-01

    OBJECT The blood-brain barrier (BBB) limits the intracerebral penetration of drugs and brain tumor treatment efficacy. The effect of ultrasound-induced BBB opening on the intracerebral concentration of temozolomide (TMZ) and irinotecan (CPT-11) was assessed. METHODS This study was performed using 34 healthy New Zealand rabbits. Half had unilateral BBB opening, and half served as controls. Sonications were performed by pulsing a 1.05-MHz planar ultrasound transducer with a duty cycle of 2.5% and an in situ acoustic pressure level of 0.6 MPa after injection of a microbubble ultrasound contrast agent. Drugs were injected either 5 minutes before (ChemoPreUS) or 15 minutes after (ChemoPostUS) the ultrasound sonication. The plasma and intracerebral concentrations of both drugs were quantified using ultra-performance liquid chromatography. RESULTS The mean intracerebral tissue-to-plasma drug concentration ratio in the control hemispheres was 34% for TMZ and 2% for CPT-11. After BBB opening, these values increased by up to 21% for TMZ and up to 178% for CPT-11. Intracerebral concentrations of drugs were enhanced in regions where the BBB was opened compared with the contralateral hemisphere (p < 0.01 and p < 0.0001 for CPT-11, p = 0.02 and p = 0.03 for TMZ, in ChemoPreUS and ChemoPostUS, respectively) and compared with the control group (p < 0.001 and p < 0.0001 for CPT-11, p < 0.01 and p = 0.02 for TMZ, in ChemoPreUS and ChemoPostUS, respectively). The intracerebral distribution of drugs was heterogeneous, depending on the distance from the ultrasound source. CONCLUSIONS Ultrasound-induced opening of the BBB significantly enhances the intracerebral concentration of both TMZ and CPT-11 in rabbits. PMID:26566207

  18. Augmentation of invadopodia formation in temozolomide-resistant or adopted glioma is regulated by c-Jun terminal kinase-paxillin axis.

    PubMed

    Ueno, Hideaki; Tomiyama, Arata; Yamaguchi, Hideki; Uekita, Takamasa; Shirakihara, Takuya; Nakashima, Katsuhiko; Otani, Naoki; Wada, Kojiro; Sakai, Ryuichi; Arai, Hajime; Mori, Kentaro

    Temozolomide (TMZ) is one of the few effective anticancer agents against gliomas. However, acquisition of TMZ resistance or adaptation by gliomas is currently a crucial problem, especially increased invasiveness which is critical for the determination of clinical prognosis. This study investigated the molecular regulatory mechanisms of TMZ resistance in gliomas involved in invasiveness, particularly invadopodia formation, a molecular complex formed at the invasive front to cause extracellular matrix degradation during cellular local invasion. The TMZ-resistant clone of the U343 MG human glioma cell line (U343-R cells) was established. U343-R cells demonstrated higher invadopodia formation compared with U343 cells without TMZ resistance (U343-Con cells). Immunoblot analysis of DNA damage-related mitogen-activated protein kinase signals found increased phosphorylation of c-Jun terminal kinase (JNK) and higher activation of its downstream signaling in U343-R cells compared with U343-Con cells. Treatment of U343-R cells with specific inhibitors of JNK or siRNA targeting JNK suppressed up-regulation of invadopodia formation. In addition, paxillin, one of the known JNK effectors which is phosphorylated and affects cell migration, was phosphorylated at serine 178 in JNK activity-dependent manner. Expression of paxillin with mutation of the serine 178 phosphorylation site in U343-R cells blocked invadopodia formation. The present findings suggest that increased formation of invadopodia in U343-R cells is mediated by hyperactivation of JNK-paxillin signaling, and both JNK and paxillin might become targets of novel therapies against TMZ-resistant gliomas. PMID:26518652

  19. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells.

    PubMed

    Lee, Seung Woo; Kim, Hyun-Kyung; Lee, Na-Hyeon; Yi, Hee-Yeon; Kim, Hong-Sug; Hong, Sung Hee; Hong, Yong-Kil; Joe, Young Ae

    2015-05-01

    Temozolomide (TMZ) is an alkylating agent used for the treatment of glioblastoma. The late autophagy inhibitor chloroquine (CQ) inhibits glioblastoma tumors in a p53-independent and p53-dependent manner. We addressed a possible beneficial effect of combination treatment with TMZ and CQ by examining the molecular and cellular mechanism of co-treatment. Combination treatment of U87 cell (wild type p53) with TMZ and CQ synergistically reduced cell proliferation and enhanced apoptosis, with increased sub-G1 hypodiploid cells and caspase activation. This effect was abolished by a pan-caspase inhibitor, Z-VAD-FMK. TMZ induced autophagy, and the addition of CQ further increased autophagic vacuoles. Inhibition of early stages of autophagy by Beclin 1 knockdown and 3-methyladenine pretreatment prevented the enhanced effect of the combination treatment. The combination treatment also upregulated p53 and phospho-p53 levels, whereas p53 knockdown or overexpression of mutant p53 abolished the combination effect. In contrast, combination therapy had no enhanced effect on U373 cell (mutant p53) proliferation and apoptosis within 3 d, although TMZ induced autophagy and co-treatment with CQ increased autophagic vacuole accumulation. However, long term combination treatment for 9-10 d effectively decreased clonal and cellular growth with increased G2-M arrest. This effect was also abolished by Beclin 1 knockdown. Our data support the beneficial effect of combination treatment with TMZ and CQ in glioma via differential autophagy-associated mechanisms, depending on p53 status. PMID:25681668

  20. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: the GENOM 009 randomized phase II trial.

    PubMed

    Balana, Carmen; De Las Penas, Ramon; Sepúlveda, Juan Manuel; Gil-Gil, Miguel J; Luque, Raquel; Gallego, Oscar; Carrato, Cristina; Sanz, Carolina; Reynes, Gaspar; Herrero, Ana; Ramirez, Jose Luis; Pérez-Segura, Pedro; Berrocal, Alfonso; Vieitez, Jose Maria; Garcia, Almudena; Vazquez-Estevez, Sergio; Peralta, Sergi; Fernandez, Isaura; Henriquez, Ivan; Martinez-Garcia, Maria; De la Cruz, Juan Jose; Capellades, Jaume; Giner, Pilar; Villà, Salvador

    2016-05-01

    We sought to determine the impact of bevacizumab on reduction of tumor size prior to chemoradiotherapy in unresected glioblastoma patients. Patients were randomized 1:1 to receive temozolomide (TMZ arm) or temozolomide plus bevacizumab (TMZ + BEV arm). In both arms, neoadjuvant treatment was temozolomide (85 mg/m(2), days 1-21, two 28-day cycles), concurrent radiation plus temozolomide, and six cycles of adjuvant temozolomide. In the TMZ + BEV arm, bevacizumab (10 mg/kg) was added on days 1 and 15 of each neoadjuvant cycle and on days 1, 15 and 30 of concurrent treatment. The primary endpoint was investigator-assessed response to neoadjuvant treatment. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and the impact on outcome of MGMT methylation in tumor and serum. One hundred and two patients were included; 43 in the TMZ arm and 44 in the TMZ + BEV arm were evaluable for response. Results favored the TMZ + BEV arm in terms of objective response (3 [6.7 %] vs. 11 [22.9 %]; odds ratio 4.2; P = 0.04). PFS and OS were longer in the TMZ + BEV arm, though the difference did not reach statistical significance. MGMT methylation in tumor, but not in serum, was associated with outcome. More patients experienced toxicities in the TMZ + BEV than in the TMZ arm (P = 0.06). The combination of bevacizumab plus temozolomide is more active than temozolomide alone and may well confer benefit in terms of tumor shrinkage in unresected patients albeit at the expense of greater toxicity. PMID:26847813

  1. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review.

    PubMed

    Ashby, Lynn S; Smith, Kris A; Stea, Baldassarre

    2016-01-01

    Since 2003, only two chemotherapeutic agents, evaluated in phase III trials, have been approved by the US Food and Drug Administration for treatment of newly diagnosed high-grade glioma (HGG): Gliadel wafers (intracranially implanted local chemotherapy) and temozolomide (TMZ) (systemic chemotherapy). Neither agent is curative, but each has been shown to improve median overall survival (OS) compared to radiotherapy (RT) alone. To date, no phase III trial has tested these agents when used in sequential combination; however, a number of smaller trials have reported favorable results. We performed a systematic literature review to evaluate the combination of Gliadel wafers with standard RT (60 Gy) plus concurrent and adjuvant TMZ (RT/TMZ) for newly diagnosed HGG. A literature search was conducted for the period of January 1995 to September 2015. Data were extracted and categorized, and means and ranges were determined. A total of 11 publications met criteria, three prospective trials and eight retrospective studies, representing 411 patients who received Gliadel plus standard RT/TMZ. Patients were similar in age, gender, and performance status. The weighted mean of median OS was 18.2 months (ten trials, n = 379, range 12.7 to 21.3 months), and the weighted mean of median progression-free survival was 9.7 months (seven trials, n = 287, range 7 to 12.9 months). The most commonly reported grade 3 and 4 adverse events were myelosuppression (10.22 %), neurologic deficit (7.8 %), and healing abnormalities (4.3 %). Adverse events reflected the distinct independent safety profiles of Gliadel wafers and RT/TMZ, with little evidence of enhanced toxicity from their use in sequential combination. In the 11 identified trials, an increased benefit from sequentially combining Gliadel wafers with RT/TMZ was strongly suggested. Median OS tended to be improved by 3 to 4 months beyond that observed for Gliadel wafers or TMZ when used alone in the respective phase III

  2. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells

    PubMed Central

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-01-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  3. Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells.

    PubMed

    Ma, Jian; Yang, Yan-Ru; Chen, Wei; Chen, Mei-Hua; Wang, Hao; Wang, Xiao-Dan; Sun, Li-Li; Wang, Feng-Ze; Wang, De-Cai

    2016-08-01

    Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a combination of FLT and TMZ on glioma cells. Glioma cell lines were exposed to FLT and/or TMZ. Cell viability and apoptosis were examined by CCK-8 assay, flow cytometry and caspase-3 activity assay, respectively. The expression of endoplasmic reticulum-stress (ERS) apoptosis-related proteins was measured using real-time PCR and western blotting. Synergism between the two drugs was evaluated by the combination index (CI) through CompuSyn software. FLT significantly and dose-dependently inhibited the proliferation of various glioma cell lines, and rat glioma C6 cells had a highly sensitive response to the addition of FLT. FLT treatment increased the early apoptosis rate, induced typical apoptotic morphology in the C6 cells and activated caspase-3 with no change in the mitochondrial membrane potential. Further study showed that FLT activated the ERS marker, CHOP. This induction was associated with activation of the PERK-eIF2α-ATF4 and ATF6 cascade. Concomitantly, GADD34, a downstream molecule of CHOP, was also increased. Combined FLT and TMZ treatment showed a synergistic cytotoxic effect in the C6 glioma cells. Knockdown of CHOP expression abolished the synergistic effect of FLT and TMZ in the C6 cells, which suggests that FLT may sensitize glioma cells to TMZ through activation of the CHOP-dependent apoptosis pathway. These results revealed that FLT induced glioma cell apoptosis and sensitized glioma cells to TMZ through activation of the CHOP‑dependent apoptosis pathway. The present study provides a primary basis for using the combination of these drugs in patients with

  4. Double-salting out assisted liquid-liquid extraction (SALLE) HPLC method for estimation of temozolomide from biological samples.

    PubMed

    Jain, Darshana; Athawale, Rajani; Bajaj, Amrita; Shrikhande, Shruti

    2014-11-01

    The role of temozolomide (TMZ) in treatment of high grade gliomas, melanomas and other malignancies is being defined by the current clinical developmental trials. Temozolomide belongs to the group of alkylating agents and is prescribed to patients suffering from most aggressive forms of brain tumors. The estimation techniques for temozolomide from the extracted plasma or biological samples includes high-performance liquid chromatography with UV detection (HPLC-UV), micellar electrokinetic capillary chromatography (MKEC) and liquid chromatography coupled to mass spectroscopy (LC-MS). These methods suffer from disadvantages like low resolution, low sensitivity, low recovery or cost involvement. An analytical method possessing capacity to estimate low quantities of TMZ in plasma samples with high extraction efficiency (%) and high resolution with cost effectiveness needs to be developed. Cost effective, robust and low plasma component interfering HPLC method using salting out liquid-liquid extraction (SALLE) technique was developed and validated for estimation of drug from plasma samples. The extraction efficiency (%) with conventional LLE technique with methanol, ethyl acetate, dichloromethane and acetonitrile was found to be 5.99±2.45, 45.39±4.56, 46.04±1.14 and 46.23±3.67 respectively. Extraction efficiency (%) improved with SALLE where sodium chloride was used as an electrolyte and was found to be 6.80±5.56, 52.01±3.13, 62.69±2.11 and 69.20±1.18 with methanol, ethyl acetate, dichloromethane and acetonitrile as organic solvent. Upon utilization of two salts for extraction (double salting liquid-liquid extraction) the extraction efficiency (%) was further improved and was twice of LLE. It was found that double salting liquid-liquid extraction technique yielded extraction efficiency (%) of 11.71±5.66, 55.62±3.44, 77.28±2.89 and 87.75±0.89. Hence a method based on double SALLE was developed for quantification of TMZ demonstrating linearity in the range of

  5. BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide

    PubMed Central

    CHEN, CHIEN-MIN; SYU, JHIH-PU; WAY, TZONG-DER; HUANG, LI-JIAU; KUO, SHENG-CHU; LIN, CHUNG-TIEN; LIN, CHIH-LI

    2015-01-01

    Glioblastoma multiforme (GBM) is the most fatal form of human brain cancer. Although temozolomide (TMZ), an oral alkylating chemotherapeutic agent, improves the survival rate, the prognosis of patients with GBM remains poor. Naturally occurring carbazole alkaloids isolated from curry leaves (Murraya koenigii Spreng.) have been shown to possess a wide range of anticancer properties. However, the effects of carbazole derivatives on glioblastoma cells remain poorly understood. In the present study, anti-glioblastoma profiles of a series of synthetic carbazole derivatives were evaluated in vitro. The most promising derivative in this series was BC3EE2,9B, which showed significant anti-proliferative effects in GBM8401 and GBM8901 cells. BC3EE2,9B also triggered cell-cycle arrest, most prominently at the G1 stage, and suppressed glioblastoma cell invasion and migration. Furthermore, BC3EE2,9B induced autophagy-mediated cell death and synergistically sensitized GBM cells to TMZ cytotoxicity. The possible mechanism underlying BC3EE2,9B-induced autophagy may involve activation of adenosine monophosphate-activated protein kinase and the attenuation of the Akt and mammalian target of the rapamycin downstream signaling pathway. Taken together, the present results provide molecular evidence for the mode of action governing the ability of BC3EE2,9B to sensitize drug-resistant glioblastoma cells to the chemotherapeutic agent TMZ. PMID:26329365

  6. The efficacy of the Wee1 inhibitor MK-1775 combined with temozolomide is limited by heterogeneous distribution across the blood-brain barrier in glioblastoma

    PubMed Central

    Pokorny, Jenny L.; Calligaris, David; Gupta, Shiv K.; Iyekegbe, Dennis O.; Mueller, Dustin; Bakken, Katrina K.; Carlson, Brett L.; Schroeder, Mark A.; Evans, Debra L.; Lou, Zhenkun; Decker, Paul A.; Eckel-Passow, Jeanette E.; Pucci, Vincenzo; Ma, Bennett; Shumway, Stuart D.; Elmquist, William; Agar, Nathalie Y.; Sarkaria, Jann N.

    2015-01-01

    Purpose Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in GBM xenograft models alone and in combination with radiation and/or temozolomide (TMZ). Experimental design In vitro MK-1775 efficacy alone and in combination with TMZ, and the impact on DNA damage was analyzed by western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI) -MS imaging. Results GBM22 (IC50 = 68 nM) was significantly more sensitive to MK-1775 compared to 5 other GBM xenograft lines including GBM6 (IC50 >300 nM), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with TMZ in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with TMZ, while in a flank model of GBM22, MK-1775 exhibited both single agent and combinatorial activity with TMZ. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared to heterotopic GBM22 tumors. Conclusions Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. PMID:25609063

  7. Akt and β-catenin contribute to TMZ resistance and EMT of MGMT negative malignant glioma cell line.

    PubMed

    Yi, Guo-Zhong; Liu, Ya-Wei; Xiang, Wei; Wang, Hai; Chen, Zi-Yang; Xie, Si-di; Qi, Song-Tao

    2016-08-15

    Glioblastoma is one of the most lethal cancers in central nervous system, and some individual cells that cannot be isolated for surgical resection and also show treatment-resistance induce poor prognosis. Hence, in order to research these cells, we treated temozolomide (TMZ)-sensitive U87MG cells with 400μM TMZ in culture media for over 6months and established TMZ-resistant cell line designated as U87/TR. We detected the MGMT status through pyrosequencing and western blotting, and we also assessed the proliferation, migration, EMT-like changes and possible activated signaling pathways in U87/TR cells. Our results demonstrated that U87/TR was MGMT negative, which indicated that MGMT made no contribution for TMZ-resistance of U87/TR. And U87/TR cells displayed cell cycle arrest, higher capacity for migration and EMT-like changes including both phenotype and characteristic proteins. We also revealed that both β-catenin and the phosphorylation level of Akt and PRAS40 were increased in U87/TR, while we did not observe the phosphorylation of mTOR in U87/TR. It indicated that activation of Akt and Wnt/β-catenin pathways may be response for the chemo-resistance and increased invasion of U87/TR cells, and the phosphorylation of PRAS40 and inactivated mTOR may be related to cell cycle arrest in U87/TR cells. PMID:27423571

  8. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction.

    PubMed

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-08-01

    The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy. PMID:24842385

  9. Which elderly newly diagnosed glioblastoma patients can benefit from radiotherapy and temozolomide? A PERNO prospective study.

    PubMed

    Franceschi, Enrico; Depenni, Roberta; Paccapelo, Alexandro; Ermani, Mario; Faedi, Marina; Sturiale, Carmelo; Michiara, Maria; Servadei, Franco; Pavesi, Giacomo; Urbini, Benedetta; Pisanello, Anna; Crisi, Girolamo; Cavallo, Michele A; Dazzi, Claudio; Biasini, Claudia; Bertolini, Federica; Mucciarini, Claudia; Pasini, Giuseppe; Baruzzi, Agostino; Brandes, Alba A

    2016-05-01

    The role of temozolomide concurrent with and adjuvant to radiotherapy (RT/TMZ) in elderly patients with glioblastoma (GBM) remains unclear. We evaluated the outcome of patients >70 years in the context of the Project of Emilia-Romagna Region in Neuro-Oncology (PERNO), the first Italian prospective observational population-based study in neuro-oncology. For this analysis the criteria for selecting patients enrolled in the PERNO study were: age >70 years; PS 0-3; histologically confirmed GBM; postoperative radiotherapy (RT) after surgery with or without concomitant temozolomide (TMZ) or postsurgical TMZ alone. Between January 2009 and December 2010, 76 GBM elderly patients were identified in the prospective PERNO study. Twenty-three patients did not receive any treatment after surgery, and 53 patients received postsurgical treatments (25 patients received RT alone and 28 patients RT/TMZ). Median survival was 11.1 months (95 % CI 8.8-13.5), adding temozolomide concomitant and adjuvant to radiotherapy it was 11.6 months (95 % CI 8.6-14.6), and 9.3 months (95 % CI 8.1-10.6) in patients treated with RT alone (P = 0.164). However, patients with MGMT methylated treated with RT/TMZ obtained a better survival (17.2 months, 95 % CI 11.5-22.9) (P = 0.042). No difference in terms of survival were observed if patients with MGMT unmethylated tumor received RT alone, or RT/TMZ or, in MGMT methylated tumor, if patients received radiotherapy alone. In elderly patients RT/TMZ represent a widely used approach but it is effective with methylated MGMT tumors only. PMID:26943851

  10. Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-κB-dependent pathway downregulating MGMT expression.

    PubMed

    Lan, Fengming; Yang, Yang; Han, Jing; Wu, Qiaoli; Yu, Huiming; Yue, Xiao

    2016-02-01

    The survival benefits of patients with glioblastoma (GBM) remain unsatisfactory due to the intrinsic or acquired resistance to temozolomide (TMZ). We elucidated the mechanisms of sulforaphane (SFN) reverse TMZ resistance in TMZ-inducing cell lines by inhibiting nuclear factor-κB (NF-κB) transcriptional activity. TMZ-resistant cell lines (U87-R and U373-R) were generated by stepwise (6 months) exposure of parental cells to TMZ. Luciferase reporter assay, biochemical assays and subcutaneous tumor establishment were used to characterize the antitumor effect of SFN. MGMT expression and 50% inhibiting concentration (IC50) values of TMZ in GBM cell lines were assessed. Next, we established that U87-R and U373-R cells presenting high IC50 of TMZ, activated NF-κB transcription and significantly increased MGMT expression compared with untreated cells. Furthermore, we revealed that SFN could significantly suppress proliferation of TMZ-resistant GBM cells. In addition, SFN effectively inhibited activity of NF-κB signaling pathway and then reduced MGMT expression to reverse the chemo-resistance to TMZ in T98G, U87-R and U373-R cell lines. Sequential combination with TMZ synergistically inhibited survival capability and increased the induction of apoptosis in TMZ-resistant GBM cells. Finally, a nude mouse model was established with U373-R cell subcutaneous tumor-bearing mice, and results showed that SFN could remarkably suppress cell growth and enhance cell death in chemo-resistant xenografts in the nude mouse model. Collectively, the present study suggests that the clinical efficacy of TMZ-based chemotherapy in TMZ-resistant GBM may be improved by combination with SFN. PMID:26648123

  11. A retrospective study of the safety of BCNU wafers with concurrent temozolomide and radiotherapy and adjuvant temozolomide for newly diagnosed glioblastoma patients.

    PubMed

    Pan, Edward; Mitchell, Susan B; Tsai, Jerry S

    2008-07-01

    Despite aggressive therapy, most patients with glioblastoma multiforme (GBM) die within 2 years of diagnosis. The efficacy and safety of carmustine (BCNU) wafers followed by radiotherapy have been demonstrated in patients with malignant glioma. However, there is a reluctance to recommend them for newly diagnosed GBM patients due to the potential toxicity of BCNU wafers combined with temozolomide (TMZ) chemotherapy and radiotherapy. The purpose of this study was to assess the safety of BCNU wafers implanted at initial surgery, followed by concurrent TMZ and radiotherapy, and then adjuvant TMZ for the treatment of newly diagnosed GBM. We conducted a retrospective analysis of clinic and hospital records of 21 newly diagnosed GBM patients who received multimodal therapy at Florida Hospital Cancer Institute from January 2003 to December 2005. Three of 21 patients had grade 3 toxicities (two with cerebritis, one with psychosis). Grade 4 toxicities were not observed. Median overall survival was 17 months, median progression-free survival was 8.5 months, and 2-year survival was 39%. Multimodal treatment with surgery, BCNU wafers, radiotherapy, and TMZ did not result in a notable increase in significant toxicities. Survival outcomes were comparable to those in other studies in which patients were treated with concurrent TMZ and radiotherapy followed by adjuvant TMZ. Thus, the implantation of BCNU wafers prior to TMZ and radiotherapy appears safe in newly diagnosed GBM patients. PMID:18389176

  12. Expression of dynein, cytoplasmic 2, heavy chain 1 (DHC2) associated with glioblastoma cell resistance to temozolomide

    PubMed Central

    Wang, Hai; Feng, Wenfeng; Lu, Yuntao; Li, Hezhen; Xiang, Wei; Chen, Ziyang; He, Minyi; Zhao, Liang; Sun, Xuegang; Lei, Bingxi; Qi, Songtao; Liu, Yawei

    2016-01-01

    Temozolomide (TMZ) is the main chemotherapeutic drug utilized for the treatment of glioblastoma multiforme (GMB), however, drug resistance often leads to tumor recurrence and poor outcomes. GMB cell lines were treated with TMZ for up to two weeks and then subjected to proteomics analysis to identify the underlying molecular pathology that is associated with TMZ resistance. Proteomics data showed that TMZ altered expression of proteins that related to cytoskeleton structure and function, such as DHC2 and KIF2B. qRT-PCR and immunofluorescence were used to verify expression of DHC2 and KIF2B in these cells. Immunohistochemistry was used to verify expression of these two proteins in xenografts of a nude mouse model, and ex vivo GBM tissue samples. Their expression was knocked down using siRNA to confirm their role in the regulation of GBM cell sensitivity to TMZ. Knockdown of DHC2 expression enhanced sensitivity of U87 cells to TMZ treatment. Ex vivo data showed that DHC2 expression in GBM tissue samples was associated with tumor recurrence after TMZ chemotherapy. These results indicated cytoskeleton related protein DHC2 reduced sensitivity of GBM cells to TMZ treatment. Further studies should assess DHC2 as a novel target in GBM for TMZ combination treatment. PMID:27375225

  13. Expression of dynein, cytoplasmic 2, heavy chain 1 (DHC2) associated with glioblastoma cell resistance to temozolomide.

    PubMed

    Wang, Hai; Feng, Wenfeng; Lu, Yuntao; Li, Hezhen; Xiang, Wei; Chen, Ziyang; He, Minyi; Zhao, Liang; Sun, Xuegang; Lei, Bingxi; Qi, Songtao; Liu, Yawei

    2016-01-01

    Temozolomide (TMZ) is the main chemotherapeutic drug utilized for the treatment of glioblastoma multiforme (GMB), however, drug resistance often leads to tumor recurrence and poor outcomes. GMB cell lines were treated with TMZ for up to two weeks and then subjected to proteomics analysis to identify the underlying molecular pathology that is associated with TMZ resistance. Proteomics data showed that TMZ altered expression of proteins that related to cytoskeleton structure and function, such as DHC2 and KIF2B. qRT-PCR and immunofluorescence were used to verify expression of DHC2 and KIF2B in these cells. Immunohistochemistry was used to verify expression of these two proteins in xenografts of a nude mouse model, and ex vivo GBM tissue samples. Their expression was knocked down using siRNA to confirm their role in the regulation of GBM cell sensitivity to TMZ. Knockdown of DHC2 expression enhanced sensitivity of U87 cells to TMZ treatment. Ex vivo data showed that DHC2 expression in GBM tissue samples was associated with tumor recurrence after TMZ chemotherapy. These results indicated cytoskeleton related protein DHC2 reduced sensitivity of GBM cells to TMZ treatment. Further studies should assess DHC2 as a novel target in GBM for TMZ combination treatment. PMID:27375225

  14. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  15. Six-month progression-free survival as an alternative primary efficacy endpoint to overall survival in newly diagnosed glioblastoma patients receiving temozolomide.

    PubMed

    Polley, Mei-Yin C; Lamborn, Kathleen R; Chang, Susan M; Butowski, Nicholas; Clarke, Jennifer L; Prados, Michael

    2010-03-01

    We assessed six-month progression-free survival (PFS) as an alternative primary efficacy endpoint to overall survival in newly diagnosed glioblastoma multiforme (GBM) patients receiving temozolomide (TMZ). A total of 183 patients with newly diagnosed GBM enrolled in 3 phase II protocols at the University of California-San Francisco were included. Patients were treated with interventions based on the Stupp regimen, each with the added component of a second oral agent given concurrently with radiotherapy and TMZ, followed by its coadministration with adjuvant TMZ. We examined whether progression status at 2, 4, and 6 months predicted subsequent survival using the landmark analysis. The hazard ratios of death as a function of progression status were estimated based on the Cox proportional hazards model after adjustment for putative prognostic factors. Progression status at 2, 4, and 6 months were all consistently found to be strong predictors of subsequent survival in all studies. The study-specific hazard ratios associated with progression status at 6 months ranged from 2.03 to 3.39. The hazard ratios associated with the earlier time points (2- and 4-month progression) all exceeded 2 in magnitude, ranging from 2.29 to 4.73. P-values were statistically significant for all time points. In this report, we demonstrated a strong association between the endpoints of PFS at 2, 4, and 6 months and survival. Patients who showed the signs of early progression were at significantly higher risk of earlier death. Our analysis suggests that 6-month PFS may be an appropriate primary endpoint in the context of phase II upfront GBM trials in the TMZ era. PMID:20167815

  16. Six-month progression-free survival as an alternative primary efficacy endpoint to overall survival in newly diagnosed glioblastoma patients receiving temozolomide

    PubMed Central

    Polley, Mei-Yin C.; Lamborn, Kathleen R.; Chang, Susan M.; Butowski, Nicholas; Clarke, Jennifer L.; Prados, Michael

    2010-01-01

    We assessed six-month progression-free survival (PFS) as an alternative primary efficacy endpoint to overall survival in newly diagnosed glioblastoma multiforme (GBM) patients receiving temozolomide (TMZ). A total of 183 patients with newly diagnosed GBM enrolled in 3 phase II protocols at the University of California–San Francisco were included. Patients were treated with interventions based on the Stupp regimen, each with the added component of a second oral agent given concurrently with radiotherapy and TMZ, followed by its coadministration with adjuvant TMZ. We examined whether progression status at 2, 4, and 6 months predicted subsequent survival using the landmark analysis. The hazard ratios of death as a function of progression status were estimated based on the Cox proportional hazards model after adjustment for putative prognostic factors. Progression status at 2, 4, and 6 months were all consistently found to be strong predictors of subsequent survival in all studies. The study-specific hazard ratios associated with progression status at 6 months ranged from 2.03 to 3.39. The hazard ratios associated with the earlier time points (2- and 4-month progression) all exceeded 2 in magnitude, ranging from 2.29 to 4.73. P-values were statistically significant for all time points. In this report, we demonstrated a strong association between the endpoints of PFS at 2, 4, and 6 months and survival. Patients who showed the signs of early progression were at significantly higher risk of earlier death. Our analysis suggests that 6-month PFS may be an appropriate primary endpoint in the context of phase II upfront GBM trials in the TMZ era. PMID:20167815

  17. Pulsed Versus Conventional Radiation Therapy in Combination With Temozolomide in a Murine Orthotopic Model of Glioblastoma Multiforme

    SciTech Connect

    Lee, David Y.; Chunta, John L.; Park, Sean S.; Huang, Jiayi; Martinez, Alvaro A.; Grills, Inga S.; Krueger, Sarah A.; Wilson, George D.; Marples, Brian

    2013-08-01

    Purpose: To evaluate the efficacy of pulsed low-dose radiation therapy (PLRT) combined with temozolomide (TMZ) as a novel treatment approach for radioresistant glioblastoma multiforme (GBM) in a murine model. Methods and Materials: Orthotopic U87MG hGBM tumors were established in Nu-Foxn1{sup nu} mice and imaged weekly using a small-animal micropositron emission tomography (PET)/computed tomography (CT) system. Tumor volume was determined from contrast-enhanced microCT images and tumor metabolic activity (SUVmax) from the F18-FDG microPET scan. Tumors were irradiated 7 to 10 days after implantation with a total dose of 14 Gy in 7 consecutive days. The daily treatment was given as a single continuous 2-Gy dose (RT) or 10 pulses of 0.2 Gy using an interpulse interval of 3 minutes (PLRT). TMZ (10 mg/kg) was given daily by oral gavage 1 hour before RT. Tumor vascularity and normal brain damage were assessed by immunohistochemistry. Results: Radiation therapy with TMZ resulted in a significant 3- to 4-week tumor growth delay compared with controls, with PLRT+TMZ the most effective. PLRT+TMZ resulted in a larger decline in SUVmax than RT+TMZ. Significant differences in survival were evident. Treatment after PLRT+TMZ was associated with increased vascularization compared with RT+TMZ. Significantly fewer degenerating neurons were seen in normal brain after PLRT+TMZ compared with RT+TMZ. Conclusions: PLRT+TMZ produced superior tumor growth delay and less normal brain damage when compared with RT+TMZ. The differential effect of PLRT on vascularization may confirm new treatment avenues for GBM.

  18. NI-20ADC HISTOGRAM ANALYSIS FOLLOWING RADIOTHERAPY PREDICTS RESPONSE TO ADJUVANT TEMOZOLOMIDE IN NEWLY DIAGNOSED GBM

    PubMed Central

    Ellingson, Benjamin; Chang, Warren; Harris, Robert; Mody, Reema; Lai, Albert; Nghiemphu, Phioanh; Cloughesy, Timothy; Pope, Whitney

    2014-01-01

    INTRODUCTION: The current standard of care for newly diagnosed GBM consists of concurrent radiotherapy and temozolomide (TMZ) plus adjuvant TMZ. We hypothesize there is a subset of patients that will have a significant benefit from this adjuvant therapy. Therefore, the purpose of the current study was to identify a diffusion imaging phenotype for patients with newly diagnosed GBM that will benefit from adjuvant TMZ following concurrent radiotherapy and TMZ. METHODS: A total of 120 patients with: 1) histologically confirmed glioblastoma, 2) treated with concurrent radiotherapy and TMZ followed by adjuvant TMZ; and 3) high quality diffusion MR data were included in the current study. Diffusion and standard structural MRI were performed approximately 10 weeks after the start of radiotherapy and concurrent TMZ. ADC histogram analysis was performed by fitting a double Gaussian mixed model to ADC data extracted from contrast enhancement tumor. ADCL was defined as the mean ADC of the lower Gaussian distribution. We hypothesize that patients with a high ADCL have a lower tumor burden and thus favorable response to adjuvant TMZ in terms of TTP and OS. RESULTS: Results demonstrate that patients with an ADCL lower than 1 um2/ms has a significantly shorter PFS compared with patients having a higher ADCL (Log-rank, P < 0.0001), showing almost twice the median PFS (297 days vs. 156 days). Additionally, patients with a high ADCL had a significantly longer OS (Log-rank, P = 0.0049). Patients with a high ADCL had a median OS of 648 days while patients with a low ADCL had a median OS of only 407 days from the start of adjuvant TMZ. CONCLUSION: Newly diagnosed GBM patients with elevated tumor diffusivity after completion of radiotherapy and concurrent TMZ have a favorable prognosis.

  19. Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma.

    PubMed

    Fourniols, Thibaut; Randolph, Luc D; Staub, Aurélie; Vanvarenberg, Kevin; Leprince, Julian G; Préat, Véronique; des Rieux, Anne; Danhier, Fabienne

    2015-07-28

    Glioblastoma is the most frequent primary malignant brain tumor in adults. Despite treatments including surgery, radiotherapy and chemotherapy by oral Temozolomide (TMZ), the prognosis of patients with glioblastoma remains very poor. We hypothesized that a polyethylene glycol dimethacrylate (PEG-DMA) injectable hydrogel would provide a sustained and local delivery of TMZ. The hydrogel photopolymerized rapidly (<2min) and presented a viscous modulus (≈10kPa). TMZ release kinetic presented two phases: a linear burst release of 45% of TMZ during the first 24h, followed by a logarithmic release of 20% over the first week. The in vivo tolerability study showed that the unloaded hydrogel did not induce apoptosis in mice brains nor increased microglial activation. In vivo, the anti-tumor efficacy of TMZ-hydrogel was evaluated on xenograft U87MG tumor-bearing nude mice. The tumor weight of mice treated with the photopolymerized TMZ hydrogel drastically decreased compared with all other groups. Higher apoptosis (located at the center of the tumor) was also observed. The present study demonstrates the potential of a photopolymerizable TMZ-loaded hydrogel to treat glioblastoma. PMID:25982679

  20. Kinomic exploration of temozolomide and radiation resistance in Glioblastoma multiforme xenolines

    PubMed Central

    Anderson, Joshua C.; Duarte, Christine W.; Welaya, Karim; Rohrbach, Timothy D.; Bredel, Markus; Yang, Eddy S.; Choradia, Nirmal; Thottassery, Jaideep V.; Gillespie, G. Yancey; Bonner, James A.; Willey, Christopher D.

    2014-01-01

    Background and Purpose Glioblastoma multiforme (GBM) represents the most common and deadly primary brain malignancy, particularly due to temozolomide (TMZ) and radiation (RT) resistance. To better understand resistance mechanisms, we examined global kinase activity (kinomic profiling) in both treatment sensitive and resistant human GBM patient-derived xenografts (PDX or “xenolines”). Materials and Methods Thirteen orthotopically-implanted xenolines were examined including 8 with known RT sensitivity/resistance, while 5 TMZ resistant xenolines were generated through serial TMZ treatment in vivo. Tumors were harvested, prepared as total protein lysates, and kinomically analyzed on a PamStation®12 high-throughput microarray platform with subsequent upstream kinase prediction and network modeling. Results Kinomic profiles indicated elevated tyrosine kinase activity associated with the radiation resistance phenotype, including FAK and FGFR1. Furthermore, network modeling showed VEGFR1/2 and c-Raf hubs could be involved. Analysis of acquired TMZ resistance revealed more kinomic variability among TMZ resistant tumors. Two of the five tumors displayed significantly altered kinase activity in the TMZ resistant xenolines and network modeling indicated PKC, JAK1, PI3K, CDK2, and VEGFR as potential mediators of this resistance. Conclusions GBM xenolines provide a phenotypic model for GBM drug response and resistance that when paired with kinomic profiling identified targetable pathways to inherent (radiation) or acquired (TMZ) resistance. PMID:24813092

  1. Radiosensitizing Effects of Temozolomide Observed in vivo only in a Subset of O6-Methylguanine-DNA Methyltransferase Methylated Glioblastoma Multiforme Xenografts

    SciTech Connect

    Carlson, Brett L.; Grogan, Patrick T.; Mladek, Ann C.; Schroeder, Mark A.; Kitange, Gaspar J.; Decker, Paul A.; Giannini, Caterina; Wu Wenting; Ballman, Karla A.; James, C. David; Sarkaria, Jann N.

    2009-09-01

    Purpose: Concurrent temozolomide (TMZ) and radiation therapy (RT) followed by adjuvant TMZ is standard treatment for patients with glioblastoma multiforme (GBM), although the relative contribution of concurrent versus adjuvant TMZ is unknown. In this study, the efficacy of TMZ/RT was tested with a panel of 20 primary GBM xenografts. Methods and Materials: Mice with intracranial xenografts were treated with TMZ, RT, TMZ/RT, or placebo. Survival ratio for a given treatment/line was defined as the ratio of median survival for treatment vs. placebo. Results: The median survival ratio was significantly higher for O6-methylguanine-DNA methyltransferase (MGMT) methylated tumors versus unmethylated tumors following treatment with TMZ (median survival ratio, 3.6 vs. 1.5, respectively; p = 0.008) or TMZ/RT (5.7 vs. 2.3, respectively; p = 0.001) but not RT alone (1.7 vs. 1.6; p = 0.47). In an analysis of variance, MGMT methylation status and p53 mutation status were significantly associated with treatment response. When we analyzed the additional survival benefit conferred specifically by combined therapy, only a subset (5 of 11) of MGMT methylated tumors derived substantial additional benefit from combined therapy, while none of the MGMT unmethylated tumors did. Consistent with a true radiosensitizing effect of TMZ, sequential treatment in which RT (week 1) was followed by TMZ (week 2) proved significantly less effective than TMZ followed by RT or concurrent TMZ/RT (survival ratios of 4.0, 9.6 and 12.9, respectively; p < 0.0001). Conclusions: Concurrent treatment with TMZ and RT provides significant survival benefit only in a subset of MGMT methylated tumors and provides superior antitumor activity relative to sequential administration of RT and TMZ.

  2. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    SciTech Connect

    Krauze, Andra V.; Chang, Michael G.; Holdford, Diane J.; Smith, Sharon; Shih, Joanna; Tofilon, Philip J.; Camphausen, Kevin

    2015-08-01

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.

  3. Organized Pneumonia Secondary to Increasing Doses of Temozolomide

    PubMed Central

    Consuegra Vanegas, Angélica; Matachana Martínez, María; Cordero Lorenzana, Lourdes; Vidal García, Iria; Montero Martínez, Carmen

    2015-01-01

    Surgery, radiotherapy (RT), and chemotherapy have a role in the control of tumor growth, progression, and recurrence in high-grade gliomas. Temozolomide has been incorporated as the main chemotherapy agent for managing these tumors. Here, we present a case of a patient who developed a severe organizing pneumonia after increasing doses of temozolomide for a high-grade glioma. PMID:26487994

  4. A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv “Click Chemistry” targeted to αvβ3 integrin for therapy

    PubMed Central

    Braun, Klaus; Wiessler, Manfred; Pipkorn, Rüdiger; Ehemann, Volker; Bäuerle, Tobias; Fleischhacker, Heinz; Müller, Gabriele; Lorenz, Peter; Waldeck, Waldemar

    2010-01-01

    Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(v)beta(3)] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ) at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing. Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv). PMID:20922134

  5. Chemoradiotherapy of Newly Diagnosed Glioblastoma With Intensified Temozolomide

    SciTech Connect

    Weiler, Markus; Hartmann, Christian; Wiewrodt, Dorothee; Herrlinger, Ulrich

    2010-07-01

    Purpose: To evaluate the toxicity and efficacy of chemoradiotherapy with temozolomide (TMZ) administered in an intensified 1-week on/1-week off schedule plus indomethacin in patients with newly diagnosed glioblastoma. Patients and Methods: A total of 41 adult patients (median Karnofsky performance status, 90%; median age, 56 years) were treated with preirradiation TMZ at 150 mg/m{sup 2} (1 week on/1 week off), involved-field radiotherapy combined with concomitant low-dose TMZ (50 mg/m{sup 2}), maintenance TMZ starting at 150 mg/m{sup 2} using a 1-week on/1-week off schedule, plus maintenance indomethacin (25 mg twice daily). Results: The median follow-up interval was 21.7 months. Grade 4 hematologic toxicity was observed in 15 patients (36.6%). Treatment-related nonhematologic Grade 4-5 toxicity was reported for 2 patients (4.9%). The median progression-free survival was 7.6 months (95% confidence interval, 6.2-10.4). The 1-year survival rate was 73.2% (95% confidence interval, 56.8-84.2%). The presence of O{sup 6}-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation in the tumor tissue was associated with significantly superior progression-free survival. Conclusion: The dose-dense regimen of TMZ administered in a 1-week on/1-week off schedule resulted in acceptable nonhematologic toxicity. Compared with data from the European Organization for Research and Treatment of Cancer/National Cancer Institute of Canada trial 26981-22981/CE.3, patients with an unmethylated MGMT gene promoter appeared not to benefit from intensifying the TMZ schedule regarding the median progression-free survival and overall survival. In contrast, data are promising for patients with a methylated MGMT promoter.

  6. A phase I trial of tipifarnib with radiation therapy, with and without temozolomide, for patients with newly diagnosed glioblastoma

    PubMed Central

    Nghiemphu, Phioanh Leia; Wen, Patrick Y.; Lamborn, Kathleen R.; Drappatz, Jan; Robins, H. Ian; Fink, Karen; Malkin, Mark G.; Lieberman, Frank S.; DeAngelis, Lisa M.; Torres-Trejo, Alejandro; Chang, Susan M.; Abrey, Lauren; Fine, Howard A.; Demopoulos, Alexis; Lassman, Andrew B.; Kesari, Santosh; Mehta, Minesh P.; Prados, Michael D.; Cloughesy, Timothy F.

    2010-01-01

    Purpose To determine the maximum tolerated dose (MTD) of tipifarnib in combination with conventional radiotherapy (RT) for patients with newly diagnosed glioblastoma (GBM). MTD was evaluated in three patient cohorts, stratified based on concurrent use of enzyme inducing antiepileptic drugs (EIAED) or concurrent treatment with temozolomide (TMZ): Group A - patients not receiving EIAED and not receiving TMZ; Group A-TMZ - patients not on EIAED, and on treatment with TMZ; Group B – any patients receiving EIAED, but no TMZ. Methods and Materials After diagnostic surgery or biopsy, treatment with tipifarnib started 5–9 days before initiating RT, twice daily, in four-week cycles using discontinuous dosing (21 out of 28 days), until toxicity or progression. For Group A-TMZ, patients also received TMZ daily during radiotherapy and then standard 5/28 days dosing after radiotherapy. Dose limiting toxicity (DLT) was determined over the first 10 weeks of therapy for all cohorts. Results Fifty-one patients were enrolled for MTD determination: 10 patients in Group A, 21 patients in Group A-TMZ, 20 patients in Group B. In Group A and Group A-TMZ cohorts, patients achieved the intended MTD of 300 mg bid with DLTs including rash and fatigue. For Group B, the MTD was determined as 300 mg bid, half the expected dose. DLTs included rash and 1 intracranial hemorrhage. Thirteen of the 20 patients evaluated in Group A-TMZ were alive at one year. Conclusion Tipifarnib is well tolerated at 300 mg bid given discontinuously (21/28 days) in 4-week cycles, concurrently with standard chemo/radiotherapy. A phase II study should evaluate the efficacy of tipifarnib with radiation and TMZ in patients with newly diagnosed GBM and not on EIAED. PMID:20934264

  7. A Phase I Trial of Tipifarnib With Radiation Therapy, With and Without Temozolomide, for Patients With Newly Diagnosed Glioblastoma

    SciTech Connect

    Nghiemphu, Phioanh Leia; Wen, Patrick Y.; Drappatz, Jan; Fink, Karen; Malkin, Mark G.; Lieberman, Frank S.; DeAngelis, Lisa M.; Torres-Trejo, Alejandro; Chang, Susan M.; Abrey, Lauren; Fine, Howard A.; Demopoulos, Alexis; Lassman, Andrew B.; Kesari, Santosh; Prados, Michael D.; Cloughesy, Timothy F.

    2011-12-01

    Purpose: To determine the maximum tolerated dose (MTD) of tipifarnib in combination with conventional radiotherapy for patients with newly diagnosed glioblastoma. The MTD was evaluated in three patient cohorts, stratified based on concurrent use of enzyme-inducing antiepileptic drugs (EIAED) or concurrent treatment with temozolomide (TMZ): Group A: patients not receiving EIAED and not receiving TMZ; Group A-TMZ: patients not receiving EIAED and receiving treatment with TMZ; Group B: any patients receiving EIAED but not TMZ. Patients and Methods: After diagnostic surgery or biopsy, treatment with tipifarnib started 5 to 9 days before initiating radiotherapy, twice daily, in 4-week cycles using discontinuous dosing (21 out of 28 days), until toxicity or progression. For Group A-TMZ, patients also received TMZ daily during radiotherapy and then standard 5/28 days dosing after radiotherapy. Dose-limiting toxicity (DLT) was determined over the first 10 weeks of therapy for all cohorts. Results: Fifty-one patients were enrolled for MTD determination: 10 patients in Group A, 21 patients in Group A-TMZ, and 20 patients in Group B. In the Group A and Group A-TMZ cohorts, patients achieved the intended MTD of 300 mg twice daily (bid) with DLTs including rash and fatigue. For Group B, the MTD was determined as 300 mg bid, half the expected dose. The DLTs included rash and one intracranial hemorrhage. Thirteen of the 20 patients evaluated in Group A-TMZ were alive at 1 year. Conclusion: Tipifarnib is well tolerated at 300 mg bid given discontinuously (21/28 days) in 4-week cycles, concurrently with standard chemo/radiotherapy. A Phase II study should evaluate the efficacy of tipifarnib with radiation and TMZ in patients with newly diagnosed glioblastoma and not receiving EIAED.

  8. Hydrogen bonded and stacked geometries of the temozolomide dimer.

    PubMed

    Kasende, Okuma Emile; Muya, Jules Tshishimbi; de Paul N Nziko, Vincent; Scheiner, Steve

    2016-04-01

    Dispersion-corrected density functional theory (DFT) and MP2 quantum chemical methods are used to examine homodimers of temozolomide (TMZ). Of the 12 dimer configurations found to be minima, the antarafacial stacked dimer is the most favored, it is lower in energy than coplanar dimers which are stabilized by H-bonds. The comparison between B3LYP and B3LYP-D binding energies points to dispersion as a primary factor in stabilizing the stacked geometries. CO(π) → CO(π*) charge transfers between amide groups in the global minimum are identified by NBO, as well as a pair of weak CH∙∙N H-bonds. AIM analysis of the electron density provides an alternative description which includes N∙∙O, N∙∙N, and C∙∙C noncovalent bonds. Graphical Abstract Hydrogen bonded and stacked geometries of the temozolomide dimerᅟ. PMID:26971506

  9. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression.

    PubMed

    Zhao, Yachao; Xiao, Zheng; Chen, Wenna; Yang, Jinsheng; Li, Tao; Fan, Bo

    2015-08-01

    O6-methylguanine-DNA methyltransferase (MGMT) activity is responsible for temozolomide (TMZ) resistance in patients harboring aggressive pituitary adenomas. Recently, disulfiram (DSF) has been shown to induce the loss of MGMT protein and increase TMZ efficacy in glioblastoma cells, while CD133+ nestin+ cells isolated from the cell population have been implicated as pituitary adenoma stem-like cells. However, whether DSF is able to potentiate the cytotoxic effects of TMZ on human pituitary adenoma cells has not been investigated to date. In the present study, CD133+ nestin+ phenotype cells were isolated from primary cultured human pituitary adenoma cells using microbeads. It was found that DSF reduced MGMT protein expression and sensitized human pituitary adenoma cells and stem-like cells to TMZ in vitro, while the proteasome inhibitor PS-341 abrogated the inhibitory effect of DSF on MGMT in vitro. The sensitizing effect of DSF was also verified in primary cultured human pituitary adenoma cells in vivo. The results of the present study suggested that DSF can increase the efficacy of the anti-tumor effect of TMZ on human pituitary adenoma cells and CD133+ nestin+ stem like cells via the ubiquitin-proteasomal MGMT protein elimination route. DSF combined with TMZ may be an effective therapeutic strategy against aggressive pituitary adenomas. PMID:25937029

  10. Combined therapy of oncolytic adenovirus and temozolomide enhances lung cancer virotherapy in vitro and in vivo.

    PubMed

    Gomez-Gutierrez, Jorge G; Nitz, Jonathan; Sharma, Rajesh; Wechman, Stephen L; Riedinger, Eric; Martinez-Jaramillo, Elvis; Sam Zhou, Heshan; McMasters, Kelly M

    2016-01-01

    Oncolytic adenoviruses (OAds) are very promising for the treatment of lung cancer. However, OAd-based monotherapeutics have not been effective during clinical trials. Therefore, the effectiveness of virotherapy must be enhanced by combining OAds with other therapies. In this study, the therapeutic potential of OAd in combination with temozolomide (TMZ) was evaluated in lung cancer cells in vitro and in vivo. The combination of OAd and TMZ therapy synergistically enhanced cancer cell death; this enhanced cancer cell death may be explained via three related mechanisms: apoptosis, virus replication, and autophagy. Autophagy inhibition partially protected cancer cells from this combined therapy. This combination significantly suppressed the growth of subcutaneous H441 lung cancer xenograft tumors in athymic nude mice. In this study, we have provided an experimental rationale to test OAds in combination with TMZ in a lung cancer clinical trial. PMID:26561948

  11. Temozolomide and Radiotherapy versus Radiotherapy Alone in High Grade Gliomas: A Very Long Term Comparative Study and Literature Review

    PubMed Central

    Parisi, Salvatore; Corsa, Pietro; Raguso, Arcangela; Perrone, Antonio; Cossa, Sabrina; Munafò, Tindara; Sanpaolo, Gerardo; Donno, Elisa; Clemente, Maria Antonietta; Piombino, Michele; Parisi, Federico; Valle, Guido

    2015-01-01

    Temozolomide (TMZ) is the first line drug in the care of high grade gliomas. The combined treatment of TMZ plus radiotherapy is more effective in the care of brain gliomas then radiotherapy alone. Aim of this report is a survival comparison, on a long time (>10 years) span, of glioma patients treated with radiotherapy alone and with radiotherapy + TMZ. Materials and Methods. In this report we retrospectively reviewed the outcome of 128 consecutive pts with diagnosis of high grade gliomas referred to our institutions from April 1994 to November 2001. The first 64 pts were treated with RT alone and the other 64 with a combination of RT and adjuvant or concomitant TMZ. Results. Grade 3 (G3) haematological toxicity was recorded in 6 (9%) of 64 pts treated with RT and TMZ. No G4 haematological toxicity was observed. Age, histology, and administration of TMZ were statistically significant prognostic factors associated with 2 years overall survival (OS). PFS was for GBM 9 months, for AA 11. Conclusions. The combination of RT and TMZ improves long term survival in glioma patients. Our results confirm the superiority of the combination on a long time basis. PMID:25815327

  12. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells.

    PubMed

    Xu, Yuanyuan; Shen, Ming; Li, Yiming; Sun, Ying; Teng, Yanwei; Wang, Yi; Duan, Yourong

    2016-04-12

    To get better chemotherapy efficacy, the optimal synergic effect of Paclitaxel (PTX) and Temozolomide (TMZ) on glioblastoma cells lines was investigated. A dual drug-loaded delivery system based on mPEG-PLGA nanoparticles (NPs) was developed to potentiate chemotherapy efficacy for glioblastoma. PTX/TMZ-NPs were prepared with double emulsification solvent evaporation method and exhibited a relatively uniform diameter of 206.3 ± 14.7 nm. The NPs showed sustained release character. Cytotoxicity assays showed the best synergistic effects were achieved when the weight ratios of PTX to TMZ were 1:5 and 1:100 on U87 and C6 cells, respectively. PTX/TMZ-NPs showed better inhibition effect to U87 and C6 cells than single drug NPs or free drugs mixture. PTX/TMZ-NPs (PTX: TMZ was 1:5(w/w)) significantly inhibited the tumor growth in the subcutaneous U87 mice model. These results indicate that coordinate administration of PTX and TMZ combined with NPs is an efficient method for glioblastoma. PMID:26956046

  13. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells

    PubMed Central

    Li, Yiming; Sun, Ying; Teng, Yanwei; Wang, Yi; Duan, Yourong

    2016-01-01

    To get better chemotherapy efficacy, the optimal synergic effect of Paclitaxel (PTX) and Temozolomide (TMZ) on glioblastoma cells lines was investigated. A dual drug-loaded delivery system based on mPEG-PLGA nanoparticles (NPs) was developed to potentiate chemotherapy efficacy for glioblastoma. PTX/TMZ-NPs were prepared with double emulsification solvent evaporation method and exhibited a relatively uniform diameter of 206.3 ± 14.7 nm. The NPs showed sustained release character. Cytotoxicity assays showed the best synergistic effects were achieved when the weight ratios of PTX to TMZ were 1:5 and 1:100 on U87 and C6 cells, respectively. PTX/TMZ-NPs showed better inhibition effect to U87 and C6 cells than single drug NPs or free drugs mixture. PTX/TMZ-NPs (PTX: TMZ was 1:5(w/w)) significantly inhibited the tumor growth in the subcutaneous U87 mice model. These results indicate that coordinate administration of PTX and TMZ combined with NPs is an efficient method for glioblastoma. PMID:26956046

  14. Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry

    PubMed Central

    Braun, Klaus; Wiessler, Manfred; Ehemann, Volker; Pipkorn, Ruediger; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Koch, Mario; Muller, Gabriele; Waldeck, Waldemar

    2008-01-01

    Recurrent glioblastoma multiforme (GBM), insensitive against most therapeutic interventions, has low response and survival rates. Temozolomide (TMZ) was approved for second-line therapy of recurrent anaplastic astrocytoma. However, TMZ therapy in GBM patients reveals properties such as reduced tolerability and inauspicious hemogram. The solution addressed here concerning GBM therapy consolidates and uses the potential of organic and peptide chemistry with molecular medicine. We enhanced the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic TMZ. The TMZ connection to transporter molecules (TMZ-BioShuttle) was investigated, resulting in a much higher pharmacological effect in glioma cell lines and also with reduced dose rate. From this result we can conclude that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The TMZ-BioShuttle dramatically enhanced the potential of TMZ for the treatment of brain tumors and is an attractive drug for combination chemotherapy. PMID:19920915

  15. Temozolomide Modifies Caveolin-1 Expression in Experimental Malignant Gliomas In Vitro and In Vivo1

    PubMed Central

    Bruyère, Céline; Abeloos, Laurence; Lamoral-Theys, Delphine; Senetta, Rebecca; Mathieu, Véronique; Le Mercier, Marie; Kast, Richard E; Cassoni, Paola; Vandenbussche, Guy; Kiss, Robert; Lefranc, Florence

    2011-01-01

    BACKGROUND: Caveolin-1 is a protein that displays promotive versus preventive roles in cancer progression according to circumstances. Temozolomide (TMZ) is the standard chemotherapeutic to treat glioma patients. The present work aims to characterizeTMZ-induced effects on caveolin-1 expression in glioma cells. METHODS: Human astroglioma (U373 and T98G) and oligodendroglioma (Hs683) cell lines were used in vitro as well as in vivo orthotopic xenografts (Hs683 and U373) into the brains of immunocompromisedmice. In vitro TMZ-induced effects on protein expression and cellular localization were determined by Western blot analysis and on the actin cytoskeleton organization by means of immunofluorescence approaches. In vivo TMZ-induced effects in caveolin-1 expression in human glioma xenografts were monitored by means of immunohistochemistry. RESULTS: TMZ modified caveolin-1 expression and localization in vitro and in vivo after an administration schedule that slightly, if at all, impaired cell growth characteristics in vitro. Caveolin-1 by itself (at a 100-ng/ml concentration) was able to significantly reduce invasiveness (Boyden chambers) of the three human glioma cell lines. The TMZ-inducedmodification in caveolin-1 expression in flotation/raft compartments was paralleled by altered Cyr61 and β1 integrin expression, two elements that have already been reported to collaborate with caveolin-1 in regulating glioma cell biology, and all these features led to profound reorganization of the actin cytoskeleton. An experimental Src kinase inhibitor, AZD0530, almost completely antagonized the TMZ-induced modulation in caveolin-1 expression. CONCLUSION: TMZ modifies caveolin-1 expression in vitro and in vivo in glioma cells, a feature that directly affects glioma cell migration properties. PMID:21461172

  16. MR Studies of Glioblastoma Models Treated with Dual PI3K/mTOR Inhibitor and Temozolomide:Metabolic Changes Are Associated with Enhanced Survival.

    PubMed

    Radoul, Marina; Chaumeil, Myriam M; Eriksson, Pia; Wang, Alan S; Phillips, Joanna J; Ronen, Sabrina M

    2016-05-01

    The current standard of care for glioblastoma (GBM) is surgical resection, radiotherapy, and treatment with temozolomide (TMZ). However, resistance to current therapies and recurrence are common. To improve survival, agents that target the PI3K signaling pathway, which is activated in approximately 88% of GBM, are currently in clinical trials. A challenge with such therapies is that tumor shrinkage is not always observed. New imaging methods are therefore needed to monitor response to therapy and predict survival. The goal of this study was to determine whether hyperpolarized (13)C magnetic resonance spectroscopic imaging (MRSI) and (1)H magnetic resonance spectroscopy (MRS) can be used to monitor response to the second-generation dual PI3K/mTOR inhibitor voxtalisib (XL765, SAR245409), alone or in combination with TMZ. We investigated GS-2 and U87-MG GBM orthotopic tumors in mice, and used MRI, hyperpolarized (13)C MRSI, and (1)H MRS to monitor the effects of treatment. In our study, (1)H MRS could not predict tumor response to therapy. However, in both our models, we observed a significantly lower hyperpolarized lactate-to-pyruvate ratio in animals treated with voxtalisib, TMZ, or combination therapy, when compared with controls. This metabolic alteration was observed prior to MRI-detectable changes in tumor size, was consistent with drug action, and was associated with enhanced animal survival. Our findings confirm the potential translational value of the hyperpolarized lactate-to-pyruvate ratio as a biomarker for noninvasively assessing the effects of emerging therapies for patients with GBM. Mol Cancer Ther; 15(5); 1113-22. ©2016 AACR. PMID:26883274

  17. MGMT testing allows for personalised therapy in the temozolomide era.

    PubMed

    Dullea, A; Marignol, L

    2016-01-01

    Adjuvant temozolomide (TMZ)-based chemoradiation is the standard of care for most glioblastoma patients (GBMs); however, a large proportion of these patients do not respond to TMZ. Silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is thought to induce chemosensitivity, and testing for methylation may allow for patient stratification; however, this has yet to become routine clinical practice despite an abundance of literature on the subject. The databases PubMed, Embase, The Cochrane Library, Science Direct and Medline were searched for relevant articles published between 1999 and 2015. Articles utilising MGMT testing in glioblastomas, and treatment of glioblastomas with temozolomide were assessed. Immunohistochemistry, methylation-specific PCR (MSP), reverse transcriptase PCR, pyrosequencing and bisulphite sequencing were the main testing methods identified. Nested-MSP techniques produced poor correlation with survival, whilst bisulphite sequencing showed no evident benefit over MSP. Testing is limited by sample quality and contamination; however, efforts are made to minimise this. Strong evidence for MGMT-based personalised therapy was presented in the elderly but remains controversial in the entire GBM population. MGMT testing presents many obstacles yet to be overcome, and these warrant attention prior to the routine implementation of MGMT testing to aid decision making in GBMs. However, there is evidence to support its use, particularly in the elderly. PMID:26518768

  18. Macitentan, a dual endothelin receptor antagonist, in combination with temozolomide leads to glioblastoma regression and long-term survival in mice

    PubMed Central

    Kim, Sun-Jin; Lee, Ho Jeong; Kim, Mark Seungwook; Choi, Hyun Jin; He, Junqin; Wu, Qiuyu; Aldape, Kenneth; Weinberg, Jeffrey S.; Alfred Yung, W. K.; Conrad, Charles A.; Langley, Robert R.; Lehembre, François; Regenass, Urs; Fidler, Isaiah J.

    2016-01-01

    Purpose The objective of the study was to determine whether astrocytes and brain endothelial cells protect glioma cells from temozolomide (TMZ) through an endothelin-dependent signaling mechanism and to examine the therapeutic efficacy of the dual endothelin receptor antagonist, macitentan, in orthotopic models of human glioblastoma. Experimental Design We evaluated several endothelin receptor antagonists for their ability to inhibit astrocyte- and brain endothelial cell-induced protection of glioma cells from TMZ in chemoprotection assays. We compared survival in nude mice bearing orthotopically implanted LN-229 glioblastomas or TMZ-resistant (LN-229Res and D54Res) glioblastomas that were treated with macitentan, TMZ, or both. Tumor burden was monitored weekly with bioluminescence imaging. The effect of therapy on cell division, apoptosis, tumor-associated vasculature, and pathways associated with cell survival was assessed by immunofluorescent microscopy. Results Only dual endothelin receptor antagonism abolished astrocyte- and brain endothelial cell-mediated protection of glioma cells from TMZ. In five independent survival studies, including TMZ-resistant glioblastomas, 46 of 48 (96%) mice treated with macitentan plus TMZ had no evidence of disease (P<0.0001), whereas all mice in other groups died. In another analysis, macitentan plus TMZ therapy was stopped in 16 mice after other groups had died. Only 3 of 16 mice eventually developed recurrent disease, 2 of which responded to additional cycles of macitentan plus TMZ. Macitentan downregulated proteins associated with cell division and survival in glioma cells and associated endothelial cells, which enhanced their sensitivity to TMZ. Conclusions Macitentan plus TMZ are well tolerated, produce durable responses, and warrant clinical evaluation in glioblastoma patients. PMID:26106074

  19. Evaluation of novel imidazotetrazine analogues designed to overcome temozolomide resistance and glioblastoma regrowth.

    PubMed

    Ramirez, Yulian P; Mladek, Ann C; Phillips, Roger M; Gynther, Mikko; Rautio, Jarkko; Ross, Alonzo H; Wheelhouse, Richard T; Sakaria, Jann N

    2015-01-01

    The cellular responses to two new temozolomide (TMZ) analogues, DP68 and DP86, acting against glioblastoma multiforme (GBM) cell lines and primary culture models are reported. Dose-response analysis of cultured GBM cells revealed that DP68 is more potent than DP86 and TMZ and that DP68 was effective even in cell lines resistant to TMZ. On the basis of a serial neurosphere assay, DP68 inhibits repopulation of these cultures at low concentrations. The efficacy of these compounds was independent of MGMT and MMR functions. DP68-induced interstrand DNA cross-links were demonstrated with H2O2-treated cells. Furthermore, DP68 induced a distinct cell-cycle arrest with accumulation of cells in S phase that is not observed for TMZ. Consistent with this biologic response, DP68 induces a strong DNA damage response, including phosphorylation of ATM, Chk1 and Chk2 kinases, KAP1, and histone variant H2AX. Suppression of FANCD2 expression or ATR expression/kinase activity enhanced antiglioblastoma effects of DP68. Initial pharmacokinetic analysis revealed rapid elimination of these drugs from serum. Collectively, these data demonstrate that DP68 is a novel and potent antiglioblastoma compound that circumvents TMZ resistance, likely as a result of its independence from MGMT and mismatch repair and its capacity to cross-link strands of DNA. PMID:25351918

  20. Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-Fluorouracil and Temozolomide.

    PubMed

    Di Martino, Antonio; Pavelkova, Alena; Maciulyte, Sandra; Budriene, Saulute; Sedlarik, Vladimir

    2016-09-20

    Polysaccharide-based nanocomplexes, intended for simultaneous encapsulation and controlled release of 5-Fluorouracil (5-FU) and Temozolomide (TMZ) were developed via the complexation method using chitosan, alginic and polygalacturonic acid. Investigation focused on the influence of polysaccharides on the properties of the system and amelioration of the stability of the drugs, in particular TMZ. The dimensions of particles and their ζ-potential were found to range between 100 and 200nm and -25 to +40mV, respectively. Encapsulation efficiency varied from 16% to over 70%, depending on the given system. The influence of pH on the release and co-release of TMZ and 5-FU was evaluated under different pH conditions. The stability of the loaded drug, in particular TMZ, after release was evaluated and confirmed by LC-MS analysis. Results suggested that the amount of loaded drug(s) and the release rate is connected with the weight ratio of polysaccharides and the pH of the media. One-way ANOVA analysis on the obtained data revealed no interference between the drugs during the encapsulation and release process, and in particular no hydrolysis of TMZ occurred suggesting that CS-ALG and CS-PGA would represent interesting carriers for multi-drug controlled release and drugs protection. PMID:27154260

  1. Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins

    PubMed Central

    Kitange, Gaspar J.; Mladek, Ann C.; Schroeder, Mark A.; Pokorny, Jenny C.; Carlson, Brett L.; Zhang, Yuji; Nair, Asha A.; Lee, Jeong-Heon; Yan, Huihuang; Decker, Paul A.; Zhang, Zhiguo; Sarkaria, Jann N.

    2016-01-01

    Summary Here we provide evidence that RBBP4 modulates temozolomide (TMZ) sensitivity through coordinate regulation of 2 key DNA repair genes critical for recovery from TMZ-induced DNA damage: methylguanine-DNA-methyltransferase (MGMT) and RAD51. Disruption of RBBP4 enhanced TMZ sensitivity, induced synthetic lethality to PARP inhibition and increased DNA damage signaling in response to TMZ. Moreover, RBBP4 silencing enhanced TMZ-induced H2AX phosphorylation and apoptosis in GBM cells. Intriguingly, RBBP4 knockdown suppressed the expression of MGMT, RAD51 and other genes in association with decreased promoter H3K9 acetylation (H3K9Ac) and increased H3K9 tri-methylation (H3K9me3). Consistent with these data, RBBP4 interacts with CBP/p300 to form a chromatin modifying complex that binds within the promoter of MGMT, RAD51 and perhaps other genes. Globally, RBBP4 positively and negatively regulates genes involved in critical cellular functions including tumorigenesis. RBBP4/CBP/p300 complex may provide an interesting target for developing therapy sensitizing strategies for GBM and other tumors. PMID:26972001

  2. Synthesis of TiO 2 nanostructured reservoir with temozolomide: Structural evolution of the occluded drug

    NASA Astrophysics Data System (ADS)

    López, T.; Sotelo, J.; Navarrete, J.; Ascencio, J. A.

    2006-10-01

    Sol-gel synthesized nanostructured TiO 2 matrix were produced with different channel sizes, where drug are immersed, producing a reservoir with Temozolomide (TMZ). This drug is particularly important for the treatment of cancer tumors, which are fundamentally a consequence of the uncontrolled reproduction of human cell. In this way the chemotherapy plays an important role in the treatment of both recurrent and newly diagnosed patients. In the handling of brain tumors TMZ has been discovered as a recent and efficient second generation drug employed in the control of advanced brain gliomas, and it is a welcome addition. Its active component binds to the cancerous DNA cells, thus preventing their disordered growth, destroying them. In this work, we report the synthesis of TiO 2 nanostructured reservoir with TMZ, focusing the effort to the understanding of structural effects on the TMZ configuration by using nuclear magnetic resonance, Raman and IR spectroscopy methods. Our results establish that TMZ molecules are quite sensible to chemical processes and it produces the activation of the molecule, which is followed and understood with help of quantum molecular simulation methods. The study of the molecules allows determining the conditions that produce the activation and chemical selectivity of the molecules, which determines the conditions of synthesis. This information gives parameters for the reservoir structural and chemical optimization.

  3. Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells☆

    PubMed Central

    Cui, Bo; Johnson, Stewart P.; Bullock, Nancy; Ali-Osman, Francis; Bigner, Darell D.; Friedman, Henry S.

    2010-01-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults. Current therapy includes surgery, radiation and chemotherapy with temozolomide (TMZ). Major determinants of clinical response to TMZ include methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mismatch repair (MMR) status. Though the MGMT promoter is methylated in 45% of cases, for the first nine months of follow-up, TMZ does not change survival outcome. Furthermore, MMR deficiency makes little contribution to clinical resistance, suggesting that there exist unrecognized mechanisms of resistance. We generated paired GBM cell lines whose resistance was attributed to neither MGMT nor MMR. We show that, responding to TMZ, these cells exhibit a decoupling of DNA damage response (DDR) from ongoing DNA damages. They display methylation-resistant synthesis in which ongoing DNA synthesis is not inhibited. They are also defective in the activation of the S and G2 phase checkpoint. DDR proteins ATM, Chk2, MDC1, NBS1 and gammaH2AX also fail to form discrete foci. These results demonstrate that failure of DDR may play an active role in chemoresistance to TMZ. DNA damages by TMZ are repaired by MMR proteins in a futile, reiterative process, which activates DDR signaling network that ultimately leads to the onset of cell death. GBM cells may survive genetic insults in the absence of DDR. We anticipate that our findings will lead to more studies that seek to further define the role of DDR in ultimately determining the fate of a tumor cell in response to TMZ and other DNA methylators. PMID:23554659

  4. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level

    PubMed Central

    Munoz, Jessian L.; Rodriguez-Cruz, Vivian; Ramkissoon, Shakti H.; Ligon, Keith L.; Greco, Steven J.; Rameshwar, Pranela

    2015-01-01

    Glioblastoma Multiforme (GBM), the most common and lethal adult primary tumor of the brain, showed a link between Sonic Hedgehog (SHH) pathway in the resistance to temozolomide (TMZ). PTCH1, the SHH receptor, can tonically represses signaling by endocytosis. We asked how the decrease in PTCH1 in GBM cells could lead to TMZ-resistance. TMZ resistant GBM cells have increased PTCH1 mRNA and reduced protein. Knockdown of Dicer, a Type III RNAase, indicated that miRNAs can explain the decreased PTCH1 in TMZ resistant cells. Computational studies, real-time PCR, reporter gene studies, western blots, target protector oligos and ectopic expression identified miR-9 as the target of PTCH1 in resistant GBM cells with concomitant activation of SHH signaling. MiR-9 mediated increases in the drug efflux transporters, MDR1 and ABCG2. MiR-9 was increased in the tissues from GBM patients and in an early passage GBM cell line from a patient with recurrent GBM but not from a naïve patient. Pharmacological inhibition of SHH signaling sensitized the GBM cells to TMZ. Taken together, miR-9 targets PTCH1 in GBM cells by a SHH-independent method in GBM cells for TMZ resistance. The identified pathways could lead to new strategies to target GBM with combinations of drugs. PMID:25595896

  5. Hypofractionated Versus Standard Radiation Therapy With or Without Temozolomide for Older Glioblastoma Patients

    SciTech Connect

    Arvold, Nils D.; Aizer, Ayal A.; Chiocca, E. Antonio

    2015-06-01

    Purpose: Older patients with newly diagnosed glioblastoma have poor outcomes, and optimal treatment is controversial. Hypofractionated radiation therapy (HRT) is frequently used but has not been compared to patients receiving standard fractionated radiation therapy (SRT) and temozolomide (TMZ). Methods and Materials: We conducted a retrospective analysis of patients ≥65 years of age who received radiation for the treatment of newly diagnosed glioblastoma from 1994 to 2013. The distribution of clinical covariates across various radiation regimens was analyzed for possible selection bias. Survival was calculated using the Kaplan-Meier method. Comparison of hypofractionated radiation (typically, 40 Gy/15 fractions) versus standard fractionation (typically, 60 Gy/30 fractions) in the setting of temozolomide was conducted using Cox regression and propensity score analysis. Results: Patients received SRT + TMZ (n=57), SRT (n=35), HRT + TMZ (n=34), or HRT (n=9). Patients receiving HRT were significantly older (median: 79 vs 69 years of age; P<.001) and had worse baseline performance status (P<.001) than those receiving SRT. On multivariate analysis, older age (adjusted hazard ratio [AHR]: 1.06; 95% confidence interval [CI]: 1.01-1.10, P=.01), lower Karnofsky performance status (AHR: 1.02; 95% CI: 1.01-1.03; P=.01), multifocal disease (AHR: 2.11; 95% CI: 1.23-3.61, P=.007), and radiation alone (vs SRT + TMZ; SRT: AHR: 1.72; 95% CI: 1.06-2.79; P=.03; HRT: AHR: 3.92; 95% CI: 1.44-10.60, P=.007) were associated with decreased overall survival. After propensity score adjustment, patients receiving HRT with TMZ had similar overall survival compared with those receiving SRT with TMZ (AHR: 1.10, 95% CI: 0.50-2.4, P=.82). Conclusions: With no randomized data demonstrating equivalence between HRT and SRT in the setting of TMZ for glioblastoma, significant selection bias exists in the implementation of HRT. Controlling for this bias, we observed similar overall

  6. In Vitro Responsiveness of Glioma Cell Lines to Multimodality Treatment With Radiotherapy, Temozolomide, and Epidermal Growth Factor Receptor Inhibition With Cetuximab

    SciTech Connect

    Combs, Stephanie E. . E-mail: Stephanie.Combs@med.uni-heidelberg.de; Schulz-Ertner, Daniela; Roth, Wilfried; Herold-Mende, Christel; Debus, Juergen; Weber, Klaus-Josef

    2007-07-01

    Background: The majority of glioblastoma multiforme (GBM) cells express the epidermal growth factor receptor (EGFR). The present study evaluates the combination of temozolomide (TMZ), EGFR inhibition, and radiotherapy (RT) in GBM cell lines. Methods and Materials: Human GBM cell lines U87, LN229, LN18, NCH 82, and NCH 89 were treated with various combinations of TMZ, RT, and the monoclonal EGFR antibody cetuximab. Responsiveness of glioma cells to the combination treatment was measured by clonogenic survival. Results: Overall, double and triple combinations of RT, TMZ, and cetuximab lead to additive cytotoxic effects (independent toxicity). A notable exception was observed for U87 and LN 18 cell lines, where the combination of TMZ and cetuximab showed substantial antagonism. Interestingly, in these two cell lines, the combination of RT with cetuximab resulted in a substantial increase in cell killing over that expected for independent toxicity. The triple combination with RT, cetuximab, and TMZ was nearly able to overcome the antagonism for the TMZ/cetuximab combination in U87, however only marginally in LN18, GBM cell lines. Conclusion: It appears that EGFR expression is not correlated with cytotoxic effects exerted by cetuximab. Combination treatment with TMZ, cetuximab and radiation resulted in independent toxicity in three out of five cell lines evaluated, the antagonistic effect of the TMZ/cetuximab combination in two cell lines could indicate that TMZ preferentially kills cetuximab-resistant cells, suggesting for some cross-talk between toxicity mechanisms. Expression of EGFR was no surrogate marker for responsiveness to cetuximab, alone or in combination with RT and TMZ.

  7. Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours

    PubMed Central

    von Bueren, A O; Bacolod, M D; Hagel, C; Heinimann, K; Fedier, A; Kordes, U; Pietsch, T; Koster, J; Grotzer, M A; Friedman, H S; Marra, G; Kool, M; Rutkowski, S

    2012-01-01

    Background: Tumours are responsive to temozolomide (TMZ) if they are deficient in O6-methylguanine-DNA methyltransferase (MGMT), and mismatch repair (MMR) proficient. Methods: The effect of TMZ on medulloblastoma (MB) cell killing was analysed with clonogenic survival assays. Expression of DNA repair genes and enzymes was investigated using microarrays, western blot, and immunohistochemistry. DNA sequencing and promoter methylation analysis were employed to investigate the cause of loss of the expression of MMR gene MLH1. Results: Temozolomide exhibited potent cytotoxic activity in D425Med (MGMT deficient, MLH1 proficient; IC50=1.7 μℳ), moderate activity against D341Med (MGMT proficient, MLH1 deficient), and DAOY MB cells (MGMT proficient, MLH1 proficient). MGMT inhibitor O6-benzylguanine sensitised DAOY, but not D341Med cells to TMZ. Of 12 MB cell lines, D341Med, D283Med, and 1580WÜ cells exhibited MMR deficiency due to MLH1 promoter hypermethylation. DNA sequencing of these cells provided no evidence for somatic genetic alterations in MLH1. Expression analyses of MMR and MGMT in MB revealed that all patient specimens (n=74; expression array, n=61; immunostaining, n=13) are most likely MMR proficient, whereas some tumours had low MGMT expression levels (according to expression array) or were totally MGMT deficient (3 out of 13 according to immunohistochemistry). Conclusion: A subset of MB may respond to TMZ as some patient specimens are MGMT deficient, and tumours appear to be MMR proficient. PMID:22976800

  8. Silencing erythropoietin receptor on glioma cells reinforces efficacy of temozolomide and X-rays through senescence and mitotic catastrophe

    PubMed Central

    Pérès, Elodie A.; Gérault, Aurélie N.; Valable, Samuel; Roussel, Simon; Toutain, Jérôme; Divoux, Didier; Guillamo, Jean-Sébastien; Sanson, Marc; Bernaudin, Myriam; Petit, Edwige

    2015-01-01

    Hypoxia-inducible genes may contribute to therapy resistance in glioblastoma (GBM), the most aggressive and hypoxic brain tumours. It has been recently reported that erythropoietin (EPO) and its receptor (EPOR) are involved in glioma growth. We now investigated whether EPOR signalling may modulate the efficacy of the GBM current treatment based on chemotherapy (temozolomide, TMZ) and radiotherapy (X-rays). Using RNA interference, we showed on glioma cell lines (U87 and U251) that EPOR silencing induces a G2/M cell cycle arrest, consistent with the slowdown of glioma growth induced by EPOR knock-down. In vivo, we also reported that EPOR silencing combined with TMZ treatment is more efficient to delay tumour recurrence and to prolong animal survival compared to TMZ alone. In vitro, we showed that EPOR silencing not only increases the sensitivity of glioma cells to TMZ as well as X-rays but also counteracts the hypoxia-induced chemo- and radioresistance. Silencing EPOR on glioma cells exposed to conventional treatments enhances senescence and induces a robust genomic instability that leads to caspase-dependent mitotic death by increasing the number of polyploid cells and cyclin B1 expression. Overall these data suggest that EPOR could be an attractive target to overcome therapeutic resistance toward ionising radiation or temozolomide. PMID:25544764

  9. Prospective Evaluation of Radiotherapy With Concurrent and Adjuvant Temozolomide in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma

    SciTech Connect

    Jalali, Rakesh; Raut, Nirmal; Arora, Brijesh; Gupta, Tejpal; Dutta, Debnarayan; Munshi, Anusheel; Sarin, Rajiv; Kurkure, Purna

    2010-05-01

    Purpose: To present outcome data in a prospective study of radiotherapy (RT) with concurrent and adjuvant temozolomide (TMZ) in children with diffuse intrinsic pontine gliomas (DIPGs). Methods and Materials: Pediatric patients with newly diagnosed DIPGs were prospectively treated with focal RT to a dose of 54 Gy in 30 fractions along with concurrent daily TMZ (75 mg/m{sup 2}, Days 1-42). Four weeks after completing the initial RT-TMZ schedule, adjuvant TMZ (200 mg/m{sup 2}, Days 1-5) was given every 28 days to a maximum of 12 cycles. Response was evaluated clinically and radiologically with magnetic resonance imaging and positron emission tomography scans. Results: Between March 2005 and November 2006, 20 children (mean age, 8.3 years) were accrued. Eighteen patients have died from disease progression, one patient is alive with progressive disease, and one patient is alive with stable disease. Median overall survival and progression-free survival were 9.15 months and 6.9 months, respectively. Grade III/IV toxicity during the concurrent RT-TMZ phase included thrombocytopenia in 3 patients, leucopenia in 2, and vomiting in 7. Transient Grade II skin toxicity developed in the irradiated fields in 18 patients. During the adjuvant TMZ phase, Grade III/IV leucopenia developed in 2 patients and Grade IV thrombocytopenia in 1 patient. Patients with magnetic resonance imaging diagnosis of a high-grade tumor had worse survival than those with a low-grade tumor (p = 0.001). Patients with neurologic improvement after RT-TMZ had significantly better survival than those who did not (p = 0.048). Conclusions: TMZ with RT has not yielded any improvement in the outcome of DIPG compared with RT alone. Further clinical trials should explore novel treatment modalities.

  10. NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors

    PubMed Central

    Chitadze, Guranda; Lettau, Marcus; Luecke, Stefanie; Wang, Ting; Janssen, Ottmar; Fürst, Daniel; Mytilineos, Joannis; Wesch, Daniela; Oberg, Hans-Heinrich; Held-Feindt, Janka; Kabelitz, Dieter

    2016-01-01

    ABSTRACT The interaction of the MHC class I-related chain molecules A and B (MICA and MICB) and UL-16 binding protein (ULBP) family members expressed on tumor cells with the corresponding NKG2D receptor triggers cytotoxic effector functions in NK cells and γδ T cells. However, as a mechanism of tumor immune escape, NKG2D ligands (NKG2DLs) can be released from the cell surface. In this study, we investigated the NKG2DL system in different human glioblastoma (GBM) cell lines, the most lethal brain tumor in adults. Flow cytometric analysis and ELISA revealed that despite the expression of various NKG2DLs only ULBP2 is released as a soluble protein via the proteolytic activity of “a disintegrin and metalloproteases” (ADAM) 10 and 17. Moreover, we report that temozolomide (TMZ), a chemotherapeutic agent in clinical use for the treatment of GBM, increases the cell surface expression of NKG2DLs and sensitizes GBM cells to γδ T cell-mediated lysis. Both NKG2D and the T-cell receptor (TCR) are involved. The cytotoxic activity of γδ T cells toward GBM cells is strongly enhanced in a TCR-dependent manner by stimulation with pyrophosphate antigens. These data clearly demonstrate the complexity of mechanisms regulating NKG2DL expression in GBM cells and further show that treatment with TMZ can increase the immunogenicity of GBM. Thus, TMZ might enhance the potential of the adoptive transfer of ex vivo expanded γδ T cells for the treatment of malignant glioblastoma. PMID:27141377

  11. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells

    PubMed Central

    HU, JUN; WANG, JUNJIE; WANG, GANG; YAO, ZHONGJUN; DANG, XIAOQIAN

    2016-01-01

    In the present study, a new type of DSPE-PEG2000 polymeric liposome for the brain-targeted delivery of poorly water-soluble anticancer drugs was successfully prepared and characterized. The nanoparticles were formed by the self-assembly of an amphiphilic polymer consisting of hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000). These nanoliposomes served as a safe delivery platform for the simultaneous delivery of quercetin (QUE) and temozolomide (TMZ) to rat brains. The 2-in-1 PEG2000-DSPE nanoliposomes containing QUE and TMZ (QUE/TMZ-NLs) were rapidly taken up by the U87 glioma cells in vitro, whereas at the same concentrations, the amounts of the free drugs taken up were minimal. The QUE/TMZ-NLs showed an enhanced potency in the U87 cells and the TMZ-resistant U87 cells (U87/TR cells), possibly due to the high intracellular drug concentration and the subsequent drug release. In vivo biodistribution experiments revealed a significant accumulation of QUE/TMZ-NLs in the brain, with significantly increased plasma concentrations of QUE and TMZ, as well as delayed clearance in our rat model of glioma. The results were not so significant for the QUE-loaded nanoliposomes (QUE-NLs) and free TMZ. The findings of our study establish the DSPE-PEG2000 polymeric liposome as a novel and effective nanocarrier for enhancing drug delivery to brain tumors. PMID:26782731

  12. Postoperative Treatment of Primary Glioblastoma Multiforme With Radiation and Concomitant Temozolomide in Elderly Patients

    SciTech Connect

    Combs, Stephanie E. Wagner, Johanna; Bischof, Marc; Welzel, Thomas; Wagner, Florian; Debus, Juergen; Schulz-Ertner, Daniela

    2008-03-15

    Purpose: To evaluate efficacy and toxicity in elderly patients with glioblastoma multiforme (GBM) treated with postoperative radiochemotherapy with temozolomide (TMZ). Patients and Methods: Forty-three patients aged 65 years or older were treated with postoperative with radiochemotherapy using TMZ for primary GBM. Median age at primary diagnosis was 67 years; 14 patients were female, 29 were male. A complete surgical resection was performed in 12 patients, subtotal resection in 17 patients, and biopsy only in 14 patients. Radiotherapy was applied with a median dose of 60 Gy, in a median fractionation of 5 x 2 Gy/wk. Thirty-five patients received concomitant TMZ at 50 mg/m{sup 2}, and in 8 patients 75 mg/m{sup 2} of TMZ was applied. Adjuvant cycles of TMZ were prescribed in 5 patients only. Results: Median overall survival was 11 months in all patients; the actuarial overall survival rate was 48% at 1 year and 8% at 2 years. Median overall survival was 18 months after complete resection, 16 months after subtotal resection, and 6 months after biopsy only. Median progression-free survival was 4 months; the actuarial progression-free survival rate was 41% at 6 months and 18% at 12 months. Radiochemotherapy was well tolerated in most patients and could be completed without interruption in 38 of 43 patients. Four patients developed hematologic side effects greater than Common Terminology Criteria Grade 2, which led to early discontinuation of TMZ in 1 patient. Conclusions: Radiochemotherapy is safe and effective in a subgroup of elderly patients with GBM and should be considered in patients without major comorbidities.

  13. DR-07TARGETING EGFR-VIII WITH DICHLOROACETATE IN TEMOZOLOMIDE RESISTANT GLIOBLASTOMA MODELS

    PubMed Central

    Velpula, Kiran Kumar; Asuthkar, Swapna; Lathia, Justin D.; Tsung, Andrew J.

    2014-01-01

    Epidermal growth factor receptor (EGFR) gene amplification and its subsequent over-expression is the most frequent genetic alteration associated with glioblastoma (GBM) approximating 40%. EGFR amplification is accompanied by a gene rearrangement that overexpresses the receptor variant III (EGFRvIII) characterized by an in-frame deletion of 801 bp of coding sequence from exons 2-7. Our in vitro preliminary studies conducted using U373 cell lines stably expressing EGFRvIII (U373vIII) conferred increased proliferation and invasiveness when compared to control. Temozolomide (TMZ) resistance in this context is a well-known concept, where high initial response is met with eventual failure and tumor propagation. We thus generated an aggressive TMZ resistance model for U373vIII cells (U373vIII-TMZ-R) by continual exposure to 150uM TMZ for 6 months. After the initial phase of cell death in the majority and prolonged lag in replication, the eventual surviving U373vIII-TMZ-R colonies showed identical morphology and proliferation potential of the parent U373vIII. This resulted in a cell line mimicking the actual growth potential of recurrent GBM. We have previously shown that dichloroacetic acid (DCA) reduces EGFR expression in GBMs. Since EGFRvIII expression displays an aggressive phenotype yet remains tumor specific, we hypothesize studying DCA alone or in combination with dasatinib, an inhibitor of EGFR subcellular translocation, in U373vIII and U373vIII-TMZ-R cell lines. By more accurately depicting the status of GBM at the time of recurrence after standard of care chemotherapy treatment, the investigation of DCA will augment and possibly redefine our current understanding of resistance mechanisms and establish novel methods of circumventing this pervasive phenomena.

  14. Phase I Study of Vandetanib With Radiotherapy and Temozolomide for Newly Diagnosed Glioblastoma

    SciTech Connect

    Drappatz, Jan; Norden, Andrew D.; Wong, Eric T.

    2010-09-01

    Purpose: Increasing evidence has suggested that angiogenesis inhibition might potentiate the effects of radiotherapy and chemotherapy in patients with glioblastoma (GBM). In addition, epidermal growth factor receptor inhibition might be of therapeutic benefit, because the epidermal growth factor receptor is upregulated in GBM and contributes to radiation resistance. We conducted a Phase I study of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 and epidermal growth factor receptor, in patients with newly diagnosed GBM combined with RT and temozolomide (TMZ). Methods and Materials: A total of 13 GBM patients were treated with vandetanib, radiotherapy, and concurrent and adjuvant TMZ, using a standard '3 + 3' dose escalation. The maximal tolerated dose was defined as the dose with <1 of 6 dose-limiting toxicities during the first 12 weeks of therapy. The eligible patients were adults with newly diagnosed GBM, Karnofsky performance status of {>=}60, normal organ function, who were not taking enzyme-inducing antiepileptic drugs. Results: Of the 13 patients, 6 were treated with vandetanib at a dose of 200mg daily. Of the 6 patients, 3 developed dose-limiting toxicities within the first 12 weeks, including gastrointestinal hemorrhage and thrombocytopenia in 1 patient, neutropenia in 1 patient, and diverticulitis with gastrointestinal perforation in 1 patient. The other 7 patients were treated with 100 mg daily, with no dose-limiting toxicities observed, establishing this dose as the maximal tolerated dose combined with TMZ and RT. Conclusion: Vandetanib can be safely combined with RT and TMZ in GBM patients. A Phase II study in which patients are randomized to vandetanib 100 mg daily with RT and TMZ or RT and TMZ alone is underway.

  15. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM).

    PubMed

    Elkamhawy, Ahmed; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Kim, Hyeon Young; Heo, Jin-Chul; Park, Woo-Kyu; Lee, Chong-Ock; Yang, Heekyoung; Kim, Kang Ho; Nam, Do-Hyun; Seol, Ho Jun; Cho, Heeyeong; Roh, Eun Joo

    2015-10-20

    Herein, we report new quinazoline-urea based compounds with potent cytotoxic activities against TMZ-resistant glioblastoma multiforme (GBM) cells. Low micromolar IC₅₀ values were exhibited over a panel of three primary GBM patient-derived cell cultures belonging to proneural (GBM-1), mesenchymal (GBM-2), and classical (GBM-3) subtypes. Eight compounds showed excellent selectivity indices for GBM cells comparing to a normal astrocyte cell line. In JC-1 assay, analogues 11, 12, 20, 22, and 24 exerted promising rates of mPTP opening induction towards proneural GBM subtype. Compounds 11, 20, and 24 bound to the translocator protein 18 kDa (TSPO) in submicromolar range using [(3)H] PK-11195 binding affinity assay. A homology model was built and docked models of 11, 12, 20, 22 and 24 were generated for describing their plausible binding modes in TSPO. In 3D clonogenic assay, compound 20 manifested potent tumoricidal effects on TMZ-resistant GBM cells even at submicromolar concentrations. In addition, CYP450 and hERG assays presented a safe toxicity profile of 20. Taken as a whole, this report presents compound 20 as a potent, selective and safe GBM cytotoxic agent which constitutes a promising direction against TMZ-resistant GBM. PMID:26355532

  16. Phase I Study of Vorinostat in Combination with Temozolomide in Patients with High-Grade Gliomas: North American Brain Tumor Consortium Study 04-03

    PubMed Central

    Lee, Eudocia Q.; Puduvalli, Vinay K.; Reid, Joel M.; Kuhn, John G.; Lamborn, Kathleen R.; Cloughesy, Timothy F.; Chang, Susan M.; Drappatz, Jan; Yung, W. K. Alfred; Gilbert, Mark R.; Robins, H. Ian; Lieberman, Frank S.; Lassman, Andrew B.; McGovern, Renee M.; Xu, Jihong; Desideri, Serena; Ye, Xiabu; Ames, Matthew M.; Espinoza-Delgado, Igor; Prados, Michael D.; Wen, Patrick Y.

    2013-01-01

    Purpose A phase I, dose-finding study of vorinostat in combination with temozolomide (TMZ) was conducted to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics in patients with high-grade glioma (HGG). Experimental Design This phase I, dose-finding, investigational study was conducted in two parts. Part 1 was a dose-escalation study of vorinostat in combination with TMZ 150 mg/m2/day × 5 days every 28 days. Part 2 was a dose-escalation study of vorinostat in combination with TMZ 150 mg/m2/day × 5 days of the first cycle and 200 mg/m2/day × 5 days of the subsequent 28-day cycles. Results In Part 1, the MTD of vorinostat administered on days 1-7 and 15-21 of every 28 day cycle in combination with TMZ was 500 mg daily. Dose-limiting toxicities (DLTs) included grade 3 anorexia, grade 3 ALT, and grade 5 hemorrhage in the setting of grade 4 thrombocytopenia. In Part 2, the MTD of vorinostat on days 1-7 and 15-21 of every 28 day cycle combined with TMZ was 400 mg daily. No DLTs were encountered, but vorinostat dosing could not be escalated further due to thrombocytopenia. The most common serious adverse events were fatigue, lymphopenia, thrombocytopenia, and thromboembolic events. There were no apparent pharmacokinetic interactions between vorinostat and TMZ. Vorinostat treatment resulted in hyperacetylation of histones H3 and H4 in peripheral mononuclear cells. Conclusion Vorinostat in combination with temozolomide is well-tolerated in patients with HGG. A phase I/II trial of vorinostat with radiotherapy and concomitant TMZ in newly diagnosed glioblastoma is underway. PMID:22923449

  17. Inhibition of MNK pathways enhances cancer cell response to chemotherapy with temozolomide and targeted radionuclide therapy.

    PubMed

    Grzmil, Michal; Seebacher, Jan; Hess, Daniel; Behe, Martin; Schibli, Roger; Moncayo, Gerald; Frank, Stephan; Hemmings, Brian A

    2016-09-01

    Current standard-of-care treatment for malignant cancers includes radiotherapy and adjuvant chemotherapy. Here, we report increased MAP kinase-interacting kinase (MNK)-regulated phosphorylation of translation initiation factor 4E (eIF4E) in glioma cells upon temozolomide (TMZ) treatment and in medullary thyroid carcinoma (MTC) cells in response to targeted radionuclide therapy. Depletion of MNK activity by using two MNK inhibitors, CGP57380 or cercosporamide, as well as by MNK1-specific knockdown sensitized glioblastoma (GBM) cells and GBM-derived spheres to TMZ. Furthermore, CGP57380 treatment enhanced response of MTC cells to (177)Lu-labeled gastrin analogue. In order to understand how MNK signaling pathways support glioma survival we analyzed putative MNK substrates by quantitative phosphoproteomics in normal condition and in the presence of TMZ. We identified MNK inhibitor-sensitive phosphorylation sites on eIF4G1, mutations of which either influenced eIF4E phosphorylation or glioma cell response to TMZ, pointing to altered regulation of translation initiation as a resistance mechanism. Pharmacological inhibition of overexpressed MNK1 by CGP57380 reduced eIF4E phosphorylation and induced association of inactive MNK1 with eIF4G1. Taken together, our data show an activation of MNK-mediated survival mechanisms in response to either glioma chemotherapy or MTC targeted radiation and suggest that inhibition of MNK activity represents an attractive sensitizing strategy for cancer treatments. PMID:27289018

  18. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma.

    PubMed

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua

    2016-08-28

    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma. PMID:27267806

  19. Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas.

    PubMed

    Ulasov, Ilya; Thaci, Bart; Sarvaiya, Purvaba; Yi, Ruiyang; Guo, Donna; Auffinger, Brenda; Pytel, Peter; Zhang, Lingjiao; Kim, Chung Kwon; Borovjagin, Anton; Dey, Mahua; Han, Yu; Baryshnikov, Anatoly Y; Lesniak, Maciej S

    2013-08-01

    Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy. PMID:24156018

  20. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  1. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

    PubMed Central

    Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li

    2013-01-01

    The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068

  2. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin

    PubMed Central

    Li, Xing-qi; Ouyang, Zhi-gang; Zhang, Sheng-hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-su

    2014-01-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  3. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    PubMed

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  4. The interaction of bee products with temozolomide in human diffuse astrocytoma, glioblastoma multiforme and astroglia cell lines.

    PubMed

    Borawska, Maria H; Markiewicz-Żukowska, Renata; Naliwajko, Sylwia K; Moskwa, Justyna; Bartosiuk, Emilia; Socha, Katarzyna; Surażyński, Arkadiusz; Kochanowicz, Jan; Mariak, Zenon

    2014-01-01

    In the present study, we investigated the influence of extracts from Salix spp. honey (ESH), beebread (EBB), and royal jelly (ERJ) with and without temozolomide (TMZ) on cell lines derived from a patient with diffuse astrocytoma (DASC), human glioblastoma multiforme (U87MG), and normal human astroglia (SVGp12). DASC was identified by immunocytochemistry. TMZ (20 μM) in combination with ESH (30 μg/mL), EBB (50 μg/mL), and ERJ (30 μg/mL) has stronger cytotoxic activity on U87MG cells after 72 h (20.0, 26.5, and 29.3% of control, respectively) than TMZ alone (about 6% of control). An increase of the cytotoxic effect and inhibition of DNA synthesis in SVGp12 were detected after administering TMZ with the studied extracts. NF-κB p50 subunit was reduced in U87MG cells after treatment with ESH (70.9%) and ESH + TMZ (74.7%). A significant decline of MMP-9 and MMP-2 secretion in cultured U87MG was detected after incubation with EBB (42.9% and 73.0%, respectively) and EBB + TMZ (38.4% and 68.5%, respectively). In conclusion, the use of bee products may increase the cytotoxic effect of TMZ in U87MG but also in SVGp12 cell line. It is important to note that the U87MG cells were sensitive to natural bee products, although there was no influence of natural bee products on the DASC cells. PMID:25256634

  5. Temozolomide-Induced Shrinkage of Invasive Pituitary Adenoma in Patient with Nelson's Syndrome: A Case Report and Review of the Literature

    PubMed Central

    Kurowska, Maria; Nowakowski, Andrzej; Zieliński, Grzegorz; Malicka, Joanna; Tarach, Jerzy S.; Maksymowicz, Maria; Denew, Piotr

    2015-01-01

    Introduction. Invasive tumours in Nelson's syndrome need aggressive therapy. Recent reports have documented the efficacy of temozolomide (TMZ) in the treatment of adenomas resistant to conventional management. Objective. The review of the literature concerning TMZ treatment of atypical corticotroph adenomas and a case study of 56-year-old woman who developed Nelson's syndrome. Treatment Proceeding. The patient with Cushing's disease underwent transsphenoidal adenomectomy followed by a 27-month-long period of remission. Due to a regrowth of the tumor, she underwent two reoperations followed by stereotactic radiotherapy. Because of treatment failures, bilateral adrenalectomy was performed. Then she developed Nelson's syndrome. A fourth transsphenoidal adenomectomy was performed, but there was a rapid recurrence. Five months later, she underwent a right frontotemporal craniotomy. Due to a rapid regrowth of the tumour, the patient did not receive gamma-knife therapy and was treated with cabergoline and somatostatin analogue for some time. Only TMZ therapy resulted in marked clinical, biochemical, and radiological improvement. To date, this is the first case of invasive corticotroph adenoma in Nelson's syndrome treated with temozolomide in Poland. Conclusion. In our opinion, temozolomide can be an effective treatment option of invasive adenomas in Nelson's syndrome. PMID:26221547

  6. MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide.

    PubMed

    Erice, Oihane; Smith, Michael P; White, Rachel; Goicoechea, Ibai; Barriuso, Jorge; Jones, Chris; Margison, Geoffrey P; Acosta, Juan C; Wellbrock, Claudia; Arozarena, Imanol

    2015-05-01

    Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomide resistance, but cotargeting MGMT has proven difficult due to dose-limiting toxicities. Here, we show that the MGMT-mediated resistance of cancer cells is profoundly dependent on the DNA repair enzyme PARP. Both in vitro and in vivo, we observe that MGMT-positive cancer cells strongly respond to the combination of temozolomide and PARP inhibitors (PARPi), whereas MGMT-deficient cells do not. In melanoma cells, temozolomide induced an antiproliferative senescent response, which was greatly enhanced by PARPi in MGMT-positive cells. In summary, we provide compelling evidence to suggest that the stratification of patients with cancer upon the MGMT status would enhance the success of combination treatments using temozolomide and PARPi. PMID:25777962

  7. Transport of treosulfan and temozolomide across an in-vitro blood-brain barrier model.

    PubMed

    Linz, Ute; Hupert, Michelle; Santiago-Schübel, Beatrix; Wien, Sascha; Stab, Julia; Wagner, Sylvia

    2015-08-01

    In vitro, treosulfan (TREO) has shown high effectiveness against malignant gliomas. However, a first clinical trial for newly diagnosed glioblastoma did not show any positive effect. Even though dosing and timing might have been the reasons for this failure, it might also be that TREO does not reach the brain in sufficient amount. Surprisingly, there are no published data on TREO uptake into the brain of patients, despite extensive research on this compound. An in-vitro blood-brain barrier (BBB) model consisting of primary porcine brain capillary endothelial cells was used to determine the transport of TREO across the cell monolayer. Temozolomide (TMZ), the most widely used cytotoxic drug for malignant gliomas, served as a reference. An HPLC-ESI-MS/MS procedure was developed to detect TREO and TMZ in cell culture medium. Parallel to the experimental approach, the permeability of TREO and the reference substance across the in-vitro BBB was estimated on the basis of their physicochemical properties. The detection limit was 30 nmol/l for TREO and 10 nmol/l for TMZ. Drug transport was measured in two directions: influx, apical-to-basolateral (A-to-B), and efflux, basolateral-to-apical (B-to-A). For TREO, the A-to-B permeability was lower (1.6%) than the B-to-A permeability (3.0%). This was in contrast to TMZ, which had higher A-to-B (13.1%) than B-to-A (7.2%) permeability values. The in-vitro BBB model applied simulated the human BBB properly for TMZ. It is, therefore, reasonable to assume that the values for TREO are also meaningful. Considering the lack of noninvasive, significant alternative methods to study transport across the BBB, the porcine brain capillary endothelial cell model was efficient to collect first data for TREO that explain the disappointing clinical results for this drug against cerebral tumors. PMID:25919318

  8. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo

    PubMed Central

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A; de Andrade-Lima, L C; Munford, V; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3–7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating

  9. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo.

    PubMed

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A; de Andrade-Lima, L C; Munford, V; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3-7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating

  10. High expression of miR-9 in CD133+ glioblastoma cells in chemoresistance to temozolomide

    PubMed Central

    Munoz, Jessian L.; Rodriguez-Cruz, Vivian; Rameshwar, Pranela

    2016-01-01

    Glioblastoma Multiforme (GBM), a uniformly lethal stage IV astrocytoma, is currently treated with a combination of surgical and radiation therapy as well as Temozolomide (TMZ) chemotherapy. Resistance to TMZ is rapidly acquired by GBM cells and overcoming this resistance has been an area of signi?cant research. GBM 'cancer stem cells' (CSC) also known as 'cancer initiating cells' are often positively selected by CD133 expression and TMZ resistance. In this project, we selected GBM CSC from two cell lines based on CD133 expression. CD133+ and CD133− GBM cells showed comparable cell cycle status. The expression of genes within the Sonic Hedgehog Signaling pathway, PTCH1 (SHH receptor/basal signaling repressor) and Gli1 (effector transcription factor) were increased. The recent literature indicated a decreased in PTCH expression by miRNA and this was independent of SHH expression. We analyzed 5 potential PTCH-targeting miRNA and identi?ed an increase in miRNA-9-2. The CD133+ cells showed an increase in the Multiple Drug Resistance 1 gene (MDR1). Knockdown of Gli1 and MDR1 with siRNA enhanced TMZ induced cell death. Taken together, these studies show CD133+ GBM CSCs expressed greater levels of miR-9 and activation of the SHH/PTCH1/MDR1 axis. This axis has been shown to impart TMZ resistance. In the case of the CD133+ cells, the resistance is not acquires but seems to be inherent. Identi?cation of this pathway as well as the identi?cation of miR-9 may allow for the development of miRNA-targeted approach to Cancer Stem Cell therapy in GBM. PMID:27347493

  11. Comparison of long-term survival between temozolomide-based chemoradiotherapy and radiotherapy alone for patients with low-grade gliomas after surgical resection

    PubMed Central

    Gai, Xiu-juan; Wei, Yu-mei; Tao, Heng-min; An, Dian-zheng; Sun, Jia-teng; Li, Bao-sheng

    2016-01-01

    Purpose This study was designed to compare the survival outcomes of temozolomide-based chemoradiotherapy (TMZ + RT) vs radiotherapy alone (RT-alone) for low-grade gliomas (LGGs) after surgical resection. Patients and methods In this retrospective analysis, we reviewed postoperative records of 69 patients with LGGs treated with TMZ + RT (n=31) and RT-alone (n=38) at the Shandong Cancer Hospital Affiliated to Shandong University between June 2011 and December 2013. Patients in the TMZ + RT group were administered 50–100 mg oral TMZ every day until the radiotherapy regimen was completed. Results The median follow-up since surgery was 33 months and showed no significant intergroup differences (P=0.06). There were statistically significant intergroup differences in the progression-free survival rate (P=0.037), with 83.9% for TMZ-RT group and 60.5% for RT-alone group. The overall 2-year overall survival (OS) rate was 89.86%. Age distribution (≥45 years and <45 years) and resection margin (complete resection or not) were significantly associated with OS (P=0.03 and P=0.004, respectively). Conclusion Although no differences were found in the 2-year OS between the TMZ + RT and RT-alone groups, there was a trend toward increased 2-year progression-free survival in the TMZ + RT group. With better tolerability, concurrent TMZ chemoradiotherapy may be beneficial for postoperative patients with LGGs. Age distribution and surgical margin are likely potential indicators of disease prognosis. The possible differences in long-term survival between the two groups and the links between prognostic factors and long-term survival may be worthy of further investigation. PMID:27574452

  12. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma.

    PubMed

    Wojton, Jeffrey; Meisen, Walter Hans; Jacob, Naduparambil K; Thorne, Amy Haseley; Hardcastle, Jayson; Denton, Nicholas; Chu, Zhengtao; Dmitrieva, Nina; Marsh, Rachel; Van Meir, Erwin G; Kwon, Chang-Hyuk; Chakravarti, Arnab; Qi, Xiaoyang; Kaur, Balveen

    2014-10-30

    SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents. PMID:25210852

  13. Phase II Trial of Hypofractionated IMRT With Temozolomide for Patients With Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Reddy, Krishna; Damek, Denise; Gaspar, Laurie E.; Ney, Douglas; Waziri, Allen; Lillehei, Kevin; Stuhr, Kelly; Kavanagh, Brian D.; Chen Changhu

    2012-11-01

    Purpose: To report toxicity and overall survival (OS) in patients with newly diagnosed glioblastoma multiforme (GBM) treated with hypofractionated intensity-modulated radiotherapy (hypo-IMRT) with concurrent and adjuvant temozolomide (TMZ). Methods and Materials: Patients with newly diagnosed GBM after biopsy or resection and with adequate performance status and organ or bone marrow function were eligible for this study. Patients received postoperative hypo-IMRT to the surgical cavity and residual tumor seen on T1-weighted brain MRI with a 5-mm margin to a total dose of 60 Gy in 10 fractions (6 Gy/fraction) and to the T2 abnormality on T2-weighted MRI with 5-mm margin to 30 Gy in 10 fractions (3 Gy/fraction). Concurrent TMZ was given at 75 mg/m{sup 2}/day for 28 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Toxicities were defined using Common Terminology Criteria for Adverse Events version 3.0. Results: Twenty-four patients were treated, consisting of 14 men, 10 women; a median age of 60.5 years old (range, 27-77 years); and a median Karnofsky performance score of 80 (range, 60-90). All patients received hypo-IMRT and concurrent TMZ according to protocol, except for 2 patients who received only 14 days of concurrent TMZ. The median number of adjuvant TMZ cycles was 6.5 (range, 0-14).With a median follow-up of 14.8 months (range, 2.7-34.2 months) for all patients and a minimum follow-up of 20.6 months for living patients, no instances of grade 3 or higher nonhematologic toxicity were observed. The median OS was 16.6 months (range, 4.1-35.9 months). Six patients underwent repeated surgery for suspected tumor recurrence; necrosis was found in 50% to 100% of the resected specimens. Conclusion: In selected GBM patients, 60 Gy hypo-IMRT delivered in 6-Gy fractions over 2 weeks with concurrent and adjuvant TMZ is safe. OS in this small cohort of patients was comparable to that treated with current standard of care

  14. Disulfiram, a drug widely used to control alcoholism, suppresses self-renewal of glioblastoma and overrides resistance to temozolomide

    PubMed Central

    Triscott, Joanna; Lee, Cathy; Hu, Kaiji; Fotovati, Abbas; Berns, Rachel; Pambid, Mary; Luk, Margaret; Kast, Richard E.; Kong, Esther; Toyota, Eric; Yip, Stephen; Toyota, Brian; Dunn, Sandra E.

    2012-01-01

    Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors. These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM. PMID:23047041

  15. Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo

    PubMed Central

    Yu, Zhiyun; Zhao, Gang; Xie, Guifang; Zhao, Liyan; Chen, Yong; Yu, Hongquan; Zhang, Zhonghua; Li, Cai; Li, Yunqian

    2015-01-01

    Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults. In spite of advances in diagnosis and therapy, the prognosis of patients with GBM has remained dismal. The fast recurrence and multi-drug resistance are some of the key challenges in combating brain tumors. Glioma stem cells (GSCs) which are considered the source of relapse and chemoresistance, the need for more effective therapeutic options is overwhelming. In our present work, we found that combined treatment with temozolomide (TMZ) and metformin (MET) synergistically inhibited proliferation and induced apoptosis in both glioma cells and GSCs. Combination of TMZ and MET significantly reduced the secondary gliosphere formation and expansion of GSCs. We first demonstrated that MET effectively inhibited the AKT activation induced by TMZ, and a combination of both drugs led to enhanced reduction of mTOR, 4EBP1 and S6K phosphorylation. In addition, the combination of the two drugs was accompanied with a powerful AMP-activated protein kinase (AMPK) activation, while this pathway is not determinant. Xenografts performed in nude mice demonstrate in vivo demonstrated that combined treatment significantly reduced tumor growth rates and prolonged median survival of tumor-bearing mice. In conclusion, TMZ in combination with MET synergistically inhibits the GSCs proliferation through downregulation of AKT-mTOR signaling pathway. The combined treatment of two drugs inhibits GSCs self-renewal capability and partly eliminates GSCs in vitro and in vivo. This combined treatment could be a promising option for patients with advanced GBM. PMID:26431379

  16. Brain Radiotherapy plus Concurrent Temozolomide versus Radiotherapy Alone for Patients with Brain Metastases: A Meta-Analysis

    PubMed Central

    Zhao, Qian; Qin, Qin; Sun, Jinglong; Han, Dan; Wang, Zhongtang; Teng, Junjie; Li, Baosheng

    2016-01-01

    Objective We performed a meta-analysis of randomized clinical trials to compare the efficacy of brain radiotherapy (RT) combined with temozolomide (TMZ) versus RT alone as first-line treatment for brain metastases (BM). Methods Medline, Embase, and Pubmed were used to search for relevant randomized controlled trials (RCTs). Two investigators reviewed the abstracts and independently rated the quality of trials and relevant data. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and adverse events. Results Seven studies were selected from the literature search. RT plus TMZ produced significant improvement in ORR with odds ratio (OR) of 2.27 (95% CI, 1.29 to 4.00; P = 0.005) compared with RT alone. OS and PFS were not significantly different between the two arms (OS: HR, 1.00; P = 0.959; PFS: HR, 0.73; P = 0.232). However, the RT plus TMZ arm was associated with significantly more grade 3 to 4 nausea and thrombocytopenia. Conclusion Concomitant RT and TMZ, compared to RT alone, significantly increases ORR in patients with BM, but yields increased toxicity and fails to demonstrate a survival advantage. PMID:26930609

  17. Standard (60 Gy) or Short-Course (40 Gy) Irradiation Plus Concomitant and Adjuvant Temozolomide for Elderly Patients With Glioblastoma: A Propensity-Matched Analysis

    SciTech Connect

    Minniti, Giuseppe; Scaringi, Claudia; Lanzetta, Gaetano; Terrenato, Irene; Esposito, Vincenzo; Arcella, Antonella; Pace, Andrea; Giangaspero, Felice; Bozzao, Alessandro; Enrici, Riccardo Maurizi

    2015-01-01

    Purpose: To evaluate 2 specific radiation schedules, each combined with temozolomide (TMZ), assessing their efficacy and safety in patients aged ≥65 years with newly diagnosed glioblastoma (GBM). Methods and Materials: Patients aged ≥65 years with Karnofsky performance status (KPS) ≥60 who received either standard (60 Gy) or short-course (40 Gy) radiation therapy (RT) with concomitant and adjuvant TMZ between June 2004 and October 2013 were retrospectively analyzed. A propensity score analysis was executed for a balanced comparison of treatment outcomes. Results: A total of 127 patients received standard RT-TMZ, whereas 116 patients underwent short-course RT-TMZ. Median overall survival and progression-free survival times were similar: 12 months and 5.6 months for the standard RT-TMZ group and 12.5 months and 6.7 months for the short-course RT-TMZ group, respectively. Radiation schedule was associated with similar survival outcomes in either unadjusted or adjusted analysis. O{sup 6}-methylguanine-DNA methyltransferase promoter methylation was the most favorable prognostic factor (P=.0001). Standard RT-TMZ therapy was associated with a significant rise in grade 2 and 3 neurologic toxicity (P=.01), lowering of KPS scores during the study (P=.01), and higher posttreatment dosing of corticosteroid (P=.02). Conclusions: In older adults with GBM, survival outcomes of standard and short-course RT-TMZ were similar. An abbreviated course of RT plus TMZ may represent a reasonable therapeutic approach for these patients, without loss of survival benefit and acceptable toxicity.

  18. Profile Analysis of Chemotherapy-induced Nausea and Vomiting in Patients Treated with Concomitant Temozolomide and Radiotherapy: Results of a Prospective Study

    PubMed Central

    MATSUDA, Masahide; YAMAMOTO, Tetsuya; ISHIKAWA, Eiichi; NAKAI, Kei; AKUTSU, Hiroyoshi; ONUMA, Kuniyuki; MATSUMURA, Akira

    2015-01-01

    Temozolomide (TMZ) as a concomitant and adjuvant chemotherapy to radiotherapy following maximal surgical resection is the established standard therapy for patients with newly diagnosed high-grade glioma. However, detailed analysis of chemotherapy-induced nausea and vomiting (CINV) associated with concomitant TMZ has not been sufficiently described. We prospectively analyzed the profile of CINV associated with concomitant TMZ. Eighteen consecutive patients with newly diagnosed high-grade glioma treated with concomitant chemoradiotherapy including TMZ were enrolled. CINV was recorded using a daily diary including nausea assessment, emetic episodes, degree of appetite suppression, and antiemetic medication use. The observed incidence rates of all grade nausea, moderate/severe (CTC grade 2, 3) nausea, emetic episodes, and appetite suppression for the overall period were 89%, 39%, 39%, and 83%, respectively. Moderate/severe nausea and severe (CTC grade 3) appetite suppression were frequently observed during the delayed phase of the treatment. Emetic episodes and moderate/severe nausea were significantly correlated with female gender. Moderate/severe nausea and severe appetite suppression were significantly correlated with low lymphocyte counts before chemoradiotherapy. For CINV associated with concomitant TMZ, enhanced antiemetic therapy focused on the delayed phase of the treatment will likely be beneficial, especially in female patients with a low lymphocyte count before chemoradiotherapy. PMID:26345664

  19. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella; Schulz-Schaeffer, Walter; Rave-Fraenk, Margret; Hasselblatt, Martin; Jelkmann, Wolfgang; Giese, Alf; Ehrenreich, Hannelore

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains of nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.

  20. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study

    PubMed Central

    Boccard, Sandra G.; Marand, Sandie V.; Geraci, Sandra; Pycroft, Laurie; Berger, François R.; Pelletier, Laurent A.

    2015-01-01

    Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition. PMID:26336131

  1. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study.

    PubMed

    Boccard, Sandra G; Marand, Sandie V; Geraci, Sandra; Pycroft, Laurie; Berger, François R; Pelletier, Laurent A

    2015-10-01

    Gliomas are the most common primary brain tumors. To date, therapies do not allow curing patients, and glioblastomas (GBMs) are associated with remarkably poor prognosis. This situation is at least partly due to intrinsic or acquired resistance to treatment, especially to chemotherapy. In 2005, temozolomide (TMZ) has become the first chemotherapeutic drug validated for GBM. Nevertheless TMZ efficacy depends on Mgmt status. While the methylation of Mgmt promoter was considered so far as a prognostic marker, its targeting is becoming an effective therapeutic opportunity. Thus, arrival of both TMZ and Mgmt illustrated that considerable progress can still be realized by optimizing adjuvant chemotherapy. A part of this progress could be accomplished in the future by overcoming residual resistance. The aim of the present study was to investigate the involvement of a set of other DNA-repair genes in glioma resistance to temozolomide. We focused on DNA-repair genes located in the commonly deleted chromosomal region in oligodendroglioma (1p/19q) highly correlated with patient response to chemotherapy. We measured effects of inhibition of ten DNA-repair genes expression using siRNAs on astrocytoma cell response to cisplatin (CDDP) and TMZ. SiRNAs targeting ercc1, ercc2, mutyh, and pnkp significantly sensitized cells to chemotherapy, increasing cell death by up to 25%. In vivo we observed a decrease of subcutaneous glioma tumor growth after injection of siRNA in conjunction with absorption of TMZ. We demonstrated in this pre-clinical study that targeting of DNA-repair genes such as Ercc1 could be used as an adjuvant chemosensitization treatment, similarly to Mgmt inhibition. PMID:26336131

  2. Radiochemotherapy in Patients With Primary Glioblastoma Comparing Two Temozolomide Dose Regimens

    SciTech Connect

    Combs, Stephanie E. Wagner, Johanna; Bischof, Marc; Welzel, Thomas; Edler, Lutz; Rausch, Renate; Wagner, Florian; Zabel-du Bois, Angelika; Debus, Juergen; Schulz-Ertner, Daniela

    2008-07-15

    Purpose: To evaluate toxicity and outcomes in patients with primary glioblastoma (GB) treated with postoperative radiochemotherapy (RCHT) with temozolomide (TMZ) comparing two dose regimens. Methods and Materials: A total of 160 patients with histologically confirmed GB were treated with postoperative RCHT with TMZ. Of the patients, 66 were female and 94 were male, with a median age of 60 years. After the primary diagnosis, a biopsy had been performed in 42 patients; a subtotal and total resection was conducted in 66 and 52 patients. Postoperative radiotherapy was applied with a median dose of 60 Gy with a median fractionation of 5 x 2Gy/week. Concomitant TMZ was prescribed at 50 mg/m{sup 2} in 123 patients (Group A) and at 75 mg/m{sup 2} in 37 patients (Group B). Patients were followed in 3-months intervals, with a median follow-up of 13 months. Results: Overall survival (OS) rates in Group A vs. Group B were 67% and 79% at 1 year and 43% vs. 49% at 2 years, respectively (p = 0.69). Progression-free survival was 49% vs. 54% at 1 year and 22% vs. 29% at 2 years (p = 0.31). Hematologic toxicity was not statistically significant over the 6-week RCHT period except for a significant decrease in platelets during Week 6 (p = 0.01) in Group B. Conclusions: Overall survival seems to be comparable in both groups, although longer follow-up and a larger group of patients are needed to corroborate these results. Lower dosing of TMZ also is associated with a more beneficial toxicity profile.

  3. Radiotherapy Plus Concurrent or Sequential Temozolomide for Glioblastoma in the Elderly: A Meta-Analysis

    PubMed Central

    Dong, Yu; Liu, Bo-lin; Han, Ning; Zhang, Xiang

    2013-01-01

    Background Many physicians are reluctant to treat elderly glioblastoma (GBM) patients as aggressively as younger patients, which is not evidence based due to the absence of validated data from primary studies. We conducted a meta-analysis to provide valid evidence for the use of the aggressive combination of radiotherapy (RT) and temozolomide (TMZ) in elderly GBM patients. Methods A systematic literature search was conducted using the PubMed, EMBASE and Cochrane databases. Studies comparing combined RT/TMZ with RT alone in elderly patients (≥65 years) with newly diagnosed GBM were eligible for inclusion. Results No eligible randomized trials were identified. Alternatively, a meta-analysis of nonrandomized studies (NRSs) was performed, with 16 studies eligible for overall survival (OS) analysis and nine for progression-free survival (PFS) analysis. Combined RT/TMZ was shown to reduce the risk of death and progression in elderly GBM patients compared with RT alone (OS hazard ratio [HR] 0.59, 95% confidence interval [CI] 0.48–0.72; PFS: HR 0.58, 95% CI 0.41–0.84). Evaluable patients were reported to tolerate combined treatment but certain toxicities, and especially hematological toxicities, were more frequently observed. Limited data on O6-methylguanine-DNA methyltransferase (MGMT) promoter status and quality of life were reported. Conclusion The meta-analysis of NRSs provided level 2a evidence (Oxford Centre for Evidence-Based Medicine) that combined RT/TMZ conferred a clear survival benefit on a selection of elderly GBM patients who had a favorable prognosis (e.g., extensive resection, favorable KPS). Toxicities were more frequent but acceptable. Future randomized trials are warranted to justify a definitive conclusion. PMID:24086323

  4. Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas

    PubMed Central

    Ulasov, Ilya; Thaci, Bart; Sarvaiya, Purvaba; Yi, Ruiyang; Guo, Donna; Auffinger, Brenda; Pytel, Peter; Zhang, Lingjiao; Kim, Chung Kwon; Borovjagin, Anton; Dey, Mahua; Han, Yu; Baryshnikov, Anatoly Y; Lesniak, Maciej S

    2013-01-01

    Abstract Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy. Glioblastoma remains an incurable form of brain cancer. In this manuscript, we show that inhibition of MMP14 can potentiate the efficacy of current standard of care which includes chemo- and radiotherapy. PMID:24156018

  5. Quality of life in low-grade glioma patients receiving temozolomide.

    PubMed

    Liu, Raymond; Solheim, Karla; Polley, Mei-Yin; Lamborn, Kathleen R; Page, Margaretta; Fedoroff, Anne; Rabbitt, Jane; Butowski, Nicholas; Prados, Michael; Chang, Susan M

    2009-02-01

    The purpose of this study was to describe the quality of life (QOL) of low-grade glioma (LGG) patients at baseline prior to chemotherapy and through 12 cycles of temozolomide (TMZ) chemotherapy. Patients with histologically confirmed LGG with only prior surgery were given TMZ for 12 cycles. QOL assessments by the Functional Assessment of Cancer Therapy-Brain (FACT-Br) were obtained at baseline prior to chemotherapy and at 2-month intervals while receiving TMZ. Patients with LGG at baseline prior to chemotherapy had higher reported social well-being scores (mean difference = 5.0; p < 0.01) but had lower reported emotional well-being scores (mean difference = 2.2; p < 0.01) compared to a normal population. Compared to patients with left hemisphere tumors, patients with right hemisphere tumors reported higher physical well-being scores (p = 0.01): 44% could not drive, 26% did not feel independent, and 26% were afraid of having a seizure. Difficulty with work was noted in 24%. Mean change scores at each chemotherapy cycle compared to baseline for all QOL subscales showed either no significant change or were significantly positive (p < 0.01). Patients with LGG on TMZ at baseline prior to chemotherapy reported QOL comparable to a normal population with the exception of social and emotional well-being, and those with right hemisphere tumors reported higher physical well-being scores compared to those with left hemisphere tumors. While remaining on therapy, LGG patients were able to maintain their QOL in all realms. LGG patients' QOL may be further improved by addressing their emotional well-being and their loss of independence in terms of driving or working. PMID:18713953

  6. Quality of life in low-grade glioma patients receiving temozolomide

    PubMed Central

    Liu, Raymond; Solheim, Karla; Polley, Mei-Yin; Lamborn, Kathleen R.; Page, Margaretta; Fedoroff, Anne; Rabbitt, Jane; Butowski, Nicholas; Prados, Michael; Chang, Susan M.

    2009-01-01

    The purpose of this study was to describe the quality of life (QOL) of low-grade glioma (LGG) patients at baseline prior to chemotherapy and through 12 cycles of temozolomide (TMZ) chemotherapy. Patients with histologically confirmed LGG with only prior surgery were given TMZ for 12 cycles. QOL assessments by the Functional Assessment of Cancer Therapy–Brain (FACT-Br) were obtained at baseline prior to chemotherapy and at 2-month intervals while receiving TMZ. Patients with LGG at baseline prior to chemotherapy had higher reported social well-being scores (mean difference = 5.0; p < 0.01) but had lower reported emotional well-being scores (mean difference = 2.2; p < 0.01) compared to a normal population. Compared to patients with left hemisphere tumors, patients with right hemisphere tumors reported higher physical well-being scores (p = 0.01): 44% could not drive, 26% did not feel independent, and 26% were afraid of having a seizure. Difficulty with work was noted in 24%. Mean change scores at each chemotherapy cycle compared to baseline for all QOL subscales showed either no significant change or were significantly positive (p < 0.01). Patients with LGG on TMZ at baseline prior to chemotherapy reported QOL comparable to a normal population with the exception of social and emotional well-being, and those with right hemisphere tumors reported higher physical well-being scores compared to those with left hemisphere tumors. While remaining on therapy, LGG patients were able to maintain their QOL in all realms. LGG patients’ QOL may be further improved by addressing their emotional well-being and their loss of independence in terms of driving or working. PMID:18713953

  7. miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas

    PubMed Central

    Haemmig, S; Baumgartner, U; Glück, A; Zbinden, S; Tschan, M P; Kappeler, A; Mariani, L; Vajtai, I; Vassella, E

    2014-01-01

    Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O6-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy. PMID:24901050

  8. Phase I Trial of Hypofractionated Intensity-Modulated Radiotherapy With Temozolomide Chemotherapy for Patients With Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Chen Changhu; Damek, Denise; Gaspar, Laurie E.; Waziri, Allen; Lillehei, Kevin; Kleinschmidt-DeMasters, B.K.; Robischon, Monica; Stuhr, Kelly; Rusthoven, Kyle E.; Kavanagh, Brian D.

    2011-11-15

    Purpose: To determine the maximal tolerated biologic dose intensification of radiotherapy using fractional dose escalation with temozolomide (TMZ) chemotherapy in patients with newly diagnosed glioblastoma multiforme. Methods and Materials: Patients with newly diagnosed glioblastoma multiforme after biopsy or resection and with adequate performance status, bone marrow, and organ function were eligible. The patients underwent postoperative intensity-modulated radiotherapy (IMRT) with concurrent and adjuvant TMZ. All patients received a total dose of 60 Gy to the surgical cavity and residual tumor, with a 5-mm margin. IMRT biologic dose intensification was achieved by escalating from 3 Gy/fraction (Level 1) to 6 Gy/fraction (Level 4) in 1-Gy increments. Concurrent TMZ was given at 75 mg/m{sup 2}/d for 28 consecutive days. Adjuvant TMZ was given at 150-200 mg/m{sup 2}/d for 5 days every 28 days. Dose-limiting toxicity was defined as any Common Terminology Criteria for Adverse Events, version 3, Grade 3-4 nonhematologic toxicity, excluding Grade 3 fatigue, nausea, and vomiting. A standard 3+3 Phase I design was used. Results: A total of 16 patients were accrued (12 men and 4 women, median age, 69 years; range, 34-84. The median Karnofsky performance status was 80 (range, 60-90). Of the 16 patients, 3 each were treated at Levels 1 and 2, 4 at Level 3, and 6 at Level 4. All patients received IMRT and concurrent TMZ according to the protocol, except for 1 patient, who received 14 days of concurrent TMZ. The median number of adjuvant TMZ cycles was 7.5 (range, 0-12). The median survival was 16.2 months (range, 3-33). One patient experienced vision loss in the left eye 7 months after IMRT. Four patients underwent repeat surgery for suspected tumor recurrence 6-12 months after IMRT; 3 had radionecrosis. Conclusions: The maximal tolerated IMRT fraction size was not reached in our study. Our results have shown that 60 Gy IMRT delivered in 6-Gy fractions within 2 weeks with

  9. Phase I study of hypofractionated intensity modulated radiation therapy with concurrent and adjuvant temozolomide in patients with glioblastoma multiforme

    PubMed Central

    2013-01-01

    Purpose To determine the safety and efficacy of hypofractionated intensity modulated radiation therapy (Hypo-IMRT) using helical tomotherapy (HT) with concurrent low dose temozolomide (TMZ) followed by adjuvant TMZ in patients with glioblastoma multiforme (GBM). Methods and materials Adult patients with GBM and KPS > 70 were prospectively enrolled between 2005 and 2007 in this phase I study. The Fibonacci dose escalation protocol was implemented to establish a safe radiation fractionation regimen. The protocol defined radiation therapy (RT) dose level I as 54.4 Gy in 20 fractions over 4 weeks and dose level II as 60 Gy in 22 fractions over 4.5 weeks. Concurrent TMZ followed by adjuvant TMZ was given according to the Stupp regimen. The primary endpoints were feasibility and safety of Hypo-IMRT with concurrent TMZ. Secondary endpoints included progression free survival (PFS), pattern of failure, overall survival (OS) and incidence of pseudoprogression. The latter was defined as clinical or radiological suggestion of tumour progression within three months of radiation completion followed by spontaneous recovery of the patient. Results A total of 25 patients were prospectively enrolled with a median follow-up of 12.4 months. The median age at diagnosis was 53 years. Based on recursive partitioning analysis (RPA) criteria, 16%, 52% and 32% of the patients were RPA class III, class IV and class V, respectively. All patients completed concurrent RT and TMZ, and 19 patients (76.0%) received adjuvant TMZ. The median OS was 15.67 months (95% CI 11.56 - 20.04) and the median PFS was 6.7 months (95% CI 4.0 – 14.0). The median time between surgery and start of RT was 44 days (range of 28 to 77 days). Delaying radiation therapy by more than 6 weeks after surgery was an independent prognostic factor associated with a worse OS (4.0 vs. 16.1 months, P = 0.027). All recurrences occurred within 2 cm of the original gross tumour volume (GTV). No cases of pseudoprogression were

  10. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    PubMed

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas. PMID:26329778

  11. Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolomide (GERT) – phase I/II trial: study protocol

    PubMed Central

    Combs, Stephanie E; Heeger, Steffen; Haselmann, Renate; Edler, Lutz; Debus, Jürgen; Schulz-Ertner, Daniela

    2006-01-01

    Background The implementation of combined radiochemotherapy (RCHT) with temozolomide (TMZ) has lead to a significant increase in overall survival times in patients with Glioblastoma multiforme (GBM), however, outcome still remains unsatisfactory. The majority of GBMs show an overexpression and/or amplification of the epidermal growth factor receptor (EGFR). Therefore, addition of EGFR-inhibition with cetuximab to the current standard treatment approach with radiotherapy and TMZ seems promising. Methods/design GERT is a one-armed single-center phase I/II trial. In a first step, dose-escalation of TMZ from 50 mg/m2 to 75 mg/m2 together with radiotherapy and cetuximab will be performed. Should safety be proven, the phase II trial will be initiated with the standard dose of 75 mg/m2 of TMZ. Cetuximab will be applied in the standard application dose of 400 mg/m2 in week 1, thereafter at a dose of 250 mg/m2 weekly. A total of 46 patients will be included into this phase I/II trial. Primary endpoints are feasibility and toxicity, secondary endpoints are overall and progression-free survival. An interim analysis will be performed after inclusion of 15 patients into the main study. Patients' enrolment will be performed over a period of 2 years. The observation time will end 2 years after inclusion of the last patient. Discussion The goal of this study is to evaluate the safety and efficacy of combined RCHT-immunotherapy with TMZ and cetuximab as first-line treatment for patients with primary GBM. PMID:16709245

  12. Hypofractionated stereotactic radiotherapy and continuous low-dose temozolomide in patients with recurrent or progressive malignant gliomas.

    PubMed

    Minniti, Giuseppe; Scaringi, Claudia; De Sanctis, Vitaliana; Lanzetta, Gaetano; Falco, Teresa; Di Stefano, Domenica; Esposito, Vincenzo; Enrici, Riccardo Maurizi

    2013-01-01

    To evaluate the efficacy of reirradiation and systemic chemotherapy as salvage treatment in patients with recurrent malignant glioma. Between May 2006 and December 2011, 54 patients with recurrent malignant glioma received hypofractionated stereotactic radiotherapy (HSRT) plus systemic therapy at University of Rome Sapienza, Sant' Andrea Hospital. All patients had Karnofsky performance score ≥60 and were previously treated with standard conformal RT (60 Gy) with concomitant and adjuvant temozolomide (TMZ) up to 12 cycles. Thirty-eight patients had a GBM and 16 patients had a grade 3 glioma. The median time interval between primary RT and reirradiation was 15.5 months. At the time of recurrence all patients received HSRT (30 Gy in 6-Gy fractions) plus concomitant TMZ (75 mg/m(2)/day) followed by continuous TMZ at 50 mg/m(2) everyday up to 1 year or until progression. Median overall survival after HSRT was 12.4 months, and the 12- and 24-month survival rates were 53 and 16 %, respectively. The median progression-free survival (PFS) was 6 months, and the 12- and 24-month PFS rates were 24 and 10 %, respectively. KPS >70 (P = 0.04) and grade 3 glioma were independent favourable prognostic factors for survival. In general chemoradiation regimen was well tolerated with relatively low treatment-related toxicity. HSRT plus concomitant TMZ followed by continuous dose-intense TMZ is a feasible treatment option associated with survival benefits and low risk of complications in selected patients with recurrent malignant glioma. The potential advantages of combined chemoradiation schedules in patients with recurrent malignant gliomas need to be explored in future studies. PMID:23129347

  13. The impact of concurrent temozolomide with adjuvant radiation and IDH mutation status among patients with anaplastic astrocytoma

    PubMed Central

    Giannini, Caterina; Voss, Jesse S.; Decker, Paul A.; Jenkins, Robert B.; Hardie, John; Laack, Nadia N.; Parney, Ian F.; Uhm, Joon H.; Buckner, Jan C.

    2014-01-01

    This study assesses the controversial role of temozolomide (TMZ) concurrent with adjuvant radiation (RT) in patients with anaplastic astrocytoma (AA). The impact of isocitrate dehydrogenase (IDH) status on therapy and outcomes is also examined. All adult patients diagnosed with AA from 2001 to 2011 and treated with standard doses of adjuvant RT were identified retrospectively for clinical data extraction. IDH status was determined by IDH1-R132H immunostain and sequencing for other mutations in IDH1/IDH2. Cumulative survival probabilities were estimated using the Kaplan-Meier method. Cox proportional hazards regression models were fit for univariable/multivariable analyses. 136 patients had received concurrent TMZ while 29 had not. Of these, IDH status was determined on 114 and 27 patients, respectively. On univariable analysis, improved five-year survival was independently associated with concurrent TMZ (46.2 vs. 29.3 %, p = 0.02) and IDH mutation (78.9 vs. 22.0 %, p < 0.001). IDH mutation was additionally associated with a greater likelihood of extensive resection possibly secondary to a more favorable tumor location. Gross total/subtotal resections also led to improved survival when compared to biopsy alone on univariable analysis. On multivariable analysis, the association with five-year survival persisted for both concurrent TMZ and IDH mutation, but not with extent of surgery. Both IDH mutation and concurrent TMZ are associated with improved five-year survival in patients with AA who are receiving adjuvant RT. Secondarily, the association between five-year survival and extent of resection is lost on multivariable analysis. This suggests a possible association between IDH mutation, tumor location and consequent resectability. PMID:24993250

  14. Impact of 1p/19q Codeletion and Histology on Outcomes of Anaplastic Gliomas Treated With Radiation Therapy and Temozolomide

    SciTech Connect

    Speirs, Christina K.; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd A.; Tran, David D.; Linette, Gerry; Chicoine, Michael R.; Dacey, Ralph G.; Rich, Keith M.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H.; Huang, Jiayi

    2015-02-01

    Purpose: Anaplastic gliomas represent a heterogeneous group of primary high-grade brain tumors, and the optimal postoperative treatment remains controversial. In this report, we present our institutional data on the clinical outcomes of radiation therapy (RT) plus temozolomide (RT + TMZ) for anaplastic gliomas, stratified by histology and 1p/19q codeletion. Methods and Materials: A single-institution retrospective review was conducted of patients with supratentorial anaplastic oligodendroglioma (AO), mixed anaplastic oligoastrocytoma (AOA), and anaplastic astrocytoma (AA). After surgery, RT was delivered at a median total dose of 60 Gy (range, 31.6-63 Gy) in daily fractions. All patients received standard concurrent TMZ, with or without adjuvant TMZ. Histological/molecular subtypes were defined as codeleted AO/AOA, non-codeleted AO/AOA, and AA. Results: From 2000 to 2012, 111 cases met study criteria and were evaluable. Codeleted AO/AOA had superior overall survival (OS) to non-codeleted AO/AOA (91% vs 68% at 5 years, respectively, P=.02), whereas progression-free survival (PFS) was not significantly different (70% vs 46% at 5 years, respectively, P=.10). AA had inferior OS to non-codeleted AO/AOA (37% vs 68% at 5 years, respectively, P=.007) and inferior PFS (27% vs 46%, respectively, P=.03). On multivariate analysis, age, performance status, and histological or molecular subtype were independent predictors for both PFS and OS. Compared to historical controls, RT + TMZ provided comparable OS to RT with procarbazine, lomustine, and vincristine (RT + PCV) for codeleted AO/AOA, superior OS to RT alone for non-codeleted AO/AOA, and similar OS to RT alone for AA. Conclusions: RT + TMZ may be a promising treatment for both codeleted and non-codeleted AO/AOA, but its role for AA remains unclear.

  15. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy

    PubMed Central

    Guillevin, R; Menuel, C; Taillibert, S; Capelle, L; Costalat, R; Abud, L; Habas, C; De Marco, G; Hoang-Xuan, K; Chiras, J; Vallée, J-N

    2011-01-01

    Background: This study was designed to evaluate proton magnetic resonance spectroscopy (1H-MRS) for monitoring the WHO grade II glioma (low-grade glioma (LGG)) treated with temozolomide (TMZ). Methods: This prospective study included adult patients with progressive LGG that was confirmed by magnetic resonance imaging (MRI). Temozolomide was administered at every 28 days. Response to TMZ was evaluated by monthly MRI examinations that included MRI with volumetric calculations and 1H-MRS for assessing Cho/Cr and Cho/NAA ratios. Univariate, multivariate and receiver-operating characteristic statistical analyses were performed on the results. Results: A total of 21 LGGs from 31 patients were included in the study, and followed for at least n=14 months during treatment. A total of 18 (86%) patients experienced a decrease in tumour volume with a greater decrease of metabolic ratios. Subsequently, five (28%) of these tumours resumed growth despite the continuation of TMZ administration with an earlier increase of metabolic ratios of 2 months. Three (14%) patients did not show any volume or metabolic change. The evolutions of the metabolic ratios, mean(Cho/Cr)n and mean(Cho/NAA)n, were significantly correlated over time (Spearman ρ=+0.95) and followed a logarithmic regression (P>0.001). The evolutions over time of metabolic ratios, mean(Cho/Cr)n and mean(Cho/NAA)n, were significantly correlated with the evolution of the mean relative decrease of tumour volume, mean(ΔVn/Vo), according to a linear regression (P<0.001) in the ‘response/no relapse' patient group, and with the evolution of the mean tumour volume (meanVn), according to an exponential regression (P<0.001) in the ‘response/relapse' patient group. The mean relative decrease of metabolic ratio, mean(Δ(Cho/Cr)n/(Cho/Cr)o), at n=3 months was predictive of tumour response over the 14 months of follow-up. The mean relative change between metabolic ratios, mean((Cho/NAA)n−(Cho/Cr)n)/(Cho/NAA)n, at n=4 months was

  16. Accelerated Hypofractionated Intensity-Modulated Radiotherapy With Concurrent and Adjuvant Temozolomide for Patients With Glioblastoma Multiforme: A Safety and Efficacy Analysis

    SciTech Connect

    Panet-Raymond, Valerie; Souhami, Luis; Roberge, David; Kavan, Petr; Shakibnia, Lily; Muanza, Thierry; Lambert, Christine; Leblanc, Richard; Del Maestro, Rolando; Guiot, Marie-Christine; Shenouda, George

    2009-02-01

    Purpose: Despite multimodality treatments, the outcome of patients with glioblastoma multiforme remains poor. In an attempt to improve results, we have begun a program of accelerated hypofractionated intensity-modulated radiotherapy (hypo-IMRT) with concomitant and adjuvant temozolomide (TMZ). Methods and Materials: Between March 2004 and June 2006, 35 unselected patients with glioblastoma multiforme were treated with hypo-IMRT. During a 4-week period, using a concomitant boost technique, a dose of 60 Gy and 40 Gy were delivered in 20 fractions prescribed to the periphery of the gross tumor volume and planning target volume, respectively. TMZ was administered according to the regimen of Stupp et al. Results: The median follow-up was 12.6 months. Of the 35 patients, 29 (82.8%) completed the combined modality treatment, and 25 (71.4%) received a median of four cycles of adjuvant TMZ. The median overall survival was 14.4 months, and the median disease-free survival was 7.7 months. The median survival time differed significantly between patients who underwent biopsy and those who underwent partial or total resection (7.1 vs. 16.1 months, p = 0.035). The median survival was also significantly different between patients with methylated vs. unmethylated 0-6-methylguanine-DNA methyltransferase promoters (14.4 vs. 8.7 months, p = 0.049). The pattern of failure was predominantly central, within 2 cm of the initial gross tumor volume. Grade 3-4 toxicity was limited to 1 patient with nausea and emesis during adjuvant TMZ administration. Conclusion: The results of our study have shown that hypo-IMRT with concomitant and adjuvant TMZ is well tolerated with a useful 2-week shortening of radiotherapy. Despite a high number of patients with poor prognostic features (74.3% recursive partitioning analysis class V or VI), the median survival was comparable to that after standard radiotherapy fractionation schedules plus TMZ.

  17. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide.

    PubMed

    Triscott, Joanna; Lee, Cathy; Hu, Kaiji; Fotovati, Abbas; Berns, Rachel; Pambid, Mary; Luk, Margaret; Kast, Richard E; Kong, Esther; Toyota, Eric; Yip, Stephen; Toyota, Brian; Dunn, Sandra E

    2012-10-01

    Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors.These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM. PMID:23047041

  18. Low c-Met expression levels are prognostic for and predict the benefits of temozolomide chemotherapy in malignant gliomas.

    PubMed

    Li, Ming-Yang; Yang, Pei; Liu, Yan-Wei; Zhang, Chuan-Bao; Wang, Kuan-Yu; Wang, Yin-Yan; Yao, Kun; Zhang, Wei; Qiu, Xiao-Guang; Li, Wen-Bin; Peng, Xiao-Xia; Wang, Yong-Zhi; Jiang, Tao

    2016-01-01

    Aberrant c-Met has been implicated in the development of many cancers. The objective of this study was to identify an unfavorable prognostic marker that might guide decisions regarding clinical treatment strategies for high-grade gliomas. C-Met expression was measured using immunohistochemistry in 783 gliomas, and we further analyzed c-Met mRNA levels using the Agilent Whole Genome mRNA Microarray in 286 frozen samples. In vitro, we performed cell migration and invasion assays. Cell sensitivity to temozolomide (TMZ) chemotherapy was determined using MTT assays. Both mRNA and protein levels of c-Met were significantly associated with tumor grade progression and inversely correlated with overall and progression-free survival in high-grade gliomas (all P < 0.0001). These findings were nearly consistent at the mRNA level across 3 independent cohorts. Multivariable analysis indicated that c-Met was an independent prognostic marker after adjusting for age, preoperative Karnofsky Performance Status (KPS) score, the extent of resection, radiotherapy, TMZ chemotherapy, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. Further analysis in vitro revealed that downregulating the expression of c-Met dramatically inhibited cell migration and invasion capacities, enhanced sensitivity to TMZ chemotherapy in H4 and U87 glioma cells. Our results suggest that c-Met may serve as a potential predictive maker for clinical decision making. PMID:26879272

  19. Detection of Early Response to Temozolomide Treatment in Brain Tumors Using Hyperpolarized 13C MR Metabolic Imaging

    PubMed Central

    Park, Ilwoo; Bok, Robert; Ozawa, Tomoko; Phillips, Joanna J.; James, C. David; Vigneron, Daniel B.; Ronen, Sabrina M.; Nelson, Sarah J.

    2016-01-01

    Purpose To demonstrate the feasibility of using DNP hyperpolarized [1-13C]-pyruvate to measure early response to temozolomide (TMZ) therapy using an orthotopic human glioblastoma xenograft model. Materials and Methods Twenty athymic rats with intracranial implantation of human glioblastoma cells were divided into two groups: one group received an oral administration of 100 mg/kg TMZ (n = 10) and the control group received vehicle only (n = 10). 13C 3D magnetic resonance spectroscopic imaging (MRSI) data were acquired following injection of 2.5 mL (100 mM) hyperpolarized [1-13C]-pyruvate using a 3T scanner prior to treatment (day D0), at D1 (days from treatment) or D2. Results Tumor metabolism as assessed by the ratio of lactate to pyruvate (Lac/Pyr) was significantly altered at D1 for the TMZ-treated group but tumor volume did not show a reduction until D5 to D7. The percent change in Lac/Pyr from baseline was statistically different between the two groups at D1 and D2 (P < 0.008), while percent tumor volume was not (P > 0.2). Conclusion The results from this study suggest that metabolic imaging with hyperpolarized [1-13C]-pyruvate may provide a unique tool that clinical neuro-oncologists can use in the future to monitor tumor response to therapy for patients with brain tumors. PMID:21590996

  20. Induction of microRNA-146a is involved in curcumin-mediated enhancement of temozolomide cytotoxicity against human glioblastoma.

    PubMed

    Wu, Hao; Liu, Qiang; Cai, Tao; Chen, Yu-Dan; Wang, Zhi-Fei

    2015-10-01

    MicroRNA (miR)-146a is a negative regulator of nuclear factor-κB (NF-κB) signaling that affects tumor growth and survival. The present study was undertaken to determine whether the cytotoxicity of curcumin (diferuloylmethane), a natural polyphenolic compound isolated from turmeric (Curcuma longa Linn), in glioblastoma cells is mediated through upregulation of miR‑146a. Human U‑87 MG glioblastoma cells were treated with curcumin and temozolomide (TMZ) alone or in combination, and cell proliferation and apoptosis were assessed. The involvement of miR‑146a and NF‑κB signaling in curcumin‑mediated chemosensitization was explored. Curcumin exposure led to upregulation of miR‑146a in U‑87 MG cells. Combined curcumin and TMZ treatment significantly (P<0.05) inhibited U‑87 MG cell proliferation and induced apoptotic death, compared with each alone. Notably, curcumin‑mediated enhancement of TMZ‑induced apoptosis was blocked by depletion of miR‑146a. By contrast, miR‑146a overexpression enhanced apoptosis and suppressed NF‑κB activation in TMZ‑treated cells. Additionally, pharmacological inhibition of NF‑κB signaling significantly increased TMZ‑induced apoptosis. To the best of our knowledge, the present study provides the first evidence that upregulation of miR‑146a and inactivation of NF‑κB signaling mediates the sensitization of human glioblastoma cells to TMZ-induced apoptosis by curcumin. PMID:26239619

  1. Temozolomide-perillyl alcohol conjugate induced reactive oxygen species accumulation contributes to its cytotoxicity against non-small cell lung cancer.

    PubMed

    Song, Xingguo; Xie, Li; Wang, Xingwu; Zeng, Qian; Chen, Thomas C; Wang, Weijun; Song, Xianrang

    2016-01-01

    Temozolomide-perillyl alcohol conjugate (TMZ - POH), a novel temozolomide analog, was reported to play a cytotoxic role in triple-negative breast cancer and TMZ-resistant gliomas. In a current study we had demonstrated how TMZ - POH also exhibited its cytotoxicity against non-small cell lung cancer (NSCLC), the most common type of lung cancer, as evidence from cell/tumor proliferation inhibition, G2/M arrest, DNA damage and mitochondrial apoptosis. Importantly, TMZ - POH's cytotoxicity is closely related to reactive oxygen species (ROS) accumulation because it can be reversed by two ROS scavengers, catalase (CAT) and N-acetyl-L-cysteine (NAC). TMZ - POH induces mitochondrial transmembrane potential (MTP) decrease and ROS accumulation, in turn activates mitogen-activated protein kinase (MAPKs) signaling and mitochondrial apoptosis, and then exerts its cytotoxicity, thus proposing TMZ - POH as a potential therapeutic candidate for NSCLC. PMID:26949038

  2. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  3. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients.

    PubMed

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari L M; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-06-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  4. Phase II Trial of Upfront Bevacizumab, Irinotecan, and Temozolomide for Unresectable Glioblastoma

    PubMed Central

    Lou, Emil; Desjardins, Annick; Reardon, David A.; Lipp, Eric S.; Miller, Elizabeth; Herndon, James E.; McSherry, Frances; Friedman, Henry S.; Vredenburgh, James J.

    2015-01-01

    Lessons Learned Trials focusing on unresectable multifocal glioblastoma are needed because of the extremely poor prognosis and challenges in receiving standard therapy, such as concurrent radiation and chemotherapy. Developing a strategy to chemically debulk tumors before radiation and/or surgery is warranted. Background. Extent of resection remains a key prognostic factor in glioblastoma (GBM), with gross total resection providing a better prognosis than biopsy or subtotal resection. We conducted a phase II trial of upfront therapy with bevacizumab (BV), irinotecan (CPT-11), and temozolomide (TMZ) prior to chemoradiation in patients with unresectable, subtotally resected, and/or multifocal GBM. Methods. Patients received up to 4 cycles of TMZ at 200 mg/m2 per day on days 1–5 (standard dosing) and BV at 10 mg/kg every 2 weeks on a 28-day cycle. CPT-11 was given every 2 weeks on a 28-day cycle at 125 mg/m2 or 340 mg/m2 depending on antiepileptic drugs. Magnetic resonance imaging of the brain was done every 4 weeks, and treatment continued as long as there was no tumor progression or unmanageable toxicity. The primary endpoint was tumor response rate, with a goal of 26% or greater. Results. Forty-one patients were enrolled from December 2009 to November 2010. Radiographic responses were as follows: 9 patients (22.0%) had partial respons!e, 25 (61.0%) had stable disease, and 2 (4.9%) had progression; 5 patients were not assessed. Cumulative response rate was 22%. Median overall survival was 12 months (95% confidence interval: 7.2–13.5 months). Conclusion. Upfront treatment with BV, TMZ, and CPT-11 is tolerable and can lead to radiographic response in unresectable and/or subtotally resected GBM. PMID:26025933

  5. MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis.

    PubMed

    Delgado-Goñi, T; Ortega-Martorell, S; Ciezka, M; Olier, I; Candiota, A P; Julià-Sapé, M; Fernández, F; Pumarola, M; Lisboa, P J; Arús, C

    2016-06-01

    Characterization of glioblastoma (GB) response to treatment is a key factor for improving patients' survival and prognosis. MRI and magnetic resonance spectroscopic imaging (MRSI) provide morphologic and metabolic profiles of GB but usually fail to produce unequivocal biomarkers of response. The purpose of this work is to provide proof of concept of the ability of a semi-supervised signal source extraction methodology to produce images with robust recognition of response to temozolomide (TMZ) in a preclinical GB model. A total of 38 female C57BL/6 mice were used in this study. The semi-supervised methodology extracted the required sources from a training set consisting of MRSI grids from eight GL261 GBs treated with TMZ, and six control untreated GBs. Three different sources (normal brain parenchyma, actively proliferating GB and GB responding to treatment) were extracted and used for calculating nosologic maps representing the spatial response to treatment. These results were validated with an independent test set (7 control and 17 treated cases) and correlated with histopathology. Major differences between the responder and non-responder sources were mainly related to the resonances of mobile lipids (MLs) and polyunsaturated fatty acids in MLs (0.9, 1.3 and 2.8 ppm). Responding tumors showed significantly lower mitotic (3.3 ± 2.9 versus 14.1 ± 4.2 mitoses/field) and proliferation rates (29.8 ± 10.3 versus 57.8 ± 5.4%) than control untreated cases. The methodology described in this work is able to produce nosological images of response to TMZ in GL261 preclinical GBs and suitably correlates with the histopathological analysis of tumors. A similar strategy could be devised for monitoring response to treatment in patients. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27061401

  6. Phase II trial of irinotecan and metronomic temozolomide in patients with recurrent glioblastoma.

    PubMed

    Reynés, Gaspar; Martínez-Sales, Vicenta; Vila, Virtudes; Balañá, Carmen; Pérez-Segura, Pedro; Vaz, María A; Benavides, Manuel; Gallego, Oscar; Palomero, Isabel; Gil-Gil, Miguel; Fleitas, Tania; Reche, Encarnación

    2016-02-01

    This phase II study was conducted to determine the efficacy and safety of metronomic temozolomide (TMZ) in combination with irinotecan in glioblastoma (GB) at first relapse. Patients with GB at first relapse received TMZ 50 mg/m/2day divided into three doses, except for a single 100 mg/m2 dose, administered between 3 and 6 h before every irinotecan infusion. Irinotecan was given intravenously at the previously established dose of 100 mg/m2 on days 8 and 22 of 28-day cycles. Treatment was given for a maximum of nine cycles or until progression or unacceptable toxicity occurred. Vascular endothelial growth factor and its soluble receptor 1, thrombospondin-1, microparticles, and microparticle-dependent procoagulant activity were measured in blood before treatment. The primary objective was 6-month progression-free survival (PFS). Twenty-seven evaluable patients were enrolled. Six-month PFS was 20.8%. Median PFS was 11.6 weeks (95% confidence interval: 7.5-15.7). Stable disease was the best response for nine (37.5%) patients, with a median duration of 11.2 weeks (4.2-35.85 weeks). No differences in PFS or response were observed among patients who relapsed during or after completion of adjuvant TMZ. Grade 3/4 adverse events included lymphopenia (15%), fatigue, diarrhea and febrile neutropenia (3.7% each), lymphopenia, neutropenia, and nausea/vomiting (11.1% each). One patient died from pneumonia and one patient died from pulmonary thromboembolism. Pretreatment levels of angiogenesis biomarkers, microparticles, and microparticle-related procoagulant activity were elevated in patients compared with healthy volunteers. This regimen is feasible, but failed to improve the results obtained with other second-line therapies in recurrent GB. PMID:26574999

  7. Progranulin promotes Temozolomide resistance of glioblastoma by orchestrating DNA repair and tumor stemness.

    PubMed

    Bandey, I; Chiou, S-H; Huang, A-P; Tsai, J-C; Tu, P-h

    2015-04-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults with a dismal prognosis. Current therapy of surgical removal combined with Temozolomide (TMZ) and radiation therapy only slightly prolongs the survival of GBM patients. Thus, it is essential to elucidate mechanism underlying its highly malignant properties in order to develop efficacious therapeutic regimens. In this study, we showed that progranulin (PGRN) was overexpressed in most GBM cell lines and the majority of human tumor samples. PGRN overexpression conferred GBM cells with tumorigenic properties and TMZ resistance by upregulating DNA repair (PARP, ATM, BRCA1, Rad51, XRCC1 and so on) and cancer stemness (CD133, CD44, ABCG2) genes, in part via an AP-1 transcription factor, specifically cFos/JunB. Curcumin, an AP-1 inhibitor, was also found to regulate PGRN promoter activity and expression including its downstream effectors aforementioned. These data suggested a feedforward loop between PGRN signaling and AP-1. PGRN depletion significantly decreased unlimited self-renewal and multilineage differentiation and the malignant properties of GBMs cells S1R1, and enhanced their vulnerability to TMZ. In addition, S1R1 depleted of PGRN also lost the ability to form tumor in an orthotopic xenograft mouse model. In conclusion, PGRN had a critical role in the pathogenesis and chemoresistance of GBM and functioned at the top of the hierarchy of cellular machinery that modulates both DNA repair pathways and cancer stemness. Our data suggest that a new strategy combining current regimens with compounds targeting PGRN/AP-1 loop like curcumin may significantly improve the therapeutic outcome of GBM. PMID:24793792

  8. Radiation Therapy Dose Escalation for Glioblastoma Multiforme in the Era of Temozolomide

    SciTech Connect

    Badiyan, Shahed N.; Markovina, Stephanie; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd; Tran, David D.; Linette, Gerry; Jalalizadeh, Rohan; Dacey, Ralph; Rich, Keith M.; Chicoine, Michael R.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H.; Huang, Jiayi

    2014-11-15

    Purpose: To review clinical outcomes of moderate dose escalation using high-dose radiation therapy (HDRT) in the setting of concurrent temozolomide (TMZ) in patients with newly diagnosed glioblastoma multiforme (GBM), compared with standard-dose radiation therapy (SDRT). Methods and Materials: Adult patients aged <70 years with biopsy-proven GBM were treated with SDRT (60 Gy at 2 Gy per fraction) or with HDRT (>60 Gy) and TMZ from 2000 to 2012. Biological equivalent dose at 2-Gy fractions was calculated for the HDRT assuming an α/β ratio of 5.6 for GBM. Results: Eighty-one patients received SDRT, and 128 patients received HDRT with a median (range) biological equivalent dose at 2-Gy fractions of 64 Gy (61-76 Gy). Overall median follow-up time was 1.10 years, and for living patients it was 2.97 years. Actuarial 5-year overall survival (OS) and progression-free survival (PFS) rates for patients that received HDRT versus SDRT were 12.4% versus 13.2% (P=.71), and 5.6% versus 4.1% (P=.54), respectively. Age (P=.001) and gross total/near-total resection (GTR/NTR) (P=.001) were significantly associated with PFS on multivariate analysis. Younger age (P<.0001), GTR/NTR (P<.0001), and Karnofsky performance status ≥80 (P=.001) were associated with improved OS. On subset analyses, HDRT failed to improve PFS or OS for those aged <50 years or those who had GTR/NTR. Conclusion: Moderate radiation therapy dose escalation above 60 Gy with concurrent TMZ does not seem to improve clinical outcomes for patients with GBM.

  9. North Central Cancer Treatment Group Phase I Trial N057K of Everolimus (RAD001) and Temozolomide in Combination With Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Sarkaria, Jann N.; Galanis, Evanthia; Wu Wenting; Peller, Patrick J.; Giannini, Caterina; Brown, Paul D.; Uhm, Joon H.; McGraw, Steven; Jaeckle, Kurt A.; Buckner, Jan C.

    2011-10-01

    Background: The mammalian target of rapamycin (mTOR) functions within the PI3K/Akt signaling pathway as a critical modulator of cell survival. On the basis of promising preclinical data, the safety and tolerability of therapy with the mTOR inhibitor RAD001 in combination with radiation (RT) and temozolomide (TMZ) was evaluated in this Phase I study. Methods and Materials: All patients received weekly oral RAD001 in combination with standard chemoradiotherapy, followed by RAD001 in combination with standard adjuvant temozolomide. RAD001 was dose escalated in cohorts of 6 patients. Dose-limiting toxicities were defined during RAD001 combination therapy with TMZ/RT. Results: Eighteen patients were enrolled, with a median follow-up of 8.4 months. Combined therapy was well tolerated at all dose levels, with 1 patient on each dose level experiencing a dose-limiting toxicity: Grade 3 fatigue, Grade 4 hematologic toxicity, and Grade 4 liver dysfunction. Throughout therapy, there were no Grade 5 events, 3 patients experienced Grade 4 toxicities, and 6 patients had Grade 3 toxicities attributable to treatment. On the basis of these results, the recommended Phase II dosage currently being tested is RAD001 70 mg/week in combination with standard chemoradiotherapy. Fluorodeoxyglucose (FDG) positron emission tomography scans also were obtained at baseline and after the second RAD001 dose before the initiation of TMZ/RT; the change in FDG uptake between scans was calculated for each patient. Fourteen patients had stable metabolic disease, and 4 patients had a partial metabolic response. Conclusions: RAD001 in combination with RT/TMZ and adjuvant TMZ was reasonably well tolerated. Changes in tumor metabolism can be detected by FDG positron emission tomography in a subset of patients within days of initiating RAD001 therapy.

  10. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients

    PubMed Central

    Raizer, J. J.; Giglio, P.; Hu, J.; Groves, M.; Merrell, R.; Conrad, C.; Phuphanich, S.; Puduvalli, V. K.; Loghin, M.; Paleologos, N.; Yuan, Y.; Liu, D.; Rademaker, A.; Yung, W. K.; Vaillant, B.; Rudnick, J.; Chamberlain, M.; Vick, N.; Grimm, S.; Tremont-Lukats, I. W.; De Groot, J.; Aldape, K.; Gilbert, M. R.

    2016-01-01

    Survival for glioblastoma (GBM) patients with an unmethyated MGMT promoter in their tumor is generally worse than methylated MGMT tumors, as temozolomide (TMZ) response is limited. How to better treat patients with unmethylated MGMT is unknown. We performed a trial combining erlotinib and bevacizumab in unmethylated GBM patients after completion of radiation (RT) and TMZ. GBM patients with an unmethylated MGMT promoter were trial eligible. Patient received standard RT (60 Gy) and TMZ (75 mg/m2 × 6 weeks) after surgical resection of their tumor. After completion of RT they started erlotinib 150 mg daily and bevacizumab 10 mg/kg every 2 weeks until progression. Imaging evaluations occurred every 8 weeks. The primary endpoint was overall survival. Of the 48 unmethylated patients enrolled, 46 were evaluable (29 men and 17 women); median age was 55.5 years (29–75) and median KPS was 90 (70–100). All patients completed RT with TMZ. The median number of cycles (1 cycle was 4 weeks) was 8 (2–47). Forty-one patients either progressed or died with a median progression free survival of 9.2 months. At a follow up of 33 months the median overall survival was 13.2 months. There were no unexpected toxicities and most observed toxicities were categorized as CTC grade 1 or 2. The combination of erlotinib and bevacizumab is tolerable but did not meet our primary endpoint of increasing survival. Importantly, more trials are needed to find better therapies for GBM patients with an unmethylated MGMT promoter. PMID:26476729

  11. Phase II Study of Short-Course Radiotherapy Plus Concomitant and Adjuvant Temozolomide in Elderly Patients With Glioblastoma

    SciTech Connect

    Minniti, Giuseppe; Lanzetta, Gaetano; Scaringi, Claudia; Caporello, Paola; Salvati, Maurizio; Arcella, Antonella; De Sanctis, Vitaliana; Giangaspero, Felice; Enrici, Riccardo Maurizi

    2012-05-01

    Purpose: Radiotherapy (RT) and chemotherapy may prolong survival in older patients (age {>=}70 years) with glioblastoma multiforme (GBM), although the survival benefits remain poor. This Phase II multicenter study was designed to evaluate the efficacy and safety of an abbreviated course of RT plus concomitant and adjuvant temozolomide (TMZ) in older patients with GBM. Patients and Methods: Seventy-one eligible patients 70 years of age or older with newly diagnosed GBM and a Karnofsky performance status {>=}60 were treated with a short course of RT (40 Gy in 15 fractions over 3 weeks) plus TMZ at the dosage of 75 mg/m{sup 2} per day followed by 12 cycles of adjuvant TMZ (150-200 mg/m{sup 2} for 5 days during each 28-day cycle). The primary endpoint was overall survival (OS). Secondary endpoints included progression-free survival and toxicity. Results: The Median OS was 12.4 months, and the 1-year and 2-year OS rates were 58% and 20%, respectively. The median and 1-year rates of progression-free survival were 6 months and 20%, respectively. All patients completed the planned programme of RT. Grade 3 or 4 adverse events occurred in 16 patients (22%). Grade 3 and 4 neutropenia and/or thrombocytopenia occurred in 10 patients (15%), leading to the interruption of treatment in 6 patients (8%). Nonhematologic Grade 3 toxicity was rare, and included fatigue in 4 patients and cognitive disability in 1 patient. Conclusions: A combination of an abbreviated course of RT plus concomitant and adjuvant TMZ is well tolerated and may prolong survival in elderly patients with GBM. Future randomized studies need to evaluate the efficacy and toxicity of different schedules of RT in association with chemotherapy.

  12. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients.

    PubMed

    Raizer, J J; Giglio, P; Hu, J; Groves, M; Merrell, R; Conrad, C; Phuphanich, S; Puduvalli, V K; Loghin, M; Paleologos, N; Yuan, Y; Liu, D; Rademaker, A; Yung, W K; Vaillant, B; Rudnick, J; Chamberlain, M; Vick, N; Grimm, S; Tremont-Lukats, I W; De Groot, J; Aldape, K; Gilbert, M R

    2016-01-01

    Survival for glioblastoma (GBM) patients with an unmethyated MGMT promoter in their tumor is generally worse than methylated MGMT tumors, as temozolomide (TMZ) response is limited. How to better treat patients with unmethylated MGMT is unknown. We performed a trial combining erlotinib and bevacizumab in unmethylated GBM patients after completion of radiation (RT) and TMZ. GBM patients with an unmethylated MGMT promoter were trial eligible. Patient received standard RT (60 Gy) and TMZ (75 mg/m2 × 6 weeks) after surgical resection of their tumor. After completion of RT they started erlotinib 150 mg daily and bevacizumab 10 mg/kg every 2 weeks until progression. Imaging evaluations occurred every 8 weeks. The primary endpoint was overall survival. Of the 48 unmethylated patients enrolled, 46 were evaluable (29 men and 17 women); median age was 55.5 years (29-75) and median KPS was 90 (70-100). All patients completed RT with TMZ. The median number of cycles (1 cycle was 4 weeks) was 8 (2-47). Forty-one patients either progressed or died with a median progression free survival of 9.2 months. At a follow up of 33 months the median overall survival was 13.2 months. There were no unexpected toxicities and most observed toxicities were categorized as CTC grade 1 or 2. The combination of erlotinib and bevacizumab is tolerable but did not meet our primary endpoint of increasing survival. Importantly, more trials are needed to find better therapies for GBM patients with an unmethylated MGMT promoter. PMID:26476729

  13. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma.

    PubMed

    Rangwala, Reshma; Leone, Robert; Chang, Yunyoung C; Fecher, Leslie A; Schuchter, Lynn M; Kramer, Amy; Tan, Kay-See; Heitjan, Daniel F; Rodgers, Glenda; Gallagher, Maryann; Piao, Shengfu; Troxel, Andrea B; Evans, Tracey L; DeMichele, Angela M; Nathanson, Katherine L; O'Dwyer, Peter J; Kaiser, Jonathon; Pontiggia, Laura; Davis, Lisa E; Amaravadi, Ravi K

    2014-08-01

    Blocking autophagy with hydroxychloroquine (HCQ) augments cell death associated with alkylating chemotherapy in preclinical models. This phase I study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with dose-intense temozolomide (TMZ) in patients with advanced solid malignancies. Forty patients (73% metastatic melanoma) were treated with oral HCQ 200 to 1200 mg daily with dose-intense oral TMZ 150 mg/m (2) daily for 7/14 d. This combination was well tolerated with no recurrent dose-limiting toxicities observed. An MTD was not reached for HCQ and the recommended phase II dose was HCQ 600 mg twice daily combined with dose-intense TMZ. Common toxicities included grade 2 fatigue (55%), anorexia (28%), nausea (48%), constipation (20%), and diarrhea (20%). Partial responses and stable disease were observed in 3/22 (14%) and 6/22 (27%) patients with metastatic melanoma. In the final dose cohort 2/6 patients with refractory BRAF wild-type melanoma had a near complete response, and prolonged stable disease, respectively. A significant accumulation in autophagic vacuoles (AV) in peripheral blood mononuclear cells was observed in response to combined therapy. Population pharmacokinetics (PK) modeling, individual PK simulations, and PK-pharmacodynamics (PD) analysis identified a threshold HCQ peak concentration that predicts therapy-associated AV accumulation. This study indicates that the combination of high-dose HCQ and dose-intense TMZ is safe and tolerable, and is associated with autophagy modulation in patients. Prolonged stable disease and responses suggest antitumor activity in melanoma patients, warranting further studies of this combination, or combinations of more potent autophagy inhibitors and chemotherapy in melanoma. PMID:24991839

  14. A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma

    PubMed Central

    Clarke, Jennifer L.; Molinaro, Annette M.; Phillips, Joanna J.; Butowski, Nicholas A.; Chang, Susan M.; Perry, Arie; Costello, Joseph F.; DeSilva, Ashley A.; Rabbitt, Jane E.; Prados, Michael D.

    2014-01-01

    Background Both the epidermal growth factor receptor and vascular endothelial growth factor pathways are frequently overexpressed in glioblastoma multiforme. This study combined bevacizumab, a vascular endothelial growth factor inhibitor, and erlotinib, an epidermal growth factor receptor inhibitor, with standard radiation and temozolomide (TMZ), with the goal of improving overall survival (OS). Methods Treatment consisted of fractionated radiotherapy to 60 Gy, with daily TMZ at 75 mg/m2/d and erlotinib 150–200 mg/d (or 500–600 mg/d for patients on enzyme-inducing antiepileptic drugs). Bevacizumab was given at 10 mg/kg every 2 weeks, starting ≥4 weeks after surgery. After radiotherapy, adjuvant TMZ was given at 200 mg/m2/d × 5d per 28-day cycle, with unchanged erlotinib and bevacizumab doses. Treatment continued until progression or for 12 months. Efficacy was compared against an institutional historical control. A sample of 55 patients was calculated to provide 85% power to detect a hazard ratio of 0.67 for OS. Results Fifty-nine patients were enrolled for efficacy analysis after a 15-patient safety lead-in. For the efficacy group, median age was 54 years; median KPS was 90. Gross total and subtotal resections were achieved in 33% and 53%, respectively. The most frequent related grade 3/4 adverse effects were lymphopenia, thrombocytopenia, neutropenia, diarrhea, weight loss, and fatigue. One patient died of disseminated aspergillosis. Median OS was 19.8 months (vs 18 mo for HC, P = .33) and median progression-free survival was 13.5 months (vs 8.6 mo for HC, P = .03). Conclusions The combination of bevacizumab, erlotinib, TMZ, and radiotherapy appears to be well tolerated and improved progression-free survival but did not reach the primary endpoint of improved OS. PMID:24637230

  15. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma

    PubMed Central

    Rangwala, Reshma; Leone, Robert; Chang, Yunyoung C; Fecher, Leslie A; Schuchter, Lynn M; Kramer, Amy; Tan, Kay-See; Heitjan, Daniel F; Rodgers, Glenda; Gallagher, Maryann; Piao, Shengfu; Troxel, Andrea B; Evans, Tracey L; DeMichele, Angela M; Nathanson, Katherine L; O’Dwyer, Peter J; Kaiser, Jonathon; Pontiggia, Laura; Davis, Lisa E; Amaravadi, Ravi K

    2014-01-01

    Blocking autophagy with hydroxychloroquine (HCQ) augments cell death associated with alkylating chemotherapy in preclinical models. This phase I study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with dose-intense temozolomide (TMZ) in patients with advanced solid malignancies. Forty patients (73% metastatic melanoma) were treated with oral HCQ 200 to 1200 mg daily with dose-intense oral TMZ 150 mg/m2 daily for 7/14 d. This combination was well tolerated with no recurrent dose-limiting toxicities observed. An MTD was not reached for HCQ and the recommended phase II dose was HCQ 600 mg twice daily combined with dose-intense TMZ. Common toxicities included grade 2 fatigue (55%), anorexia (28%), nausea (48%), constipation (20%), and diarrhea (20%). Partial responses and stable disease were observed in 3/22 (14%) and 6/22 (27%) patients with metastatic melanoma. In the final dose cohort 2/6 patients with refractory BRAF wild-type melanoma had a near complete response, and prolonged stable disease, respectively. A significant accumulation in autophagic vacuoles (AV) in peripheral blood mononuclear cells was observed in response to combined therapy. Population pharmacokinetics (PK) modeling, individual PK simulations, and PK-pharmacodynamics (PD) analysis identified a threshold HCQ peak concentration that predicts therapy-associated AV accumulation. This study indicates that the combination of high-dose HCQ and dose-intense TMZ is safe and tolerable, and is associated with autophagy modulation in patients. Prolonged stable disease and responses suggest antitumor activity in melanoma patients, warranting further studies of this combination, or combinations of more potent autophagy inhibitors and chemotherapy in melanoma. PMID:24991839

  16. The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain

    PubMed Central

    Jackson, Sadhana; Anders, Nicole M.; Mangraviti, Antonella; Wanjiku, Teresia M.; Sankey, Eric W.; Liu, Ann; Brem, Henry; Tyler, Betty; Rudek, Michelle A.

    2016-01-01

    The blood–brain barrier (BBB) significantly reduces the delivery of many systemically administered agents to the central nervous system. Although temozolomide is the only chemotherapy to improve survival in patients with glioblastoma, its concentration in brain is only 20 % of that in blood. Regadenoson, an FDA approved adenosine receptor agonist used for cardiac stress testing, transiently disrupts rodent BBB allowing high molecular weight dextran (70 kD) to enter the brain. This study was conducted to determine if regadenoson could facilitate entry of temozolomide into normal rodent brain. Temozolomide (50 mg/kg) was administered by oral gavage to non-tumor bearing F344 rats. Two-thirds of the animals received a single dose of intravenous regadenoson 60–90 min later. All animals were sacrificed 120 or 360 min after temozolomide administration. Brain and plasma temozolomide concentrations were determined using HPLC/MS/MS. Brain temozolomide concentrations were significantly higher at 120 min when it was given with regadenoson versus alone (8.1 ± 2.7 and 5.1 ± 3.5 μg/g, P <0.05). A similar trend was noted in brain:plasma ratios (0.45 ± 0.08 and 0.29 ± 0.09, P < 0.05). Brain concentrations and brain:plasma ratios were not significantly different 360 min after temozolomide administration. No differences were seen in plasma temozolomide concentrations with or without regadenoson. These results suggest co-administration of regadenoson with temozolomide results in 60 % higher temozolomide levels in normal brain without affecting plasma concentrations. This novel approach to increasing intracranial concentrations of systemically administered agents has potential to improve the efficacy of chemotherapy in neuro-oncologic disorders. PMID:26626489

  17. Vanishing bile duct syndrome in the context of concurrent temozolomide for glioblastoma.

    PubMed

    Mason, Matthew; Adeyi, Oyedele; Fung, Scott; Millar, Barbara-Ann

    2014-01-01

    Temozolomide, an oral alkylating agent, is used in the treatment of glioblastoma. We describe a case of a 62-year-old woman developing jaundice with significant derangement of liver function tests on day 17 of focal radiotherapy with concomitant temozolomide. There was no structural abnormality on imaging and liver biopsy was performed. Pathology revealed absence of small terminal bile ducts affecting up to 60% of sampled portal tracts and senescence of many of the remaining small bile ducts, in keeping with a diagnosis of acute vanishing bile duct syndrome. This is a rare syndrome. It has been documented in association with Hodgkin's lymphoma and viral causes. Drugs implicated as precipitating this condition include antiseizure medications, some antibiotics, ibuprofen and antifungals. Temozolomide was stopped. The patient received supportive care, ursodeoxycholic acid 750 mg daily and cholestyramine 4 g twice daily. She was otherwise asymptomatic and her blood results returned to normal by day 129. PMID:25432915

  18. Comparison of the effectiveness of whole-brain radiotherapy plus temozolomide versus whole-brain radiotherapy in treating brain metastases based on a systematic review of randomized controlled trials.

    PubMed

    Bai, Gui-Rong; An, Jin-Bing; Chu, Yang; Wang, Xiang-Yang; Li, Shu-Ming; Yan, Kai-Jing; Lü, Fu-Rong; Gu, Ning; Griffin, Amanda N; Sun, Bin-Yuan; Li, Wei; Wang, Guo-Cheng; Zhou, Shui-Ping; Sun, He; Liu, Chang-Xiao

    2016-01-01

    Temozolomide (TMZ) combination with whole-brain radiotherapy (WBRT) has been tested by many randomized controlled trials in the treatment of brain metastases (BMs) in China and other countries. We performed an up-to-date meta-analysis to determine (i) the log odds ratios (LORs) of objective response (ORR) and adverse effects (AEs) for all-grade, and (ii) the T value of mean overall survival in patients with BMs treated with WBRT combined with TMZ versus WBRT alone. PubMed, Chinese National Knowledge Infrastructure, and WanFang Data were searched for articles published up to 28 January 2015. Eligible studies were selected according to the PRISMA statement. ORR, AEs, and 95% confidence intervals were calculated using random-effects models. Eighteen studies were included in our analysis. A total of 1028 participants were enrolled. Summary LORs of ORR were 1.0239 (P<0.0001) on comparing WBRT plus TMZ with WBRT ORR (n=17). The overall mean difference of mean overall survival (n=17) between TMZ plus WBRT and WBRT was 2.2505 weeks (P=0.02185). There was a significant difference between WBRT plus TMZ and WBRT alone with a LOR of AEs for all-grade of (i) 0.923 for gastrointestinal toxicity and (ii) 0.7978 for myelosuppression. Sensitivity analysis and subgroup analysis were also performed. The 18 eligible randomized controlled trials demonstrated that the combination of WBRT and TMZ significantly improves the ORR and is statistically insignificant in prolonging the survival of patients with BMs. In addition, an increase in the incidence of gastrointestinal toxicity and myelosuppression was significant for all-grade. PMID:26426520

  19. Mismatch Repair Deficiency Does Not Mediate Clinical Resistance to Temozolomide in Malignant Glioma

    PubMed Central

    Maxwell, Jill A.; Johnson, Stewart P.; McLendon, Roger E.; Lister, David W.; Horne, Krystle S.; Rasheed, Ahmed; Quinn, Jennifer A.; Ali-Osman, Francis; Friedman, Allan H.; Modrich, Paul L.; Bigner, Darell D.; Friedman, Henry S.

    2010-01-01

    Purpose A major mechanism of resistance to methylating agents, including temozolomide, is the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT). Preclinical data indicates that defective DNA mismatch repair (MMR) results in tolerance to temozolomide regardless of AGT activity. The purpose of this study was to determine the role of MMR deficiency in mediating resistance in samples from patients with both newly diagnosed malignant gliomas and those who have failed temozolomide therapy. Experimental Design The roles of AGT and MMR deficiency in mediating resistance in glioblastoma multiforme were assessed by immunohistochemistry and microsatellite instability (MSI), respectively. The mutation status of the MSH6 gene, a proposed correlate of temozolomide resistance, was determined by direct sequencing and compared with data from immunofluorescent detection of MSH6 protein and reverse transcription-PCR amplification of MSH6 RNA. Results Seventy percent of newly diagnosed and 78 % of failed-therapy glioblastoma multiforme samples expressed nuclear AGT protein in ≥20% of cells analyzed, suggesting alternate means of resistance in 20% to 30% of cases. Single loci MSI was observed in 3% of patient samples; no sample showed the presence of high MSI. MSI was not shown to correlate with MSH6 mutation or loss of MSH6 protein expression. Conclusions Although high AGT levels may mediate resistance in a portion of these samples, MMR deficiency does not seem to be responsible for mediating temozolomide resistance in adult malignant glioma. Accordingly, the presence of a fraction of samples exhibiting both lowAGT expression and MMR proficiency suggests that additional mechanisms of temozolomide resistance are operational in the clinic. PMID:18676759

  20. Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide

    PubMed Central

    Mitchell, Duane A.; Sayour, Elias J.; Reap, Elizabeth; Schmittling, Robert; De Leon, Gabriel; Norberg, Pamela; Desjardins, Annick; Friedman, Allan H.; Friedman, Henry S.; Archer, Gary; Sampson, John H.

    2015-01-01

    Therapeutic vaccination of patients with cancer-targeting tumor-associated antigens is a promising strategy for the specific eradication of invasive malignancies with minimal toxicity to normal tissues. However, as increasingly potent modalities for stimulating immunologic responses are developed for clinical evaluation, the risk of inflammatory and autoimmune toxicities also may be exacerbated. In this report, we describe the induction of a severe (Grade 3) immunologic reaction in a patient with newly-diagnosed glioblastoma (GBM) receiving autologous RNA-pulsed dendritic cell (DC) vaccines admixed with GM-CSF and administered coordinately with cycles of dose-intensified temozolomide (diTMZ). Shortly after the eighth administration of the admixed intradermal vaccine, the patient experienced dizziness, flushing, conjunctivitis, headache, and the outbreak of a disseminated macular/papular rash and bilateral indurated injection sites. Immunologic work-up of patient reactivity revealed sensitization to the GM-CSF component of the vaccine and the production of high levels of anti-GM-CSF autoantibodies during vaccination. Removal of GM-CSF from the DC vaccine allowed continued vaccination without incident. Despite the known lymphodepletive and immunosuppressive effects of TMZ, these observations demonstrate the capacity for the generation of severe immunologic reactivity in patients with GBM receiving DC-based therapy during adjuvant diTMZ. PMID:25387895

  1. Temozolomide

    MedlinePlus

    ... or vomiting blood or material that looks like coffee grounds fever, sore throat, ongoing cough and congestion, or ... or vomiting blood or material that looks like coffee grounds fever, sore throat, ongoing cough and congestion, or ...

  2. Comparative Analysis of Matrix Metalloproteinase Family Members Reveals That MMP9 Predicts Survival and Response to Temozolomide in Patients with Primary Glioblastoma

    PubMed Central

    Cai, Jinquan; Sun, Ying; Wang, Guangzhi; Li, Yongli; Li, Ruiyan; Feng, Yan; Han, Bo; Li, Jianlong; Tian, Yu; Yi, Liye; Jiang, Chuanlu

    2016-01-01

    Background Glioblastoma multiform (GBM) is the most common malignant primary brain tumor in adults. Radiotherapy plus concomitant and adjuvant TMZ chemotherapy is the current standard of care for patients with GBM. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, are key modulators of tumor invasion and metastasis due to their ECM degradation capacity. The aim of the present study was to identify the most informative MMP member in terms of prognostic and predictive ability for patients with primary GBM. Method The mRNA expression profiles of all MMP genes were obtained from the Chinese Glioma Genome Atlas (CGGA), the Repository for Molecular Brain Neoplasia Data (REMBRANDT) and the GSE16011 dataset. MGMT methylation status was also examined by pyrosequencing. The correlation of MMP9 expression with tumor progression was explored in glioma specimens of all grades. Kaplan–Meier analysis and Cox proportional hazards regression models were used to investigate the association of MMP9 expression with survival and response to temozolomide. Results MMP9 was the only significant prognostic factor in three datasets for primary glioblastoma patients. Our results indicated that MMP9 expression is correlated with glioma grade (p<0.0001). Additionally, low expression of MMP9 was correlated with better survival outcome (OS: p = 0.0012 and PFS: p = 0.0066), and MMP9 was an independent prognostic factor in primary GBM (OS: p = 0.027 and PFS: p = 0.032). Additionally, the GBM patients with low MMP9 expression benefited from temozolomide (TMZ) chemotherapy regardless of the MGMT methylation status. Conclusions Patients with primary GBMs with low MMP9 expression may have longer survival and may benefit from temozolomide chemotherapy. PMID:27022952

  3. IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy.

    PubMed

    Minniti, Giuseppe; Scaringi, Claudia; Arcella, Antonella; Lanzetta, Gaetano; Di Stefano, Domenica; Scarpino, Stefania; Bozzao, Alessandro; Pace, Andrea; Villani, Veronica; Salvati, Maurizio; Esposito, Vincenzo; Giangaspero, Felice; Enrici, Riccardo Maurizi

    2014-06-01

    Several molecular markers have been proposed as predictors of outcome in patients with high grade gliomas. We report a retrospective multicenter study of 97 consecutive adult patients with anaplastic astrocytoma (AA) treated with radiation therapy (RT) plus concomitant and adjuvant temozolomide (TMZ) between October 2004 and March 2012. Correlations between the isocitrate dehydrogenase 1 (IDH1) mutation and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation with survival outcomes have been analyzed. At a median follow-up time of 46 months (range 12-89 months), median and 5-year overall survival rates were 50.5 months (95 % CI, 37.8-63.2) and 38% (95 % CI, 25.7-50.7%), and median and 5-year progression-free survival rates were 36 months (95% CI, 28.5-44.0) and 22 % (95 % CI, 10-34%), respectively. IDH1 mutation and MGMT promoter methylation were present in 54 and 60% of evaluable patients, respectively. Multivariate Cox proportional hazards regression analysis showed that IDH1 mutation (P = 0.001), MGMT methylation (P = 0.01), age < 50 years (P = 0.02), and extent of resection (P = 0.04) were significantly associated with longer survival. Our study confirms the favorable prognostic value of IDH1 mutation and MGMT methylation in patients with AA treated with RT plus concomitant and adjuvant TMZ. The superiority of combined radiochemotherapy over other treatment modalities remains to be demonstrated. PMID:24748470

  4. Clinical and Dosimetric Predictors of Acute Severe Lymphopenia During Radiation Therapy and Concurrent Temozolomide for High-Grade Glioma

    SciTech Connect

    Huang, Jiayi; DeWees, Todd A.; Badiyan, Shahed N.; Speirs, Christina K.; Mullen, Daniel F.; Fergus, Sandra; Tran, David D.; Linette, Gerry; Campian, Jian L.; Chicoine, Michael R.; Kim, Albert H.; Dunn, Gavin; Simpson, Joseph R.; Robinson, Clifford G.

    2015-08-01

    Purpose: Acute severe lymphopenia (ASL) frequently develops during radiation therapy (RT) and concurrent temozolomide (TMZ) for high-grade glioma (HGG) and is associated with decreased survival. The current study was designed to identify potential predictors of ASL, with a focus on actionable RT-specific dosimetric parameters. Methods and Materials: From January 2007 to December 2012, 183 patients with HGG were treated with RT+TMZ and had available data including total lymphocyte count (TLC) and radiation dose-volume histogram parameters. ASL was defined as TLC of <500/μL within the first 3 months from the start of RT. Stepwise logistic regression analysis was used to determine the most important predictors of ASL. Results: Fifty-three patients (29%) developed ASL. Patients with ASL had significantly worse overall survival than those without (median: 12.5 vs 20.2 months, respectively, P<.001). Stepwise logistic regression analysis identified female sex (odds ratio [OR]: 5.30; 95% confidence interval [CI]: 2.46-11.41), older age (OR: 1.05; 95% CI: 1.02-1.09), lower baseline TLC (OR: 0.92; 95% CI: 0.87-0.98), and higher brain volume receiving 25 Gy (V{sub 25Gy}) (OR: 1.03; 95% CI: 1.003-1.05) as the most significant predictors for ASL. Brain V{sub 25Gy} <56% appeared to be the optimal threshold (OR: 2.36; 95% CI: 1.11-5.01), with an ASL rate of 38% versus 20% above and below this threshold, respectively (P=.006). Conclusions: Female sex, older age, lower baseline TLC, and higher brain V{sub 25Gy} are significant predictors of ASL during RT+TMZ therapy for HGG. Maintaining the V{sub 25Gy} of brain below 56% may reduce the risk of ASL.

  5. Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model.

    PubMed

    Hanihara, Mitsuto; Kawataki, Tomoyuki; Oh-Oka, Kyoko; Mitsuka, Kentaro; Nakao, Atsuhito; Kinouchi, Hiroyuki

    2016-06-01

    OBJECT Indoleamine 2,3-dioxygenase (IDO), a key enzyme of tryptophan (Trp) metabolism, is involved in tumor-derived immune suppression through depletion of Trp and accumulation of the metabolite kynurenine, resulting in inactivation of natural killer cells and generation of regulatory T cells (Tregs). It has been reported that high expression of IDO in cancer cells is associated with suppression of the antitumor immune response and is consistent with a poor prognosis. Thus, IDO may be a therapeutic target for malignant cancer. The authors have recently shown that IDO expression is markedly increased in human glioblastoma and secondary glioblastoma with malignant change, suggesting that IDO targeting may also have therapeutic potential for patients with glioma. The aim of this study was to investigate the antitumor effect of IDO inhibition and to examine the synergistic function of IDO inhibitor and temozolomide (TMZ) in a murine glioma model. METHODS Murine glioma GL261 cells and human glioma U87 cells were included in this study. The authors used 3 mouse models to study glioma cell growth: 1) a subcutaneous ectopic model, 2) a syngeneic intracranial orthotopic model, and 3) an allogenic intracranial orthotopic model. IDO inhibition was achieved via knockdown of IDO in GL261 cells using short hairpin RNA (shRNA) and through oral administration of the IDO inhibitor, 1-methyl-l-tryptophan (1-MT). Tumor volume in the subcutaneous model and survival time in the intracranial model were evaluated. RESULTS In the subcutaneous model, oral administration of 1-MT significantly suppressed tumor growth, and synergistic antitumor effects of 1-MT and TMZ were observed (p < 0.01). Mice containing intracranially inoculated IDO knockdown cells had a significantly longer survival period as compared with control mice (p < 0.01). CONCLUSIONS These results suggest that IDO expression is implicated in immunosuppression and tumor progression in glioma cells. Therefore, combining IDO

  6. A Phase I Dose-Escalation Study (ISIDE-BT-1) of Accelerated IMRT With Temozolomide in Patients With Glioblastoma

    SciTech Connect

    Morganti, Alessio G.; Balducci, Mario; Salvati, Maurizio; Esposito, Vincenzo; Romanelli, Pantaleo; Ferro, Marica; Calista, Franco; Digesu, Cinzia; Macchia, Gabriella; Ianiri, Massimo; Deodato, Francesco; Cilla, Savino; Piermattei, Angelo M.P.; Valentini, Vincenzo; Cellini, Numa; Cantore, Gian Paolo

    2010-05-01

    Purpose: To determine the maximum tolerated dose (MTD) of fractionated intensity-modulated radiotherapy (IMRT) with temozolomide (TMZ) in patients with glioblastoma. Methods and Materials: A Phase I clinical trial was performed. Eligible patients had surgically resected or biopsy-proven glioblastoma. Patients started TMZ (75 mg/day) during IMRT and continued for 1 year (150-200 mg/day, Days 1-5 every 28 days) or until disease progression. Clinical target volume 1 (CTV1) was the tumor bed +- enhancing lesion with a 10-mm margin; CTV2 was the area of perifocal edema with a 20-mm margin. Planning target volume 1 (PTV1) and PTV2 were defined as the corresponding CTV plus a 5-mm margin. IMRT was delivered in 25 fractions over 5 weeks. Only the dose for PTV1 was escalated (planned dose escalation: 60 Gy, 62.5 Gy, 65 Gy) while maintaining the dose for PTV2 (45 Gy, 1.8 Gy/fraction). Dose limiting toxicities (DLT) were defined as any treatment-related nonhematological adverse effects rated as Grade >=3 or any hematological toxicity rated as >=4 by Radiation Therapy Oncology Group (RTOG) criteria. Results: Nineteen consecutive glioblastoma were treated with step-and-shoot IMRT, planned with the inverse approach (dose to the PTV1: 7 patients, 60 Gy; 6 patients, 62.5 Gy; 6 patients, 65 Gy). Five coplanar beams were used to cover at least 95% of the target volume with the 95% isodose line. Median follow-up time was 23 months (range, 8-40 months). No patient experienced DLT. Grade 1-2 treatment-related neurologic and skin toxicity were common (11 and 19 patients, respectively). No Grade >2 late neurologic toxicities were noted. Conclusion: Accelerated IMRT to a dose of 65 Gy in 25 fractions is well tolerated with TMZ at a daily dose of 75 mg.

  7. Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer

    PubMed Central

    Carducci, Michael A.; Slovin, Susan; Cetnar, Jeremy; Qian, Jiang; McKeegan, Evelyn M.; Refici-Buhr, Marion; Chyla, Brenda; Shepherd, Stacie P.; Giranda, Vincent L.; Alumkal, Joshi J.

    2015-01-01

    Summary Androgen receptor-mediated transcription is directly coupled with the induction of DNA damage, and castration-resistant tumor cells exhibit increased activity of poly (ADP-ribose) polymerase (PARP)-1, a DNA repair enzyme. This study assessed the efficacy and safety of low dose oral PARP inhibitor veliparib (ABT-888) and temozolomide (TMZ) in docetaxel-pretreated patients with metastatic castration-resistant prostate cancer (mCRPC) in a single-arm, open-label, pilot study. Patients with mCRPC progressing on at least one docetaxel-based therapy and prostate specific antigen (PSA) ≥2 ng/mL were treated with veliparib 40 mg twice daily on days 1–7 and TMZ once daily (150 mg/m2/day cycle 1; if well tolerated then 200 mg/m2/day cycle 2 onwards) on days 1–5 q28 days. Patients received 2 (median) treatment cycles (range, 1–9). The primary end-point was confirmed PSA response rate (decline≥30 %). Twenty-six eligible patients were enrolled, 25 evaluable for PSA response. Median baseline PSA was 170 ng/mL. Two patients had a confirmed PSA response (8.0 %; 95 % CI: 1.0– 26.0), 13 stable PSA, and 10 PSA progression. The median progression-free survival was 9 weeks (95 % CI: 7.9–17) and median overall survival 39.6 weeks (95 % CI: 26.6–not estimable). The most frequent treatment-emergent adverse events (AEs) were thrombocytopenia (77 %), anemia (69 %), fatigue (50 %), neutropenia (42 %), nausea (38 %), and constipation (23 %). Grade 3/4 AEs occurring in >10 % of patients were thrombocytopenia (23 %) and anemia (15 %). Veliparib and TMZ combination was well tolerated but with modest activity. Biomarker analysis supported the proof of concept that this combination has some antitumor activity in mCRPC. PMID:24764124

  8. Prospective Study of Bevacizumab Plus Temozolomide in Patients With Advanced Neuroendocrine Tumors

    PubMed Central

    Chan, Jennifer A.; Stuart, Keith; Earle, Craig C.; Clark, Jeffrey W.; Bhargava, Pankaj; Miksad, Rebecca; Blaszkowsky, Lawrence; Enzinger, Peter C.; Meyerhardt, Jeffrey A.; Zheng, Hui; Fuchs, Charles S.; Kulke, Matthew H.

    2012-01-01

    Purpose Both tyrosine kinase inhibitors targeting the vascular endothelial growth factor (VEGF) receptor and bevacizumab, a monoclonal antibody targeting VEGF, have antitumor activity in neuroendocrine tumors (NETs). Temozolomide, an oral analog of dacarbazine, also has activity against NETs when administered alone or in combination with other agents. We performed a phase II study to evaluate the efficacy of temozolomide in combination with bevacizumab in patients with locally advanced or metastatic NETs. Patients and Methods Thirty-four patients (56% with carcinoid, 44% with pancreatic NETs) were treated with temozolomide 150 mg/m2 orally per day on days 1 through 7 and days 15 through 21, together with bevacizumab at a dose of 5 mg/kg per day intravenously on days 1 and 15 of each 28-day cycle. All patients received prophylaxis against Pneumocystis carinii and varicella zoster. Patients were followed for toxicity, biochemical and radiologic response, and survival. Results The combination of temozolomide and bevacizumab was associated with anticipated grade 3 to 4 toxicities, including lymphopenia (53%) and thrombocytopenia (18%). Although the overall radiographic response rate was 15% (five of 34), response rates differed between patients with pancreatic NETs (33%; five of 15) and those with carcinoid tumors (zero of 19). The median progression-free survival was 11.0 months (14.3 months for pancreatic NETs v 7.3 months for carcinoid tumors). The median overall survival was 33.3 months (41.7 months for pancreatic NETs v 18.8 months for carcinoid tumors). Conclusion Temozolomide and bevacizumab can be safely administered together in patients with advanced NETs, and the combination regimen appears promising for patients with pancreatic NETs. Studies evaluating the relative contributions of these two agents to the observed antitumor activity are warranted. PMID:22778320

  9. Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide.

    PubMed

    Golubovskaya, Vita M; Huang, Grace; Ho, Baotran; Yemma, Michael; Morrison, Carl D; Lee, Jisook; Eliceiri, Brian P; Cance, William G

    2013-02-01

    Malignant gliomas are characterized by aggressive tumor growth with a mean survival of 15 to 18 months and frequently developed resistance to temozolomide. Therefore, strategies that sensitize glioma cells to temozolomide have a high translational impact. We have studied focal adhesion kinase (FAK), a tyrosine kinase and emerging therapeutic target that is known to be highly expressed and activated in glioma. In this report, we tested the FAK autophosphorylation inhibitor, Y15, in DBTRG and U87 glioblastoma cells. Y15 significantly decreased viability and clonogenicity in a dose-dependent manner, increased detachment in a dose- and time-dependent manner, caused apoptosis, and inhibited cell invasion in both cell lines. In addition, Y15 treatment decreased autophosphorylation of FAK in a dose-dependent manner and changed cell morphology by causing cell rounding in DBTRG and U87 cells. Administration of Y15 significantly decreased subcutaneous DBTRG tumor growth with decreased Y397-FAK autophosphorylation, activated caspase-3 and PARP. Y15 was administered in an orthotopic glioma model, leading to an increase in mouse survival. The combination of Y15 with temozolomide was more effective than either agent alone in decreasing viability and activating caspase-8 in DBTRG and U87 cells in vitro. In addition, the combination of Y15 and temozolomide synergistically blocked U87 brain tumor growth in vivo. Thus, pharmacologic blockade of FAK autophosphorylation with the oral administration of a small-molecule inhibitor Y15 has a potential to be an effective therapy approach for glioblastoma either alone or in combination with chemotherapy agents such as temozolomide. PMID:23243059

  10. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression.

    PubMed

    Gao, Yong-Tao; Chen, Xiao-Bing; Liu, Hong-Lin

    2016-01-01

    MicroRNAs (miRNA) are believed to play an important role in glioblastoma multiforme (GBM)chemotherapy. Our study aims to investigate potential miRNA biomarkers in GBM. Sixty GBM patients, which were given temozolomide (TMZ) chemotherapy and recurrent radiotherapy, were recruited. miRNA array was performed in cancerous and in paired normal tissues. Microarray results were further validated by a quantitative real-time PCR in selected tissues and GBM cell lines. TMZ resistance cells were developed and cell proliferation along with colony formation assays was determined. Our study employed H2AX formation and flow cytometry to analyse the role of miRNA in DNA damage and apoptosis. Our study illustrated 16 miRNA in which 9 were up-regulated and 7 down-regulated. and their differential expression were demonstrated in a recurrent GBM tissue. Among them, miRNA-370-3p demonstrated the highest level of down- regulation in tissues and in TMZ resistance cells. miRNA-370-3p mimic increased its expression and sensitivity of GBM cells to TMZ by suppressing the self-reparative ability of tumour cell DNA. O(6)-methylguanine-DNA methyltransferase (MGMT) was identified as the direct target gene of miR-370-3p, and it was found to be inversely correlated with miR-370-3p expression in tissue samples obtained. Thus, our study demonstrated a critical clinical role of an up-regulated miR-370-3p expression in glioblastoma multiforme chemotherapy sensitivity. PMID:27595933

  11. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression

    PubMed Central

    Gao, Yong-tao; Chen, Xiao-bing; Liu, Hong-lin

    2016-01-01

    MicroRNAs (miRNA) are believed to play an important role in glioblastoma multiforme (GBM)chemotherapy. Our study aims to investigate potential miRNA biomarkers in GBM. Sixty GBM patients, which were given temozolomide (TMZ) chemotherapy and recurrent radiotherapy, were recruited. miRNA array was performed in cancerous and in paired normal tissues. Microarray results were further validated by a quantitative real-time PCR in selected tissues and GBM cell lines. TMZ resistance cells were developed and cell proliferation along with colony formation assays was determined. Our study employed H2AX formation and flow cytometry to analyse the role of miRNA in DNA damage and apoptosis. Our study illustrated 16 miRNA in which 9 were up-regulated and 7 down-regulated. and their differential expression were demonstrated in a recurrent GBM tissue. Among them, miRNA-370-3p demonstrated the highest level of down- regulation in tissues and in TMZ resistance cells. miRNA-370-3p mimic increased its expression and sensitivity of GBM cells to TMZ by suppressing the self-reparative ability of tumour cell DNA. O6-methylguanine-DNA methyltransferase (MGMT) was identified as the direct target gene of miR-370-3p, and it was found to be inversely correlated with miR-370-3p expression in tissue samples obtained. Thus, our study demonstrated a critical clinical role of an up-regulated miR-370-3p expression in glioblastoma multiforme chemotherapy sensitivity. PMID:27595933

  12. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling.

    PubMed

    Riganti, Chiara; Salaroglio, Iris C; Pinzòn-Daza, Martha L; Caldera, Valentina; Campia, Ivana; Kopecka, Joanna; Mellai, Marta; Annovazzi, Laura; Couraud, Pierre-Olivier; Bosia, Amalia; Ghigo, Dario; Schiffer, Davide

    2014-02-01

    Low delivery of many anticancer drugs across the blood-brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/β-catenin signaling, and reduces the binding of β-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma. PMID:23771630

  13. A Phase 3 Trial of Whole Brain Radiation Therapy and Stereotactic Radiosurgery Alone Versus WBRT and SRS With Temozolomide or Erlotinib for Non-Small Cell Lung Cancer and 1 to 3 Brain Metastases: Radiation Therapy Oncology Group 0320

    SciTech Connect

    Sperduto, Paul W.; Wang, Meihua; Robins, H. Ian; Schell, Michael C.; Werner-Wasik, Maria; Komaki, Ritsuko; Souhami, Luis; Buyyounouski, Mark K.; Khuntia, Deepak; Demas, William; Shah, Sunjay A.; Nedzi, Lucien A.; Perry, Gad; Suh, John H.; Mehta, Minesh P.

    2013-04-01

    Background: A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the blood-brain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. Methods and Materials: NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy × 15 to 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m{sup 2}/day × 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150-200 mg/m{sup 2}/day × 5 days/month) could be continued for as long as 6 months after WBRT + SRS. The primary endpoint was OS. Results: After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT + SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). Conclusion: The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms.

  14. Phase II Pilot Study of Bevacizumab in Combination with Temozolomide and Regional Radiation Therapy for Up-Front Treatment of Patients With Newly Diagnosed Glioblastoma Multiforme: Interim Analysis of Safety and Tolerability

    SciTech Connect

    Lai, Albert Filka, Emese; McGibbon, Bruce; Nghiemphu, Phioanh Leia; Graham, Carrie; Yong, William H.; Mischel, Paul; Liau, Linda M.; Bergsneider, Marvin; Pope, Whitney; Selch, Michael; Cloughesy, Tim

    2008-08-01

    Purpose: To assess interim safety and tolerability of a 10-patient, Phase II pilot study using bevacizumab (BV) in combination with temozolomide (TMZ) and regional radiation therapy (RT) in the up-front treatment of patients with newly diagnosed glioblastoma. Methods and Materials: All patients received standard external beam regional RT of 60.0 Gy in 30 fractions started within 3 to 5 weeks after surgery. Concurrently TMZ was given daily at 75 mg/m{sup 2} for 42 days during RT, and BV was given every 2 weeks at 10 mg/kg starting with the first day of RT/TMZ. After a 2-week interval upon completion of RT, the post-RT phase commenced with resumption of TMZ at 150 to 200 mg/m{sup 2} for 5 days every 4 weeks and continuation of BV every 2 weeks. Results: For these 10 patients, toxicities were compiled until study discontinuation or up to {approx}40 weeks from initial study treatment for those remaining on-study. In terms of serious immediate or delayed neurotoxicity, 1 patient developed presumed radiation-induced optic neuropathy. Among the toxicities that could be potentially treatment related, relatively high incidences of fatigue, myelotoxicity, wound breakdown, and deep venous thrombosis/pulmonary embolism were observed. Conclusion: The observed toxicities were acceptable to continue enrollment toward the overall target group of 70 patients. Preliminary efficacy analysis shows encouraging mean progression-free survival. At this time data are not sufficient to encourage routine off-label use of BV combined with TMZ/RT in the setting of newly diagnosed glioblastoma without longer follow-up, enrollment of additional patients, and thorough efficacy assessment.

  15. Treatment of Aggressive Prolactin-Secreting Pituitary Adenomas with Adjuvant Temozolomide Chemotherapy: A Review.

    PubMed

    Moisi, Marc; Cruz, Aurora S; Benkers, Tara; Rostad, Steven; Broyles, Frances Broyles; Yuen, Kevin; Mayberg, Marc

    2016-01-01

    Most prolactin-secreting pituitary adenomas demonstrate slow growth and are effectively managed with medical/surgical therapy. Rarely, these tumors can behave aggressively with rapid growth and invasion of local tissues, and are refractory to medical, surgical, or radio-surgical therapies. We report a case of a prolactin-secreting adenoma in a young woman, which became progressively aggressive and refractory to usual treatment modalities, but responded to treatment with the chemotherapeutic agent temozolomide. In addition, we review the literature for treatment of refractory adenomas with temozolomide. The clinical and pathologic characteristics of aggressive prolactin-secreting adenomas are reviewed, as well as their response to dopamine agonists, surgery, radiotherapy, and chemotherapy. PMID:27489751

  16. Treatment of Aggressive Prolactin-Secreting Pituitary Adenomas with Adjuvant Temozolomide Chemotherapy: A Review

    PubMed Central

    Cruz, Aurora S; Benkers, Tara; Rostad, Steven; Broyles, Frances Broyles; Yuen, Kevin; Mayberg, Marc

    2016-01-01

    Most prolactin-secreting pituitary adenomas demonstrate slow growth and are effectively managed with medical/surgical therapy. Rarely, these tumors can behave aggressively with rapid growth and invasion of local tissues, and are refractory to medical, surgical, or radio-surgical therapies. We report a case of a prolactin-secreting adenoma in a young woman, which became progressively aggressive and refractory to usual treatment modalities, but responded to treatment with the chemotherapeutic agent temozolomide. In addition, we review the literature for treatment of refractory adenomas with temozolomide. The clinical and pathologic characteristics of aggressive prolactin-secreting adenomas are reviewed, as well as their response to dopamine agonists, surgery, radiotherapy, and chemotherapy. PMID:27489751

  17. Role of Evaluating MGMT Status and 1p36 Deletion in Radiosurgery-Induced Anaplastic Ependymoma That Rapidly and Completely Resolved by Temozolomide Alone: Case Report and Review of the Literature

    PubMed Central

    Hirono, Seiichiro; Iwadate, Yasuo; Kambe, Michiyo; Hiwasa, Takaki; Takiguchi, Masaki; Nakatani, Yukio; Saeki, Naokatsu

    2015-01-01

    Stereotactic gamma knife surgery (GKS)-induced brain tumors are extremely rare, and no ependymal tumors induced by GKS have been reported. Therefore, little is known about their clinical, pathologic, and genetic features. In addition, a regimen of adjuvant chemotherapy for anaplastic ependymoma (AE) has not been established. A 77-year-old man presented with a gait disturbance and left-side cerebellar ataxia more than 19 years after GKS performed for a cerebellar arteriovenous malformation. Imaging studies demonstrated an enhancing mass in the irradiated field with signs of intraventricular dissemination. Surgical resection confirmed the diagnosis of AE. Temozolomide (TMZ) was administrated postoperatively because the methylated promoter region of O6-methylguanine-DNA methyltransferase (MGMT) and 1p36 deletion were observed. Surprisingly, images 16 days after TMZ initiation demonstrated a complete resolution of the residual tumor that was maintained after three cycles of TMZ. This first case report of GKS-induced AE emphasizes the importance of genetic evaluation of MGMT and chromosomal deletion of 1p36 that are not commonly performed in primary ependymal tumors. In addition, it is speculated that a GKS-induced tumor may have a different genetic background compared with the primary tumor because the pathogenesis of the tumors differed. PMID:26251808

  18. Role of Evaluating MGMT Status and 1p36 Deletion in Radiosurgery-Induced Anaplastic Ependymoma That Rapidly and Completely Resolved by Temozolomide Alone: Case Report and Review of the Literature.

    PubMed

    Hirono, Seiichiro; Iwadate, Yasuo; Kambe, Michiyo; Hiwasa, Takaki; Takiguchi, Masaki; Nakatani, Yukio; Saeki, Naokatsu

    2015-07-01

    Stereotactic gamma knife surgery (GKS)-induced brain tumors are extremely rare, and no ependymal tumors induced by GKS have been reported. Therefore, little is known about their clinical, pathologic, and genetic features. In addition, a regimen of adjuvant chemotherapy for anaplastic ependymoma (AE) has not been established. A 77-year-old man presented with a gait disturbance and left-side cerebellar ataxia more than 19 years after GKS performed for a cerebellar arteriovenous malformation. Imaging studies demonstrated an enhancing mass in the irradiated field with signs of intraventricular dissemination. Surgical resection confirmed the diagnosis of AE. Temozolomide (TMZ) was administrated postoperatively because the methylated promoter region of O(6)-methylguanine-DNA methyltransferase (MGMT) and 1p36 deletion were observed. Surprisingly, images 16 days after TMZ initiation demonstrated a complete resolution of the residual tumor that was maintained after three cycles of TMZ. This first case report of GKS-induced AE emphasizes the importance of genetic evaluation of MGMT and chromosomal deletion of 1p36 that are not commonly performed in primary ependymal tumors. In addition, it is speculated that a GKS-induced tumor may have a different genetic background compared with the primary tumor because the pathogenesis of the tumors differed. PMID:26251808

  19. EG-02CORRELATION OF MGMT PROMOTER METHYLATION STATUS ANALYSIS USING 6 MS-MLPA PROBES AND CLINICAL RESPONSE OF TEMOZOLOMIDE IN GLIOBLASTOMA PATIENTS

    PubMed Central

    Fakkert, Michelle; de Leng, Wendy; de Weger, Roel; Willems, Stefan; Spliet, Wim; van Hecke, Wim; de Vos, Filip

    2014-01-01

    INTRODUCTION: For patients diagnosed with Glioblastoma Multiforme (GBM) O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is an important predictive factor for treatment with temozolomide (TMZ). MGMT reverses the toxic effect of alkylating chemotherapies like TMZ, therefore absence of the MGMT protein, due to promoter hypermethylation, results in greater tumor response and prolonged survival. MGMT methylation status can be determined using Methylation Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA). Previous research has documented the predictive value of MGMT MS-MLPA probe mix ME011-A1 containing 3 MGMT probes, but no documentation is available for the current commercially available MS-MLPA probe mix ME011-B containing 6 MGMT probes. The aim of this study is to determine the predictive value of MGMT promoter methylation status for GBM patients using the ME011-B probe mix. METHODS: Patients were included if diagnosed with GBM and treated with TMZ. Retrospectively 102 patients were evaluated for MGMT promoter methylation using the MS-MLPA probe mix ME011-B. Methylation status was compared to clinical outcome to determine the predictive value of MS-MLPA promoter methylation status determined by ME011-B probes. Comparison of methylation status with clinical response was also used to determine which combination of probes provides the best prediction of the response to TMZ. RESULTS: Preliminary MS-MLPA results of 79 patients indicate that the number of patients with promoter hypermethylation in tumors ranges from 15%-67% depending on the probe using a cut-off value of >25%. However, when eliminating the lowest and highest probe and calculating the mean, 65% of the tumors show hypermethylation. CONCLUSION: MGMT promoter methylation status was determined using MS-MLPA probe mix ME011-B, results indicate that over half of the patients diagnosed with GBM might benefit from TMZ therapy. Obtaining clinical response of patients and further

  20. Resistance to DNA Damaging Agents Produced Invasive Phenotype of Rat Glioma Cells-Characterization of a New in Vivo Model.

    PubMed

    Stojković, Sonja; Podolski-Renić, Ana; Dinić, Jelena; Pavković, Željko; Ayuso, Jose M; Fernández, Luis J; Ochoa, Ignacio; Pérez-García, Victor M; Pešić, Vesna; Pešić, Milica

    2016-01-01

    Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide (TMZ). Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells' invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats' behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells. PMID:27355941

  1. Prediction of Response to Concurrent Chemoradiotherapy with Temozolomide in Glioblastoma: Application of Immediate Post-Operative Dynamic Susceptibility Contrast and Diffusion-Weighted MR Imaging

    PubMed Central

    Lee, Eun Kyoung; Yun, Tae Jin; Kang, Koung Mi; Kim, Tae Min; Lee, Se-Hoon; Park, Chul-Kee; Park, Sung-Hye; Kim, Il Han

    2015-01-01

    Objective To determine whether histogram values of the normalized apparent diffusion coefficient (nADC) and normalized cerebral blood volume (nCBV) maps obtained in contrast-enhancing lesions detected on immediate post-operative MR imaging can be used to predict the patient response to concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ). Materials and Methods Twenty-four patients with GBM who had shown measurable contrast enhancement on immediate post-operative MR imaging and had subsequently undergone CCRT with TMZ were retrospectively analyzed. The corresponding histogram parameters of nCBV and nADC maps for measurable contrast-enhancing lesions were calculated. Patient groups with progression (n = 11) and non-progression (n = 13) at one year after the operation were identified, and the histogram parameters were compared between the two groups. Receiver operating characteristic (ROC) analysis was used to determine the best cutoff value for predicting progression. Progression-free survival (PFS) was determined with the Kaplan-Meier method and the log-rank test. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99) on immediate post-operative MR imaging was a significant predictor of one-year progression (p = 0.033). ROC analysis showed that the best cutoff value for predicting progression after CCRT was 5.537 (sensitivity and specificity were 72.7% and 76.9%, respectively). The patients with an nCBV C99 of < 5.537 had a significantly longer PFS than those with an nCBV C99 of ≥ 5.537 (p = 0.026). Conclusion The nCBV C99 from the cumulative histogram analysis of the nCBV from immediate post-operative MR imaging may be feasible for predicting glioblastoma response to CCRT with TMZ. PMID:26576125

  2. MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide

    PubMed Central

    Chen, Rui; Liu, Huan; Cheng, Quan; Jiang, Bing; Peng, Renjun; Zou, Qin; Yang, Wenren; Yang, Xiaosheng; Wu, Xiaobing; Chen, Zigui

    2016-01-01

    ABSTRACT MicroRNAs (miRNAs), a class of small non-coding RNAs, can induce mRNA degradation or repress translation by binding to the 3′-untranslated region (UTR) of its target mRNA. Recently, some specific miRNAs, e.g. miR-93, have been found to be involved in pathological processes by targeting some oncogenes or tumor suppressors in glioma. However, the regulatory mechanism of miR-93 in the biological behaviors and chemoresistance of glioma cells remains unclear. In the present study, in situ hybridization and real-time RT-PCR data indicated that miR-93 was significantly upregulated in glioma patients (n=43) compared with normal brain tissues (n=8). Moreover, the upregulated miR-93 level was significantly associated with the advanced malignancy. We also found that upregulation of miR-93 promoted the proliferation, migration and invasion of glioma cells, and that miR-93 was involved in the regulation of cell cycle progression by mediating the protein levels of P21, P27, P53 and Cyclin D1. P21 was further identified as a direct target of miR-93. Knockdown of P21 attenuated the suppressive effects of miR-93 inhibition on cell cycle progression and colony formation. In addition, inhibition of miR-93 enhanced the chemosensitization of glioma cells to temozolomide (TMZ). Based on these above data, our study demonstrates that miR-93, upregulated in glioma, promotes the proliferation, cell cycle progression, migration and invasion of human glioma cells and suppresses their chemosensitivity to TMZ. Therefore, miR-93 may become a promising diagnostic marker and therapeutic target for glioma. PMID:27185265

  3. Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients

    PubMed Central

    Koch, Cameron J.; Lustig, Robert A.; Yang, Xiang-Yang; Jenkins, Walter T.; Wolf, Ronald L.; Martinez-Lage, Maria; Desai, Arati; Williams, Dewight; Evans, Sydney M.

    2014-01-01

    The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. METHODS: 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue–labeled Annexin V positivity were used to identify the MVs reported herein. RESULTS: We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). CONCLUSION: These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings. PMID:25500085

  4. The microarray gene profiling analysis of glioblastoma cancer cells reveals genes affected by FAK inhibitor Y15 and combination of Y15 and temozolomide.

    PubMed

    Huang, Grace; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Qiang, Hu; Golubovskaya, Vita

    2014-01-01

    Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (p<0.05). Moreover, DBTRG and U87 cells treated with Y15 changed expression of 1332 and 462 genes more than 1.5 fold, p<0.05, respectively and had 237 common genes affected by Y15. The common genes up-regulated by Y15 included GADD45A, HSPA6 (heat-shock 70); DUSP1, DUSP 5 (dual-phosphatase 5); CDKN1A (p21) and common down-regulated genes included kinesins, such as KIF11, 14, 20A, 20B; topoisomerase II, TOP2A; cyclin F; cell cycle protein: BUB1; PARP1, POLA1. In addition, we detected genes affected by temozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy. PMID:23387973

  5. Temozolomide-perillyl alcohol conjugate induced reactive oxygen species accumulation contributes to its cytotoxicity against non-small cell lung cancer

    PubMed Central

    Song, Xingguo; Xie, Li; Wang, Xingwu; Zeng, Qian; Chen, Thomas C.; Wang, Weijun; Song, Xianrang

    2016-01-01

    Temozolomide-perillyl alcohol conjugate (TMZ − POH), a novel temozolomide analog, was reported to play a cytotoxic role in triple-negative breast cancer and TMZ-resistant gliomas. In a current study we had demonstrated how TMZ − POH also exhibited its cytotoxicity against non-small cell lung cancer (NSCLC), the most common type of lung cancer, as evidence from cell/tumor proliferation inhibition, G2/M arrest, DNA damage and mitochondrial apoptosis. Importantly, TMZ − POH’s cytotoxicity is closely related to reactive oxygen species (ROS) accumulation because it can be reversed by two ROS scavengers, catalase (CAT) and N-acetyl-L-cysteine (NAC). TMZ − POH induces mitochondrial transmembrane potential (MTP) decrease and ROS accumulation, in turn activates mitogen-activated protein kinase (MAPKs) signaling and mitochondrial apoptosis, and then exerts its cytotoxicity, thus proposing TMZ − POH as a potential therapeutic candidate for NSCLC. PMID:26949038

  6. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells

    PubMed Central

    Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-01-01

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment. PMID:25557167

  7. QL-13QUALITY OF LIFE AND COGNITIVE FUNCTIONING IN THE RANDOMIZED, MULTICENTER GLARIUS TRIAL INVESTIGATING BEVACIZUMAB/IRINOTECAN VS STANDARD TEMOZOLOMIDE IN NEWLY DIAGNOSED, MGMT-NON-METHYLATED GLIOBLASTOMA PATIENTS

    PubMed Central

    Herrlinger, Ulrich; Schäfer, Niklas; Steinbach, Joachim; Weyerbrock, Astrid; Hau, Peter; Goldbrunner, Roland; Kohnen, Ralf; Urbach, Horst; Stummer, Walter; Glas, Martin

    2014-01-01

    BACKGROUND: In the GLARIUS trial, progression-free survival was significantly prolonged and overall survival was similar in both arms. The present report focuses on quality of life (QoL), Karnofsky performance score (KPS) and cognitive functioning during first-line and postprogression therapy. METHODS: Patients (n = 170) with newly diagnosed, MGMT-non-methylated glioblastoma were randomized 2:1 for bevacizumab (BEV)/irinotecan (IRI) therapy or standard temozolomide (TMZ) therapy. Every 3 months, KPS, QoL (EORTC-QLQ C30 and BN20) and cognitive functioning (MMSE) was determined. Analysis included a longitudinal mixed model analysis and a Kaplan-Meier analysis of the time to deterioration (10 points in QoL, points, 3 points in MMSE, 20% in KPS; tumor progression not regarded as an event). RESULTS: In KPS, MMSE and all 5 prespecified dimensions of QoL (global health status, physical functioning, social functioning, motor dysfunction, communication deficit) mixed model analyses and time to first deterioration analyses did not detect differences between the treatment arms. Time to deterioration of nausea/vomiting was shorter with BEV/IRI (p = 0.024). At progression, the crossover rate in the BEV/IRI arm (to TMZ) and in the standard TMZ arm (to BEV/(IRI) was identical with 65%. Time to postprogression deterioration was significantly longer in the standard TMZ arm receiving crossover BEV/(IRI) in the majority of patients regarding 13 of 26 QoL dimensions including prespecified global health status, social functioning, motor dysfunction, communication deficit. Time to postprogression deterioration was similar for MMSE, but for KPS it tended to be prolonged in the standard arm receiving crossover BEV/(IRI) (p = 0.09). CONCLUSION: Except for IRI-induced nausea/vomiting, first-line BEV/IRI therapy was not associated with any detrimental effects on QoL, performance status or cognition as compared to TMZ standard therapy. After progression, patients pretreated with TMZ in the

  8. Phase 2 Trial of Hypofractionated High-Dose Intensity Modulated Radiation Therapy With Concurrent and Adjuvant Temozolomide for Newly Diagnosed Glioblastoma

    SciTech Connect

    Iuchi, Toshihiko; Hatano, Kazuo; Kodama, Takashi; Sakaida, Tsukasa; Yokoi, Sana; Kawasaki, Koichiro; Hasegawa, Yuzo; Hara, Ryusuke

    2014-03-15

    Purpose/Objectives: To assess the effect and toxicity of hypofractionated high-dose intensity modulated radiation therapy (IMRT) with concurrent and adjuvant temozolomide (TMZ) in 46 patients with newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: All patients underwent postsurgical hypofractionated high-dose IMRT. Three layered planning target volumes (PTVs) were contoured. PTV1 was the surgical cavity and residual tumor on T1-weighted magnetic resonance images with 5-mm margins, PTV2 was the area with 15-mm margins surrounding the PTV1, and PTV3 was the high-intensity area on fluid-attenuated inversion recovery images. Irradiation was performed in 8 fractions at total doses of 68, 40, and 32 Gy for PTV1, PTV2, and PTV3, respectively. Concurrent TMZ was given at 75 mg/m{sup 2}/day for 42 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Overall and progression-free survivals were evaluated. Results: No acute IMRT-related toxicity was observed. The dominant posttreatment failure pattern was dissemination. During a median follow-up time of 16.3 months (range, 4.3-80.8 months) for all patients and 23.7 months (range, 12.4-80.8 months) for living patients, the median overall survival was 20.0 months after treatment. Radiation necrosis was diagnosed in 20 patients and was observed not only in the high-dose field but also in the subventricular zone (SVZ). Necrosis in the SVZ was significantly correlated with prolonged survival (hazard ratio, 4.08; P=.007) but caused deterioration in the performance status of long-term survivors. Conclusions: Hypofractionated high-dose IMRT with concurrent and adjuvant TMZ altered the dominant failure pattern from localized to disseminated and prolonged the survival of patients with GBM. Necrosis in the SVZ was associated with better patient survival, but the benefit of radiation to this area remains controversial.

  9. HMGN5 blockade by siRNA enhances apoptosis, suppresses invasion and increases chemosensitivity to temozolomide in meningiomas.

    PubMed

    He, Jing; Liu, Chaoyang; Wang, Bin; Li, Na; Zuo, Guoqin; Gao, Dewei

    2015-10-01

    The high-mobility group nucleosome-binding protein-5 (HMGN5) is frequently overexpressed in various malignant cancers. However, the potential correlation between HMGN5 and prognosis in patients with meningiomas remains unknown. In the present study, we explored the expression of HMGN5 in meningiomas with immunohistochemistry and correlated the results to the patient outcome. Potential effects of HMGN5 on tumor growth, apoptosis and invasion were also examined in representative cell lines (IOMM-Lee and CH157) by downregulating HMGN5 with RNA interference (siRNA). We demonstrate that there is a positive association between HMGN5 expression and meningioma histological grade. Statistical analysis reveals that lower HMGN5 expression predict lower meningioma recurrence. In addition, downregulation of HMGN5 inhibits IOMM-Lee and CH157 cell proliferation, enhances cell apoptosis and suppresses tumor invasion. Our results further revealed that HMGN5 inhibition decreased P-glycoprotein (MDR-1) expression without affecting multidrug resistance associated proteins 1 (MRP-1) expression to increase chemosensitivity to temozolomide (TMZ) of meningioma cells. Collectively, this study indicates that HMGN5 is a novel target for developing effective therapeutic strategies for malignant meningiomas. PMID:26315299

  10. Rationale for Poly(ADP-ribose) Polymerase (PARP) Inhibitors in Combination Therapy with Camptothecins or Temozolomide Based on PARP Trapping versus Catalytic Inhibition

    PubMed Central

    Murai, Junko; Zhang, Yiping; Morris, Joel; Ji, Jiuping; Takeda, Shunichi; Doroshow, James H.

    2014-01-01

    We recently showed that poly(ADP-ribose) polymerase (PARP) inhibitors exert their cytotoxicity primarily by trapping PARP-DNA complexes in addition to their NAD+-competitive catalytic inhibitory mechanism. PARP trapping is drug-specific, with olaparib exhibiting a greater ability than veliparib, whereas both compounds are potent catalytic PARP inhibitors. Here, we evaluated the combination of olaparib or veliparib with therapeutically relevant DNA-targeted drugs, including the topoisomerase I inhibitor camptothecin, the alkylating agent temozolomide, the cross-linking agent cisplatin, and the topoisomerase II inhibitor etoposide at the cellular and molecular levels. We determined PARP-DNA trapping and catalytic PARP inhibition in genetically modified chicken lymphoma DT40, human prostate DU145, and glioblastoma SF295 cancer cells. For camptothecin, both PARP inhibitors showed highly synergistic effects due to catalytic PARP inhibition, indicating the value of combining either veliparib or olaparib with topoisomerase I inhibitors. On the other hand, for temozolomide, PARP trapping was critical in addition to catalytic inhibition, consistent with the fact that olaparib was more effective than veliparib in combination with temozolomide. For cisplatin and etoposide, olaparib only showed no or a weak combination effect, which is consistent with the lack of involvement of PARP in the repair of cisplatin- and etoposide-induced lesions. Hence, we conclude that catalytic PARP inhibitors are highly effective in combination with camptothecins, whereas PARP inhibitors capable of PARP trapping are more effective with temozolomide. Our study provides insights in combination treatment rationales for different PARP inhibitors. PMID:24650937

  11. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition.

    PubMed

    Murai, Junko; Zhang, Yiping; Morris, Joel; Ji, Jiuping; Takeda, Shunichi; Doroshow, James H; Pommier, Yves

    2014-06-01

    We recently showed that poly(ADP-ribose) polymerase (PARP) inhibitors exert their cytotoxicity primarily by trapping PARP-DNA complexes in addition to their NAD(+)-competitive catalytic inhibitory mechanism. PARP trapping is drug-specific, with olaparib exhibiting a greater ability than veliparib, whereas both compounds are potent catalytic PARP inhibitors. Here, we evaluated the combination of olaparib or veliparib with therapeutically relevant DNA-targeted drugs, including the topoisomerase I inhibitor camptothecin, the alkylating agent temozolomide, the cross-linking agent cisplatin, and the topoisomerase II inhibitor etoposide at the cellular and molecular levels. We determined PARP-DNA trapping and catalytic PARP inhibition in genetically modified chicken lymphoma DT40, human prostate DU145, and glioblastoma SF295 cancer cells. For camptothecin, both PARP inhibitors showed highly synergistic effects due to catalytic PARP inhibition, indicating the value of combining either veliparib or olaparib with topoisomerase I inhibitors. On the other hand, for temozolomide, PARP trapping was critical in addition to catalytic inhibition, consistent with the fact that olaparib was more effective than veliparib in combination with temozolomide. For cisplatin and etoposide, olaparib only showed no or a weak combination effect, which is consistent with the lack of involvement of PARP in the repair of cisplatin- and etoposide-induced lesions. Hence, we conclude that catalytic PARP inhibitors are highly effective in combination with camptothecins, whereas PARP inhibitors capable of PARP trapping are more effective with temozolomide. Our study provides insights in combination treatment rationales for different PARP inhibitors. PMID:24650937

  12. Phase 2 Study of Temozolomide-Based Chemoradiation Therapy for High-Risk Low-Grade Gliomas: Preliminary Results of Radiation Therapy Oncology Group 0424

    SciTech Connect

    Fisher, Barbara J.; Hu, Chen; Macdonald, David R.; Lesser, Glenn J.; Coons, Stephen W.; Brachman, David G.; Ryu, Samuel; Werner-Wasik, Maria; Bahary, Jean-Paul; Liu, Junfeng; Chakravarti, Arnab; Mehta, Minesh

    2015-03-01

    Purpose: Radiation Therapy Oncology Group (RTOG) 0424 was a phase 2 study of a high-risk low-grade glioma (LGG) population who were treated with temozolomide (TMZ) and radiation therapy (RT), and outcomes were compared to those of historical controls. This study was designed to detect a 43% increase in median survival time (MST) from 40.5 to 57.9 months and a 20% improvement in 3-year overall survival (OS) rate from 54% to 65% at a 10% significance level (1-sided) and 96% power. Methods and Materials: Patients with LGGs with 3 or more risk factors for recurrence (age ≥40 years, astrocytoma histology, bihemispherical tumor, preoperative tumor diameter of ≥6 cm, or a preoperative neurological function status of >1) were treated with RT (54 Gy in 30 fractions) and concurrent and adjuvant TMZ. Results: From 2005 to 2009, 129 evaluable patients (75 males and 54 females) were accrued. Median age was 49 years; 91% had a Zubrod score of 0 or 1; and 69%, 25%, and 6% of patients had 3, 4, and 5 risk factors, respectively. Patients had median and minimum follow-up examinations of 4.1 years and 3 years, respectively. The 3-year OS rate was 73.1% (95% confidence interval: 65.3%-80.8%), which was significantly improved compared to that of prespecified historical control values (P<.001). Median survival time has not yet been reached. Three-year progression-free survival was 59.2%. Grades 3 and 4 adverse events occurred in 43% and 10% of patients, respectively. One patient died of herpes encephalitis. Conclusions: The 3-year OS rate of 73.1% for RTOG 0424 high-risk LGG patients is higher than that reported for historical controls (P<.001) and the study-hypothesized rate of 65%.

  13. MGMT Gene Promoter Methylation as a Potent Prognostic Factor in Glioblastoma Treated With Temozolomide-Based Chemoradiotherapy: A Single-Institution Study

    SciTech Connect

    Kim, Young Suk; Kim, Se Hoon; Cho, Jaeho; Kim, Jun Won; Chang, Jong Hee; Kim, Dong Suk; Lee, Kyu Sung; Suh, Chang-Ok

    2012-11-01

    Purpose: Recently, cells deficient in O{sup 6}-methylguanine-DNA methyltransferase (MGMT) were found to show increased sensitivity to temozolomide (TMZ). We evaluated whether hypermethylation of MGMT was associated with survival in patients with glioblastoma multiforme (GBM). Methods and Materials: We retrospectively analyzed 93 patients with histologically confirmed GBM who received involved-field radiotherapy with TMZ from 2001 to 2008. The median age was 58 years (range, 24-78 years). Surgical resection was total in 39 patients (42%), subtotal in 30 patients (32%), and partial in 17 patients (18%); only a biopsy was performed in 7 patients (8%). Postoperative radiotherapy began within 3 weeks of surgery in 87% of the patients. Radiotherapy doses ranged from 50 to 74 Gy (median, 70 Gy). MGMT gene methylation was determined in 78 patients; MGMT was unmethylated in 43 patients (55%) and methylated in 35 patients (45%). The median follow-up period was 22 months (range, 3-88 months) for all patients. Results: The median overall survival (OS) was 22 months, and progression-free survival (PFS) was 11 months. MGMT gene methylation was an independently significant prognostic factor for both OS (p = 0.002) and PFS (p = 0.008) in multivariate analysis. The median OS was 29 months for the methylated group and 20 months for the unmethylated group. In 35 patients with methylated MGMT genes, the 2-year and 5-year OS rates were 54% and 31%, respectively. Six patients with combined prognostic factors of methylated MGMT genes, age {<=}50 years, and total/subtotal resections are all alive 38 to 77 months after operation, whereas the median OS in 8 patients with unmethylated MGMT genes, age >50 years, and less than subtotal resection was 13.2 months. Conclusion: We confirmed that MGMT gene methylation is a potent prognostic factor in patients with GBM. Our results suggest that early postoperative radiotherapy and a high total/subtotal resection rate might further improve the

  14. Health-Related Quality of Life in Elderly Patients With Newly Diagnosed Glioblastoma Treated With Short-Course Radiation Therapy Plus Concomitant and Adjuvant Temozolomide

    SciTech Connect

    Minniti, Giuseppe; Scaringi, Claudia; Baldoni, Alessandra; Lanzetta, Gaetano; De Sanctis, Vitaliana; Esposito, Vincenzo; Enrici, Riccardo Maurizi

    2013-06-01

    Purpose: To describe the quality of life (QOL) in elderly patients with glioblastoma (GBM) treated with an abbreviated course of radiation therapy (RT; 40 Gy in 15 fractions) plus concomitant and adjuvant temozolomide (TMZ). Methods and Materials: Health-related QOL (HRQOL) was assessed by European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core-30 (QLQ-C30, version 3) and EORTC Quality of Life Questionnaire Brain Cancer Module (QLQ-BN20). Changes from baseline in the score of 9 preselected domains (global QLQ, social functioning, cognitive functioning, emotional functioning, physical functioning, motor dysfunction, communication deficit, fatigue, insomnia) were determined 4 weeks after RT and thereafter every 8 weeks during the treatment until disease progression. The proportion of patients with improved HRQOL scores, defined as a change of 10 points or more, and duration of changes were recorded. Results: Sixty-five patients completed the questionnaires at baseline. The treatment was consistently associated with improvement or stability in most of the preselected HRQOL domains. Global health improved over time; mean score differed by 9.6 points between baseline and 6-month follow-up (P=.03). For social functioning and cognitive functioning, mean scores improved over time, with a maximum difference of 10.4 points and 9.5 points between baseline and 6-month follow-up (P=.01 and P=.02), respectively. By contrast, fatigue worsened over time, with a difference in mean score of 5.6 points between baseline and 4-month follow-up (P=.02). Conclusions: A short course of RT in combination with TMZ in elderly patients with GBM was associated with survival benefit without a negative effect on HRQOL until the time of disease progression.

  15. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells

    PubMed Central

    Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  16. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.

    PubMed

    Farace, Cristiano; Oliver, Jaime Antonio; Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  17. Phase 1/2 Trials of Temozolomide, Motexafin Gadolinium, and 60-Gy Fractionated Radiation for Newly Diagnosed Supratentorial Glioblastoma Multiforme: Final Results of RTOG 0513

    SciTech Connect

    Brachman, David G.; Pugh, Stephanie L.; Ashby, Lynn S.; Thomas, Theresa A.; Dunbar, Erin M.; Narayan, Samir; Robins, H. Ian; Bovi, Joseph A.; Rockhill, Jason K.; Won, Minhee; Curran, Walter P.

    2015-04-01

    Purpose: The purpose of phase 1 was to determine the maximum tolerated dose (MTD) of motexafin gadolinium (MGd) given concurrently with temozolomide (TMZ) and radiation therapy (RT) in patients with newly diagnosed supratentorial glioblastoma multiforme (GBM). Phase 2 determined whether this combination improved overall survival (OS) and progression-free survival (PFS) in GBM recursive partitioning analysis class III to V patients compared to therapies for recently published historical controls. Methods and Materials: Dose escalation in phase 1 progressed through 3 cohorts until 2 of 6 patients experienced dose-limiting toxicity or a dose of 5 mg/kg was reached. Once MTD was established, a 1-sided 1-sample log-rank test at significance level of .1 had 85% power to detect a median survival difference (13.69 vs 18.48 months) with 60 deaths over a 12-month accrual period and an additional 18 months of follow-up. OS and PFS were estimated using the Kaplan-Meier method. Results: In phase 1, 24 patients were enrolled. The MTD established was 5 mg/kg, given intravenously 5 days a week for the first 10 RT fractions, then 3 times a week for the duration of RT. The 7 patients enrolled in the third dose level and the 94 enrolled in phase 2 received this dose. Of these 101 patients, 87 were eligible and evaluable. Median survival time was 15.6 months (95% confidence interval [CI]: 12.9-17.6 months), not significantly different from that of the historical control (P=.36). Median PFS was 7.6 months (95% CI: 5.7-9.6 months). One patient (1%) experienced a grade 5 adverse event possibly related to therapy during the concurrent phase, and none experience toxicity during adjuvant TMZ therapy. Conclusions: Treatment was well tolerated, but median OS did not reach improvement specified by protocol compared to historical control, indicating that the combination of standard RT with TMZ and MGd did not achieve a significant survival advantage.

  18. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy

    SciTech Connect

    Charnley, Natalie . E-mail: natalie.charnley@mmic.man.ac.uk; West, Catharine M.; Barnett, Carolyn M.; Brock, Catherine; Bydder, Graeme M.; Glaser, Mark; Newlands, Ed S.; Swindell, Ric; Matthews, Julian; Price, Pat

    2006-10-01

    Purpose: To compare the ability of positron emission tomography (PET) to predict response to temozolomide vs. temozolomide plus radiotherapy. Methods and Materials: Nineteen patients with high-grade glioma (HGG) were studied. Patients with recurrent glioma received temozolomide 75 mg/m{sup 2} daily for 7 weeks (n = 8). Newly diagnosed patients received temozolomide 75 mg/m{sup 2} daily plus radiotherapy 60 Gy/30 fractions over 6 weeks, followed by six cycles of adjuvant temozolomide 200 mg/m{sup 2}/day (Days 1-5 q28) starting 1 month after radiotherapy (n = 11). [{sup 18}F]Fluorodeoxyglucose ([{sup 18}F]FDG) PET scan and magnetic resonance imaging (MRI) were performed at baseline, and 7 and 19 weeks after initiation of temozolomide administration. Changes in glucose metabolic rate (MRGlu) and MRI response were correlated with patient survival. Results: In the temozolomide-alone group, patients who survived >26 vs. {<=}26 weeks showed a greater reduction in MRGlu measured at 7 weeks with median changes of -34% and -4%, respectively (p = 0.02). PET responders, defined as a reduction in MRGlu {>=}25%, survived longer than nonresponders with mean survival times of 75 weeks (95% CI, 34-115 vs. 20 weeks (95% CI, 14-26) (p = 0.0067). In the small group of patients studied, there was no relationship between MRI response and survival (p = 0.52). For patients receiving temozolomide plus radiotherapy, there was no difference in survival between PET responders and nonresponders (p = 0.32). Conclusions: Early changes in MRGlu predict response to temozolomide, but not temozolomide plus radiotherapy.

  19. Decitabine Nano-conjugate Sensitizing Human Glioblastoma Cells to Temozolomide

    PubMed Central

    Cui, Yi; Naz, Asia; Thompson, David H.; Irudayaraj, Joseph

    2015-01-01

    In this study we developed and characterized a delivery system for the epigenetic demethylating drug, decitabine, to sensitize temozolomide-resistant human glioblastoma multiforme (GBM) cells to alkylating chemotherapy. A poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based nano-conjugate was fabricated to encapsulate decitabine and achieved a better therapeutic response in GBM cells. After synthesis, the highly efficient uptake process and intracellular dynamics of this nano-conjugate was monitored by single-molecule fluorescence tools. Our experiments demonstrated that, under an acidic pH due to active glycolysis in cancer cells, the PLGA-PEG nano-vector could release the conjugated decitabine at a faster rate, after which the hydrolyzed lactic acid and glycolic acid would further acidify the intracellular microenvironment, thus providing a “positive feedback” to increase the effective drug concentration and realize growth inhibition. In temozolomide-resistant GBM cells, decitabine can potentiate the cytotoxic DNA alkylation by counteracting cytosine methylation and reactivating tumor suppressor genes, such as p53 and p21. Owing to excellent internalization and endo-lysosomal escape enabled by the PLGA-PEG backbone, the encapsulated decitabine exhibited a better anti-GBM potential than free drug molecules. Hence, the synthesized nano-conjugate and temozolomide could act in synergy to deliver a more potent and long-term anti-proliferation effect against malignant GBM cells. PMID:25751281

  20. Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma

    PubMed Central

    Butowski, Nicholas; Chang, Susan M.; Lamborn, Kathleen R.; Polley, Mei–Yin; Pieper, Russell; Costello, Joseph F.; Vandenberg, Scott; Parvataneni, Rupa; Nicole, Angelina; Sneed, Patricia K.; Clarke, Jennifer; Hsieh, Emily; Costa, Bruno M.; Reis, Rui M.; Hristova-Kazmierski, Maria; Nicol, Steven J.; Thornton, Donald E.; Prados, Michael D.

    2011-01-01

    This open-label, single-arm, phase II study combined enzastaurin with temozolomide plus radiation therapy (RT) to treat glioblastoma multiforme (GBM) and gliosarcoma. Adults with newly diagnosed disease and Karnofsky performance status (KPS) ≥ 60 were enrolled. Treatment was started within 5 weeks after surgical diagnosis. RT consisted of 60 Gy over 6 weeks. Temozolomide was given at 75 mg/m2 daily during RT and then adjuvantly at 200 mg/m2 daily for 5 days, followed by a 23-day break. Enzastaurin was given once daily during RT and in the adjuvant period at 250 mg/day. Cycles were 28 days. The primary end point was overall survival (OS). Progression-free survival (PFS), toxicity, and correlations between efficacy and molecular markers analyzed from tumor tissue samples were also evaluated. A prospectively planned analysis compared OS and PFS of the current trial with outcomes from 3 historical phase II trials that combined novel agents with temozolomide plus RT in patients with GBM or gliosarcoma. Sixty-six patients were enrolled. The treatment regimen was well tolerated. OS (median, 74 weeks) and PFS (median, 36 weeks) results from the current trial were comparable to those from a prior phase II study using erlotininb and were significantly better than those from 2 other previous studies that used thalidomide or cis-retinoic acid, all in combination with temozolomide plus RT. A positive correlation between O-6-methylguanine-DNA methyltransferase promoter methylation and OS was observed. Adjusting for age and KPS, no other biomarker was associated with survival outcome. Correlation of relevant biomarkers with OS may be useful in future trials. PMID:21896554

  1. Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma.

    PubMed

    Butowski, Nicholas; Chang, Susan M; Lamborn, Kathleen R; Polley, Mei-Yin; Pieper, Russell; Costello, Joseph F; Vandenberg, Scott; Parvataneni, Rupa; Nicole, Angelina; Sneed, Patricia K; Clarke, Jennifer; Hsieh, Emily; Costa, Bruno M; Reis, Rui M; Hristova-Kazmierski, Maria; Nicol, Steven J; Thornton, Donald E; Prados, Michael D

    2011-12-01

    This open-label, single-arm, phase II study combined enzastaurin with temozolomide plus radiation therapy (RT) to treat glioblastoma multiforme (GBM) and gliosarcoma. Adults with newly diagnosed disease and Karnofsky performance status (KPS) ≥ 60 were enrolled. Treatment was started within 5 weeks after surgical diagnosis. RT consisted of 60 Gy over 6 weeks. Temozolomide was given at 75 mg/m(2) daily during RT and then adjuvantly at 200 mg/m(2) daily for 5 days, followed by a 23-day break. Enzastaurin was given once daily during RT and in the adjuvant period at 250 mg/day. Cycles were 28 days. The primary end point was overall survival (OS). Progression-free survival (PFS), toxicity, and correlations between efficacy and molecular markers analyzed from tumor tissue samples were also evaluated. A prospectively planned analysis compared OS and PFS of the current trial with outcomes from 3 historical phase II trials that combined novel agents with temozolomide plus RT in patients with GBM or gliosarcoma. Sixty-six patients were enrolled. The treatment regimen was well tolerated. OS (median, 74 weeks) and PFS (median, 36 weeks) results from the current trial were comparable to those from a prior phase II study using erlotinib and were significantly better than those from 2 other previous studies that used thalidomide or cis-retinoic acid, all in combination with temozolomide plus RT. A positive correlation between O-6-methylguanine-DNA methyltransferase promoter methylation and OS was observed. Adjusting for age and KPS, no other biomarker was associated with survival outcome. Correlation of relevant biomarkers with OS may be useful in future trials. PMID:21896554

  2. Predictors of survival and effect of short (40 Gy) or standard-course (60 Gy) irradiation plus concomitant temozolomide in elderly patients with glioblastoma: a multicenter retrospective study of AINO (Italian Association of Neuro-Oncology).

    PubMed

    Lombardi, Giuseppe; Pace, Andrea; Pasqualetti, Francesco; Rizzato, Simona; Faedi, Marina; Anghileri, Elena; Nicolotto, Elisa; Bazzoli, Elena; Bellu, Luisa; Villani, Veronica; Fabi, Alessandra; Ferrazza, Patrizia; Gurrieri, Lorena; Dall'Agata, Monia; Eoli, Marica; Della Puppa, Alessandro; Pambuku, Ardi; D'Avella, Domenico; Berti, Franco; Rudà, Roberta; Zagonel, Vittorina

    2015-11-01

    The efficacy of temozolomide (TMZ) plus radiation therapy (RT) in elderly patients with glioblastoma is unclear. We performed a large multicenter retrospective study to analyze prognostic factors and clinical outcome in these patients. Inclusion criteria were age ≥65 years, newly histologically confirmed glioblastoma, ECOG PS 0-2, adjuvant treatment with RT plus TMZ. We enrolled 237 patients; the average age was 71 and ECOG PS was 0-1 in 196 patients; gross total resection was performed in 174 cases. MGMT was analyzed in 151 persons and was methylated in 56 %. IDH1 was assessed in 100 patients and was mutated in 6 %. Seventy-one patients were treated with RT 40 Gy and 166 with RT 60 Gy. Progression-free survival and overall survival (OS) were 11.3 and 17.3 months, respectively. Overall survival was 19.4 vs 13.8 months for patients treated with RT 60 Gy and 40 Gy (p = 0.02); OS was 17.7 versus 16.1 months for patients treated with gross total resection vs partial surgery (p = 0.02); OS was 21.2 versus 13.6 months for methylated and unmethylated MGMT (p < 0.001). On multivariate analysis, gross total resection, RT 60 Gy, methylated MGMT and ECOG PS 0-1 were independent predictors of longer survival. Twenty-five patients (10 %) had grade 3-4 haematological toxicity during the concomitant treatment. We showed that, in elderly patients in good clinical condition treated with concomitant treatment, standard-course irradiation might be more effective than short-course irradiation. Methylated MGMT remains the most important prognostic factor. PMID:26423801

  3. Temozolomide/PLGA microparticles plus vatalanib inhibits tumor growth and angiogenesis in an orthotopic glioma model.

    PubMed

    Zhang, Yu-Hui; Yue, Zhi-Jian; Zhang, He; Tang, Gu-Sheng; Wang, Yang; Liu, Jian-Min

    2010-11-01

    Temozolomide (TM) has anti-tumor activity in patients with malignant glioma. Implantable poly (D,L-lactide-co-glycolide) (PLGA) microparticles of TM (TM-MS) have been developed, enhancing the cytotoxicity of TM to Glioma C6 cells. Vatalanib, as anti-angiogenic agent, has also shown anti-tumor activity with malignant gliomas. We examined the combined effects of TM-MS and vatalanib in a rat orthotopic glioma model and found TM-MS offered a greater tumor inhibition than TM, and combination treatment with both of them improved the survival time versus single agent therapy. The combination treatment also demonstrated an inhibition to rat glioma tumors, a significant decrease in cell proliferation, an increase in apoptosis, and a lower microvessel density within the glioma tumors. The results suggest that TM-MS can more effectively inhibit tumor than TM, and combination treatment with TM-MS and vatalanib inhibits tumor growth and angiogenesis and may prove to be a promising therapy for malignant gliomas. PMID:20816959

  4. Toxicity after radiochemotherapy for glioblastoma using temozolomide - a retrospective evaluation

    PubMed Central

    2011-01-01

    Purpose Retrospective evaluation of toxicity and results after radiochemotherapy for glioblastoma. Methods 46 patients with histopathologically proven glioblastoma received simultaneous radiochemotherapy (RCT). The mean age at the beginning of therapy was 59 years, the mean Karnofsky performance index 80%. 44 patients had been operated on before radiotherapy, two had not. A total dose of 60 Gy was applied in daily single fractions of 2.0 Gy within six weeks, 75 mg/m2/day Temozolomide were given orally during the whole radiotherapy period. Results A local progression could be diagnosed in 34/46 patients (70%). The median survival time amounted to 13.6 months resulting in one-year and two-year survival probabilities of 48% and 8%, respectively. Radiotherapy could be applied completely in 89% of the patients. Chemotherapy could be completed according to schedule only in 56.5%, the main reason being blood toxicity (50% of the interruptions). Most of those patients suffered from leucopenia and/or thrombopenia grade III and IV CTC (Common toxicity criteria). Further reasons were an unfavourable general health status or a rise of liver enzymes. The mean duration of thrombopenia and leucopenia amounted to 64 and 20 days. In two patients, blood cell counts remained abnormal until death. In two patients we noticed a rise of liver enzymes. In one of these in the healing phase of hepatitis a rise of ASAT and ALAT CTC grade IV was diagnosed. These values normalized after termination of temozolomide medication. One patient died of pneumonia during therapy. Conclusion Our survival data were well within the range taken from the literature. However, we noticed a considerable frequency and intensity of side effects to bone marrow and liver. These lead to the recommendations that regular examinations of blood cell count and liver enzymes should be performed during therapy and temozolomide should not be applied or application should be terminated according to the criteria given by the

  5. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft.

    PubMed

    Raub, Thomas J; Wishart, Graham N; Kulanthaivel, Palaniappan; Staton, Brian A; Ajamie, Rose T; Sawada, Geri A; Gelbert, Lawrence M; Shannon, Harlan E; Sanchez-Martinez, Concepcion; De Dios, Alfonso

    2015-09-01

    Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood-brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp-deficient mice. Abemaciclib had brain area under the curve (0-24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood-brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however

  6. BI-08MICROVESICLES CAN DISTINGUISH BETWEEN TUMOR PROGRESSION AND TREATMENT EFFECT/PSEUDOPROGRESSION IN GLIOBLASTOMA PATIENTS TREATED WITH RADIATION AND TEMOZOLOMIDE

    PubMed Central

    Evans, Sydney M.; Koch, Cameron J.; Lustig, Robert

    2014-01-01

    The standard of care for glioblastoma (GB) is radiation therapy (RT) and temozolomide (TMZ) following optimal surgery. This regimen has been accompanied by an increase in the occurrence of equivocal imaging findings, e.g. tumor progression vs. treatment effect (TE), which includes pseudoprogression (PsP). Thus decisions regarding further treatment are difficult and often delayed. None of the current imaging methods for identifying TE/PsP have proven sensitive and specific. Therefore, we developed a method to isolate microvesicles (MV) from blood sample in patients with GB. MV are defined herein as lipid membrane-bound sacs with a diameter >300 nm. METHODS: 3 ml citrated blood was collected from GB patients at their RT simulation and at multiple times during and following treatment. MV were isolated during multiple centrifugations (300g, 2500g, 15,000g). The pellet from the final spin was analyzed using flow cytometry. Antibodies to phosphotidylserine were used to identify the MV. RESULTS: We analyzed 16 blood samples from 10 GB patients that met analysis criteria: the MV sample was obtained at or following the completion of CRT and, a definitive diagnosis (TP, TE or PSP) was reached within 60 days of the date of the sample. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed recurrence or died of their disease (p = 0.0385). Based on MRI and/or pathological assessment, 2 patients have died of their disease, 1 patient is alive with recurrence, 3 patients have stable disease and 4 patients are being followed for PsP vs. tumor progression (TP). SUMMARY/CONCLUSION: These preliminary data suggest that the analysis of blood (liquid biopsy) for MV may be useful to distinguish TE/PsP from TP in GB patients. MVs may be valuable in addition to standard imaging for decision making in patients with equivocal imaging findings.

  7. Minor Changes in Expression of the Mismatch Repair Protein MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide.

    PubMed

    McFaline-Figueroa, José L; Braun, Christian J; Stanciu, Monica; Nagel, Zachary D; Mazzucato, Patrizia; Sangaraju, Dewakar; Cerniauskas, Edvinas; Barford, Kelly; Vargas, Amanda; Chen, Yimin; Tretyakova, Natalia; Lees, Jacqueline A; Hemann, Michael T; White, Forest M; Samson, Leona D

    2015-08-01

    Glioblastoma (GBM) is often treated with the cytotoxic drug temozolomide, but the disease inevitably recurs in a drug-resistant form after initial treatment. Here, we report that in GBM cells, even a modest decrease in the mismatch repair (MMR) components MSH2 and MSH6 have profound effects on temozolomide sensitivity. RNAi-mediated attenuation of MSH2 and MSH6 showed that such modest decreases provided an unexpectedly strong mechanism of temozolomide resistance. In a mouse xenograft model of human GBM, small changes in MSH2 were sufficient to suppress temozolomide-induced tumor regression. Using The Cancer Genome Atlas to analyze mRNA expression patterns in tumors from temozolomide-treated GBM patients, we found that MSH2 transcripts in primary GBM could predict patient responses to initial temozolomide therapy. In recurrent disease, the absence of microsatellite instability (the standard marker for MMR deficiency) suggests a lack of involvement of MMR in the resistant phenotype of recurrent disease. However, more recent studies reveal that decreased MMR protein levels occur often in recurrent GBM. In accordance with our findings, these reported decreases may constitute a mechanism by which GBM evades temozolomide sensitivity while maintaining microsatellite stability. Overall, our results highlight the powerful effects of MSH2 attenuation as a potent mediator of temozolomide resistance and argue that MMR activity offers a predictive marker for initial therapeutic response to temozolomide treatment. PMID:26025730

  8. The role of trimetazidine in cardiovascular disease: beyond an anti-anginal agent.

    PubMed

    McCarthy, Cian P; Mullins, Kieran V; Kerins, David M

    2016-10-01

    With evidence for efficacy in such diverse clinical settings such as stable coronary artery disease, reperfusion injury, and contrast-induced nephropathy, trimetazidine (TMZ) is novel among cardiovascular agents. In spite of this and almost half a century of clinical experience with the drug, it remains licensed only as an adjunct in the management of angina pectoris in patients who are inadequately controlled by or intolerant to first-line therapies. Although no single pharmacological mechanism has been hitherto universally accepted, TMZ is known to target deranged cellular energetics particularly in ischaemic myocardial tissue. Mechanistically, this separates the drug from conventional anti-anginal therapies, namely beta-adrenergic antagonists, calcium channel blockers, and nitrates. Moreover, a haemodynamically neutral side-effect profile should make TMZ a much more attractive therapeutic agent in this setting. Such ostensibly beneficial pharmacodynamics notwithstanding, the drug has a limited role in angina pectoris treatment algorithms. Concerns regarding a potential for new onset movement disorder further complicate its use and have led to a licensing revocation in some jurisdictions for the treatment of vestibular disorders. In this review article, we examine the pertinent literature and assess the evidence base for TMZ as a viable treatment option in a number of clinical settings. PMID:27533944

  9. Enzastaurin plus temozolomide with radiation therapy in glioblastoma multiforme: A phase I study†

    PubMed Central

    Butowski, Nicholas; Chang, Susan M.; Lamborn, Kathleen R.; Polley, Mei Yin; Parvataneni, R.; Hristova-Kazmierski, Maria; Musib, Luna; Nicol, Steven J.; Thornton, Donald E.; Prados, Michael D.

    2010-01-01

    We conducted a phase I study to determine the safety and recommended phase II dose of enzastaurin (oral inhibitor of the protein kinase C-beta [PKCβ] and the PI3K/AKT pathways) when given in combination with radiation therapy (RT) plus temozolomide to patients with newly diagnosed glioblastoma multiforme or gliosarcoma. Patients with Karnofsky performance status ≥60 and no enzyme-inducing anti-epileptic drugs received RT (60 Gy) over 6 weeks, concurrently with temozolomide (75 mg/m2 daily) followed by adjuvant temozolomide (200 mg/m2) for 5 days/28-d cycle. Enzastaurin was given once daily during RT and adjuvantly with temozolomide; the starting dose of 250 mg/d was escalated to 500 mg/d if ≤1/6 patients had dose-limiting toxicity (DLT) during RT and the first adjuvant cycle. Patients continued treatment for 12 adjuvant cycles unless disease progression or unacceptable toxicity occurred. Twelve patients enrolled. There was no DLT in the first 6 patients treated with 250 mg enzastaurin. At 500 mg, 2 of 6 patients experienced a DLT (1 Grade 4 and 1 Grade 3 thrombocytopenia). The patient with Grade 3 DLT recovered to Grade <1 within 28 days and adjuvant temozolomide and enzastaurin was reinitiated with dose reductions. The other patient recovered to Grade <1 toxicity after 28 days and did not restart treatment. Enzastaurin 250 mg/d given concomitantly with RT and temozolomide and adjuvantly with temozolomide was well tolerated and is the recommended phase II dose. The proceeding phase II trial has finished accrual and results will be reported in 2009. PMID:20156802

  10. Enzastaurin plus temozolomide with radiation therapy in glioblastoma multiforme: a phase I study.

    PubMed

    Butowski, Nicholas; Chang, Susan M; Lamborn, Kathleen R; Polley, Mei Yin; Parvataneni, R; Hristova-Kazmierski, Maria; Musib, Luna; Nicol, Steven J; Thornton, Donald E; Prados, Michael D

    2010-06-01

    We conducted a phase I study to determine the safety and recommended phase II dose of enzastaurin (oral inhibitor of the protein kinase C-beta [PKCbeta] and the PI3K/AKT pathways) when given in combination with radiation therapy (RT) plus temozolomide to patients with newly diagnosed glioblastoma multiforme or gliosarcoma. Patients with Karnofsky performance status > or =60 and no enzyme-inducing anti-epileptic drugs received RT (60 Gy) over 6 weeks, concurrently with temozolomide (75 mg/m(2) daily) followed by adjuvant temozolomide (200 mg/m(2)) for 5 days/28-d cycle. Enzastaurin was given once daily during RT and adjuvantly with temozolomide; the starting dose of 250 mg/d was escalated to 500 mg/d if < or =1/6 patients had dose-limiting toxicity (DLT) during RT and the first adjuvant cycle. Patients continued treatment for 12 adjuvant cycles unless disease progression or unacceptable toxicity occurred. Twelve patients enrolled. There was no DLT in the first 6 patients treated with 250 mg enzastaurin. At 500 mg, 2 of 6 patients experienced a DLT (1 Grade 4 and 1 Grade 3 thrombocytopenia). The patient with Grade 3 DLT recovered to Grade <1 within 28 days and adjuvant temozolomide and enzastaurin was reinitiated with dose reductions. The other patient recovered to Grade <1 toxicity after 28 days and did not restart treatment. Enzastaurin 250 mg/d given concomitantly with RT and temozolomide and adjuvantly with temozolomide was well tolerated and is the recommended phase II dose. The proceeding phase II trial has finished accrual and results will be reported in 2009. PMID:20156802

  11. The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide

    PubMed Central

    Moen, Erika L.; Stark, Amy L.; Zhang, Wei; Dolan, M. Eileen; Godley, Lucy A.

    2014-01-01

    The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is known to play a role in sensitivity to temozolomide. Promoter hypermethylation of MGMT is commonly used to predict low expression levels of MGMT in gliomas, despite observed discordance between promoter methylation and protein levels. Here, we investigated the functional role of gene body cytosine modification in regulating levels of MGMT gene expression and sensitivity to temozolomide. In 91 human glioblastoma samples, we observed significant variation in MGMT expression levels in patients with an unmethylated promoter, with higher levels of gene body cytosine modification correlating with higher gene expression levels. Furthermore, inducing hypomethylation across the MGMT gene body with decitabine corresponded with decreased levels of MGMT gene expression in lymphoblastoid and glioblastoma cell lines, indicating an important functional role for gene body cytosine modifications in maintaining gene expression. We reasoned that the decrease in MGMT expression induced by decitabine may render resistant glioblastoma cell lines more sensitive to temozolomide. Consistent with this reasoning, we found that the MGMT-expressing glioblastoma cell lines exhibiting an unmethylated MGMT promoter that were pre-treated with decitabine became significantly more sensitive to temozolomide. Overall, our results suggest a functional role for gene body cytosine modification in regulating gene expression of MGMT and indicate that pre-treating patients whose tumors have an unmethylated MGMT promoter with decitabine prior to temozolomide treatment may increase their response to therapy. PMID:24568970

  12. Intra-arterial administration improves temozolomide delivery and efficacy in a model of intracerebral metastasis, but has unexpected brain toxicity.

    PubMed

    Muldoon, Leslie L; Pagel, Michael A; Netto, Joao Prola; Neuwelt, Edward A

    2016-02-01

    We tested the hypothesis that intra-arterial (IA) infusion of temozolomide into the internal carotid artery would safely improve drug delivery to brain and enhance chemotherapy efficacy in a chemosensitive rat brain tumor model. Quantitative autoradiography after 25 µCi (14)C-temozolomide was given by oral, intravenous, or IA route of administration, or IA with osmotic blood-brain barrier disruption (BBBD) (n = 5-7 per group) showed that both IA and IA/BBBD administration increased drug delivery in tumor by over threefold compared to normal brain (P < 0.02), and also significantly elevated delivery throughout the infused right hemisphere. Temozolomide (20 mg/kg; ~150 mg/m(2)) increased median survival when given by oral (25.5 days), intravenous (25.5 days), or IA (33 days) route of administration, compared to 17.5 days in untreated controls (n = 8 per group; overall P < 0.0001). Survival time after IA temozolomide was significantly longer than all other groups (P < 0.01 for all comparisons). BBBD temozolomide was toxic in the efficacy study, but there was no evidence of symptomatic neurotoxicity in rats given IA temozolomide. After these promising animal results, a 49 year old male with glioblastoma multiforme who failed all standard therapy received temozolomide 100 mg/m(2) IA. Upon initiation of the second course of IA infusion the patient had increased heart rate, blood pressure, and rash, and the procedure was terminated without sequelae. Follow up IA infusion of temozolomide diluent in normal rats showed damaged cerebrovasculature as determined by dye leakage. These results demonstrate that IA infusion of temozolomide was toxic, with or without BBBD. We conclude that under the current formulation temozolomide is not safe for IA infusion in patients. PMID:26694547

  13. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles

    PubMed Central

    Tian, Xin-Hua; Lin, Xiao-Ning; Wei, Feng; Feng, Wei; Huang, Zhi-Chun; Wang, Peng; Ren, Lei; Diao, Yi

    2011-01-01

    Background: Polybutylcyanoacrylate (PBCA) nanoparticles coated with polysorbate-80 have been extensively proposed for delivering drugs into the animal brain and have shown great potential for therapeutic applications. In this study, we made an attempt to deliver the chemotherapeutic drug, temozolomide, into the brain by using PBCA nanoparticles. The physicochemical characteristics, in vitro release, and brain targeting ability of the drug-loaded nanoparticles were investigated. Results: Our results show that a significantly higher concentration of temozolomide in the form of polysorbate-80-coated PBCA nanoparticles was observed in the brain (P < 0.05) in comparison with the free drug. Conclusion: This study indicates that polysorbate-80 coated PBCA nanoparticles could be a feasible carrier for temozolomide delivery to the brain. It is anticipated that the developed formulation may improve on targeted therapy for malignant brain tumors in the future. PMID:21445277

  14. Tautomeric transformation of temozolomide, their proton affinities and chemical reactivities: A theoretical approach.

    PubMed

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya; Amornkitbamrung, Vittaya

    2016-05-01

    The gas-phase geometry optimizations of bare, mono- and dihydrated complexes of temozolomide isomers were carried out using density functional calculation at the M06-2X/6-31+G(d,p) level of the theory. The structures and protonation energies of protonated species of temozolomide are reported. Chemical indices of all isomers and protonated species are also reported. Energies, thermodynamic quantities, rate constants and equilibrium constants of tautomeric and rotameric transformations of all isomers I1↔TZM↔HIa↔HIb↔I2↔I3 in bare and hydrated systems were obtained. PMID:27041447

  15. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors.

    PubMed

    Cros, J; Hentic, O; Rebours, V; Zappa, M; Gille, N; Theou-Anton, N; Vernerey, D; Maire, F; Lévy, P; Bedossa, P; Paradis, V; Hammel, P; Ruszniewski, P; Couvelard, A

    2016-08-01

    Temozolomide (TEM) showed encouraging results in well-differentiated pancreatic neuroendocrine tumors (WDPNETs). Low O(6)-methylguanine-DNA methyltransferase (MGMT) expression and MGMT promoter methylation within tumors correlate with a better outcome under TEM-based chemotherapy in glioblastoma. We aimed to assess whether MGMT expression and MGMT promoter methylation could help predict the efficacy of TEM-based chemotherapy in patients with WDPNET. Consecutive patients with progressive WDPNET and/or liver involvement over 50% who received TEM between 2006 and 2012 were retrospectively studied. Tumor response was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 guidelines. Nuclear expression of MGMT was assessed by immunochemistry (H-score, 0-300) and MGMT promoter methylation by pyrosequencing. Forty-three patients (21 men, 58years (27-84)) with grade 1 WDPNET (n=6) or 2 (n=36) were analyzed. Objective response, stable disease, and progression rates were seen in 17 patients (39.5%), 18 patients (41.9%), and 8 patients (18.6%), respectively. Low MGMT expression (≤50) was associated with radiological objective response (P=0.04) and better progression-free survival (PFS) (HR=0.35 (0.15-0.81), P=0.01). Disease control rate at 18months of treatment remained satisfying with an MGMT score up to 100 (74%) but dropped with a higher expression. High MGMT promoter methylation was associated with a low MGMT expression and longer PFS (HR=0.37 (0.29-1.08), P=0.05). Low MGMT score (≤50) appears to predict an objective tumor response, whereas an intermediate MGMT score (50-100) seems to be associated with prolonged stable disease. PMID:27353036

  16. Inactivation of O6-alkylguanine-DNA alkyltransferase in human peripheral blood mononuclear cells by temozolomide.

    PubMed Central

    Lee, S. M.; Thatcher, N.; Crowther, D.; Margison, G. P.

    1994-01-01

    O6-alkylguanine-DNA-alkyltransferase (ATase) activity was measured in extracts of peripheral blood mononuclear cells (PMCs) taken from eight patients at various times during 5 days of oral treatment with temozolomide (150 mg m-2, days 1-5). Pretreatment ATase levels ranged from approximately 70 to 600 fmol per mg of protein. Depletion of PMC ATase was seen within 4 h of the first dose of temozolomide and had a median nadir of 52.9% and values ranging from 44.4% to 71.0% of pretreatment levels. There was a correlation between the extent of ATase depletion (pretreatment minus nadir level) and the pretreatment ATase level (r = 0.97). A progressive depletion of ATase was observed during the 5 days of continuous temozolomide therapy with median ATase activities of 66.3%, 52.5%, 39.5%, 30.5% and 28.9% of the pretreatment values at days 2, 3, 4, 5 and 6 respectively. This suggests that the schedule-dependent anti-tumour activity of temozolomide seen in experimental models and clinics may be related to a cumulative depletion of ATase. PMID:8123472

  17. Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide

    PubMed Central

    Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; St-Coeur, Patrick-Denis; Poitras, Julie; Morin, Pier Jr; Culf, Adrian S.

    2014-01-01

    Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects. PMID:25222834

  18. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner

    PubMed Central

    Palmieri, Diane; Duchnowska, Renata; Woditschka, Stephan; Hua, Emily; Qian, Yongzhen; Biernat, Wojciech; Sosińska-Mielcarek, Katarzyna; Gril, Brunilde; Stark, Andreas; Hewitt, Stephen; Liewehr, David J; Steinberg, Seth M; Jassem, Jacek; Steeg, Patricia S

    2014-01-01

    Purpose Brain metastases of breast cancer cause neurocognitive damage and are incurable. We evaluated a role for temozolomide in the prevention of brain metastases of breast cancer in experimental brain metastasis models. Experimental Design Temozolomide was administered in mice following earlier injection of brain-tropic human epidermal growth factor receptor 2 (HER2)-positive Jimt1-BR3 and triple negative 231-BR-EGFP sublines, the latter with and without expression of 06-methylguanine-DNA methyltransferase (MGMT). Additionally, the percentage of MGMT-positive tumor cells in 62 patient-matched sets of breast cancer primary tumors and resected brain metastases was determined immunohistochemically. Results Temozolomide, when dosed at 50, 25, 10 or 5 mg/kg, 5 days/week, beginning 3 days after inoculation, completely prevented the formation of experimental brain metastases from MGMT-negative 231-BR-EGFP cells. At a 1 mg/kg dose, temozolomide prevented 68% of large brain metastases, and was ineffective at a dose of 0.5 mg/kg. When the 50 mg/kg dose was administered beginning on days 18 or 24, temozolomide efficacy was reduced or absent. Temozolomide was ineffective at preventing brain metastases in MGMT-transduced 231-BR-EGFP and MGMT-expressing Jimt-1-BR3 sublines. In 62 patient-matched sets of primary breast tumors and resected brain metastases, 43.5% of the specimens had concordant low MGMT expression, while in another 14.5% of sets high MGMT staining in the primary tumor corresponded with low staining in the brain metastasis. Conclusions Temozolomide profoundly prevented the outgrowth of experimental brain metastases of breast cancer in an MGMT-dependent manner. These data provide compelling rationale for investigating the preventive efficacy of temozolomide in a clinical setting. PMID:24634373

  19. RM-04RETINOBLASTOMA BINDING PROTEIN 4 (RBBP4) MODULATES TEMOZOLOMIDE RESPONSE THROUGH REGULATION OF MGMT EXPRESSION IN GLIOBLASTOMA

    PubMed Central

    Kitange, Gaspar; Schroeder, Mark; Sarkaria, Jann

    2014-01-01

    Through shRNA library screen we identified RBBP4 as a modulator of TMZ response in glioblastoma (GBM). Consequently, we investigated the mechanisms whereby RBBP4 modulates TMZ response using shRNA to silence this gene in MGMT-expressing T98G and U138 GBM cells. The cytotoxicity was evaluated using fluorescence-based CYQUANT proliferation assay. A total of 4 shRNA constructs significantly suppressed RBBP4 in both T98G and U138. Cells expressing non-specific targeting shRNA (NT-shRNA) were used as control. RBBP4 knockdown significantly sensitized TMZ both in T98G and U138 cells; the relative fluorescence for the TMZ-treated (100 µM) control T98NT-shRNA cells was 1.17 ± 0.15, whereas for T98RBBP4-shRNA clones were 0.54 ± 0.02, 0.29 ± 0.03, 0.36 ± 0.05, and 0.34 ± 0.03, respectively (p < 0.001). Similar sensitization was observed in U138 cells; relative fluorescence for the TMZ-treated (300 µM) control U138NT-shRNA cells was 0.70 ± 0.05 and for U138RBBP4-shRNA clones were 0.42 ± 0.06, 0.27 ± 0.01, 0.28 ± 0.02, and 0.30 ± 0.01, respectively (p < 0.001). Interestingly, knockdown of RBBP4 in T98G was accompanied with a synthetic lethality to PARP inhibition and increased response to TMZ-induced DNA damage, as evidenced by increased phosphorylation of KAP1, CHK1 and CHK2. Moreover, phosphorylation of H2AX in response to TMZ treatment was significantly higher in T98RBBP4-shRNA clones. Consistent with deficient homologous recombination (HR), T98RBBP4-shRNA clones significantly expressed less RAD51 compared with the control T98NT-shRNA cells. Even more interesting, RBBP4 knockdown silenced MGMT expression in both T98G and U138, which was accompanied by decreased recruitment of acetylated H3K9 coupled with increased recruitment of tri-methylated H3K9. Moreover, RBBP4 knockdown was coupled with loss of p300 recruitment to bind MGMT promoter region. Collectively, these findings suggest that RBBP4 modulates TMZ response in GBM cells through epigenetic regulation of

  20. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways

    PubMed Central

    Sampson, Valerie B.; Vetter, Nancy S.; Kamara, Davida F.; Collier, Anderson B.; Gresh, Renee C.; Kolb, E. Anders

    2015-01-01

    Histone deacetylase inhibitors (HDACi) have been evaluated in patients with Ewing sarcoma (EWS) but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor) plus the alkylating agent temozolomide (ST). Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS) production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS. PMID:26571493

  1. Combination of temozolomide with immunocytokine F16–IL2 for the treatment of glioblastoma

    PubMed Central

    Pedretti, M; Verpelli, C; Mårlind, J; Bertani, G; Sala, C; Neri, D; Bello, L

    2010-01-01

    Background: Glioblastoma patients are still not cured by the treatments available at the moment. We investigated the therapeutic properties of temozolomide in combination with F16–IL2, a clinical-stage immunocytokine consisting of human interleukin (IL)-2 fused to the human antibody F16, specific to the A1 domain of tenascin-C. Methods: We conducted three preclinical therapy studies, using subcutaneous and intracranial U87MG glioblastoma tumours xenografted in BALB/c nude mice. The same therapeutic schedule was used, consisting of five total administrations every third day, of 0.525 mg temozolomide, 20 μg F16–IL2, the combination, or the control solution. Results: Immunohistochemical analysis of U87MG xenografts and of human glioblastoma specimens showed selective tumour staining of F16. A quantitative biodistribution confirmed the preferential tumour accumulation of radiolabelled F16–IL2. In the study with subcutaneous xenografts, the combination of F16–IL2 with temozolomide induced complete remission of the animals, which remained tumour free for over 160 days. The same treatment led to a consistent size reduction of intracranial xenografts and to a longer survival of animals. The immunocytokine promoted the recruitment of leukocytes into tumours of both models. Conclusion: The combined use of temozolomide with F16–IL2 deserves clinical investigations, which will be facilitated by the excellent safety profile in cynomolgus monkeys, and by the fact that F16–IL2 is in clinical trials in patients with cancer. PMID:20736949

  2. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo.

    PubMed

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-03-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O(6) -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy. PMID:26778701

  3. Afatinib, an irreversible ErbB family blocker, with protracted temozolomide in recurrent glioblastoma: a case report.

    PubMed

    Alshami, Jad; Guiot, Marie-Christine; Owen, Scott; Kavan, Petr; Gibson, Neil; Solca, Flavio; Cseh, Agnieszka; Reardon, David A; Muanza, Thierry

    2015-10-20

    There are few effective treatments for recurrent glioblastoma multiforme (GBM). We present a patient with recurrent GBM who achieved a prolonged response to treatment with afatinib, an irreversible ErbB family blocker, plus temozolomide. A 58-year-old female patient was diagnosed with multifocal primary GBM. After surgical resection, first-line therapy comprised radiotherapy and temozolomide. Following disease progression after 3 temozolomide cycles, the patient entered a phase I/II clinical trial of afatinib (20-40 mg daily for 28 days) plus temozolomide (50 mg/m2 every 21/28 days). Next-generation sequencing analysis of the brain tumor specimen was performed. At the last assessment, 63 treatment cycles had been completed and the patient had survived for ~5 years since recurrence. Significant disease regression was observed after 5 cycles and was maintained during long-term follow-up. Adverse events were consistent with the known tolerability profile of afatinib and were managed by treatment interruption/dose reduction. The patient had several epidermal growth factor receptor (EGFR) aberrations, including gene amplification and EGFRvIII positivity. Three somatic mutations were identified, including an unprecedented extracellular-domain substitution (D247Y). The patient has survived ~6-fold longer than normally expected in patients with recurrent GBM. The complex EGFR genotype may underlie sustained response to afatinib plus temozolomide. PMID:26423602

  4. Afatinib, an irreversible ErbB family blocker, with protracted temozolomide in recurrent glioblastoma: A case report

    PubMed Central

    Alshami, Jad; Guiot, Marie-Christine; Owen, Scott; Kavan, Petr; Gibson, Neil; Solca, Flavio; Cseh, Agnieszka; Reardon, David A.; Muanza, Thierry

    2015-01-01

    There are few effective treatments for recurrent glioblastoma multiforme (GBM). We present a patient with recurrent GBM who achieved a prolonged response to treatment with afatinib, an irreversible ErbB family blocker, plus temozolomide. A 58-year-old female patient was diagnosed with multifocal primary GBM. After surgical resection, first-line therapy comprised radiotherapy and temozolomide. Following disease progression after 3 temozolomide cycles, the patient entered a phase I/II clinical trial of afatinib (20–40 mg daily for 28 days) plus temozolomide (50 mg/m2 every 21/28 days). Next-generation sequencing analysis of the brain tumor specimen was performed. At the last assessment, 63 treatment cycles had been completed and the patient had survived for ~5 years since recurrence. Significant disease regression was observed after 5 cycles and was maintained during long-term follow-up. Adverse events were consistent with the known tolerability profile of afatinib and were managed by treatment interruption/dose reduction. The patient had several epidermal growth factor receptor (EGFR) aberrations, including gene amplification and EGFRvIII positivity. Three somatic mutations were identified, including an unprecedented extracellular-domain substitution (D247Y). The patient has survived ~6-fold longer than normally expected in patients with recurrent GBM. The complex EGFR genotype may underlie sustained response to afatinib plus temozolomide. PMID:26423602

  5. Restoration of Sensitivity in Chemo — Resistant Glioma Cells by Cold Atmospheric Plasma

    PubMed Central

    Köritzer, Julia; Boxhammer, Veronika; Schäfer, Andrea; Shimizu, Tetsuji; Klämpfl, Tobias G.; Li, Yang-Fang; Welz, Christian; Schwenk-Zieger, Sabina; Morfill, Gregor E.; Zimmermann, Julia L.; Schlegel, Jürgen

    2013-01-01

    Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance. PMID:23704990

  6. Histone/protein deacetylase SIRT1 is an anticancer therapeutic target

    PubMed Central

    Hwang, Bor-Jang; Madabushi, Amrita; Jin, Jin; Lin, Shiou-Yuh S; Lu, A-Lien

    2014-01-01

    SIRT1, a member of the NAD+-dependent histone/protein deacetylase family, is involved in chromatin remodeling, DNA repair, and stress response and is a potential drug target. 5-fluorouracil (FU) and the SN1-type DNA methylating agent temozolomide (TMZ) are anticancer agents. In this study, we demonstrate that sirt1 knockout mouse embryonic fibroblast cells are more sensitive to FU and DNA methylating agents than normal cells. Based on these findings, the chemotherapy efficacy of SIRT1 inhibitors in combination with FU or TMZ were tested with human breast cancer cells. We found that treatments combining SIRT1 inhibitors with FU or TMZ show synergistic reduction of cell viability and colony formation of breast cancer cells. Thus, inhibition of SIRT1 activity provides a novel anticancer strategy. PMID:24959376

  7. The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation

    PubMed Central

    Hong, Xin; O’Donnell, James P.; Salazar, Clarence R.; Van Brocklyn, James R.; Barnett, Kahlil D.; Pearl, Dennis K.; deCarvalho, Ana C.; Ecsedy, Jeffrey A.; Brown, Stephen L.; Mikkelsen, Tom; Lehman, Norman L.

    2016-01-01

    The selective Aurora-A kinase inhibitor MLN8237 is in clinical trials for hematologic malignancies, ovarian cancer and other solid tumors. We previously showed that MLN8237 is potently antiproliferative toward standard monolayer cultured glioblastoma cells. We have now investigated the effect of MLN8237 with and without temozolomide or ionizing radiation on the proliferation of glioblastoma tumor stem-like cells (neurospheres) using soft agar colony formation assays and normal human astrocytes by MTT assay. Western blotting was utilized to compare MLN8237 IC50s to cellular Aurora-A and phospho-Thr288-Aurora-A levels. MLN8237 was more potently antiproliferative to neurosphere cells than to standard monolayer glioma cells, and was non-toxic to normal human astrocytes. Western blot analysis revealed that MLN8237 treatment inhibits phospho-Thr288-Aurora–A levels providing proof of drug target-hit in glioblastoma cells. Furthermore, phospho-Thr288-Aurora-A levels partially predicted the antiproliferative efficacy of MLN8237. We also found that Aurora-A inhibition by MLN8237 was synergistic with temozolomide and potentiated the effects of ionizing radiation on colony formation in neurosphere glioblastoma tumor stem-like cells. These results further support the potential of Aurora-A inhibitors as primary chemotherapy agents or biological response modifiers in glioblastoma patients. PMID:24627220

  8. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma

    PubMed Central

    Das, Arabinda; Cheng, Ron Ron; Hilbert, Megan L.T.; Dixon-Moh, Yaenette N.; Decandio, Michele; Vandergrift, William Alex; Banik, Naren L.; Lindhorst, Scott M.; Cachia, David; Varma, Abhay K.; Patel, Sunil J.; Giglio, Pierre

    2015-01-01

    Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the

  9. Metronomic temozolomide as second line treatment for metastatic poorly differentiated pancreatic neuroendocrine carcinoma.

    PubMed

    De Divitiis, C; von Arx, C; Grimaldi, A M; Cicala, D; Tatangelo, F; Arcella, A; Romano, G M; Simeone, E; Iaffaioli, R V; Ascierto, P A; Tafuto, S

    2016-01-01

    Neuroendocrine Neoplasms (NEN) are a group of heterogeneous malignancies derived from neuroendocrine cell compartment, with different roles in both endocrine and nervous system. Most NETs have gastroentero-pancreatic (GEP) origin, arising in the foregut, midgut, or hindgut. The 2010 WHO classification divides GEP-NETs into two main subgroups, neuroendocrine tumors (NET) and neuroendocrine carcinomas (NEC), according with Ki-67 levels. NET are tumors with low (<20 %) Ki-67 value, and NECs, including small cell lung carcinomas and Merkel Cell carcinomas, are all NETs with high Ki-67 levels (>20 %-G3). Poorly differentiated neuroendocrine carcinomas (NEC) are usually treated with cisplatin-based chemotherapy regimens. Here we present a case of a patient with pancreatic NEC progressing after cisplatin and etoposide, treated with temozolomide as palliative, second line treatment. According with the poor Performance Status (PS = 2) and to reduce the toxicity of the treatment was chosen an intermittent dosing regimen of metronomic temozolomide (75 mg/m(2)/day-one-week-on/on-week-off). MGMT resulted methylated. On July 2014 the patient started the treatment. On August 2014 the patient obtained a significant clinical benefit (PS = 0) and the total body CT scan performed on October 2014 showed a RECIST partial response on all the sites of disease. No drug-related side effects were reported by the patient. After 18 months of therapy the treatment continues without significant toxicity, and with further remission of the metastases. Treatment with metronomic "one-week-on/on-week-off" Temozolomide can be considered a good treatment option in patients with poor performance status, affected by pNEC with MGMT methylation. PMID:27142424

  10. Feasibility of Using Bevacizumab With Radiation Therapy and Temozolomide in Newly Diagnosed High-Grade Glioma

    SciTech Connect

    Narayana, Ashwatha Golfinos, John G.; Fischer, Ingeborg; Raza, Shahzad; Kelly, Patrick M.D.; Parker, Erik; Knopp, Edmond A.; Medabalmi, Praveen; Zagzag, David; Eagan, Patricia; Gruber, Michael L.

    2008-10-01

    Introduction: Bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), has shown promise in the treatment of patients with recurrent high-grade glioma. The purpose of this study is to test the feasibility of using bevacizumab with chemoradiation in the primary management of high-grade glioma. Methods and Materials: Fifteen patients with high-grade glioma were treated with involved field radiation therapy to a dose of 59.4 Gy at 1.8 Gy/fraction with bevacizumab 10 mg/kg on Days 14 and 28 and temozolomide 75 mg/m{sup 2}. Subsequently, bevacizumab 10 mg/kg was continued every 2 weeks with temozolomide 150 mg/m{sup 2} for 12 months. Changes in relative cerebral blood volume, perfusion-permeability index, and tumor volume measurement were measured to assess the therapeutic response. Immunohistochemistry for phosphorylated VEGF receptor 2 (pVEGFR2) was performed. Results: Thirteen patients (86.6%) completed the planned bevacizumab and chemoradiation therapy. Four Grade III/IV nonhematologic toxicities were seen. Radiographic responses were noted in 13 of 14 assessable patients (92.8%). The pVEGFR2 staining was seen in 7 of 8 patients (87.5%) at the time of initial diagnosis. Six patients have experienced relapse, 3 at the primary site and 3 as diffuse disease. One patient showed loss of pVEGFR2 expression at relapse. One-year progression-free survival and overall survival rates were 59.3% and 86.7%, respectively. Conclusion: Use of antiangiogenic therapy with radiation and temozolomide in the primary management of high-grade glioma is feasible. Perfusion imaging with relative cerebral blood volume, perfusion-permeability index, and pVEGFR2 expression may be used as a potential predictor of therapeutic response. Toxicities and patterns of relapse need to be monitored closely.

  11. Whole brain reirradiation and concurrent temozolomide in patients with brain metastases.

    PubMed

    Minniti, Giuseppe; Scaringi, Claudia; Lanzetta, Gaetano; Bozzao, Alessandro; Romano, Andrea; De Sanctis, Vitaliana; Valeriani, Maurizio; Osti, Mattia; Enrici, Riccardo Maurizi

    2014-06-01

    A second course of whole brain radiation therapy (WBRT) has been employed in selected patients with progressive brain metastases providing favorable symptomatic palliation with acceptable toxicity, although its efficacy and safety remain matter of debate. In the present study we have evaluated the outcomes in patients with progressive intracranial disease treated with WBRT reirradiation and concurrent temozolomide between October 2010 and May 2013. Data were obtained from a prospectively maintained database including patients with brain tumors treated with radiotherapy at Sant'Andrea Hospital. We identified 27 patients (10 males and 17 females) with a median age of 54 years who received WBRT reirradiation at a dose of 25 Gy in ten fractions plus concomitant daily temozolomide administered orally at a dose of 75 mg/m(2). At the time of repeat WBRT all patients had a KPS ≥ 60. The primary disease sites were lung (n = 18) and breast (n = 9). The median overall survival after the second course of WBRT was 6.2 months and the median time to progression was 5.5 months. Eight patients experienced complete resolution of symptoms, 9 patients had a significant improvement, and 6 patients had no change in their neurologic function. Four patients had further deterioration after reirradiation. Overall, 85 % of patients improved or maintained their neurologic status. No severe acute toxicity during or after the second course of WBRT reirradiation was observed. On multivariate analysis with the Cox proportional hazards model, stable or absent extracranial metastases (p = 0.005) and response to treatment (p = 0.01) were independent favorable prognostic factors for survival. The median and 12-month survival rates were 12 months and 50 % in patients with stable or absent extracranial disease and 4.6 months and 7 % in those with progressive extracranial disease (p = 0.001). In conclusion, in the respect to the small number of treated patients, repeat WBRT plus concomitant

  12. Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer.

    PubMed

    Zhou, Qin; Ji, Ming; Zhou, Jie; Jin, Jing; Xue, Nina; Chen, Ju; Xu, Bailing; Chen, Xiaoguang

    2016-05-01

    Poly (ADP-ribose) polymerases (PARPs) facilitate repairing of cancer cell DNA damage as a mean to promote cancer proliferation and metastasis. Inhibitors of PARPs which interfering DNA repair, in context of defects in other DNA repair mechanisms, can thus be potentially exploited to inhibit or even kill cancer cells. However, nondiscriminatory inhibition of PARPs, such as PARP2, may lead to undesired consequences. Here, we demonstrated the design and development of the Zj6413 as a potent and selective PARP1 catalytic inhibitor. It trapped PARP1/2 at damaged sites of DNA. As expected, the Zj6413 showed notable anti-tumor activity against breast cancer gene (BRCA) deficient triple negative breast cancers (TNBCs). Zj6413 treated breast cancers (BCs) showed an elevated level of DNA damage evidenced by the accumulation of γ-H2AX foci and DNA damaged related proteins. Zj6413 also induced G2/M arrest and cell death in the MX-1, MDA-MB-453 BC cells, exerted chemo-sensitizing effect on BRCA proficient cancer cells and potentiated Temozolomide (TMZ)'s cytotoxicity in MX-1 xenograft tumors mice. In conclusion, our study provided evidence that a new PARP inhibitor strongly inhibited the catalytic activity of PARPs, trapped them on nicked DNA and damaged the cancer cells, eventually inhibiting the growth of breast tumor cells in vitro and in vivo. PMID:26920250

  13. The DNA damage/repair cascade in glioblastoma cell lines after chemotherapeutic agent treatment.

    PubMed

    Annovazzi, Laura; Caldera, Valentina; Mellai, Marta; Riganti, Chiara; Battaglia, Luigi; Chirio, Daniela; Melcarne, Antonio; Schiffer, Davide

    2015-01-01

    Therapeutic resistance in glioblastoma multiforme (GBM) has been linked to a subpopulation of cells with stem cell-like properties, the glioma stem cells (GSCs), responsible for cancer progression and recurrence. This study investigated the in vitro cytotoxicity of three chemotherapeutics, temozolomide (TMZ), doxorubicin (Dox) and paclitaxel (PTX) on glioma cell lines, by analyzing the molecular mechanisms leading to DNA repair and cell resistance, or to cell death. The drugs were tested on 16 GBM cell lines, grown as neurospheres (NS) or adherent cells (AC), by studying DNA damage occurrence by Comet assay, the expression by immunofluorescence and western blotting of checkpoint/repair molecules and apoptosis. The three drugs were able to provoke a genotoxic injury and to inhibit dose- and time-dependently cell proliferation, more evidently in AC than in NS. The first cell response to DNA damage was the activation of the damage sensors (p-ATM, p-53BP1, γ-H2AX), followed by repair effectors; the expression of checkpoint/repair molecules appeared higher in NS than in AC. The non-homologous repair pathway (NHEJ) seemed more involved than the homologous one (HR). Apoptosis occurred after long treatment times, but only a small percentage of cells in NS underwent death, even at high drug concentration, whereas most cells survived in a quiescent state and resumed proliferation after drug removal. In tumor specimens, checkpoint/repair proteins were constitutively expressed in GBMs, but not in low-grade gliomas. PMID:25892134

  14. O{sup 6}-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C

    SciTech Connect

    Passagne, Isabelle; Evrard, Alexandre . E-mail: alexandre.evrard@univ-montp1.fr; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O{sup 6}-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC{sub 5} values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N{sup 7} guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of {gamma}-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  15. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors.

    PubMed

    Cives, M; Ghayouri, M; Morse, B; Brelsford, M; Black, M; Rizzo, A; Meeker, A; Strosberg, J

    2016-09-01

    The capecitabine and temozolomide (CAPTEM) regimen is active in the treatment of metastatic pancreatic neuroendocrine tumors (pNETs), with response rates ranging from 30 to 70%. Small retrospective studies suggest that O(6)-methylguanine DNA methyltransferase (MGMT) deficiency predicts response to temozolomide. High tumor proliferative activity is also commonly perceived as a significant predictor of response to cytotoxic chemotherapy. It is unclear whether chromosomal instability (CIN), which correlates with alternative lengthening of telomeres (ALT), is a predictive factor. In this study, we evaluated 143 patients with advanced pNET who underwent treatment with CAPTEM for radiographic and biochemical response. MGMT expression (n=52), grade (n=128) and ALT activation (n=46) were investigated as potential predictive biomarkers. Treatment with CAPTEM was associated with an overall response rate (ORR) of 54% by RECIST 1.1. Response to CAPTEM was not influenced by MGMT expression, proliferative activity or ALT pathway activation. Based on these results, no biomarker-driven selection criteria for use of the CAPTEM regimen can be recommended at this time. PMID:27552969

  16. Radiologic response to radiation therapy concurrent with temozolomide for progressive simple dysembryoplastic neuroepithelial tumor.

    PubMed

    Morr, Simon; Qiu, Jingxin; Prasad, Dheerendra; Mechtler, Laszlo L; Fenstermaker, Robert A

    2016-07-01

    Dysembryoplastic neuroepithelial tumors (DNETs) are low-grade neuroglial tumors that are traditionally considered to be benign hamartoma-like mass lesions. Malignant transformation and disease progression have been reported in complex DNETs. We report a case of a simple DNET with disease progression following subtotal resection. A 34-year-old woman underwent craniotomy with subtotal resection of a large nonenhancing right temporal lobe and insular mass. Histopathological analysis revealed a simple DNET. Magnetic resonance imaging obtained 6 months after surgery demonstrated disease progression with no enhancement or change in signal characteristics. Following concurrent therapy with temozolomide and external beam radiation therapy, a significant radiologic response was observed. Progressive DNET with malignant transformation exhibits predominantly glial transformation and occurs predominantly in complex DNETs. The histological classification of DNETs into simple, complex, and nonspecific are reviewed. Contrast-enhancing regions are more frequently seen in complex tumors, with nonenhancing regions having fewer complex histologic features. Close clinical and radiographic follow-up is important in all cases of DNET. Following tumor progression, radiation therapy with concurrent and adjuvant temozolomide chemotherapy may be an effective treatment. PMID:27181792

  17. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. A concurrent ultra-fractionated radiation therapy and temozolomide treatment: A promising therapy for newly diagnosed, inoperable glioblastoma.

    PubMed

    Beauchesne, P; Quillien, V; Faure, G; Bernier, V; Noel, G; Quetin, P; Gorlia, T; Carnin, C; Pedeux, R

    2016-03-15

    We report on a phase II clinical trial to determine the effect of a concurrent ultra-fractionated radiotherapy and temozolomide treatment in inoperable glioblastoma patients. A phase II study opened; patients over 18 years of age who were able to give informed consent and had histologically proven, newly diagnosed inoperable diagnosed and supratentorial glioblastoma were eligible. Three doses of 0.75 Gy spaced apart by at least 4 hr were delivered daily, 5 days a week for six consecutive weeks for a total of 67.5 Gy. Chemotherapy was administered during the same period, which consisted of temozolomide given at a dose of 75 mg/m(2) for 7 days a week. After a 4-week break, chemotherapy was resumed for up to six cycles of adjuvant temozolomide treatment, given every 28 days, according to the standard 5-day regimen. Tolerance and toxicity were the primary endpoints; survival and progression-free survival were the secondary endpoints. In total, 40 patients were enrolled in this study, 29 men and 11 women. The median age was 58 years, and the median Karnofsky performance status was 80. The concomitant ultra-fractionated radiotherapy and temozolomide treatment was well tolerated. Complete responses were seen in four patients, and partial responses were reported in seven patients. The median survival from the initial diagnosis was 16 months. Several long-term survivors were noted. Concurrent ultra-fractionated radiation therapy and temozolomide treatment are well accepted by the patients. The results showed encouraging survival rates for these unfavorable patients. PMID:26501997

  19. Phase II trial of temozolomide and reirradiation using conformal 3D-radiotherapy in recurrent brain gliomas

    PubMed Central

    2014-01-01

    Purpose This phase II trial was designed to assess the response rate, survival benefits and toxicity profile of temozolomide, and brain reirradiation using conformal radiotherapy (RT) for treatment of recurrent high grade glioma. Design Open-label phase II trial. Patients Twenty-nine patients had been enrolled in the study between February 2006 and June 2009. Patients had to show unequivocal evidence of tumour recurrence on gadolinium-enhanced magnetic resonance imaging (MRI) after failing conventional RT with or without temozolomide and surgery for initial disease. Histology included recurrent anaplastic astrocytoma, glioblastoma multiforme. Interventions Patients were treated by temozolomide at a dose of 200 mg/m2/day for chemonaïve patients, and at a dose of 150 mg/m2/day to previously treated patients, for 4-5 cycles. Then, patients underwent reirradiation by conformal RT at a dose of 30-40 Gy by conventional fractionation. Main outcome measures The primary end point of the study was response. The secondary end points included survival benefit. Results All the 29 patients were treated with temozolomide and reirradiation. Two patients achieved complete remission (CR), 4 achieved partial remission (PR), with an overall objective response rate of 20.6%, and further 10 patients had stable disease (SD), with a SD rate of 34.4%. The mean progression free survival (PFS) was 10.1 months, and the mean overall survival (OS) was 11.4 months. Additionally, treatment significantly improved quality of life (QOL). Treatment was tolerated well with mild grade 1, 2 nausea/vomiting in 40% of cycles, and mild grade 1, 2 haematological toxicities (neutropenia/thrombocytoprnia) in 8.6% of cycles. Conclusions Temozolomide and conformal RT had an anti-tumor activity in recurrent high grade glioma, and represented a good treatment hope for patients with recurrent brain glioma. PMID:25333019

  20. Addition of Bevacizumab to Standard Radiation Therapy and Daily Temozolomide Is Associated With Minimal Toxicity in Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Vredenburgh, James J.; Desjardins, Annick; Kirkpatrick, John P.; Reardon, David A.; Peters, Katherine B.; Herndon, James E.; Marcello, Jennifer; Bailey, Leighann; Threatt, Stevie; Sampson, John; Friedman, Allan; Friedman, Henry S.

    2012-01-01

    Purpose: To determine the safety of the addition of bevacizumab to standard radiation therapy and daily temozolomide for newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: A total of 125 patients with newly diagnosed GBM were enrolled in the study, and received standard radiation therapy and daily temozolomide. All patients underwent a craniotomy and were at least 2 weeks postoperative. Radiation therapy was administered in 1.8-Gy fractions, with the clinical target volume for the primary course treated to a dose of 45 to 50.4 Gy, followed by a boost of 9 to 14.4 Gy, to a total dose of 59.4 Gy. Patients received temozolomide at 75 mg/m{sup 2} daily throughout the course of radiation therapy. Bevacizumab was given at 10 mg/kg intravenously every 14 days, beginning a minimum of 4 weeks postoperatively. Results: Of the 125 patients, 120 (96%) completed the protocol-specified radiation therapy. Five patients had to stop the protocol therapy, 2 patients with pulmonary emboli, and 1 patient each with a Grade 2 central nervous system hemorrhage, Grade 4 pancytopenia, and wound dehiscence requiring surgical intervention. All 5 patients ultimately finished the radiation therapy. After radiation therapy, 3 patients had progressive disease, 2 had severe fatigue and decreased performance status, 1 patient had a colonic perforation, and 1 had a rectal fissure; these 7 patients therefore did not proceed with the protocol-specified adjuvant temozolomide, bevacizumab, and irinotecan. However, 113 patients (90%) were able to continue on study. Conclusions: The addition of bevacizumab to standard radiation therapy and daily temozolomide was found to be associated with minimal toxicity in patients newly diagnosed with GBM.

  1. Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma1

    PubMed Central

    Prados, Michael D.; Lamborn, Kathleen R.; Chang, Susan; Burton, Eric; Butowski, Nicholas; Malec, Mary; Kapadia, Ami; Rabbitt, Jane; Page, Margaretta S.; Fedoroff, Ann; Xie, Dong; Kelley, Sean K.

    2006-01-01

    The purpose of this study was to define the maximum tolerated dose of erlotinib and characterize its pharmacokinetics and safety profile, alone and with temozolomide, with and without enzyme-inducing antiepileptic drugs (EIAEDs), in patients with malignant gliomas. Patients with stable or progressive malignant primary glioma received erlotinib alone or combined with temozolomide in this dose-escalation study. In each treatment group, patients were stratified by coadministration of EIAEDs. Erlotinib was started at 100 mg orally once daily as a 28-day treatment cycle, with dose escalation by 50 mg/day up to 500 mg/day. Temozolomide was administered at 150 mg/m2 for five consecutive days every 28 days, with dose escalation up to 200 mg/m2 at the second cycle. Eighty-three patients were evaluated. Rash, fatigue, and diarrhea were the most common adverse events and were generally mild to moderate. The recommended phase 2 dose of erlotinib is 200 mg/day for patients with glioblastoma multiforme who are not receiving an EIAED, 450 mg/day for those receiving temozolomide plus erlotinib with an EIAED, and at least 500 mg/day for those receiving erlotinib alone with an EIAED. Of the 57 patients evaluable for response, eight had a partial response (PR). Six of the 57 patients had a progression-free survival of longer than six months, including four patients with a PR. Coadministration of EIAEDs reduced exposure to erlotinib as compared with administration of erlotinib alone (33%–71% reduction). There was a modest pharmacokinetic interaction between erlotinib and temozolomide. The favorable tolerability profile and evidence of antitumor activity indicate that further investigation of erlotinib is warranted. PMID:16443950

  2. ET-66ER-STRESS INDUCING DRUGS SENSITIZES GBM TO TEMOZOLOMIDE THROUGH DOWNREGULATION OF MGMT AND INDUCTION OF REGULATED NECROSIS

    PubMed Central

    Xipell, Enric; Martínez-Velez, Naiara; Vera-Cano, Beatriz; Idoate, Miguel Angel; Garzón, Antonia García; Acanda, Arlet M.; Fueyo, Juan; Gomez-Manzano, Candelaria; Alonso, Marta M

    2014-01-01

    Termozolamide (TMZ) is the standard treatment against GBM, unfortunately its therapeutic effect is limited due to the expression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Therefore, approaches that overcome the resistance to TMZ could be feasible therapeutic alternatives for this deadly disease. Endoplasmic reticulum (ER) stress suppresses several DNA damage proteins through the unfolding protein response. In this work we sought to evaluate whether ER-stress inducing drugs were able to downmodulate MGMT and sensitize GBM cells to TMZ treatment. Salinomycin (SLM) is a potassium ionophore that has proven effective against cancer stem cells and a possible candidate to induce ER stress. Our data showed that SLM triggered ER stress that was accompanied by the downregulation of MGMT. We obtained the same results with other ER stress inducing drugs (thapsigergin, tunicamycin) suggesting that this is a general mechanism. Chemical inhibition of ER stress reverted the abrogation of MGMT downregulation. Of importance, SLM induced an aberrant autophagic flux that led to regulated necrosis cell death mediated by the action of AIF protein, which induces DNA damage when localized in the nucleus. Combination of TMZ and SLM displayed a potent antitumor effect in vitro and in vivo in mice bearing a GBM stem cell model. Combination treatment induced a significant increase in DNA damage as shown by H2AX activation and PARP. Moreover, we observed AIF in the nucleus, as a result of the regulated necrosis, furthering favoring the DNA damage. Combination treatment showed an increment of the median survival and of long term survivors. Moreover tissue analysis confirmed a dramatic increase in the level of DNA damage. Altogether our results showed that combination treatment induces a potent antiglioma effect in vitro and in vivo. Our data uncover the possibility to exploit ER stress and regulated necrosis as therapeutic strategies for GBM treatment.

  3. Enhancement of Glioma Radiotherapy and Chemotherapy Response With Targeted Antibody Therapy Against Death Receptor 5

    SciTech Connect

    Fiveash, John B. Gillespie, G. Yancey; Oliver, Patsy G.; Zhou Tong; Belenky, Michael L.; Buchsbaum, Donald J.

    2008-06-01

    Purpose: TRA-8 is an agonistic mouse monoclonal antibody that binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5, which induces apoptosis in cancer cells through a caspase-8-dependent mechanism. We investigated the ability of TRA-8 to augment the radiotherapy (RT) and chemotherapy response of human glioma cells in vitro and in vivo. Methods and Materials: The in vitro cytotoxicity of TRA-8 and temozolomide (Tmz) or RT was examined using adenosine triphosphate-dependent viability and clonogenic survival assays with five glioma cell lines. Death receptor 5 expression was determined by flow cytometry. In vivo studies included subcutaneous and intracranial xenograft models testing various combination treatments, including RT, Tmz, and TRA-8. Results: TRA-8, combined with Tmz or RT, produced enhanced cytotoxicity against five glioma cell lines compared with the use of the individual agents alone. Death receptor 5 upregulation occurred in response to RT. Complete tumor regression in the subcutaneous experiments was the most common in animals that received combination therapy with TRA-8/Tmz/RT. TRA-8 enhanced tumor growth delay in combination with RT or Tmz. TRA-8 alone had limited activity against intracranial tumors. In contrast, the median survival of mice treated with TRA-8/Tmz/RT was significantly greater than the control or TRA-8-alone-treated mice. The median survival of the mice treated with TRA-8/Tmz/RT or chemoradiotherapy only was significantly greater than the control or TRA-8-treated mice. A trend toward improved survival was observed between TRA-8/Tmz/RT-treated and Tmz/RT-treated mice. Conclusions: These preliminary findings support the hypothesis that TRA-8 will augment the RT and chemotherapy response in gliomas. A humanized version of TRA-8 is being evaluated in a Phase II clinical trial.

  4. A 3-DIMENSIONAL MATRIX ASSAY THAT MAY HELP PREDICT TREATMENT RESPONSE TO TEMOZOLOMIDE IN PATIENTS WITH GLIOBASTOMA: SUBGROUP ANALYSIS OF PATIENTS UNDERGOING MGMT TESTING

    PubMed Central

    Megyesi, Joseph F.; Costello, Penny; McDonald, Warren; Macdonald, David; Easaw, Jay

    2014-01-01

    BACKGROUND: (blind field). METHODS: Records for patients treated for newly diagnosed or recurrent glioblastoma were analyzed. All patients had undergone surgical resection and tumor specimens at time of surgery were available for culture in a 3-dimensional matrix assay and observed for growth and invasion. Drug effects on mean invasion and growth were expressed as a ratio relative to control conditions. Length of survival was compared between temozolomide treated patients whose screening results had predicted a positive or negative response to temozolomide. The MGMT status of a subgroup of these patients was analyzed and correlated with the response of tumor tissue in the assay to temozolomide. RESULTS: Fifty-eight patients with glioblastoma were assessed. Each patient's tumor displayed a unique invasion and response profile. We looked in particular at the correlation between the outcome of a patient with glioblastoma treated with temozolomide and the response of that patient's tumor tissue to temozolomide in the 3-dimensional assay. Mean survival time for patients whose tumors were not significantly sensitive to temozolomide in the assay was 181.7 +/- 43 days. Mean survival time for patients whose tumors were significantly sensitive to temozolomide in the assay was 290.0 +/- 33 days. Twelve patients underwent MGMT testing. In 10 of the 12 patients there was a correlation between tumor response in the assay and MGMT status. CONCLUSIONS: The 3-dimensional assay may help predict glioblastoma patients who will show a treatment response to temozolomide. There appears to be a positive correlation between the response profiles in the assay to the MGMT status of the patient's tumor. SECONDARY CATEGORY: n/a.

  5. Multiple resections and survival of recurrent glioblastoma patients in the temozolomide era.

    PubMed

    Ortega, Alicia; Sarmiento, J Manuel; Ly, Diana; Nuño, Miriam; Mukherjee, Debraj; Black, Keith L; Patil, Chirag G

    2016-02-01

    Glioblastoma (GBM) is the most prevalent and aggressive primary brain tumor in adults for which recurrence is inevitable and surgical resection is often recommended. We investigated the relationship between multiple tumor resections and overall survival (OS) in adult glioblastoma patients who received adjuvant radiotherapy and temozolomide following initial surgery. We retrospectively reviewed the records of all newly diagnosed adult GBM patients with tumor recurrence at our institution from March 2003 to October 2012. Kaplan-Meier survival estimates and multivariate analysis using Cox's proportional hazards model were utilized to evaluate the impact of multiple resections on OS. A total of 202 GBM patients were analyzed; 83 (41.1%), 94 (46.5%), and 25 (12.4%) patients underwent one, two, and three or more total resections, respectively. Patients who underwent multiple resections were significantly younger (p<0.0001) and had higher perioperative Karnofsky Performance Status scores (p<0.0001) than single resection patients. The median OS in months was 21.1, 25.5, and 29.0 for patients who had one, two, and three or more resections, respectively (Wilcoxon p=0.03). In a confounder-adjusted multivariate model, patients with multiple resections did not have significantly improved survival (p=0.55). Older age was strongly associated with poorer OS (hazard ratio 1.34, p<0.0001). Age at diagnosis was the only predictor of survival for recurrent GBM patients. After adjusting for age at diagnosis, multiple resections were not an independent predictor of OS in our glioblastoma cohort treated in the temozolomide era. PMID:26671314

  6. Patterns and Timing of Recurrence After Temozolomide-Based Chemoradiation for Glioblastoma

    SciTech Connect

    Milano, Michael T.; Okunieff, Paul; Donatello, Rosemary S.; Mohile, Nimish A.; Sul, Joohee; Walter, Kevin A.; Korones, David N.

    2010-11-15

    Purpose: To determine recurrence patterns of glioblastoma treated with temozolomide-based chemoradiation. Methods: Pretreatment and serial posttreatment magnetic resonance imaging scans of 54 patients were retrospectively evaluated. Central recurrence (i.e., local progression) and the development of new (i.e., interval appearance of discrete enhancing lesion) in-field, marginal, and distant recurrences were assessed, with the pattern of recurrence of individual lesions defined relative to the 95% isodose line (D{sub 95}). Distant recurrences were defined as lesions completely outside D{sub 95}, marginal recurrences crossed D{sub 95}, and in-field recurrences were completely inside D{sub 95}. Results: At a median follow-up of 17 months, 39 of 54 (72%) patients developed recurrent glioblastoma. Among these 39 patients, central recurrence occurred in 80% (at a median of 7 months from diagnosis); new in-field recurrence developed in 33% (at a median of 14 months); marginal recurrences developed in 15% (at a median of 18 months); and distant recurrences developed in 20% (at a median of 11 months). The actuarial rates of central, new in-field, marginal, distant, and any new recurrences at 1-year were 46%, 15%, 3%, 14%, and 25% respectively, whereas at 2 years, the rates were 68%, 60%, 32%, 28%, and 66%, reflecting an increasing probability of new lesions developing at later time points. Ten patients developed subependymal recurrences, of whom 7 developed multiple subependymal lesions. Conclusions: Whereas central recurrence of glioblastoma treated with radiation and temozolomide predominates and persists over time, new in-field, marginal, and distant recurrences commonly develop, particularly at later time points in patients with longer survival.

  7. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma.

    PubMed

    Gill, Sonja J; Travers, Jon; Pshenichnaya, Irina; Kogera, Fiona A; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H; Stratton, Michael R; McDermott, Ultan; Jackson, Stephen P; Garnett, Mathew J

    2015-01-01

    Ewing's sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing's sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing's sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing's sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing's sarcoma patients with PARP inhibitors. PMID:26505995

  8. A genome-wide association analysis of temozolomide response using lymphoblastoid cell lines reveals a clinically relevant association with MGMT

    PubMed Central

    Brown, Chad C.; Havener, Tammy M.; Medina, Marisa Wong; Auman, J. Todd; Mangravite, Lara M.; Krauss, Ronald M.; McLeod, Howard L.; Motsinger-Reif, Alison A.

    2013-01-01

    Recently, lymphoblastoid cell lines (LCLs) have emerged as an innovative model system for mapping gene variants that predict dose response to chemotherapy drugs. In the current study, this strategy was expanded to the in vitro genome-wide association approach, using 516 LCLs derived from a Caucasian cohort to assess cytotoxic response to temozolomide. Genome-wide association analysis using approximately 2.1 million quality controlled single-nucleotide polymorphisms (SNPs) identified a statistically significant association (p < 10−8) with SNPs in the O6-methylguanine–DNA methyltransferase (MGMT) gene. We also demonstrate that the primary SNP in this region is significantly associated with differential gene expression of MGMT (p< 10−26) in LCLs, and differential methylation in glioblastoma samples from The Cancer Genome Atlas. The previously documented clinical and functional relationships between MGMT and temozolomide response highlight the potential of well-powered GWAS of the LCL model system to identify meaningful genetic associations. PMID:23047291

  9. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy.

    PubMed

    Huang, Jiayi; Campian, Jian L; Gujar, Amit D; Tran, David D; Lockhart, A Craig; DeWees, Todd A; Tsien, Christina I; Kim, Albert H

    2016-06-01

    Disulfiram, a generic alcohol aversion drug, has promising preclinical activity against glioblastoma (GBM). This phase I study aims to evaluate its safety, maximum tolerated dose (MTD), pharmacodynamic effect, and preliminary efficacy when combined with adjuvant temozolomide in GBM patients after standard chemoradiotherapy. Patients received disulfiram 500-1000 mg once daily, in combination with 150-200 mg/m(2) temozolomide. A modified 3 + 3 dose-escalation design was used to determine the MTD. The pharmacodynamic effect of proteasome inhibition was assessed using fluorometric 20S proteasome assay on peripheral blood cells. The MTD was determined based on the dose-limiting toxicities (DLTs) within the first month of therapy. Twelve patients were enrolled to two dose levels: 500 and 1000 mg. Two DLTs of grade 3 delirium occurred after 15 days of administration at 1000 mg per day. Other possible grade 2-3 DSF-related toxicities included fatigue, ataxia, dizziness, and peripheral neuropathy. The toxicities were self-limiting or resolved after discontinuing DSF. The MTD was determined to be 500 mg per day. Limited proteasome inhibition was observed at week 4 and showed an increased trend with escalated disulfiram. Median progression-free survival with 500 mg of DSF was 5.4 months from the start of disulfiram and 8.1 months from the start of chemoradiotherapy. Disulfiram can be safely combined with temozolomide but can cause reversible neurological toxicities. The MTD of disulfiram with adjuvant temozolomide appears to produce limited proteasome inhibition on peripheral blood cells. PMID:26966095

  10. Temozolomide Injection

    MedlinePlus

    ... or vomiting blood or material that looks like coffee grounds fever, sore throat, ongoing cough and congestion, or ... or vomiting blood or material that looks like coffee grounds fever, sore throat, ongoing cough and congestion, or ...

  11. Successful change of treatment strategy in elderly patients with primary central nervous system lymphoma by de-escalating induction and introducing temozolomide maintenance: results from a phase II study by the Nordic Lymphoma Group.

    PubMed

    Pulczynski, Elisa J; Kuittinen, Outi; Erlanson, Martin; Hagberg, Hans; Fosså, Alexander; Eriksson, Mikael; Nordstrøm, Marie; Østenstad, Bjørn; Fluge, Øystein; Leppä, Sirpa; Fiirgaard, Bente; Bersvendsen, Hanne; Fagerli, Unn-Merete

    2015-04-01

    The Nordic Lymphoma Group has conducted a phase ll trial in newly diagnosed primary central nervous system lymphoma patients applying an age-adjusted multi-agent immunochemotherapy regimen, which in elderly patients included temozolomide maintenance treatment. Patients aged 18-75 years were eligible. Thirty-nine patients aged 18-65 years and 27 patients aged 66-75 years were enrolled. The median age of the two age groups was 55 and 70 years, respectively. The overall response rate was 73.8% for the entire cohort: 69.9% in the younger and 80.8% in the elderly subgroup. With a median follow up of 22 months, the 2-year overall survival probability was 60.7% in patients aged 65 years or under and 55.6% in patients aged over 65 years (P=0.40). The estimated progression-free survival at two years was 33.1% (95%CI: 19.1%-47.9%) in patients aged under 65 years and 44.4% (95%CI: 25.6%-61.8%) in the elderly subgroup (P=0.74). Median duration of response was ten months in the younger subgroup, and not reached in the elderly patient subgroup (P=0.33). Four patients aged 64-75 years (6%) died from treatment-related complications. Survival in the two age groups was similar despite a de-escalation of induction treatment in patients aged over 65 years. Duration of response in elderly patients receiving maintenance temozolomide was longer than in the younger age subgroup. While toxicity during induction is still of concern, especially in the elderly patients, we conclude from these data that de-escalation of induction therapy in elderly primary central nervous system lymphoma patients followed by maintenance treatment seems to be a promising treatment strategy. (clinicaltrials.gov identifier:01458730). PMID:25480497

  12. Phase II, Open-Label, Randomized Trial of the MEK1/2 Inhibitor Selumetinib as Monotherapy versus Temozolomide in Patients with Advanced Melanoma

    PubMed Central

    Kirkwood, John M.; Bastholt, Lars; Robert, Caroline; Sosman, Jeff; Larkin, James; Hersey, Peter; Middleton, Mark; Cantarini, Mireille; Zazulina, Victoria; Kemsley, Karin; Dummer, Reinhard

    2013-01-01

    Purpose To compare the efficacy and tolerability of the mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) 1/2 inhibitor selumetinib versus temozolomide in chemotherapy-naive patients with unresectable stage III/IV melanoma. Experimental Design This phase II, open-label, multicenter, randomized, parallel-group study examined the effect of 100 mg oral selumetinib twice daily in 28-day cycles versus oral temozolomide (200 mg/m2/d for 5 days, then 23 days off-treatment). The primary endpoint was progression-free survival. Results Two hundred patients were randomized. Progression-free survival did not differ significantly between selumetinib and temozolomide (median time to event 78 and 80 days, respectively; hazard ratio, 1.07; 80% confidence interval, 0.86–1.32). Objective response was observed in six (5.8%) patients receiving selumetinib and nine (9.4%) patients in the temozolomide group. Among patients with BRAF mutations, objective responses were similar between selumetinib and temozolomide groups (11.1% and 10.7%, respectively). However, five of the six selumetinib partial responders were BRAF mutated. Frequently reported adverse events with selumetinib were dermatitis acneiform (papular pustular rash; 59.6%), diarrhea (56.6%), nausea (50.5%), and peripheral edema (40.4%), whereas nausea (64.2%), constipation (47.4%), and vomiting (44.2%) were reported with temozolomide. Conclusions No significant difference in progression-free survival was observed between patients with unresectable stage III/IV melanoma unselected for BRAF/NRAS mutations, who received therapy with selumetinib or temozolomide. Five of six patients with partial response to selumetinib had BRAF mutant tumors. PMID:22048237

  13. A Phase I Study of the Combination of Sorafenib With Temozolomide and Radiation Therapy for the Treatment of Primary and Recurrent High-Grade Gliomas

    SciTech Connect

    Den, Robert B.; Kamrava, Mitchell; Sheng, Zhi; Werner-Wasik, Maria; Dougherty, Erin; Marinucchi, Michelle; Lawrence, Yaacov R.; Hegarty, Sarah; Hyslop, Terry; Andrews, David W.; Glass, Jon; Friedman, David P.; Green, Michael R.; Camphausen, Kevin; Dicker, Adam P.

    2013-02-01

    Purpose: Despite recent advances in the management of high-grade and recurrent gliomas, survival remains poor. Antiangiogenic therapy has been shown to be efficacious in the treatment of high-grade gliomas both in preclinical models and in clinical trials. We sought to determine the safety and maximum tolerated dose of sorafenib when combined with both radiation and temozolomide in the primary setting or radiation alone in the recurrent setting. Methods and Materials: This was a preclinical study and an open-label phase I dose escalation trial. Multiple glioma cell lines were analyzed for viability after treatment with radiation, temozolomide, or sorafenib or combinations of them. For patients with primary disease, sorafenib was given concurrently with temozolomide (75 mg/m{sup 2}) and 60 Gy radiation, for 30 days after completion of radiation. For patients with recurrent disease, sorafenib was combined with a hypofractionated course of radiation (35 Gy in 10 fractions). Results: Cell viability was significantly reduced with the combination of radiation, temozolomide, and sorafenib or radiation and sorafenib. Eighteen patients (11 in the primary cohort, 7 in the recurrent cohort) were enrolled onto this trial approved by the institutional review board. All patients completed the planned course of radiation therapy. The most common toxicities were hematologic, fatigue, and rash. There were 18 grade 3 or higher toxicities. The median overall survival was 18 months for the entire population. Conclusions: Sorafenib can be safely combined with radiation and temozolomide in patients with high-grade glioma and with radiation alone in patients with recurrent glioma. The recommended phase II dose of sorafenib is 200 mg twice daily when combined with temozolomide and radiation and 400 mg with radiation alone. To our knowledge, this is the first publication of concurrent sorafenib with radiation monotherapy or combined with radiation and temozolomide.

  14. Phase I Clinical Trial Assessing Temozolomide and Tamoxifen With Concomitant Radiotherapy for Treatment of High-Grade Glioma

    SciTech Connect

    Patel, Shilpen; DiBiase, Steven; Meisenberg, Barry; Flannery, Todd; Patel, Ashish; Dhople, Anil; Cheston, Sally; Amin, Pradip

    2012-02-01

    Purpose: The new standard treatment of glioblastoma multiforme is concurrent radiotherapy (RT) and temozolomide. The proliferation of high-grade gliomas might be partly dependent on protein kinase C-mediated pathways. Tamoxifen has been shown in vitro to inhibit protein kinase C through estrogen receptor-independent antineoplastic effects. This Phase I trial was designed to determine the maximal tolerated dose (MTD) of tamoxifen when given with temozolomide and concurrent RT to patients with high-grade gliomas. Methods and Materials: A total of 17 consecutive patients in four cohorts with World Health Organization Grade 3 (n = 2) and 4 (n = 15) gliomas were given tamoxifen twice daily during 6 weeks of concurrent RT and temozolomide. Eligibility included histologic diagnosis, age >18 years old, Karnofsky performance status {>=}60, and no previous brain RT or chemotherapy. The starting dose was 50 mg/m{sup 2} divided twice daily. If no dose-limiting toxicities (DLTs) occurred in 3 patients, the dose was escalated in 25-mg/m{sup 2} increments until the MTD was reached. When {>=}2 patients within a cohort experienced a DLT, the MTD had been exceeded. Temozolomide was given with RT at 75 mg/m{sup 2}. A dose of 60 Gy in 2 Gy/d fractions to a partial brain field was delivered. Results: A total of 6 patients in Cohort 4 had received tamoxifen at 125 mg/m{sup 2}. One patient was excluded, and the fourth patient developed Grade 4 thrombocytopenia (DLT). Thus, 3 more patients needed to be enrolled. A deep venous thrombosis (DLT) occurred in the sixth patient. Thus, the MTD was 100 mg/m{sup 2}. Conclusions: The MTD of tamoxifen was 100 mg/m{sup 2} when given concurrently with temozolomide 75 mg/m{sup 2} and RT. Tamoxifen might have a role in the initial treatment of high-grade gliomas and should be studied in future Phase II trials building on the newly established platform of concurrent chemoradiotherapy.

  15. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... millions of gallons of Agent Orange and other herbicides on trees and vegetation during the Vietnam War. ...

  16. Phase I study of temozolomide in combination with thiotepa and carboplatin with autologous hematopoietic cell rescue in patients with malignant brain tumors with minimal residual disease.

    PubMed

    Egan, G; Cervone, K A; Philips, P C; Belasco, J B; Finlay, J L; Gardner, S L

    2016-04-01

    Recurrence of malignant brain tumors results in a poor prognosis with limited treatment options. High-dose chemotherapy with autologous hematopoietic cell rescue (AHCR) has been used in patients with recurrent malignant brain tumors and has shown improved outcomes compared with standard chemotherapy. Temozolomide is standard therapy for glioblastoma and has also shown activity in patients with medulloblastoma/primitive neuro-ectodermal tumor (PNET), particularly those with recurrent disease. Temozolomide was administered twice daily on days -10 to -6, followed by thiotepa 300 mg/m(2) per day and carboplatin dosed using the Calvert formula or body surface area on days -5 to -3, with AHCR day 0. Twenty-seven patients aged 3-46 years were enrolled. Diagnoses included high-grade glioma (n=12); medulloblastoma/PNET (n=9); central nervous system (CNS) germ cell tumor (n=4); ependymoma (n=1) and spinal cord PNET (n=1). Temozolomide doses ranged from 100 mg/m(2) per day to 400 mg/m(2) per day. There were no toxic deaths. Prolonged survival was noted in several patients including those with recurrent high-grade glioma, medulloblastoma and CNS germ cell tumor. Increased doses of temozolomide are feasible with AHCR. A phase II study using temozolomide, carboplatin and thiotepa with AHCR for children with recurrent malignant brain tumors is being conducted through the Pediatric Blood and Marrow Transplant Consortium. PMID:26726947

  17. Surface-coated PLA nanoparticles loaded with temozolomide for improved brain deposition and potential treatment of gliomas: development, characterization and in vivo studies.

    PubMed

    Jain, Darshana; Bajaj, Amrita; Athawale, Rajani; Shrikhande, Shruti; Goel, Peeyush N; Nikam, Yuvraj; Gude, Rajiv; Patil, Satish; Prashant Raut, Preeti

    2016-03-01

    Hydrophobicity of PLA nanoparticles makes them a good substrate for macrophageal and reticulo-endothelial system uptake. Long-circulating properties can be imparted to these particles by coating them with hydrophilic stabilizers. Surface-modified PLA nanoparticles loaded with anti-cancer agent temozolomide were fabricated by solvent evaporation method and coated with surface modifiers. Selection of the surface modifier was based upon uptake of nanoparticles by K9 cells (liver cells). The particles were prepared and characterized for various physicochemical properties using transmission electron microscopy, differential scanning calorimetry, powder X-ray diffraction and in vitro dissolution studies. In vitro BBB permeation studies were performed using the co-culture model developed by using Madin-Darby canine kidney and C6 glioma cells as endothelial and glial cells, respectively. In vitro C6 glioma cell cytotoxicity, cellular proliferation, cellular migration and cellular uptake studies due to developed nanoparticles was assessed. In vivo studies such as pharmacokinetics, qualitative and quantitative biodistribution studies were performed for the developed nanoparticles. Drug-loaded nanoparticles with entrapment efficiency of 50% were developed. PEG-1000 and polysorbate-80 coated nanoparticles were least taken up by the liver cells. Characterization of the nanoparticles revealed formation of spherical shape nanoparticles, with no drug and excipient interaction. In vivo pharmacokinetics of developed nanoparticles depicted enhancement of half-life, area under the curve and mean residence time of the drug. Qualitative and quantitative biodistribution studies confirmed enhanced permeation of the drug into the brain upon loading into nanoparticles with less deposition in the highly perfused organs like lung, liver, spleen, heart and kidney. PMID:25026415

  18. Chemical Screening Identifies EUrd as a Novel Inhibitor Against Temozolomide-Resistant Glioblastoma-Initiating Cells.

    PubMed

    Tsukamoto, Yoshihiro; Ohtsu, Naoki; Echizenya, Smile; Otsuguro, Satoko; Ogura, Ryosuke; Natsumeda, Manabu; Isogawa, Mizuho; Aoki, Hiroshi; Ichikawa, Satoshi; Sakaitani, Masahiro; Matsuda, Akira; Maenaka, Katsumi; Fujii, Yukihiko; Kondo, Toru

    2016-08-01

    Glioblastoma (GBM), one of the most malignant human cancers, frequently recurs despite multimodal treatment with surgery and chemo/radiotherapies. GBM-initiating cells (GICs) are the likely cell-of-origin in recurrences, as they proliferate indefinitely, form tumors in vivo, and are resistant to chemo/radiotherapies. It is therefore crucial to find chemicals that specifically kill GICs. We established temozolomide (the standard medicine for GBM)-resistant GICs (GICRs) and used the cells for chemical screening. Here, we identified 1-(3-C-ethynyl-β-d-ribopentofuranosyl) uracil (EUrd) as a selective drug for targeting GICRs. EUrd induced the death in GICRs more effectively than their parental GICs, while it was less toxic to normal neural stem cells. We demonstrate that the cytotoxic effect of EUrd on GICRs partly depended on the increased expression of uridine-cytidine kinase-like 1 (UCKL1) and the decreased one of 5'-nucleotidase cytosolic III (NT5C3), which regulate uridine-monophosphate synthesis positively and negatively respectively. Together, these findings suggest that EUrd can be used as a new therapeutic drug for GBM with the expression of surrogate markers UCKL1 and NT5C3. Stem Cells 2016;34:2016-2025. PMID:27090194

  19. Outcomes in Newly Diagnosed Elderly Glioblastoma Patients after Concomitant Temozolomide Administration and Hypofractionated Radiotherapy

    PubMed Central

    Nguyen, Ludovic T.; Touch, Socheat; Nehme-Schuster, Hélène; Antoni, Delphine; Eav, Sokha; Clavier, Jean-Baptiste; Bauer, Nicolas; Vigneron, Céline; Schott, Roland; Kehrli, Pierre; Noël, Georges

    2013-01-01

    This study aimed to analyze the treatment and outcomes of older glioblastoma patients. Forty-four patients older than 70 years of age were referred to the Paul Strauss Center for chemotherapy and radiotherapy. The median age was 75.5 years old (range: 70–84), and the patients included 18 females and 26 males. The median Karnofsky index (KI) was 70%. The Charlson indices varied from 4 to 6. All of the patients underwent surgery. O6-methylguanine–DNA methyltransferase (MGMT) methylation status was determined in 25 patients. All of the patients received radiation therapy. Thirty-eight patients adhered to a hypofractionated radiation therapy schedule and six patients to a normofractionated schedule. Neoadjuvant, concomitant and adjuvant chemotherapy regimens were administered to 12, 35 and 20 patients, respectively. At the time of this analysis, 41 patients had died. The median time to relapse was 6.7 months. Twenty-nine patients relapsed, and 10 patients received chemotherapy upon relapse. The median overall survival (OS) was 7.2 months and the one- and two-year OS rates were 32% and 12%, respectively. In a multivariate analysis, only the Karnofsky index was a prognostic factor. Hypofractionated radiotherapy and chemotherapy with temozolomide are feasible and acceptably tolerated in older patients. However, relevant prognostic factors are needed to optimize treatment proposals. PMID:24202340

  20. Biodegradable microfibers deliver the antitumor drug temozolomide to glioma C6 cells in vitro.

    PubMed

    Fan, Xiaoyong; Ni, Shilei; Qi, Hongxu; Wang, Xuping; Wang, Chuanwei; Liu, Yuguang

    2010-11-01

    To develop effective implants for delivery of 3,4-dihydro-3-methyl-4-oxoimidazo[5,1-d]-as-tetrazine-8-carboxamide (temozolomide; TM) with low initial burst and less neurotoxicity, TM-loaded poly-propylene carbonate (PPC) fiber was fabricated by electrospinning. Some of the fiber sheets were then covered with alginate (ALG). Influences of several preparation parameters on drug delivery behavior were investigated. The micro-morphology of these fibers was studied using scanning electron microscopy and differential scanning calorimetry. In vitro release properties of two forms of samples were observed and their cytotoxicity against C6 glioma cells was assessed. Using strict preparation parameters, smooth and uniform fiber could only be obtained when the PPC concentration was 8 % by weight, at 20cm and a voltage of 15 kV between the nozzle and the collection instrument. Fiber diameter was about 3 microm. The initial burst of drug-fiber sheets was reduced after the fiber sheets were covered with ALG. Cytotoxicity test results suggested that both forms of drug fibers inhibit the C6 glioma cells continuously; the pure drug-fiber sheets were strongly cytotoxic. We conclude that (a) electrospinning is a reliable fabrication method for M-loaded PPC fibers; and (b) an ALG coating reduces the initial burst of the fiber sheets. PMID:21155390

  1. A Multicenter, Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients

    PubMed Central

    Lee, Eudocia Q.; Kaley, Thomas J.; Duda, Dan G.; Schiff, David; Lassman, Andrew B.; Wong, Eric T.; Mikkelsen, Tom; Purow, Benjamin W.; Muzikansky, Alona; Ancukiewicz, Marek; Huse, Jason T.; Ramkissoon, Shakti; Drappatz, Jan; Norden, Andrew D.; Beroukhim, Rameen; Weiss, Stephanie E.; Alexander, Brian M.; McCluskey, Christine S.; Gerard, Mary; Smith, Katrina H.; Jain, Rakesh K.; Batchelor, Tracy T.; Ligon, Keith L.; Wen, Patrick Y.

    2016-01-01

    Purpose Vandetanib, a tyrosine kinase inhibitor of KDR (VEGFR2), EGFR, and RET, may enhance sensitivity to chemotherapy and radiation. We conducted a randomized, noncomparative, phase II study of radiation (RT) and temozolomide with or without vandetanib in patients with newly diagnosed glioblastoma (GBM). Experimental Design We planned to randomize a total of 114 newly diagnosed GBM patients in a ratio of 2:1 to standard RT and temozolomide with (76 patients) or without (38 patients) vandetanib 100 mg daily. Patients with age ≥ 18 years, Karnofsky performance status (KPS) ≥ 60, and not on enzyme-inducing antiepileptics were eligible. Primary end-point was median overall survival (OS) from the date of randomization. Secondary endpoints included median progression-free survival (PFS), 12-month PFS, and safety. Correlative studies included pharmacokinetics as well as tissue and serum biomarker analysis. Results The study was terminated early for futility based on the results of an interim analysis. We enrolled 106 patients (36 in the RT/temozolomide arm and 70 in the vandetanib/RT/temozolomide arm). Median OS was 15.9 months [95% confidence interval (CI), 11.0–22.5 months] in the RT/temozolomide arm and 16.6 months (95% CI, 14.9–20.1 months) in the vandetanib/RT/temozolomide (log-rank P = 0.75). Conclusions The addition of vandetanib at a dose of 100 mg daily to standard chemoradiation in patients with newly diagnosed GBM or gliosarcoma was associated with potential pharmacodynamic biomarker changes and was reasonably well tolerated. However, the regimen did not significantly prolong OS compared with the parallel control arm, leading to early termination of the study. PMID:25910950

  2. Phase I Trial Using Proteasome Inhibitor Bortezomib and Concurrent Temozolomide and Radiotherapy for Central Nervous System Malignancies

    SciTech Connect

    Kubicek, Gregory J.; Werner-Wasik, Maria; Machtay, Mitchell; Mallon, Gayle; Myers, Thomas; Ramirez, Michael; Andrews, David; Curran, Walter J.; Dicker, Adam P.

    2009-06-01

    Purpose: To evaluate the toxicity and response rate of bortezomib with concurrent radiotherapy and temozolomide in the treatment of patients with central nervous system malignancies. Patients and Methods: This open-label, dose-escalation, Phase I clinical study evaluated the safety of three dose levels of intravenously administered bortezomib (0.7, 1.0, and 1.3 mg/m{sup 2}/dose) on Days 1, 4, 8, and 11 of a 21-day cycle, in addition to concurrent radiotherapy and temozolomide at a daily dose of 75 mg/m{sup 2} starting on Day 1. The primary endpoint was dose-limiting toxicity, defined as any Grade 4-5 toxicity or Grade 3 toxicity directly attributable to protocol treatment, requiring hospitalization and/or radiotherapy interruption. The secondary endpoints included feasibility, non-dose-limiting toxicity, and treatment response. Results: A total of 27 patients were enrolled, 23 of whom had high-grade glioma (10 recurrent and 13 newly diagnosed). No dose-limiting toxicities were noted in any dose group, including the highest (1.3 mg/m{sup 2}/dose). The most frequent toxicities were Grade 1 and 2 stomatitis, erythema, and alopecia. All 27 patients were evaluable for response. At a median follow-up of 15.0 months, 9 patients were still alive, with a median survival of 17.4 months for all patients and 15.0 months for patients with high-grade glioma. Conclusion: Bortezomib administered at its typical 'systemic' dose (1.3 mg/m{sup 2}) is well tolerated and safe combined with temozolomide and radiotherapy when used in the treatment of central nervous system malignancies. A Phase II study to characterize efficacy is warranted.

  3. The Medicinal Chemistry of Imidazotetrazine Prodrugs

    PubMed Central

    Moody, Catherine L.; Wheelhouse, Richard T

    2014-01-01

    Temozolomide (TMZ) is the standard first line treatment for malignant glioma, reaching “blockbuster” status in 2010, yet it remains the only drug in its class. The main constraints on the clinical effectiveness of TMZ therapy are its requirement for active DNA mismatch repair (MMR) proteins for activity, and inherent resistance through O6-methyl guanine-DNA methyl transferase (MGMT) activity. Moreover, acquired resistance, due to MMR mutation, results in aggressive TMZ-resistant tumour regrowth following good initial responses. Much of the attraction in TMZ as a drug lies in its PK/PD properties: it is acid stable and has 100% oral bioavailability; it also has excellent distribution properties, crosses the blood-brain barrier, and there is direct evidence of tumour localisation. This review seeks to unravel some of the mysteries of the imidazotetrazine class of compounds to which TMZ belongs. In addition to an overview of different synthetic strategies, we explore the somewhat unusual chemical reactivity of the imidazotetrazines, probing their mechanisms of reaction, examining which attributes are required for an active drug molecule and reviewing the use of this combined knowledge towards the development of new and improved anti-cancer agents. PMID:25014631

  4. The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma

    PubMed Central

    Pessina, Sara; Cantini, Gabriele; Kapetis, Dimos; Cazzato, Emanuela; Di Ianni, Natalia; Finocchiaro, Gaetano; Pellegatta, Serena

    2016-01-01

    ABSTRACT Abcc3, a member of the ATP-binding cassette transporter superfamily, plays a role in multidrug resistance. Here, we found that Abcc3 is highly expressed in blood-derived NK cells but not in CD8+ T cells. In GL261 glioma-bearing mice treated with the alkylating agent temozolomide (TMZ) for 5 d, an early increased frequency of NK cells was observed. We also found that Abcc3 is strongly upregulated and functionally active in NK cells from mice treated with TMZ compared to controls. We demonstrate that Abcc3 is critical for NK cell survival during TMZ administration; more importantly, Akt, involved in lymphocyte survival, is phosphorylated only in NK cells expressing Abcc3. The resistance of NK cells to chemotherapy was accompanied by increased migration and homing in the brain at early time points. Cytotoxicity, evaluated by IFNγ production and specific lytic activity against GL261 cells, increased peripherally in the later phases, after conclusion of TMZ treatment. Intra-tumor increase of the NK effector subset as well as in IFNγ, granzymes and perforin-1 expression, were found early and persisted over time, correlating with a profound modulation on glioma microenvironment induced by TMZ. Our findings reveal an important involvement of Abcc3 in NK cell resistance to chemotherapy and have important clinical implications for patients treated with chemo-immunotherapy. PMID:27467914

  5. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  6. Pattern of Failure After Limited Margin Radiotherapy and Temozolomide for Glioblastoma

    SciTech Connect

    McDonald, Mark W.; Shu, Hui-Kuo G.; Curran, Walter J.; Crocker, Ian R.

    2011-01-01

    Purpose: To evaluate the pattern of failure after limited margin radiotherapy for glioblastoma. Methods and Materials: We analyzed 62 consecutive patients with newly diagnosed glioblastoma treated between 2006 and 2008 with standard fractionation to a total dose of 60Gy with concurrent temozolomide (97%) or arsenic trioxide (3%). The initial clinical target volume included postoperative T2 abnormality with a median margin of 0.7cm. The boost clinical target volume included residual T1-enhancing tumor and resection cavity with a median margin of 0.5cm. Planning target volumes added a 0.3- or 0.5-cm margin to clinical target volumes. The total boost planning target volume (PTV{sub boost}) margin was 1cm or less in 92% of patients. The volume of recurrent tumor (new T1 enhancement) was categorized by the percent within the 60-Gy isodose line as central (>95%), infield (81-95%), marginal (20-80%), or distant (<20%). For comparison, an initial planning target volume with a 2-cm margin and PTV{sub boost} with a 2.5-cm margin were created for each patient. Results: With a median follow-up of 12 months, radiographic tumor progression developed in 43 of 62 patients. Imaging was available for analysis in 41: 38 (93%) had central or infield failure, 2 (5%) had marginal failure, and 1 (2%) had distant failure relative to the 60-Gy isodose line. The treated PTV{sub boost} (median, 140cm{sup 3}) was, on average, 70% less than the PTV{sub boost} with a 2.5-cm margin (median, 477cm{sup 3}) (p < 0.001). Conclusions: A PTV{sub boost} margin of 1cm or less did not appear to increase the risk of marginal and/or distant tumor failures compared with other published series. With careful radiation planning and delivery, it appears that treatment margins for glioblastoma can be reduced.

  7. SRPX2 Enhances the Epithelial-Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Cells.

    PubMed

    Tang, Haitao; Zhao, Jiaxin; Zhang, Liangyu; Zhao, Jiang; Zhuang, Yongzhi; Liang, Peng

    2016-10-01

    Glioblastoma (GBM) is the most common and most aggressive central nervous system tumor in adults. Due to GBM cell invasiveness and resistance to chemotherapy, current medical interventions are not satisfactory, and the prognosis for GBM is poor. It is necessary to investigate the underlying mechanism of GBM metastasis and drug resistance so that more effective treatments can be developed for GBM patients. sushi repeat-containing protein, X-linked 2 (SRPX2) is a prognostic biomarker in many different cancer cell lines and is associated with poor prognosis in cancer patients. SRPX2 overexpression promotes interactions between tumor and endothelial cells, leading to tumor progression and metastasis. We hypothesize that SRPX2 also contributes to GBM chemotherapy resistance and metastasis. Our results revealed that GBM tumor samples from 42 patients expressed higher levels of SRPX2 than the control normal brain tissue samples. High-SRPX2 expression levels are correlated with poor prognosis in those patients, as well as resistance to temozolomide in cultured GBM cells. Up-regulating SRPX2 expression in cultured GBM cell lines facilitated invasiveness and migration of GBM cells, while down-regulating SRPX2 through RNA interference was inhibitory. These results suggest that SRPX2 plays an important role in GBM metastasis. Epithelial to mesenchymal transition (EMT) is one of the processes that facilitate GBM metastasis and resistance to chemotherapy. EMT marker expression was decreased in SRPX2 down-regulated GBM cells, and MAPK signaling pathway marker expression was also decreased when SRPX2 is knocked down in GBM-cultured cells. Blocking the MAPK signaling pathway inhibited GBM metastasis but did not inhibit cell invasion and migration in SRPX2 down-regulated cells. Our results indicate that SRPX2 facilitates GBM metastasis by enhancing the EMT process via the MAPK signaling pathway. PMID:26643178

  8. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model.

    PubMed

    Iyer, Radhika; Wehrmann, Lea; Golden, Rebecca L; Naraparaju, Koumudi; Croucher, Jamie L; MacFarland, Suzanne P; Guan, Peng; Kolla, Venkatadri; Wei, Ge; Cam, Nicholas; Li, Gang; Hornby, Zachary; Brodeur, Garrett M

    2016-03-28

    Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.), an oral Pan-Trk, Alk and Ros1 inhibitor, was effective in our NB model. In vitro effects of entrectinib, either as a single agent or in combination with the chemotherapeutic agents Irinotecan (Irino) and Temozolomide (TMZ), were studied on an SH-SY5Y cell line stably transfected with TrkB. In vivo growth inhibition activity was studied in NB xenografts, again as a single agent or in combination with Irino-TMZ. Entrectinib significantly inhibited the growth of TrkB-expressing NB cells in vitro, and it significantly enhanced the growth inhibition of Irino-TMZ when used in combination. Single agent therapy resulted in significant tumor growth inhibition in animals treated with entrectinib compared to control animals [p < 0.0001 for event-free survival (EFS)]. Addition of entrectinib to Irino-TMZ also significantly improved the EFS of animals compared to vehicle or Irino-TMZ treated animals [p < 0.0001 for combination vs. control, p = 0.0012 for combination vs. Irino-TMZ]. We show that entrectinib inhibits growth of TrkB expressing NB cells in vitro and in vivo, and that it enhances the efficacy of conventional chemotherapy in in vivo models. Our data suggest that entrectinib is a potent Trk inhibitor and should be tested in clinical trials for NBs and other Trk-expressing tumors. PMID:26797418

  9. P17.56A 3-DIMENSIONAL MATRIX ASSAY TO HELP PREDICT TREATMENT RESPONSE TO TEMOZOLOMIDE IN PATIENTS WITH GLIOBASTOMA: UPDATE OF RESULTS AND SUBGROUP ANALYSIS OF PATIENTS UNDERGOING MGMT TESTING

    PubMed Central

    Megyesi, J.F.; Costello, P.; McDonald, W.; Macdonald, D.; Easaw, J.

    2014-01-01

    INTRODUCTION: Usual treatment for glioblastoma is surgical resection, if possible, followed by radiotherapy with adjuvant chemotherapy using temozolomide. However a significant number of patients have a short response to temozolomide and subsequently a poorer prognosis. We investigated the possibility that surgical specimens obtained at the time of surgery might provide valuable information regarding sensitivity to chemotherapies, including temozolomide. In order to do this we used a 3-dimensional matrix assay that mimics brain. We analyzed a subgroup of these patients for O-6-methylguanine-DNA methyltransferase (MGMT) status and correlated this with the response of tumor tissue in the assay to temozolomide. METHODS: Records for patients treated for newly diagnosed or recurrent glioblastoma were analyzed. All patients had undergone surgical resection and tumor specimens at time of surgery were available for culture in a 3-dimensional matrix assay and observed for growth and invasion. Drug effects on mean invasion and growth were expressed as a ratio relative to control conditions. Length of survival was compared between temozolomide treated patients whose screening results had predicted a positive or negative response to temozolomide. The MGMT status of a subgroup of these patients was analyzed and correlated with the response of tumor tissue in the assay to temozolomide. RESULTS: Fifty-eight patients with glioblastoma were assessed. Each patient's tumor displayed a unique invasion and response profile. We looked in particular at the correlation between the outcome of a patient with glioblastoma treated with temozolomide and the response of that patient's tumor tissue to temozolomide in the 3-dimensional assay. Mean survival time for patients whose tumors were not significantly sensitive to temozolomide in the assay was 181.7 +/- 43 days. Mean survival time for patients whose tumors were significantly sensitive to temozolomide in the assay was 290.0 +/- 33 days

  10. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    PubMed Central

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  11. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation.

    PubMed

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2015-11-28

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood-brain barrier and/or blood-brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide--a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM. PMID:26428461

  12. Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children's Cancer Study Group.

    PubMed Central

    Estlin, E. J.; Lashford, L.; Ablett, S.; Price, L.; Gowing, R.; Gholkar, A.; Kohler, J.; Lewis, I. J.; Morland, B.; Pinkerton, C. R.; Stevens, M. C.; Mott, M.; Stevens, R.; Newell, D. R.; Walker, D.; Dicks-Mireaux, C.; McDowell, H.; Reidenberg, P.; Statkevich, P.; Marco, A.; Batra, V.; Dugan, M.; Pearson, A. D.

    1998-01-01

    A phase I study of temozolomide administered orally once a day, on 5 consecutive days, between 500 and 1200 mg m(-2) per 28-day cycle was performed. Children were stratified according to prior craniospinal irradiation or nitrosourea therapy. Sixteen of 20 patients who had not received prior craniospinal irradiation or nitrosourea therapy were evaluable. Myelosuppression was dose limiting, with Common Toxicity Criteria (CTC) grade 4 thrombocytopenia occurring in one of six patients receiving 1000 mg m(-2) per cycle, and two of four patients treated at 1200 mg m(-2) per cycle. Therefore, the maximum-tolerated dose (MTD) was 1000 mg m(-2) per cycle. The MTD was not defined for children with prior craniospinal irradiation because of poor recruitment. Plasma pharmacokinetic analyses showed temozolomide to be rapidly absorbed and eliminated, with linear increases in peak plasma concentrations and systemic exposure with increasing dose. Responses (CR and PR) were seen in two out of five patients with high-grade astrocytomas, and one patient had stable disease. One of ten patients with diffuse intrinsic brain stem glioma achieved a long-term partial response, and a further two patients had stable disease. Therefore, the dose recommended for phase II studies in patients who have not received prior craniospinal irradiation or nitrosoureas is 1000 mg m(-2) per cycle. Further evaluation in diffuse intrinsic brain stem gliomas and other high-grade astrocytomas is warranted. Images Figure 5 p658-b Figure 6 p659-b PMID:9744506

  13. RTOG 0913: A Phase 1 Study of Daily Everolimus (RAD001) in Combination With Radiation Therapy and Temozolomide in Patients With Newly Diagnosed Glioblastoma

    SciTech Connect

    Chinnaiyan, Prakash; Won, Minhee; Wen, Patrick Y.; Wendland, Merideth; Dipetrillo, Thomas A.; Corn, Benjamin W.; Mehta, Minesh P.

    2013-08-01

    Purpose: To determine the safety of the mammalian target of rapamycin inhibitor everolimus (RAD001) administered daily with concurrent radiation and temozolomide in newly diagnosed glioblastoma patients. Methods and Materials: Everolimus was administered daily with concurrent radiation (60 Gy in 30 fractions) and temozolomide (75 mg/m{sup 2} per day). Everolimus was escalated from 2.5 mg/d (dose level 1) to 5 mg/d (dose level 2) to 10 mg/d (dose level 3). Adjuvant temozolomide was delivered at 150 to 200 mg/m{sup 2} on days 1 to 5, every 28 days, for up to 12 cycles, with concurrent everolimus at the previously established daily dose of 10 mg/d. Dose escalation continued if a dose level produced dose-limiting toxicities (DLTs) in fewer than 3 of the first 6 evaluable patients. Results: Between October 28, 2010, and July 2, 2012, the Radiation Therapy Oncology Group 0913 protocol initially registered a total of 35 patients, with 25 patients successfully meeting enrollment criteria receiving the drug and evaluable for toxicity. Everolimus was successfully escalated to the predetermined maximum tolerated dose of 10 mg/d. Two of the first 6 eligible patients had a DLT at each dose level. DLTs included gait disturbance, febrile neutropenia, rash, fatigue, thrombocytopenia, hypoxia, ear pain, headache, and mucositis. Other common toxicities were grade 1 or 2 hypercholesterolemia and hypertriglyceridemia. At the time of analysis, there was 1 death reported, which was attributed to tumor progression. Conclusions: Daily oral everolimus (10 mg) combined with both concurrent radiation and temozolomide followed by adjuvant temozolomide is well tolerated, with an acceptable toxicity profile. A randomized phase 2 clinical trial with mandatory correlative biomarker analysis is currently under way, designed to both determine the efficacy of this regimen and identify molecular determinants of response.

  14. Phase I Study of Temozolomide and Irinotecan for Recurrent Malignant Gliomas in Patients Receiving Enzyme-Inducing Antiepileptic Drugs: A North American BrainTumor Consortium Study

    PubMed Central

    Loghin, Monica E.; Prados, Michael D.; Wen, Patrick; Junck, Larry; Lieberman, Frank; Fine, Howard; Fink, Karen L.; Metha, Minesh; Kuhn, John; Lamborn, Kathleen; Chang, Susan M.; Cloughesy, Timothy; DeAngelis, Lisa M.; Robins, Ian H.; Aldape, Kenneth D.; AlfredYung, W.K.

    2016-01-01

    Purpose To determine the maximum tolerated dose of irinotecan when administrated with temozolomide every 28 days, in patients with recurrent malignant glioma who were also receiving CYP450 enzyme-inducing antiepileptic drugs (EIAED), and to characterize the pharmacokinetics of irinotecan and its metabolites. The study was also intended to assess whether temozolomide affects the conversion of irinotecan to SN-38. Design Patients with recurrent malignant glioma received a fixed dose of temozolomide (150 mg/m2) daily for 5 days from days1to 5 every 28 days, and an i.v. infusion of irinotecan on days1and15 of each cycle. The starting dose of irinotecan was 350 mg/m2, which was escalated to 550 mg/m2 in 50-mg/m2 increments. The plasma pharmacokinetics of irinotecan and its active metabolite, SN-38, were determined during the infusion of irinotecan on cycle 1, day 1. Results Thirty-three patients were enrolled into the study and treated. Thirty-one patients were evaluable for both tumor response and toxicity and two patients were evaluable for toxicity only. Common toxicities included neutropenia and thrombocytopenia, nausea, vomiting, and diarrhea. Dose-limiting toxicities were grade 3 diarrhea and nausea/vomiting. The maximum tolerated dose for irinotecan was determined to be 500 mg/m2. Conclusions The recommended phase II dose of irinotecan in combination with temozolomide for patients receiving EIAEDs is 500 mg/m2, administrated every 15 days on a 28-day schedule. This study also confirmed that concomitant administration of EIAEDs increases irinotecan clearance and influences SN-38 disposition. No pharmacokinetic interaction was observed between temozolomide and irinotecan. PMID:18056194

  15. A Multi-center Phase I Dose Escalation Trial to Evaluate Safety and Tolerability of Intra-arterial Temozolomide for Patients with Advanced Extremity Melanoma Using Normothermic Isolated Limb Infusion

    PubMed Central

    Beasley, Georgia M.; Speicher, Paul; Augustine, Christina K.; Dolber, Paul C.; Peterson, Bercedis L.; Sharma, Ketan; Mosca, Paul J.; Royal, Richard; Ross, Merrick; Zager, Jonathan S.; Tyler, Douglas S.

    2015-01-01

    Synopsis This phase I trial reports the first use of intra arterial temozolomide via isolated limb infusion for patients with advanced extremity melanoma. There was minimal toxicity and the maximum tolerated dose was determined. PMID:25145500

  16. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model

    PubMed Central

    Guo, Qin; Zhang, Ian; Gao, Hang; Yanyan, Song; Chen, Xuebo; Weng, Yiming; Da Fonseca, Anna; Shah, Sunny; Manuel, Edwin R.; Zhang, Leying; Vonderfecht, Steven L.; Alizadeh, Darya; Berlin, Jacob M.; Badie, Behnam

    2016-01-01

    Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs) can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261) tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc) that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG. PMID:26829221

  17. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    PubMed

    Ouyang, Mao; White, Ethan E; Ren, Hui; Guo, Qin; Zhang, Ian; Gao, Hang; Yanyan, Song; Chen, Xuebo; Weng, Yiming; Da Fonseca, Anna; Shah, Sunny; Manuel, Edwin R; Zhang, Leying; Vonderfecht, Steven L; Alizadeh, Darya; Berlin, Jacob M; Badie, Behnam

    2016-01-01

    Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs) can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261) tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc) that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG. PMID:26829221

  18. Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Pshenichnaya, Irina; Kogera, Fiona A.; Barthorpe, Syd; Mironenko, Tatiana; Richardson, Laura; Benes, Cyril H.; Stratton, Michael R.; McDermott, Ultan; Jackson, Stephen P.; Garnett, Mathew J.

    2015-01-01

    Ewing’s sarcoma is a malignant pediatric bone tumor with a poor prognosis for patients with metastatic or recurrent disease. Ewing’s sarcoma cells are acutely hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibition and this is being evaluated in clinical trials, although the mechanism of hypersensitivity has not been directly addressed. PARP inhibitors have efficacy in tumors with BRCA1/2 mutations, which confer deficiency in DNA double-strand break (DSB) repair by homologous recombination (HR). This drives dependence on PARP1/2 due to their function in DNA single-strand break (SSB) repair. PARP inhibitors are also cytotoxic through inhibiting PARP1/2 auto-PARylation, blocking PARP1/2 release from substrate DNA. Here, we show that PARP inhibitor sensitivity in Ewing’s sarcoma cells is not through an apparent defect in DNA repair by HR, but through hypersensitivity to trapped PARP1-DNA complexes. This drives accumulation of DNA damage during replication, ultimately leading to apoptosis. We also show that the activity of PARP inhibitors is potentiated by temozolomide in Ewing’s sarcoma cells and is associated with enhanced trapping of PARP1-DNA complexes. Furthermore, through mining of large-scale drug sensitivity datasets, we identify a subset of glioma, neuroblastoma and melanoma cell lines as hypersensitive to the combination of temozolomide and PARP inhibition, potentially identifying new avenues for therapeutic intervention. These data provide insights into the anti-cancer activity of PARP inhibitors with implications for the design of treatment for Ewing’s sarcoma patients with PARP inhibitors. PMID:26505995

  19. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment

    SciTech Connect

    Jakubowicz-Gil, Joanna; Langner, Ewa; Bądziul, Dorota; Wertel, Iwona; Rzeski, Wojciech

    2013-12-15

    The aim of the present study was to investigate whether silencing of Hsp27 or Hsp72 expression in glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cells increases their sensitivity to programmed cell death induction upon temozolomide and/or quercetin treatment. Transfection with specific siRNA was performed for the Hsp gene silencing. As revealed by microscopic observation and flow cytometry, the inhibition of Hsp expression was correlated with severe apoptosis induction upon the drug treatment studied. No signs of autophagy were detected. This was correlated with a decreased mitochondrial membrane potential, increased level of cytochrome c in the cytoplasm, and activation of caspase 3 and caspase 9. All these results suggest that the apoptotic signal was mediated by an internal pathway. Additionally, in a large percentage of cells treated with temozolomide, with or without quercetin, granules within the ER system were found, which was accompanied by an increased level of caspase 12 expression. This might be correlated with ER stress. Quercetin and temozolomide also changed the shape of nuclei from circular to “croissant like” in both transfected cell lines. Our results indicate that blocking of Hsp27 and Hsp72 expression makes T98G cells and MOGGCCM cells extremely vulnerable to apoptosis induction upon temozolomide and quercetin treatment and that programmed cell death is initiated by an internal signal. - Highlights: • Hsps gene silencing induced severe apoptosis upon temozolomide–quercetin treatment • Apoptosis in transfected glioma cells was initiated by internal signal • Programmed cell death was preceded by ER stress • Temozolomide–quercetin treatment changed nuclei shape in transfected glioma cells.

  20. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25++Foxp3+ regulatory T-cells in advanced melanoma patients

    PubMed Central

    2013-01-01

    Background In cancer immunotherapy, dendritic cells (DCs) play a fundamental role in the dialog between innate and adaptive immune response, but several immunosuppressive mechanisms remain to be overcome. For example, a high number of CD4+CD25++Foxp3+ regulatory T-cells (Foxp3+Tregs) have been observed in the peripheral blood and tumor microenvironment of cancer patients. On the basis of this, we conducted a study on DC-based vaccination in advanced melanoma, adding low-dose temozolomide to obtain lymphodepletion. Methods Twenty-one patients were entered onto our vaccination protocol using autologous DCs pulsed with autologous tumor lysate and keyhole limpet hemocyanin. Patients received low-dose temozolomide before vaccination and 5 days of low-dose interleukin-2 (IL-2) after vaccination. Circulating Foxp3+Tregs were evaluated before and after temozolomide, and after IL-2. Results Among the 17 evaluable patients we observed 1 partial response (PR), 6 stable disease (SD) and 10 progressive disease (PD). The disease control rate (PR+SD = DCR) was 41% and median overall survival was 10 months. Temozolomide reduced circulating Foxp3+Treg cells in all patients. A statistically significant reduction of 60% was observed in Foxp3+Tregs after the first cycle, whereas the absolute lymphocyte count decreased by only 14%. Conversely, IL-2 increased Foxp3+Treg cell count by 75.4%. Of note the effect of this cytokine, albeit not statistically significant, on the DCR subgroup led to a further 33.8% reduction in Foxp3+Treg cells. Conclusions Our results suggest that the combined immunological therapy, at least as far as the DCR subgroup is concerned, effectively reduced the number of Foxp3+Treg cells, which exerted a blunting effect on the growth-stimulating effect of IL-2. However, this regimen, with its current modality, would not seem to be capable of improving clinical outcome. PMID:23725550

  1. Cilengitide with metronomic temozolomide, procarbazine, and standard radiotherapy in patients with glioblastoma and unmethylated MGMT gene promoter in ExCentric, an open-label phase II trial.

    PubMed

    Khasraw, Mustafa; Lee, Adrian; McCowatt, Sally; Kerestes, Zoltan; Buyse, Marc E; Back, Michael; Kichenadasse, Ganessan; Ackland, Stephen; Wheeler, Helen

    2016-05-01

    Newly diagnosed glioblastoma multiforme with unmethylated MGMT promoter has a poor prognosis, with a median survival of 12 months. This phase II study investigated the efficacy and safety of combining the selective integrin inhibitor cilengitide with a combination of metronomic temozolomide and procarbazine for these patients. Eligible patients (newly diagnosed, histologically confirmed supratentorial glioblastoma with unmethylated MGMT promoter) were entered into this multicentre study. Cilengitide (2000 mg IV twice weekly) was commenced 1 week prior to radiotherapy combined with daily temozolomide (60 mg/m(2)) and procarbazine (50 or 100 mg) and, after 4 weeks' break, followed by six adjuvant cycles of temozolomide (50-60 mg/m(2)) and procarbazine (50 or 100 mg) on days 1-20, every 28 days. Cilengitide was continued for up to 12 months or until disease progression or unacceptable toxicity. The primary endpoint for efficacy was a 12-month overall survival rate of 65 %. Twenty-nine patients completed study treatment. Sixteen patients survived for 12 months or more, an overall survival rate of 55 %. The median overall survival was 14.5 months (95 % CI 11.1-19.6) and the median progression-free survival was 7.4 months (95 % CI 6.1-8). Cilengitide combined with metronomic temozolomide and procarbazine in MGMT-promoter unmethylated glioblastoma did not improve survival compared with historical data and does not warrant further investigation. PMID:26935578

  2. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  3. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  4. O10.04THE RANDOMIZED, MULTICENTER GLARIUS TRIAL INVESTIGATING BEVACIZUMAB/IRINOTECAN VS STANDARD TEMOZOLOMIDE IN NEWLY DIAGNOSED, MGMT-NON-METHYLATED GLIOBLASTOMA PATIENTS: FINAL SURVIVAL RESULTS AND QUALITY OF LIFE

    PubMed Central

    Herrlinger, U.; Schäfer, N.; Steinbach, J.P.; Weyerbrock, A.; Hau, P.; Goldbrunner, R.; Leutgeb, B.; Urbach, H.; Stummer, W.; Glas, M.

    2014-01-01

    BACKGROUND: There is a need for more effective therapies in newly diagnosed glioblastoma (GBM) patients with an MGMT-non-methylated tumor. The GLARIUS trial explored the efficacy of bevacizumab (BEV) + Irinotecan (IRI) as compared to standard TMZ in the first-line therapy of MGMT-non-methylated GBM. The primary endpoint progression-free survival after 6 months (PFS-6) has already been reported as being markedly increased in the BEV/IRI arm (Herrlinger et al., ASCO 2013, LBA 2000). The present report focuses on progression-free survival, overall survival (OS) and quality of life (QoL). METHODS: Patients (n = 170) with newly diagnosed, MGMT-non-methylated glioblastoma received local radiotherapy (RT, 30 x 2 Gy) and were randomized (2:1) for experimental therapy with BEV (10 mg/kg q2w) during RT followed by maintenance BEV (10 mg/kg q2w) + IRI (125 mg/m2 q2w) or standard therapy with daily TMZ (75 mg/m2) during RT followed by 6 courses of TMZ (150-200 mg/m2/day for 5 days q4w). For 5 prespecified dimensions of the EORTC-QLQ C30 and BN20 questionnaires (global health status, physical functioning, social functioning, motor dysfunction, communication deficit as prespecified domains), the time to deterioration by at least 10 points was analyzed using Kaplan-Meier statistics. RESULTS: With BEV/IRI, PFS was significantly prolonged from a median of 5.9 months (95%CI 2.7-6.2 months) to 9.7 months (95%CI 8.5-10.6 months, p < 0.0001; hazard ratio 0.57, 95%CI 0.41-0.79). At progression, the crossover rate was 60.4% (TMZ to BEV/(IRI) and 61.9% (BEV/IRI to TMZ). OS did not show any difference between the two arms: median OS was 16.6 months (95%CI 15.4-18.35 months) in the BEV/IRI arm and 17.3 months (95%CI 14.8-20.4 months). In all prespecified dimensions of QoL, the time to deterioration was not significantly different between the treatment arms. CONCLUSION: BEV/IRI therapy was superior to TMZ regarding PFS but OS was not prolonged. BEV/IRI therapy did not alter QoL as compared

  5. Antiparasitic agents.

    PubMed

    Rosenblatt, J E

    1999-11-01

    Several important developments have occurred in recent years in the chemotherapy for and prophylaxis of parasitic infections. Although mefloquine is clearly the most effective agent for prevention of chloroquine-resistant falciparum malaria, its use has been compromised by side effects, both real and imagined. Well-designed studies have shown that side effects occur no more frequently with low-dose mefloquine than with chloroquine. Use of mefloquine in pregnant women has not been associated with birth defects, but the incidence of stillbirths may be increased. Malarone is a new agent that combines atovaquone and proguanil, and it may be as effective as mefloquine; however, it is not yet available in the United States. Several newer agents have appeared in response to the development of multidrug resistant Plasmodium falciparum, especially in Southeast Asia. Halofantrine is available for the treatment of mild to moderate malaria due to P. falciparum and for P. vivax infections. Because of severe toxic effects, use of halofantrine should be restricted to only those unusual and rare situations in which other agents cannot be used. Artemisinin (an extract of the Chinese herbal remedy qinghaosu) and two derivatives, artesunate and artemether, are active against multidrug resistant P. falciparum and are widely used in Asia in oral, parenteral, and rectal forms. The antibacterial azithromycin in combination with atovaquone or quinine has now been reported to treat babesiosis effectively in experimental animals and in a few patients. Azithromycin in combination with paromomycin has also shown promise in the treatment of cryptosporidiosis (and toxoplasmosis when combined with pyrimethamine) in patients with the acquired immunodeficiency syndrome (AIDS). Albendazole is currently the only systemic agent available for treatment of microsporidiosis, an infection primarily of patients with AIDS. In addition, albendazole and ivermectin have emerged as effective broad

  6. Antifungal agents.

    PubMed

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  7. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  8. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma

    PubMed Central

    Vredenburgh, James J.; Desjardins, Annick; Peters, Katherine; Gururangan, Sridharan; Sampson, John H.; Marcello, Jennifer; Herndon, James E.; McLendon, Roger E.; Janney, Dorothea; Friedman, Allan H.; Bigner, Darell D.; Friedman, Henry S.

    2011-01-01

    Sorafenib, an oral VEGFR-2, Raf, PDGFR, c-KIT and Flt-3 inhibitor, is active against renal cell and hepatocellular carcinomas, and has recently demonstrated promising activity for lung and breast cancers. In addition, various protracted temozolomide dosing schedules have been evaluated as a strategy to further enhance its anti-tumor activity. We reasoned that sorafenib and protracted, daily temozolomide may provide complementary therapeutic benefit, and therefore performed a phase 2 trial among recurrent glioblastoma patients. Adult glioblastoma patients at any recurrence after standard temozolomide chemoradiotherapy received sorafenib (400 mg twice daily) and continuous daily temozolomide (50 mg/m2/day). Assessments were performed every eight weeks. The primary endpoint was progression-free survival at 6 months (PFS-6) and secondary end points were radiographic response, overall survival (OS), safety and sorafenib pharmacokinetics. Of 32 enrolled patients, 12 (38%) were on CYP3-A inducing anti-epileptics (EIAEDs), 17 (53%) had 2 or more prior progressions, 15 had progressed while receiving 5-day temozolomide, and 12 (38%) had failed either prior bevacizumab or VEGFR inhibitor therapy. The most common grade ≥ 3 toxicities were palmer-planter erythrodysesthesia (19%) and elevated amylase/lipase (13%). Sorafenib pharmacokinetic exposures were comparable on day 1 regardless of EIAED status, but significantly lower on day 28 for patients on EIAEDs (P = 0.0431). With a median follow-up of 93 weeks, PFS-6 was 9.4%. Only one patient (3%) achieved a partial response. In conclusion, sorafenib can be safely administered with daily temozolomide, but this regimen has limited activity for recurrent GBM. Co-administration of EIAEDs can lower sorafenib exposures in this population. PMID:20443129

  9. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients

    PubMed Central

    Adair, Jennifer E.; Johnston, Sandra K.; Mrugala, Maciej M.; Beard, Brian C.; Guyman, Laura A.; Baldock, Anne L.; Bridge, Carly A.; Hawkins-Daarud, Andrea; Gori, Jennifer L.; Born, Donald E.; Gonzalez-Cuyar, Luis F.; Silbergeld, Daniel L.; Rockne, Russell C.; Storer, Barry E.; Rockhill, Jason K.; Swanson, Kristin R.; Kiem, Hans-Peter

    2014-01-01

    BACKGROUND. Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMThi). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. METHODS. We enrolled 7 newly diagnosed glioblastoma patients with MGMThi tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. RESULTS. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5–57+) months and OS of 20 (range 13–57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. CONCLUSION. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. TRIAL

  10. Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma.

    PubMed

    Ney, Douglas E; Carlson, Julie A; Damek, Denise M; Gaspar, Laurie E; Kavanagh, Brian D; Kleinschmidt-DeMasters, B K; Waziri, Allen E; Lillehei, Kevin O; Reddy, Krishna; Chen, Changhu

    2015-03-01

    Bevacizumab blocks the effects of VEGF and may allow for more aggressive radiotherapy schedules. We evaluated the efficacy and toxicity of hypofractionated intensity-modulated radiation therapy with concurrent and adjuvant temozolomide and bevacizumab in patients with newly diagnosed glioblastoma. Patients with newly diagnosed glioblastoma were treated with hypofractionated intensity modulated radiation therapy to the surgical cavity and residual tumor with a 1 cm margin (PTV1) to 60 Gy and to the T2 abnormality with a 1 cm margin (PTV2) to 30 Gy in 10 daily fractions over 2 weeks. Concurrent temozolomide (75 mg/m(2) daily) and bevacizumab (10 mg/kg) was administered followed by adjuvant temozolomide (200 mg/m(2)) on a standard 5/28 day cycle and bevacizumab (10 mg/kg) every 2 weeks for 6 months. Thirty newly diagnosed patients were treated on study. Median PTV1 volume was 131.1 cm(3) and the median PTV2 volume was 342.6 cm(3). Six-month progression-free survival (PFS) was 90 %, with median follow-up of 15.9 months. The median PFS was 14.3 months, with a median overall survival (OS) of 16.3 months. Grade 4 hematologic toxicity included neutropenia (10 %) and thrombocytopenia (17 %). Grades 3/4 non-hematologic toxicity included fatigue (13 %), wound dehiscence (7 %) and stroke, pulmonary embolism and nausea each in 1 patient. Presumed radiation necrosis with clinical decline was seen in 50 % of patients, two with autopsy documentation. The study was closed early to accrual due to this finding. This study demonstrated 90 % 6-month PFS and OS comparable to historic data in patients receiving standard treatment. Bevacizumab did not prevent radiation necrosis associated with this hypofractionated radiation regimen and large PTV volumes may have contributed to high rates of presumed radiation necrosis. PMID:25524817

  11. Phase II Study of Erlotinib Plus Temozolomide During and After Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma

    PubMed Central

    Prados, Michael D.; Chang, Susan M.; Butowski, Nicholas; DeBoer, Rebecca; Parvataneni, Rupa; Carliner, Hannah; Kabuubi, Paul; Ayers-Ringler, Jennifer; Rabbitt, Jane; Page, Margaretta; Fedoroff, Anne; Sneed, Penny K.; Berger, Mitchel S.; McDermott, Michael W.; Parsa, Andrew T.; Vandenberg, Scott; James, C. David; Lamborn, Kathleen R.; Stokoe, David; Haas-Kogan, Daphne A.

    2009-01-01

    Purpose This open-label, prospective, single-arm, phase II study combined erlotinib with radiation therapy (XRT) and temozolomide to treat glioblastoma multiforme (GBM) and gliosarcoma. The objectives were to determine efficacy of this treatment as measured by survival and to explore the relationship between molecular markers and treatment response. Patients and Methods Sixty-five eligible adults with newly diagnosed GBM or gliosarcoma were enrolled. We intended to treat patients not currently treated with enzyme-inducing antiepileptic drugs (EIAEDs) with 100 mg/d of erlotinib during XRT and 150 mg/d after XRT. Patients receiving EIAEDs were to receive 200 mg/d of erlotinib during XRT and 300 mg/d after XRT. After XRT, the erlotinib dose was escalated until patients developed tolerable grade 2 rash or until the maximum allowed dose was reached. All patients received temozolomide during and after XRT. Molecular markers of epidermal growth factor receptor (EGFR), EGFRvIII, phosphatase and tensin homolog (PTEN), and methylation status of the promotor region of the MGMT gene were analyzed from tumor tissue. Survival was compared with outcomes from two historical phase II trials. Results Median survival was 19.3 months in the current study and 14.1 months in the combined historical control studies, with a hazard ratio for survival (treated/control) of 0.64 (95% CI, 0.45 to 0.91). Treatment was well tolerated. There was a strong positive correlation between MGMT promotor methylation and survival, as well as an association between MGMT promotor-methylated tumors and PTEN positivity shown by immunohistochemistry with improved survival. Conclusion Patients treated with the combination of erlotinib and temozolomide during and following radiotherapy had better survival than historical controls. Additional studies are warranted. PMID:19075262

  12. IgE, allergy, and risk of glioma: update from the San Francisco Bay Area Adult Glioma Study in the temozolomide era.

    PubMed

    Wiemels, Joseph L; Wilson, David; Patil, Chirag; Patoka, Joseph; McCoy, Lucie; Rice, Terri; Schwartzbaum, Judith; Heimberger, Amy; Sampson, John H; Chang, Susan; Prados, Michael; Wiencke, John K; Wrensch, Margaret

    2009-08-01

    The consistently observed inverse relationship of allergic conditions with glioma risk and our previous demonstration that immunoglobulin E (IgE) levels also were lower in glioma patients than controls suggest that atopic allergy may be related to a mechanism that inhibits or prevents glioma. We sought to extend these results with a new and larger series of patients (n = 535 with questionnaire data; 393 with IgE measures) and controls (n = 532 with questionnaire data; 470 with IgE measures). As expected, glioma cases were less likely than controls to report history of allergies [among self-reported cases, Odds ratios (OR) = 0.59, 95% confidence interval (CI): 0.41-0.85]. IgE levels also were lower in glioma cases versus controls (OR per unit log IgE = 0.89, 95% CI (0.82-0.98). However, this inverse relationship was only apparent among cases receiving temozolomide, a treatment which became part of the "standard of care" for glioblastoma patients during the study period. Among patients receiving temozolomide, IgE levels in cases whose blood samples were obtained within 30 days of diagnosis were slightly higher than controls, whereas IgE levels in cases whose blood sample was obtained >60 days after diagnosis were significantly lower than controls (OR = 0.80; 95% CI: 0.71-0.89). Thus, although our results robustly confirm the inverse association between allergy and glioma, the results for IgE are affected by temozolomide treatments which may have influenced IgE levels. These results have implications for the study of immunologic factors in glioma as well as for immunotherapy protocols for treating glioma. PMID:19408307

  13. IgE, Allergy, and Risk of Glioma: Update from the San Francisco Bay Area Adult Glioma Study in the Temozolomide Era

    PubMed Central

    Wiemels, Joseph L.; Wilson, David; Patel, Chirag; Patoka, Joseph; McCoy, Lucie; Rice, Terri; Schwartzbaum, Judith; Heimberger, Amy; Sampson, John H.; Chang, Susan; Prados, Michael; Wiencke, John K.; Wrensch, Margaret

    2009-01-01

    The consistently observed inverse relationship of allergic conditions with glioma risk and our previous demonstration that IgE levels also were lower in glioma patients than controls suggest that atopic allergy may be related to a mechanism that inhibits or prevents glioma. We sought to extend these results with a new and larger series of patients (n=535 with questionnaire data; 393 with IgE measures) and controls (n=532 with questionnaire data; 470 with IgE measures). As expected, glioma cases were less likely than controls to report history of allergies (among self-reported cases, OR = 0.59, 95% CI: 0.41–0.85). IgE levels also were lower in glioma cases versus controls (OR per unit log IgE=0.89, 95% CI (0.82–0.98). However, this inverse relationship was only apparent among cases receiving temozolomide, a treatment which became part of the “standard of care” for glioblastoma patients during the study period. Among patients receiving temozolomide, IgE levels in cases whose blood samples were obtained within 30 days of diagnosis were slightly higher than controls, while IgE levels in cases whose blood sample was obtained >60 days after diagnosis were significantly lower than controls (OR = 0.80; 95% CI: 0.71–0.89). Thus, while our results robustly confirm the inverse association between allergy and glioma, the results for IgE are affected by temozolomide treatments which may have influenced IgE levels. These results have implications for the study of immunologic factors in glioma as well as for immunotherapy protocols for treating glioma. PMID:19408307

  14. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  15. Agent Building Software

    NASA Technical Reports Server (NTRS)

    2000-01-01

    AgentBuilder is a software component developed under an SBIR contract between Reticular Systems, Inc., and Goddard Space Flight Center. AgentBuilder allows software developers without experience in intelligent agent technologies to easily build software applications using intelligent agents. Agents are components of software that will perform tasks automatically, with no intervention or command from a user. AgentBuilder reduces the time and cost of developing agent systems and provides a simple mechanism for implementing high-performance agent systems.

  16. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial

    PubMed Central

    Hasselbalch, Benedikte; Lassen, Ulrik; Hansen, Steinbjørn; Holmberg, Mats; Sørensen, Morten; Kosteljanetz, Michael; Broholm, Helle; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    The aim of this clinical trial was to investigate safety and efficacy when combining cetuximab with bevacizumab and irinotecan in patients with recurrent primary glioblastoma multiforme (GBM). Patients were included with recurrent primary GBM and progression within 6 months of ending standard treatment (radiotherapy and temozolomide). Bevacizumab and irinotecan were administered IV every 2 weeks. The first 10 patients received bevacizumab 5 mg/kg, but this was increased to 10 mg/kg after interim safety analysis. Irinotecan dose was based on whether patients were taking enzyme-inducing antiepileptic drugs or not: 340 and 125 mg/m2, respectively. Cetuximab 400 mg/m2 as loading dose followed by 250 mg/m2 weekly was administered IV. Forty-three patients were enrolled in the trial, of which 32 were available for response. Radiographic responses were noted in 34%, of which 2 patients had complete responses and 9 patients had partial responses. The 6-month progression-free survival probability was 30% and median overall survival was 29 weeks (95% CI: 23–37 weeks). One patient had lacunar infarction, 1 patient had multiple pulmonary embolisms, and 3 patients had grade 3 skin toxicity, for which 1 patient needed plastic surgery. One patient was excluded due to suspicion of interstitial lung disease. Three patients had deep-vein thrombosis; all continued on study after adequate treatment. Cetuximab in combination with bevacizumab and irinotecan in recurrent GBM is well tolerated except for skin toxicity, with an encouraging response rate. However, the efficacy data do not seem to be superior compared with results with bevacizumab and irinotecan alone. PMID:20406901

  17. State of the art and perspectives in the treatment of glioblastoma.

    PubMed

    Grimm, Sean A; Chamberlain, Marc C

    2012-09-01

    Glioblastoma is the most common malignant primary brain tumor. Cures are rare and median survival varies from several to 22 months. Standard treatment for good performance patients consists of maximal safe surgical resection followed by radiotherapy with concurrent temozolomide (TMZ) chemotherapy and six cycles of postradiotherapy TMZ. At recurrence, treatment options include repeat surgery (with or without Gliadel wafer placement), reirradiation or systemic therapy. Most patients with good performance status are treated with cytotoxic chemotherapy or targeted biologic therapy following or in lieu of repeat surgery. Cytotoxic chemotherapy options include nitrosoureas, rechallenge with TMZ, platins, phophoramides and topoisomerase inhibitors, although efficacy is limited. Despite the intense effort of developing biologic agents that target angiogenesis and growth and proliferative pathways, bevacizumab is the only agent that has shown efficacy in clinical trials. It was awarded accelerated approval in the USA after demonstrating an impressive radiographic response in two open-label, prospective Phase II studies. Two randomized, Phase III trials of upfront bevacizumab have completed and may demonstrate survival benefit; however, results are pending at this time. Given the limited treatment options at tumor recurrence, consideration for enrollment on a clinical trial is encouraged. PMID:25054300

  18. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  19. Remote Agent Demonstration

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Kurien, James; Rajan, Kanna

    1999-01-01

    We describe the computer demonstration of the Remote Agent Experiment (RAX). The Remote Agent is a high-level, model-based, autonomous control agent being validated on the NASA Deep Space 1 spacecraft.

  20. Efficacy and patient-reported outcomes with dose-intense temozolomide in patients with newly diagnosed pure and mixed anaplastic oligodendroglioma: a phase II multicenter study.

    PubMed

    Ahluwalia, Manmeet S; Xie, Hao; Dahiya, Saurabh; Hashemi-Sadraei, Nooshin; Schiff, David; Fisher, Paul G; Chamberlain, Marc C; Pannullo, Susan; Newton, Herbert B; Brewer, Cathy; Wood, Laura; Prayson, Richard; Elson, Paul; Peereboom, David M

    2015-03-01

    Standard initial therapy for patients with pure and mixed anaplastic oligodendrogliomas (AO/MAO) includes chemotherapy and radiation therapy. Anaplastic oligodendrogliomas with 1p/19q co-deletion are more responsive to chemotherapy. There is concern for potential long-term CNS toxicity of radiation. Hence an approach using chemotherapy initially and reserving radiation for progressive disease is attractive. This multicenter phase II trial included patients with newly diagnosed AO/MAO with central pathology review and 1p/19q assay. Temozolomide was given 150 mg/m(2) days 1-7 and 15-21, every 28 days for 8 cycles. The primary endpoint was progression free survival (PFS). Secondary endpoints included response rate, overall survival (OS), treatment toxicity and health-related quality of life (HRQL). Data from 62 patients enrolled between December 2001 and April 2007 at seven centers were analyzed. Among patients with measurable disease, 8 % achieved complete remission, 56 % had stable disease and 36 % had progression. The median PFS and OS were 27.2 months (95 % CI 11.9-36.3) and 105.8 months (95 % CI 51.5-N/A), respectively. Both 1p loss and 1p/19q co-deletion were positive prognostic factors for PFS (p < 0.001) and OS (p < 0.001); and there was some suggestion that 1p/19q co-deletion also predicted better response to chemotherapy (p = 0.007). Grade 3/4 toxicities were mainly hematological. Significantly improved HRQL in the future uncertainty domain of the brain cancer module was seen after cycle 4 (p < 0.001). This trial achieved outcomes similar to those reported previously. Toxicities from dose-intense temozolomide were manageable. Improvement in at least one HRQL domain increased over time. This trial supports the further study of first-line temozolomide monotherapy as an alternative to radiation therapy for patients with newly diagnosed AO/MAO with 1p 19q co-deleted tumors. PMID:25534576

  1. Valproic acid, compared to other antiepileptic drugs, is associated with improved overall and progression-free survival in glioblastoma but worse outcome in grade II/III gliomas treated with temozolomide.

    PubMed

    Redjal, Navid; Reinshagen, Clemens; Le, Andrew; Walcott, Brian P; McDonnell, Erin; Dietrich, Jorg; Nahed, Brian V

    2016-05-01

    Valproic acid (VPA) is an anti-epileptic drug with properties of a histone deacetylase inhibitor (HDACi). HDACi play a key role in epigenetic regulation of gene expression and have been increasingly used as anticancer agents. Recent studies suggest that VPA is associated with improved survival in high-grade gliomas. However, effects on lower grade gliomas have not been examined. This study investigates whether use of VPA correlates with tumor grade, histological progression, progression-free and overall survival (OS) in grade II, III, and IV glioma patients. Data from 359 glioma patients (WHO II-IV) treated with temozolomide plus an antiepileptic drug (VPA or another antiepileptic drug) between January 1997 and June 2013 at the Massachusetts General Hospital was analyzed retrospectively. After confounder adjustment, VPA was associated with a 28 % decrease in hazard of death (p = 0.031) and a 28 % decrease in the hazard of progression or death (p = 0.015) in glioblastoma. Additionally, VPA dose correlated with reduced hazard of death by 7 % (p = 0.002) and reduced hazard of progression or death by 5 % (p < 0.001) with each 100 g increase in total dose. Conversely, in grade II and III gliomas VPA was associated with a 118 % increased risk of tumor progression or death (p = 0.014), and every additional 100 g of VPA raised the hazard of progression or death by 4 %, although not statistically significant (p = 0.064). Moreover, grade II and III glioma patients taking VPA had 2.17 times the risk of histological progression (p = 0.020), although this effect was no longer significant after confounder adjustment. In conclusion, VPA was associated with improved survival in glioblastoma in a dose-dependent manner. However, in grade II and III gliomas, VPA was linked to histological progression and decrease in progression-free survival. Prospective evaluation of VPA treatment for glioma patients is warranted to confirm these findings. PMID:26830093

  2. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  3. β-elemene enhances both radiosensitivity and chemosensitivity of glioblastoma cells through the inhibition of the ATM signaling pathway.

    PubMed

    Liu, Siwei; Zhou, Lei; Zhao, Yongshun; Yuan, Yuhui

    2015-08-01

    Glioblastoma multiforme (GBM), a tumor associated with poor prognosis, is known to be resistant to radiotherapy and alkylating agents such as temozolomide (TMZ). β-elemene, a monomer found in Chinese traditional herbs extracted from Curcuma wenyujin, is currently being used as an antitumor drug for different types of tumors including GBM. In the present study, we investigated the roles of β-elemene in the radiosensitivity and chemosensitivity of GBM cells. Human GBM cell lines U87-MG, T98G, U251, LN229 and rat C6 cells were treated with β-elemene combined with radiation or TMZ. We used MTT and colony forming assays to evaluate the proliferation and survival of the cells, and the comet assay to observe DNA damage. Expression of proteins was analyzed by immunoblotting. In the present study, we found that β-elemene inhibited the proliferation and survival of different GBM cell lines when combined with radiotherapy or TMZ via inhibition of DNA damage repair. Treatment of GBM cells with β-elemene decreased the phosphorylation of ataxia telangiectasia mutated (ATM), AKT and ERK following radiotherapy or chemotherapy. These results revealed that β-elemene could significantly increase the radiosensitivity and chemosensitivity of GBM. β-elemene may be used as a potential drug in combination with the radiotherapy and chemotherapy of GBM. PMID:26062577

  4. Association of {sup 11}C-Methionine PET Uptake With Site of Failure After Concurrent Temozolomide and Radiation for Primary Glioblastoma Multiforme

    SciTech Connect

    Lee, Irwin H.; Piert, Morand; Gomez-Hassan, Diana; Junck, Larry; Rogers, Lisa; Hayman, James; Ten Haken, Randall K.; Lawrence, Theodore S.; Cao Yue; Tsien, Christina

    2009-02-01

    Purpose: To determine whether increased uptake on 11C-methionine-PET (MET-PET) imaging obtained before radiation therapy and temozolomide is associated with the site of subsequent failure in newly diagnosed glioblastoma multiforme (GBM). Methods: Patients with primary GBM were treated on a prospective trial with dose- escalated radiation and concurrent temozolomide. As part of the study, MET-PET was obtained before treatment but was not used for target volume definition. Using automated image registration, we assessed whether the area of increased MET-PET activity (PET gross target volume [GTV]) was fully encompassed within the high-dose region and compared the patterns of failure for those with and without adequate high-dose coverage of the PET-GTV. Results: Twenty-six patients were evaluated with a median follow-up of 15 months. Nineteen of 26 had appreciable (>1 cm{sup 3}) volumes of increased MET-PET activity before treatment. Five of 19 patients had PET-GTV that was not fully encompassed within the high-dose region, and all five patients had noncentral failures. Among the 14 patients with adequately covered PET-GTV, only two had noncentral treatment failures. Three of 14 patients had no evidence of recurrence more than 1 year after radiation therapy. Inadequate PET-GTV coverage was associated with increased risk of noncentral failures. (p < 0.01). Conclusion: Pretreatment MET-PET appears to identify areas at highest risk for recurrence for patients with GBM. It would be reasonable to test a strategy of incorporating MET-PET into radiation treatment planning, particularly for identifying areas for conformal boost.

  5. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  6. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  7. Mobile Agents Applications.

    ERIC Educational Resources Information Center

    Martins, Rosane Maria; Chaves, Magali Ribeiro; Pirmez, Luci; Rust da Costa Carmo, Luiz Fernando

    2001-01-01

    Discussion of the need to filter and retrieval relevant information from the Internet focuses on the use of mobile agents, specific software components which are based on distributed artificial intelligence and integrated systems. Surveys agent technology and discusses the agent building package used to develop two applications using IBM's Aglet…

  8. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, Steven Y.

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  9. Bevacizumab is active as a single agent against recurrent malignant gliomas.

    PubMed

    Agha, Caroline A; Ibrahim, Saman; Hassan, Ahmed; Elias, Dean A; Fathallah-Shaykh, Hassan M

    2010-02-01

    Bevacizumab, a humanized monoclonal antibody designed to inhibit vascular endothelial growth factor, is effective in combination with chemotherapy against malignant gliomas. We examined the therapeutic effects and toxicity of bevacizumab as a single agent for the treatment of recurrent malignant glioma. This is a retrospective analysis of a case series of 18 adult patients, diagnosed with recurrent WHO grade III and IV gliomas. Patients were divided into two groups: group A (n=8) received bevacizumab at a dose of 10 mg/kg every two weeks; group B patients (n=10) were treated with salvage chemotherapy of lomustine (n=4), liposomal doxorubicin (n=4), temozolomide (n=1), or the combination of procarbazine, lomustine, and vincristine (n=1). The main study outcome measure was the 12-month progression-free survival probability; the objective radiological response was a secondary endpoint. Half of the patients treated with bevacizumab remained progression-free at 12 months as compared to none in group B (log-rank p=0.0067). In addition, 7/8 patients in group A showed a radiological response as compared to 4/10 in group B. Toxicity was mild and no intracranial hemorrhage was observed. The finding that bevacizumab has significant activity as a single agent against malignant glioma is important, particularly for those patients who are unable to tolerate traditional chemotherapy. PMID:20332478

  10. Agent Architectures for Compliance

    NASA Astrophysics Data System (ADS)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  11. Severe sustained cholestatic hepatitis following temozolomide in a patient with glioblastoma multiforme: case study and review of data from the FDA adverse event reporting system.

    PubMed

    Sarganas, Giselle; Orzechowski, Hans D; Klimpel, Andreas; Thomae, Michael; Kauffmann, Wolfgang; Herbst, Hermann; Bronder, Elisabeth; Garbe, Edeltraut

    2012-05-01

    Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults. Its established first-line adjuvant treatment is radiotherapy in combination with temozolomide (TZM). Hematotoxicity is listed as a frequent adverse drug reaction in the US prescribing information and hepatotoxicity has been reported infrequently in the postmarketing period. We here present the case of a patient diagnosed with GBM who developed severe sustained cholestatic hepatitis following treatment with TZM. The cholestasis was not reversible after withdrawal of TZM during 6 months before the patient's death. Another 2 published case reports of sustained cholestasis following TZM treatment were identified; however, the sustained nature of cholestasis was not emphasized in these reports. Sixteen cases of cholestatic hepatitis/cholestasis associated with TZM were identified in the FDA spontaneous reporting system between 2007 and 2010. Information on the course of the cholestasis in these cases could not be retrieved. In the literature there are other published reports of hepatotoxicity associated with TZM that have reported reversibility upon withdrawal of the drug. Thus, TZM appears to cause different types of hepatotoxicity. Particular attention should be paid to sustained cholestasis as a very serious type of TZM-associated liver toxicity. PMID:22394496

  12. Severe sustained cholestatic hepatitis following temozolomide in a patient with glioblastoma multiforme: case study and review of data from the FDA adverse event reporting system

    PubMed Central

    Sarganas, Giselle; Orzechowski, Hans D.; Klimpel, Andreas; Thomae, Michael; Kauffmann, Wolfgang; Herbst, Hermann; Bronder, Elisabeth; Garbe, Edeltraut

    2012-01-01

    Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults. Its established first-line adjuvant treatment is radiotherapy in combination with temozolomide (TZM). Hematotoxicity is listed as a frequent adverse drug reaction in the US prescribing information and hepatotoxicity has been reported infrequently in the postmarketing period. We here present the case of a patient diagnosed with GBM who developed severe sustained cholestatic hepatitis following treatment with TZM. The cholestasis was not reversible after withdrawal of TZM during 6 months before the patient's death. Another 2 published case reports of sustained cholestasis following TZM treatment were identified; however, the sustained nature of cholestasis was not emphasized in these reports. Sixteen cases of cholestatic hepatitis/cholestasis associated with TZM were identified in the FDA spontaneous reporting system between 2007 and 2010. Information on the course of the cholestasis in these cases could not be retrieved. In the literature there are other published reports of hepatotoxicity associated with TZM that have reported reversibility upon withdrawal of the drug. Thus, TZM appears to cause different types of hepatotoxicity. Particular attention should be paid to sustained cholestasis as a very serious type of TZM-associated liver toxicity. PMID:22394496

  13. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide

    PubMed Central

    Kast, Richard E.; Karpel-Massler, Georg; Halatsch, Marc-Eric

    2014-01-01

    CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs- aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted. PMID:25211298

  14. Chemical crowd control agents.

    PubMed

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  15. Change Agent Survival Guide

    ERIC Educational Resources Information Center

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  16. Travel Agent Course Outline.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  17. Pediatric Antifungal Agents

    PubMed Central

    Cohen-Wolkowiez, Michael; Moran, Cassandra; Benjamin, Daniel K.; Smith, P Brian

    2009-01-01

    Purpose of review In immunocompromised hosts, invasive fungal infections are common and fatal. In the past decade, the antifungal armamentarium against invasive mycoses has expanded greatly. The purpose of this report is to review the most recent literature addressing the use of antifungal agents in children. Recent findings Most studies evaluating the safety and efficacy of antifungal agents are limited to adults. However, important progress has been made in describing the pharmacokinetics and safety of newer antifungal agents in children, including the echinocandins. Summary Dosage guidelines for newer antifungal agents are currently based on adult and limited pediatric data. Because important developmental pharmacology changes occur throughout childhood impacting the pharmacokinetics of these agents, antifungal studies specifically designed for children are necessary. PMID:19741525

  18. How do agents represent?

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  19. Standard Agent Framework 1

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4)more » Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.« less

  20. Biological warfare agents

    PubMed Central

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-01-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  1. Dioxin, agent orange

    SciTech Connect

    Gough, M.

    1986-01-01

    This book presents information on the following topics: dioxin, a prevalent problem; nobody wanted dioxin; agent organe and Vietnam; what we know about and may learn about agent orange and Veterans' health; agent organe and birth defects; dioxin in Missouri; 2, 4, 5-T: the U.S.' disappearing herbicide; Seveso: high-level environmental exposure; the nitro explosion; industrial exposures to dioxin; company behavior in the face of dioxin exposures; dioxin and specific cancers; animal tests of dioxin toxicity; dioxin decions; the present and the future.

  2. Outcomes for patients with anaplastic astrocytoma treated with chemoradiation, radiation therapy alone or radiation therapy followed by chemotherapy: a retrospective review within the era of temozolomide.

    PubMed

    Shonka, Nicole A; Theeler, Brett; Cahill, Daniel; Yung, Alfred; Smith, Lynette; Lei, Xiudong; Gilbert, Mark R

    2013-06-01

    Treatment for anaplastic astrocytoma (AA) is controversial. To assess three primary treatment approaches, patients from a single institution were retrospectively evaluated. To represent modern treatment selection, patients diagnosed with AA from December 2003 to December 2009 were selected. Those with insufficient data, incomplete pathology, and transformation or reclassification to glioblastoma in fewer than 6 months were excluded. A total of 163 patients were included in the final analyses. Median follow-up time was 4.2 years (range 0.5-7.8 years). Median age and Karnofsky performance status at diagnosis were 39.2 years and 90, respectively. 23.6 % of patients underwent biopsy, and 72.2 % underwent resection. Approximately 31 % received concurrent chemoradiation (CRT), 26.1 % had radiation therapy alone (RT), 38.2 % had radiation therapy followed by chemotherapy (RT-C), and 3 % were treated only with chemotherapy. Temozolomide was used almost exclusively during CRT (94.2 %) and adjuvantly. A median of 9.5 cycles of adjuvant chemotherapy was given. The combination of radiation and chemotherapy, either concurrent or sequential trended toward a higher rate of radiation necrosis. Median progression free survival (PFS) favored RT (not reached) over CRT (1.5 years) and RT-C (3.6 years) adjusted for pairwise comparison (p = 0.033, p = 0.050). Median overall survival (OS) was 5.7 years, and did not differ significantly by treatment group. OS for patients with AA did not vary by initial treatment selection. Although the longer PFS in those receiving RT versus CRT may be confounded by pseudoprogression, the equivalent OS among groups supports RT. PMID:23526410

  3. Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas.

    PubMed

    Germano, I M; Emdad, L; Qadeer, Z A; Binello, E; Uzzaman, M

    2010-09-01

    High-grade gliomas are among the most lethal of all cancers. Despite considerable advances in multimodality treatment, including surgery, radiotherapy and chemotherapy, the overall prognosis for patients with this disease remains dismal. Currently available treatments necessitate the development of more effective tumor-selective therapies. The use of gene therapy for malignant gliomas is promising, as it allows in situ delivery and selectively targets brain tumor cells while sparing the adjacent normal brain tissue. Viral vectors that deliver proapoptotic genes to malignant glioma cells have been investigated. Although tangible results on patients' survival remain to be further documented, significant advances in therapeutic gene transfer strategies have been made. Recently, cell-based gene delivery has been sought as an alternative method. In this paper, we report the proapoptotic effects of embryonic stem cell (ESC)-mediated mda-7/IL-24 delivery to malignant glioma cell lines. Our data show that these are similar to those observed using a viral vector. In addition, acknowledging the heterogeneity of malignant glioma cells and their signaling pathways, we assessed the effects of conventional treatment for high-grade gliomas, ionizing radiation and temozolomide, when combined with ESC-mediated transgene delivery. This combination resulted in synergistic effects on tumor cell death. The mechanisms involved in this beneficial effect included activation of both apoptosis and autophagy. Our in vitro data support the concept that ESC-mediated gene delivery might offer therapeutic advantages over standard approaches to malignant gliomas. Our results corroborate the theory that combined treatments exploiting different signaling pathways are needed to succeed in the treatment of malignant gliomas. PMID:20523363

  4. Durable response of glioblastoma to adjuvant therapy consisting of temozolomide and a weekly dose of AMD3100 (plerixafor), a CXCR4 inhibitor, together with lapatinib, metformin and niacinamide

    PubMed Central

    Rios, Adan; Hsu, Sigmund H.; Blanco, Angel; Buryanek, Jamie; Day, Arthur L.; McGuire, Mary F.; Brown, Robert E.

    2016-01-01

    Glioblastoma multiforme (GBM) is a CNS (central nervous system) malignancy with a low cure rate. Median time to progression after standard treatment is 7 months and median overall survival is 15 months [1]. Post-treatment vasculogenesis promoted by recruitment of bone marrow derived cells (BMDCs, CD11b+ myelomonocytes) is one of main mechanisms of GBM resistance to initial chemoradiotherapy treatment [2]. Local secretion of SDF-1, cognate ligand of BMDCs CXCR4 receptors attracts BMDCs to the post-radiation tumor site.[3]. This SDF-1 hypoxia-dependent effect can be blocked by AMD3100 (plerixafor) [4]. We report a GBM case treated after chemo- radiotherapy with plerixafor and a combination of an mTOR, a Sirt1 and an EGFRvIII inhibitor. After one year temozolomide and the EGFRvIII inhibitor were stopped. Plerixafor, and the MTOR and Sirt-1 inhibitors were continued. He is in clinical and radiologic remission 30 months from the initiation of his adjuvant treatment. To our knowledge, this is the first report of a patient treated for over two years with a CXCR4 inhibitor (plerixafor), as part of his adjuvant treatment. We believe there is sufficient experimental evidence to consider AMD3100 (plerixafor) part of the adjuvant treatment of GBM. Significance The adjuvant inhibition of GBM vasculogenesis(a process different from local angiogenesis) by specifically blocking the migration of BMDCs to the primary tumor site with inhibitors of the CXCR4/SDF-1 axis represents a potential novel therapeutic approach to GBM. There is significant pre-clinical evidence and validation for its use as demonstrated in a patient derived tumor xenograft model of GBM. Together with other specific anti-tumoral therapies, the active inhibition of vasculogenesis in the adjuvant treatment of GBM is deserving of further exploration. PMID:27489862

  5. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs

    PubMed Central

    Zhang, Liang; Zhang, Zhongwei; Mason, Ralph P.; Sarkaria, Jann N.; Zhao, Dawen

    2015-01-01

    There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO. PMID:25962872

  6. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Zhongwei; Mason, Ralph P.; Sarkaria, Jann N.; Zhao, Dawen

    2015-05-01

    There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO.

  7. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma

    PubMed Central

    Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  8. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  9. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  10. Riot Control Agents

    MedlinePlus

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly ... agent from your skin with large amounts of soap and water. Washing with soap and water will ...

  11. Agent amplified communication

    SciTech Connect

    Kautz, H.; Selman, B.; Milewski, A.

    1996-12-31

    We propose an agent-based framework for assisting and simplifying person-to-person communication for information gathering tasks. As an example, we focus on locating experts for any specified topic. In our approach, the informal person-to-person networks that exist within an organization are used to {open_quotes}referral chain{close_quotes} requests for expertise. User-agents help automate this process. The agents generate referrals by analyzing records of e-mail communication patterns. Simulation results show that the higher responsiveness of an agent-based system can be effectively traded for the higher accuracy of a completely manual approach. Furthermore, preliminary experience with a group of users on a prototype system has shown that useful automatic referrals can be found in practice. Our experience with actual users has also shown that privacy concerns are central to the successful deployment of personal agents: an advanced agent-based system will therefore need to reason about issues involving trust and authority.

  12. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  13. MpcAgent

    SciTech Connect

    Nutaro, James

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of the building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.

  14. MpcAgent

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of themore » building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.« less

  15. Gadofullerene MRI contrast agents.

    PubMed

    Bolskar, Robert D

    2008-04-01

    A promising new class of MRI contrast-enhancing agents with high relaxivities is based on gadolinium-containing metallofullerenes, which are also termed gadofullerenes. Detailed study of the water-proton relaxivity properties and intermolecular nanoclustering behavior of gadofullerene derivatives has revealed valuable information about their relaxivity mechanisms and given a deeper understanding of this new class of paramagnetic contrast agent. Here, the latest findings on water-solubilized gadofullerene materials and how these findings relate to their future applications in MRI are reviewed and discussed. PMID:18373426

  16. Agent Persuasion Mechanism of Acquaintance

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    Agent persuasion can improve negotiation efficiency in dynamic environment based on its initiative and autonomy, and etc., which is being affected much more by acquaintance. Classification of acquaintance on agent persuasion is illustrated, and the agent persuasion model of acquaintance is also illustrated. Then the concept of agent persuasion degree of acquaintance is given. Finally, relative interactive mechanism is elaborated.

  17. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 107.1620 Section 107.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance...

  18. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 108.1620 Section 108.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA...

  19. Can Subscription Agents Survive?

    ERIC Educational Resources Information Center

    Tuttle, Marcia

    1985-01-01

    With the saturation of traditional markets for their services, subscription agents have evolved from orders and invoices to serving customers by communicating with librarians and publishers and making automated and paper products available. Magazine fulfillment centers, publisher discounts, and electronic publishing will influence the subscription…

  20. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; Norvig, Peter (Technical Monitor)

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  1. E-Learning Agents

    ERIC Educational Resources Information Center

    Gregg, Dawn G.

    2007-01-01

    Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…

  2. Battlefield agent collaboration

    NASA Astrophysics Data System (ADS)

    Budulas, Peter P.; Young, Stuart H.; Emmerman, Philip J.

    2001-09-01

    Small air and ground physical agents (robots) will be ubiquitous on the battlefield of the 21st century, principally to lower the exposure to harm of our ground forces in urban and open terrain scenarios. Teams of small collaborating physical agents conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA), intelligence, chemical and biological agent detection, logistics, decoy, sentry; and communications relay will have advanced sensors, communications, and mobility characteristics. It is anticipated that there will be many levels of individual and team collaboration between the soldier and robot, robot to robot, and robot to mother ship. This paper presents applications and infrastructure components that illustrate each of these levels. As an example, consider the application where a team of twenty small robots must rapidly explore and define a building complex. Local interactions and decisions require peer to peer collaboration. Global direction and information fusion warrant a central team control provided by a mother ship. The mother ship must effectively deliver/retrieve, service, and control these robots as well as fuse the information gathered by these highly mobile robot teams. Any level of collaboration requires robust communications, specifically a mobile ad hoc network. The application of fixed ground sensors and mobile robots is also included in this paper. This paper discusses on going research at the U.S. Army Research Laboratory that supports the development of multi-robot collaboration. This research includes battlefield visualization, intelligent software agents, adaptive communications, sensor and information fusion, and multi-modal human computer interaction.

  3. Mobility control agent

    SciTech Connect

    Argabright, P.A.; Phillips, B.L.; Rhudy, J.S.

    1983-05-17

    Polymer mobility control agents useful in supplemental oil recovery processes, which give improved reciprocal relative mobilities, are prepared by initiating the polymerization of a monomer containing a vinyl group with a catalyst comprising a persulfate and ferrous ammonium sulfate. The vinyl monomer is an acrylyl, a vinyl cyanide, a styryl and water soluble salts thereof.

  4. Asparagine Depletion Potentiates the Cytotoxic Effect of Chemotherapy Against Brain Tumors

    PubMed Central

    Panosyan, Eduard H.; Wang, Yuntao; Xia, Peng; Lee, Wai-Nang Paul; Pak, Youngju; Laks, Dan R.; Lin, Henry J.; Moore, Theodore B.; Cloughesy, Timothy F.; Kornblum, Harley I.; Lasky, Joseph L.

    2014-01-01

    Targeting amino acid metabolism has therapeutic implications for aggressive brain tumors. Asparagine is an amino acid that is synthesized by normal cells. However, some cancer cells lack asparagine synthetase (ASNS), the key enzyme for asparagine synthesis. Asparaginase (ASNase) contributes to eradication of acute leukemia by decreasing asparagine levels in serum and cerebrospinal fluid. However, leukemic cells may become ASNase-resistant by up-regulating ASNS. High expression of ASNS has also been associated with biological aggressiveness of other cancers, including gliomas. Here, the impact of enzymatic depletion of asparagine on proliferation of brain tumor cells was determined. ASNase was used as monotherapy or in combination with conventional chemotherapeutic agents. Viability assays for ASNase-treated cells demonstrated significant growth reduction in multiple cell lines. This effect was reversed by glutamine in a dose-dependent manner -- as expected, because glutamine is the main amino group donor for asparagine synthesis. ASNase treatment also reduced sphere formation by medulloblastoma and primary glioblastoma cells. ASNase-resistant glioblastoma cells exhibited elevated levels of ASNS mRNA. ASNase co-treatment significantly enhanced gemcitabine or etoposide cytotoxicity against glioblastoma cells. Xenograft tumors in vivo showed no significant response to ASNase monotherapy and little response to temozolomide (TMZ) alone. However, combinatorial therapy with ASNase and TMZ resulted in significant growth suppression for an extended duration of time. Taken together, these findings indicate that amino acid depletion warrants further investigation as adjunctive therapy for brain tumors. PMID:24505127

  5. Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma

    PubMed Central

    2016-01-01

    Glioblastoma is one of the most fatal and incurable human cancers characterized by nuclear atypia, mitotic activity, intense microvascular proliferation and necrosis. The current standard of care includes maximal safe surgical resection followed by radiation therapy (RT) with concurrent and adjuvant temozolomide (TMZ). The prognosis remains poor with median survival of 14.6 months with RT plus TMZ. Majority will have a recurrence within 2 years from diagnosis despite adequate treatment. Radiosensitizers, radiotherapy dose escalation and altered fractionation have failed to improve outcome. The molecular biology of glioblastoma is complex and poses treatment challenges. High rate of mutation, genotypic and phenotypic heterogeneity, rapid development of resistance, existence of blood-brain barrier (BBB), multiple intracellular and intercellular signalling pathways, over-expression of growth factor receptors, angiogenesis and antigenic diversity renders the tumor cells differentially susceptible to various treatment modalities. Thus, the treatment strategies require personalised or individualized approach based on the characteristics of tumor. Several targeted agents have been evaluated in clinical trials but the results have been modest despite these advancements. This review summarizes the current standard of care, results of concurrent chemoradiation trials, evolving innovative treatments that use targeted therapy with standard chemoradiation or RT alone, outcome of various recent trials and future outlook. PMID:26904576

  6. On the Performance of Trimetazidine and Vitamin E as Pharmacoprotection Agents in Cyclosporin A-Induced Toxicity

    PubMed Central

    Cristina, De la Cruz Rodríguez Lilia; del Rosario, Rey María; Carmen Rosa, Araujo; Ana Veronica, Oldano

    2013-01-01

    The immunosuppressant drug cyclosporin A (CyA) has been used in diseases with immunological basis and in transplant patients. Nephrotoxicity and hepatotoxicity are the main adverse effects of this drug. To find a protective drug against those effects we assayed the cardioprotector Trimetazidine (TMZ) and vitamin E, used as nutritional supplements to alleviate oxidative stress. Six groups of eight male Wistar rats each were prepared (groups A–F): A, control; B, vitamin E (10 mg/Kg/day); C, TMZ (20 mg/Kg/day); D, 25 mg/Kg/day CyA; E, CyA and vitamin E (25 mg/Kg/day CyA + 10 mg/Kg/day Vit E); F, TMZ for 20 days (20 mg/kg/day); and then CyA (25 mg/kg/day) and TMZ (20 mg/Kg/day). The experiment lasted 120 days. The exposure of rats to CyA promoted nephrotoxicity and hepatotoxicity with an increase in serum urea, creatinine, and glutamate dehydrogenase (GLDH). Structural and ultrastructural studies of liver and kidney were performed. Group D showed adverse effects induced by CyA since statistically significant differences were found with respect to the control group (A). Vitamin E (E) showed no protective effect. Pretreatment with TMZ (F) attenuated the adverse effects of CyA. We conclude that CyA-induced nephrotoxicity and hepatotoxicity are attenuated by the cytoprotective effect of TMZ. TMZ inhibits the reabsorption and, consequently, the accumulation of CyA in the cell. The antioxidant capacity of vitamin E did not improve the effect of CyA. PMID:23691353

  7. On the performance of trimetazidine and vitamin e as pharmacoprotection agents in cyclosporin a-induced toxicity.

    PubMed

    Cristina, De la Cruz Rodríguez Lilia; Del Rosario, Rey María; Carmen Rosa, Araujo; Ana Veronica, Oldano

    2013-01-01

    The immunosuppressant drug cyclosporin A (CyA) has been used in diseases with immunological basis and in transplant patients. Nephrotoxicity and hepatotoxicity are the main adverse effects of this drug. To find a protective drug against those effects we assayed the cardioprotector Trimetazidine (TMZ) and vitamin E, used as nutritional supplements to alleviate oxidative stress. Six groups of eight male Wistar rats each were prepared (groups A-F): A, control; B, vitamin E (10 mg/Kg/day); C, TMZ (20 mg/Kg/day); D, 25 mg/Kg/day CyA; E, CyA and vitamin E (25 mg/Kg/day CyA + 10 mg/Kg/day Vit E); F, TMZ for 20 days (20 mg/kg/day); and then CyA (25 mg/kg/day) and TMZ (20 mg/Kg/day). The experiment lasted 120 days. The exposure of rats to CyA promoted nephrotoxicity and hepatotoxicity with an increase in serum urea, creatinine, and glutamate dehydrogenase (GLDH). Structural and ultrastructural studies of liver and kidney were performed. Group D showed adverse effects induced by CyA since statistically significant differences were found with respect to the control group (A). Vitamin E (E) showed no protective effect. Pretreatment with TMZ (F) attenuated the adverse effects of CyA. We conclude that CyA-induced nephrotoxicity and hepatotoxicity are attenuated by the cytoprotective effect of TMZ. TMZ inhibits the reabsorption and, consequently, the accumulation of CyA in the cell. The antioxidant capacity of vitamin E did not improve the effect of CyA. PMID:23691353

  8. Distributed Agents for Autonomy

    NASA Astrophysics Data System (ADS)

    Blake, Rick; Amigoni, Francesco; Brambilla, Andrea; de la Rosa Steinz, Sonia; Lavagna, Michele; le Duc, Ian; Page, Jonathan; Page, Oliver; Steel, Robin; Wijnands, Quirien

    2010-08-01

    The Distributed Agents for Autonomy (DAFA) Study has been performed for ESA by SciSys UK Ltd, Vega GmbH and Politecnico di Milano. An analysis of past, present and future space missions has been conducted, structured around a set of three pre-defined mission scenarios: Formation Flying, Earth Observation and Planetary Exploration. This analysis led to the definition of a framework of use cases where the application of distributed autonomy seems necessary or appropriate, and a set of metrics that may be used to assess such deployments. Agent technology and architectures were extensively surveyed and the results used to elaborate each of the mission scenarios to the point where a software prototype could be constructed. Such a prototype was developed for a scenario based on the ExoMars mission and this has been used to highlight the advantages of a DAFA approach to the mission architecture.

  9. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  10. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  11. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  12. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  13. Perioperative allergy: uncommon agents.

    PubMed

    Caimmi, S; Caimmi, D; Cardinale, F; Indinnimeo, L; Crisafulli, G; Peroni, D G; Marseglia, G L

    2011-01-01

    Anesthesia may often be considered as a high-risk procedure and anaphylaxis remains a major cause of concern for anesthetists who routinely administer many potentially allergenic agents. Neuromuscular blocking agents, latex and antibiotics are the substances involved in most of the reported reactions. Besides these three agents, a wide variety of substances may cause an anaphylactic reaction during anesthesia. Basically all the administered drugs or substances may be potential causes of anaphylaxis. Among them, those reported the most in literature include hypnotics, opioids, local anesthetics, colloids, dye, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Iodinated Contrast Media (ICM), antiseptics, aprotinin, ethylene oxyde and formaldehyde, and protamine and heparins. No premedication can effectively prevent an allergic reaction and a systematic preoperative screening is not justified for all patients; nevertheless, an allergy specialist should evaluate those patients with a history of anesthesia-related allergy. Patients must be fully informed of investigation results, and advised to provide a detailed report prior to future anesthesia. PMID:22014927

  14. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma

    PubMed Central

    Tsen, Andrew R.; Long, Patrick M.; Driscoll, Heather E.; Davies, Matthew T.; Teasdale, Benjamin A.; Penar, Paul L.; Pendlebury, William W.; Spees, Jeffrey L.; Lawler, Sean E.; Viapiano, Mariano S.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic, and hypoacetylated mesenchymal glioma tumors. PMID:23996800

  15. Transferrin-Targeted Nanoparticles Containing Zoledronic Acid as a Potential Tool to Inhibit Glioblastoma Growth.

    PubMed

    Salzano, G; Zappavigna, S; Luce, A; D'Onofrio, N; Balestrieri, M L; Grimaldi, A; Lusa, S; Ingrosso, D; Artuso, S; Porru, M; Leonetti, C; Caraglia, M; De Rosa, G

    2016-04-01

    The treatment of glioblastoma (GBM) is a challenge for the biomedical research since cures remain elusive. Its current therapy, consisted on surgery, radiotherapy, and concomitant chemotherapy with temozolomide (TMZ), is often uneffective. Here, we proposed the use of zoledronic acid (ZOL) as a potential agent for the treatment of GBM. Our group previously developed self-assembling nanoparticles, also named PLCaPZ NPs, to use ZOL in the treatment of prostate cancer. Here, we updated the previously developed nanoparticles (NPs) by designing transferrin (Tf)-targeted self-assembling NPs, also named Tf-PLCaPZ NPs, to use ZOL in the treatment of brain tumors, e.g., GBM. The efficacy of Tf-PLCaPZ NPs was evaluated in different GBM cell lines and in an animal model of GBM, in comparison with PLCaPZ NPs and free ZOL. Tf-PLCaPZ NPs were characterized by a narrow size distribution and a high incorporation efficiency of ZOL. Moreover, the presence of Tf significantly reduced the hemolytic activity of the formulation. In vitro, in LN229 cells, a significant uptake and cell growth inhibition after treatment with Tf-PLCaPZ NPs was achieved. Moreover, the sequential therapy of TMZ and Tf-PLCaPZ NPs lead to a superior therapeutic activity compared to their single administration. The results obtained in mice xenografted with U373MG, revealed a significant anticancer activity of Tf-PLCaPZ NPs, while the tumors remained unaffected with free TMZ. These promising results introduce a novel type of easy-to-obtain NPs for the delivery of ZOL in the treatment of GBM tumors. PMID:27301207

  16. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  17. Brain metastases in metastatic non-small cell lung cancer responding to single-agent gefitinib: a case report.

    PubMed

    Stemmler, H J; Weigert, O; Krych, M; Schoenberg, S O; Ostermann, H; Hiddemann, W

    2005-08-01

    Brain metastases are a frequent finding in patients with non-small cell lung cancer (NSCLC). The present case reports the clinical course of a patient who was treated with gefitinib alone for progressive brain metastases after whole-brain irradiation treatment (WBRT). A 50-year-old women with primary stage IV NSCLC (bone metastases) developed brain metastases after 3 cycles of chemotherapy consisting of paclitaxel and carboplatin (CBDA). After completion of the WBRT, magnetic resonance imaging (MRI) indicated further progression. Two cycles of temozolomide and topotecan were applied; this was ineffective in preventing central nervous system progression. For symptomatic brain metastatic disease the patient received gefitinib as single-agent treatment. Within a few weeks of treatment there was an obvious clinical improvement. Follow-up of the brain 2 months after the start of treatment showed a decrease in both the size and number of brain metastases. Additional manifestations in the lungs and the skeletal system were re-assessed as stable disease during the treatment with gefitinib. Within 4 months of treatment there were no side-effects such as skin rash or any other systemic toxicity. Gefitinib may therefore have a role in the treatment of brain metastases from NSCLC. PMID:16027524

  18. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    SciTech Connect

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  19. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  20. Chemical warfare agents.

    PubMed

    Ganesan, K; Raza, S K; Vijayaraghavan, R

    2010-07-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  1. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  2. Chemical warfare agents

    PubMed Central

    Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.

    2010-01-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  3. Cleaning agents and asthma.

    PubMed

    Quirce, S; Barranco, P

    2010-01-01

    Although cleaners represent a significant part of the working population worldwide, they remain a relatively understudied occupational group. Epidemiological studies have shown an association between cleaning work and asthma, but the risk factors are uncertain. Cleaning workers are exposed to a large variety of cleaning products containing both irritants and sensitizers, as well as to common indoor allergens and pollutants. Thus, the onset or aggravation of asthma in this group could be related to an irritant-induced mechanism or to specific sensitization. The main sensitizers contained in cleaning products are disinfectants, quaternary ammonium compounds (such as benzalkonium chloride), amine compounds, and fragrances.The strongest airway irritants in cleaning products are bleach (sodium hypochlorite), hydrochloric acid, and alkaline agents (ammonia and sodium hydroxide), which are commonly mixed together. Exposure to the ingredients of cleaning products may give rise to both new-onset asthma, with or without a latency period, and work-exacerbated asthma. High-level exposure to irritants may induce reactive airways dysfunction syndrome. Cleaning workers may also have a greater relative risk of developing asthma due to prolonged low-to-moderate exposure to respiratory irritants. In addition, asthma-like symptoms without confirmed asthma are also common after exposure to cleaning agents. In many cleaners, airway symptoms induced by chemicals and odors cannot be explained by allergic or asthmatic reactions. These patients may have increased sensitivity to inhaled capsaicin, which is known to reflect sensory reactivity, and this condition is termed airway sensory hyperreactivity. PMID:21313993

  4. [New agents for hypercholesterolemia].

    PubMed

    Pintó, Xavier; García Gómez, María Carmen

    2016-02-19

    An elevated proportion of high cardiovascular risk patients do not achieve the therapeutic c-LDL goals. This owes to physicians' inappropriate or insufficient use of cholesterol lowering medications or to patients' bad tolerance or therapeutic compliance. Another cause is an insufficient efficacy of current cholesterol lowering drugs including statins and ezetimibe. In addition, proprotein convertase subtilisin kexin type 9 inhibitors are a new cholesterol lowering medications showing safety and high efficacy to reduce c-LDL in numerous already performed or underway clinical trials, potentially allowing an optimal control of hypercholesterolemia in most patients. Agents inhibiting apolipoprotein B synthesis and microsomal transfer protein are also providing a new potential to decrease cholesterol in patients with severe hypercholesterolemia and in particular in homozygote familial hypercholesterolemia. Last, cholesteryl ester transfer protein inhibitors have shown powerful effects on c-HDL and c-LDL, although their efficacy in cardiovascular prevention and safety has not been demonstrated yet. We provide in this article an overview of the main characteristics of therapeutic agents for hypercholesterolemia, which have been recently approved or in an advanced research stage. PMID:25817449

  5. Holograms as Teaching Agents

    NASA Astrophysics Data System (ADS)

    Walker, Robin A.

    2013-02-01

    Hungarian physicist Dennis Gabor won the Pulitzer Prize for his 1947 introduction of basic holographic principles, but it was not until the invention of the laser in 1960 that research scientists, physicians, technologists and the general public began to seriously consider the interdisciplinary potentiality of holography. Questions around whether and when Three-Dimensional (3-D) images and systems would impact American entertainment and the arts would be answered before educators, instructional designers and students would discover how much Three-Dimensional Hologram Technology (3DHT) would affect teaching practices and learning environments. In the following International Symposium on Display Holograms (ISDH) poster presentation, the author features a traditional board game as well as a reflection hologram to illustrate conventional and evolving Three-Dimensional representations and technology for education. Using elements from the American children's toy Operation® (Hasbro, 2005) as well as a reflection hologram of a human brain (Ko, 1998), this poster design highlights the pedagogical effects of 3-D images, games and systems on learning science. As teaching agents, holograms can be considered substitutes for real objects, (human beings, organs, and animated characters) as well as agents (pedagogical, avatars, reflective) in various learning environments using many systems (direct, emergent, augmented reality) and electronic tools (cellphones, computers, tablets, television). In order to understand the particular importance of utilizing holography in school, clinical and public settings, the author identifies advantages and benefits of using 3-D images and technology as instructional tools.

  6. Learning models of intelligent agents

    SciTech Connect

    Carmel, D.; Markovitch, S.

    1996-12-31

    Agents that operate in a multi-agent system need an efficient strategy to handle their encounters with other agents involved. Searching for an optimal interactive strategy is a hard problem because it depends mostly on the behavior of the others. In this work, interaction among agents is represented as a repeated two-player game, where the agents` objective is to look for a strategy that maximizes their expected sum of rewards in the game. We assume that agents` strategies can be modeled as finite automata. A model-based approach is presented as a possible method for learning an effective interactive strategy. First, we describe how an agent should find an optimal strategy against a given model. Second, we present an unsupervised algorithm that infers a model of the opponent`s automaton from its input/output behavior. A set of experiments that show the potential merit of the algorithm is reported as well.

  7. Flexible, secure agent development framework

    DOEpatents

    Goldsmith; Steven Y.

    2009-04-07

    While an agent generator is generating an intelligent agent, it can also evaluate the data processing platform on which it is executing, in order to assess a risk factor associated with operation of the agent generator on the data processing platform. The agent generator can retrieve from a location external to the data processing platform an open site that is configurable by the user, and load the open site into an agent substrate, thereby creating a development agent with code development capabilities. While an intelligent agent is executing a functional program on a data processing platform, it can also evaluate the data processing platform to assess a risk factor associated with performing the data processing function on the data processing platform.

  8. New antifungal agents.

    PubMed

    Gupta, Aditya K; Tomas, Elizabeth

    2003-07-01

    Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates, and drug resistance. New formulations are being prepared to improve absorption and efficacy of some of these standard therapies. Various new antifungals have demonstrated therapeutic potential. These new agents may provide additional options for the treatment of superficial fungal infections and they may help to overcome the limitations of current treatments. Liposomal formulations of AmB have a broad spectrum of activity against invasive fungi, such as Candida spp., C. neoformans, and Aspergillus spp., but not dermatophyte fungi. The liposomal AmB is associated with significantly less toxicity and good rates of efficacy, which compare or exceed that of standard AmB. These factors may provide enough of an advantage to patients to overcome the increased costs of these formulations. Three new azole drugs have been developed, and may be of use in both systemic and superficial fungal infections. Voriconazole, ravuconazole, and posaconazole are triazoles, with broad-spectrum activity. Voriconazole has a high bioavailability, and has been used with success in immunocompromised patients with invasive fungal infections. Ravuconazole has shown efficacy in candidiasis in immunocompromised patients, and onychomycosis in healthy patients. Preliminary in vivo studies with posaconazole indicated potential use in a variety of invasive fungal infections including oropharyngeal candidiasis. Echinocandins and pneumocandins are a new class of antifungals, which act as fungal cell wall beta-(1,3)-D-glucan synthase enzyme complex inhibitors. Caspofungin (MK-0991) is the first of the echinocandins to receive Food and Drug Administration approval for patients with invasive aspergillosis not responding or intolerant to other antifungal therapies, and has been effective in patients with oropharyngeal and esophageal candidiasis. Standardization of MIC value determination has improved the

  9. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  10. Hepatocytes as Immunological Agents.

    PubMed

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  11. Agent Assignment for Process Management: Pattern Based Agent Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Jablonski, Stefan; Talib, Ramzan

    In almost all workflow management system the role concept is determined once at the introduction of workflow application and is not reevaluated to observe how successfully certain processes are performed by the authorized agents. This paper describes an approach which evaluates how agents are working successfully and feed this information back for future agent assignment to achieve maximum business benefit for the enterprise. The approach is called Pattern based Agent Performance Evaluation (PAPE) and is based on machine learning technique combined with post processing technique. We report on the result of our experiments and discuss issues and improvement of our approach.

  12. Agent-based enterprise integration

    SciTech Connect

    N. M. Berry; C. M. Pancerella

    1998-12-01

    The authors are developing and deploying software agents in an enterprise information architecture such that the agents manage enterprise resources and facilitate user interaction with these resources. The enterprise agents are built on top of a robust software architecture for data exchange and tool integration across heterogeneous hardware and software. The resulting distributed multi-agent system serves as a method of enhancing enterprises in the following ways: providing users with knowledge about enterprise resources and applications; accessing the dynamically changing enterprise; locating enterprise applications and services; and improving search capabilities for applications and data. Furthermore, agents can access non-agents (i.e., databases and tools) through the enterprise framework. The ultimate target of the effort is the user; they are attempting to increase user productivity in the enterprise. This paper describes their design and early implementation and discusses the planned future work.

  13. Collaborating Fuzzy Reinforcement Learning Agents

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.

  14. Problems of Glioblastoma Multiforme Drug Resistance.

    PubMed

    Stavrovskaya, A A; Shushanov, S S; Rybalkina, E Yu

    2016-02-01

    Glioblastoma multiforme (GBL) is the most common and aggressive brain neoplasm. A standard therapeutic approach for GBL involves combination therapy consisting of surgery, radiotherapy, and chemotherapy. The latter is based on temozolomide (TMZ). However, even by applying such a radical treatment strategy, the mean patient survival time is only 14.6 months. Here we review the molecular mechanisms underlying the resistance of GBL cells to TMZ including genetic and epigenetic mechanisms. Present data regarding a role for genes and proteins MGMT, IDH1/2, YB-1, MELK, MVP/LRP, MDR1 (ABCB1), and genes encoding other ABC transporters as well as Akt3 kinase in developing resistance of GBL to TMZ are discussed. Some epigenetic regulators of resistance to TMZ such as microRNA and EZH2 are reviewed. PMID:27260389

  15. New agents for prostate cancer.

    PubMed

    Agarwal, N; Di Lorenzo, G; Sonpavde, G; Bellmunt, J

    2014-09-01

    The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has been revolutionized by the arrival of multiple novel agents in the past 2 years. Immunotherapy in the form of sipuleucel-T, androgen axis inhibitors, including abiraterone acetate and enzalutamide, a chemotherapeutic agent, cabazitaxel, and a radiopharmaceutical, radium-223, have all yielded incremental extensions of survival and have been recently approved. A number of other agents appear promising in early studies, suggesting that the armamentarium against castrate-resistant prostate cancer is likely to continue to expand. Emerging androgen pathway inhibitors include androgen synthesis inhibitors (TAK700), androgen receptor inhibitors (ARN-509, ODM-201), AR DNA binding domain inhibitors (EPI-001), selective AR downregulators or SARDs (AZD-3514), and agents that inhibit both androgen synthesis and receptor binding (TOK-001/galeterone). Promising immunotherapeutic agents include poxvirus vaccines and CTLA-4 inhibitor (ipilimumab). Biologic agents targeting the molecular drivers of disease are also being investigated as single agents, including cabozantinib (Met and VEGFR2 inhibitor) and tasquinimod (angiogenesis and immune modulatory agent). Despite the disappointing results seen from studies evaluating docetaxel in combination with other agents, including GVAX, anti-angiogentic agents (bevacizumab, aflibercept, lenalinomide), a SRC kinase inhibitor (dasatinib), endothelin receptor antagonists (atrasentan, zibotentan), and high-dose calcitriol (DN-101), the results from the trial evaluating docetaxel in combination with the clusterin antagonist, custirsen, are eagerly awaited. New therapeutic hurdles consist of discovering new targets, understanding resistance mechanisms, the optimal sequencing and combinations of available agents, as well as biomarkers predictive for benefit. Novel agents targeting bone metastases are being developed following the success of zoledronic acid

  16. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  17. The Agent of Change: The Agent of Conflict.

    ERIC Educational Resources Information Center

    Hatfield, C. R., Jr.

    This speech examines the role of change agents in third world societies and indicates that the change agent must, to some extent, manipulate the social situation, even if his view of society is a more optimistic one than he finds in reality. If he considers strains and stresses to be the lubricants of change, then his focus on conflict as a…

  18. Incorporating BDI Agents into Human-Agent Decision Making Research

    NASA Astrophysics Data System (ADS)

    Kamphorst, Bart; van Wissen, Arlette; Dignum, Virginia

    Artificial agents, people, institutes and societies all have the ability to make decisions. Decision making as a research area therefore involves a broad spectrum of sciences, ranging from Artificial Intelligence to economics to psychology. The Colored Trails (CT) framework is designed to aid researchers in all fields in examining decision making processes. It is developed both to study interaction between multiple actors (humans or software agents) in a dynamic environment, and to study and model the decision making of these actors. However, agents in the current implementation of CT lack the explanatory power to help understand the reasoning processes involved in decision making. The BDI paradigm that has been proposed in the agent research area to describe rational agents, enables the specification of agents that reason in abstract concepts such as beliefs, goals, plans and events. In this paper, we present CTAPL: an extension to CT that allows BDI software agents that are written in the practical agent programming language 2APL to reason about and interact with a CT environment.

  19. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  20. TACtic- A Multi Behavioral Agent for Trading Agent Competition

    NASA Astrophysics Data System (ADS)

    Khosravi, Hassan; Shiri, Mohammad E.; Khosravi, Hamid; Iranmanesh, Ehsan; Davoodi, Alireza

    Software agents are increasingly being used to represent humans in online auctions. Such agents have the advantages of being able to systematically monitor a wide variety of auctions and then make rapid decisions about what bids to place in what auctions. They can do this continuously and repetitively without losing concentration. To provide a means of evaluating and comparing (benchmarking) research methods in this area the trading agent competition (TAC) was established. This paper describes the design, of TACtic. Our agent uses multi behavioral techniques at the heart of its decision making to make bidding decisions in the face of uncertainty, to make predictions about the likely outcomes of auctions, and to alter the agent's bidding strategy in response to the prevailing market conditions.

  1. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  2. Agent-Based Literacy Theory

    ERIC Educational Resources Information Center

    McEneaney, John E.

    2006-01-01

    The purpose of this theoretical essay is to explore the limits of traditional conceptualizations of reader and text and to propose a more general theory based on the concept of a literacy agent. The proposed theoretical perspective subsumes concepts from traditional theory and aims to account for literacy online. The agent-based literacy theory…

  3. Hypersensitivity to antineoplastic agents.

    PubMed

    Castells, M C

    2008-01-01

    The need to offer first line therapy for primary and recurrent cancers has spurred the clinical development of rapid desensitizations for chemotherapy and monoclonal antibodies. Rapid desensitizations allow patients to be treated with medications to which they have presented with hypersensitivity reactions (HSRs), including anaphylaxis. Rapid desensitization achieves temporary tolerization to full therapeutic doses by slow administration of incremental doses of the drug inducing the HSR. Protocols are available for most chemotherapy agents, including taxanes, platins, doxorubicin, monoclonal antibodies, and others. Candidate patients include those who present with type I HSRs, mast cell/IgE dependent, including anaphylaxis, and non-IgE mediated HSRs, during the chemotherapy infusion or shortly after. Idiosyncratic reactions, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis are not amenable to rapid desensitization. The recommendation for rapid desensitization can only be made by allergy and immunology specialists and can only be performed in settings with one-to-one nurse-patient care and where resuscitation personnel and resources are readily available. Repeated desensitizations can be safely performed in outpatient settings with similar conditions, which allow cancer patients to remain in clinical studies. We have generated a universal 12-step protocol that was applied to 413 cases of intravenous and intraperitoneal rapid desensitizations using taxanes, platins, liposomal doxorubicin, doxorubicin, rituximab, and other chemotherapy drugs. Under this protocol all patients were able to complete their target dose, and 94% of the patients had limited or no reactions. No deaths or codes were reported, indicating that the procedure was safe and effective in delivering first line chemotherapy drugs. PMID:18991707

  4. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  5. Markov Tracking for Agent Coordination

    NASA Technical Reports Server (NTRS)

    Washington, Richard; Lau, Sonie (Technical Monitor)

    1998-01-01

    Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.

  6. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM

    PubMed Central

    Stojcheva, Nina; Schechtmann, Gennadi; Sass, Steffen; Roth, Patrick; Florea, Ana-Maria; Stefanski, Anja; Stühler, Kai; Wolter, Marietta; Müller, Nikola S.; Theis, Fabian J.; Weller, Michael; Reifenberger, Guido; Happold, Caroline

    2016-01-01

    Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo. PMID:26887050

  7. Diffusion MR Characteristics Following Concurrent Radiochemotherapy Predicts Progression-Free and Overall Survival in Newly Diagnosed Glioblastoma

    PubMed Central

    Chang, Warren; Pope, Whitney B.; Harris, Robert J.; Hardy, Anthony J.; Leu, Kevin; Mody, Reema R.; Nghiemphu, Phioanh L.; Lai, Albert; Cloughesy, Timothy F.; Ellingson, Benjamin M.

    2015-01-01

    The standard of care for newly diagnosed glioblastoma (GBM) is surgery, then radiotherapy (RT) with concurrent temozolomide (TMZ), followed by adjuvant TMZ. We hypothesized patients with low diffusivity measured using apparent diffusion coefficient (ADC) histogram analysis evaluated after RT+TMZ, prior to adjuvant TMZ, would have a significantly shorter progression-free (PFS) and overall survival (OS). To test this hypothesis we evaluated 120 patients with newly diagnosed GBM receiving RT+TMZ followed by adjuvant TMZ. MRI was performed after completion of RT+TMZ, prior to initiation of adjuvant TMZ. A double Gaussian mixed model was used to describe the ADC histograms within the enhancing tumor, where ADCL and ADCH were defined as the mean ADC value of the lower and higher Gaussian distribution, respectively. An ADCL value of 1.0 um2/ms and ADCH value of 1.6 um2/ms were used to stratify patients into high and low risk categories. Results suggest patients with low ADCL had significantly shorter PFS (Cox Hazard Ratio = 0.12, P = 0.0006). OS was significantly shorter with low ADCL tumors, showing a median OS of 407 vs. 644 days (Cox Hazard Ratio = 0.31, P = 0.047). ADCH was not predictive of PFS or OS when accounting for age and ADCL. In summary, newly diagnosed glioblastoma patients with low ADCL after completion of RT+TMZ are likely to progress and die earlier than patients with higher ADCL. Results suggest ADC histogram analysis may be useful for patient risk stratification following completion of RT+TMZ. PMID:26740971

  8. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM.

    PubMed

    Stojcheva, Nina; Schechtmann, Gennadi; Sass, Steffen; Roth, Patrick; Florea, Ana-Maria; Stefanski, Anja; Stühler, Kai; Wolter, Marietta; Müller, Nikola S; Theis, Fabian J; Weller, Michael; Reifenberger, Guido; Happold, Caroline

    2016-03-15

    Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo. PMID:26887050

  9. Knowledge focus via software agents

    NASA Astrophysics Data System (ADS)

    Henager, Donald E.

    2001-09-01

    The essence of military Command and Control (C2) is making knowledge intensive decisions in a limited amount of time using uncertain, incorrect, or outdated information. It is essential to provide tools to decision-makers that provide: * Management of friendly forces by treating the "friendly resources as a system". * Rapid assessment of effects of military actions againt the "enemy as a system". * Assessment of how an enemy should, can, and could react to friendly military activities. Software agents in the form of mission agents, target agents, maintenance agents, and logistics agents can meet this information challenge. The role of each agent is to know all the details about its assigned mission, target, maintenance, or logistics entity. The Mission Agent would fight for mission resources based on the mission priority and analyze the effect that a proposed mission's results would have on the enemy. The Target Agent (TA) communicates with other targets to determine its role in the system of targets. A system of TAs would be able to inform a planner or analyst of the status of a system of targets, the effect of that status, adn the effect of attacks on that system. The system of TAs would also be able to analyze possible enemy reactions to attack by determining ways to minimize the effect of attack, such as rerouting traffic or using deception. The Maintenance Agent would scheudle maintenance events and notify the maintenance unit. The Logistics Agent would manage shipment and delivery of supplies to maintain appropriate levels of weapons, fuel and spare parts. The central idea underlying this case of software agents is knowledge focus. Software agents are createad automatically to focus their attention on individual real-world entities (e.g., missions, targets) and view the world from that entities perspective. The agent autonomously monitors the entity, identifies problems/opportunities, formulates solutions, and informs the decision-maker. The agent must be

  10. Agent Communications using Distributed Metaobjects

    SciTech Connect

    Goldsmith, Steven Y.; Spires, Shannon V.

    1999-06-10

    There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementation up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.

  11. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  12. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  13. Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide.

    PubMed

    Gerstner, Elizabeth R; Eichler, April F; Plotkin, Scott R; Drappatz, Jan; Doyle, Colin L; Xu, Lei; Duda, Dan G; Wen, Patrick Y; Jain, Rakesh K; Batchelor, Tracy T

    2011-06-01

    Targeting angiogenesis in glioblastoma (GBM) may improve patient outcome by normalizing tumor vasculature and improving delivery of chemotherapeutics and oxygen. Consequently, concomitant administration of small molecule inhibitors of the VEGF pathway will likely have a positive impact on chemoradiation treatment outcome. We conducted a Phase I study of vatalanib, a small molecule inhibitor of VEGFR, PDGFR, and c-kit in patients with newly diagnosed GBM receiving radiation, temozolomide, and an enzyme-inducing anti-epileptic drug in order to determine the MTD of vatalanib in this patient population. We incorporated circulating biomarker and SNP analyses and pharmacokinetic studies. Nineteen patients were enrolled and the MTD was not reached at the time of study termination. Vatalanib was well tolerated with only 2 DLTs (thrombocytopenia and elevated transaminases). Other grade 3/4 toxicities included leukopenia, lymphopenia, neutropenia, and hand-foot syndrome. There were no wound-healing complications. Of the 13 patients evaluable for a radiographic response, 2 had a partial response and 9 had stable disease. Vatalanib significantly increased PlGF and sVEGFR1 in plasma circulation and decreased sVEGFR2 and sTie2. Plasma collagen IV increased significantly by day 50 of treatment. Vatalanib was well tolerated and this study demonstrates the safety of oral small molecule inhibitors in newly diagnosed GBM patients. Blood biomarkers may be useful as pharmacodynamic markers of response to anti-angiogenic therapies. PMID:20821342

  14. Introducing Infectious Agents and Cancer

    PubMed Central

    Buonaguro, Franco M; Lewis, George K; Pelicci, PierGiuseppe

    2006-01-01

    Infectious Agents and Cancer is a new open access, peer-reviewed, online journal, which encompasses all aspects of basic, clinical and translational research that provide an insight into the association between chronic infections and cancer. PMID:23509916

  15. Diamine curing agents for polyurethanes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; St. Clair, T. L.

    1975-01-01

    Three aromatic diamines have properties that make them promising candidates as curing agents for converting isocyanates to polyurethanes with higher adhesive strengths, higher softening temperatures, better toughness, and improved abrasion resistance.

  16. Triggered pore-forming agents

    DOEpatents

    Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha

    1998-01-01

    An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.

  17. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  18. AL Amyloidosis and Agent Orange

    MedlinePlus

    ... for survivors' benefits . Research on AL amyloidosis and herbicides The Health and Medicine Division (formally known as ... to the compounds of interest found in the herbicide Agent Orange and AL amyloidosis." VA made a ...

  19. Agent-based forward analysis

    SciTech Connect

    Kerekes, Ryan A.; Jiao, Yu; Shankar, Mallikarjun; Potok, Thomas E.; Lusk, Rick M.

    2008-01-01

    We propose software agent-based "forward analysis" for efficient information retrieval in a network of sensing devices. In our approach, processing is pushed to the data at the edge of the network via intelligent software agents rather than pulling data to a central facility for processing. The agents are deployed with a specific query and perform varying levels of analysis of the data, communicating with each other and sending only relevant information back across the network. We demonstrate our concept in the context of face recognition using a wireless test bed comprised of PDA cell phones and laptops. We show that agent-based forward analysis can provide a significant increase in retrieval speed while decreasing bandwidth usage and information overload at the central facility. n

  20. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  1. What makes virtual agents believable?

    NASA Astrophysics Data System (ADS)

    Bogdanovych, Anton; Trescak, Tomas; Simoff, Simeon

    2016-01-01

    In this paper we investigate the concept of believability and make an attempt to isolate individual characteristics (features) that contribute to making virtual characters believable. As the result of this investigation we have produced a formalisation of believability and based on this formalisation built a computational framework focused on simulation of believable virtual agents that possess the identified features. In order to test whether the identified features are, in fact, responsible for agents being perceived as more believable, we have conducted a user study. In this study we tested user reactions towards the virtual characters that were created for a simulation of aboriginal inhabitants of a particular area of Sydney, Australia in 1770 A.D. The participants of our user study were exposed to short simulated scenes, in which virtual agents performed some behaviour in two different ways (while possessing a certain aspect of believability vs. not possessing it). The results of the study indicate that virtual agents that appear resource bounded, are aware of their environment, own interaction capabilities and their state in the world, agents that can adapt to changes in the environment and exist in correct social context are those that are being perceived as more believable. Further in the paper we discuss these and other believability features and provide a quantitative analysis of the level of contribution for each such feature to the overall perceived believability of a virtual agent.

  2. 46 CFR Sec. 2 - General Agents' authority.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RESPONSIBILITY OF GENERAL AGENTS TO UNDERTAKE EMERGENCY REPAIRS IN FOREIGN PORTS Sec. 2 General Agents' authority. The General Agents are hereby delegated authority to undertake for the account of the...

  3. A amphoteric copolymer profile modification agent

    SciTech Connect

    Wang HongGuan; Yu LianCheng; Tian HongKun

    1995-11-01

    This report provides a new gel profile modification agent prepared by an amphoteric copolymer (FT-213) and a novel crosslinking agent (BY), and introduces the preparations of the amphoteric polymer, the crosslinking agent and the profile modification agent, the action mechanism, the test conditions and the evaluations of the performance of the agent. The 45 well treatments in oilfields demonstrate that the agent can be prepared conveniently, the agent has better compatibility and application performances, and the treatment life is longer with the use of the agent. 80,000 tons incremental oil and 60,000 m{sup 3} decreasing water production have been achieved.

  4. Trimetazidine and cardioprotection: facts and perspectives.

    PubMed

    Tsioufis, Konstantinos; Andrikopoulos, George; Manolis, Athanasios

    2015-03-01

    Trimetazidine (TMZ) is a metabolic agent used in cardiology for more than 40 years. Several studies assessed the cardioprotective effects of TMZ in patients with chronic coronary heart disease (CHD) as well as in patients with heart failure (HF). In light of the inclusion of TMZ in the current guidelines on the management of stable CHD, we reviewed the published literature on TMZ, focusing mainly its effects on patients with stable angina and HF. According to the published literature, there is sufficient evidence to support the addition of this agent in the treatment of symptomatic patients with stable angina. PMID:24719262

  5. A multi-agent architecture for geosimulation of moving agents

    NASA Astrophysics Data System (ADS)

    Vahidnia, Mohammad H.; Alesheikh, Ali A.; Alavipanah, Seyed Kazem

    2015-10-01

    In this paper, a novel architecture is proposed in which an axiomatic derivation system in the form of first-order logic facilitates declarative explanation and spatial reasoning. Simulation of environmental perception and interaction between autonomous agents is designed with a geographic belief-desire-intention and a request-inform-query model. The architecture has a complementary quantitative component that supports collaborative planning based on the concept of equilibrium and game theory. This new architecture presents a departure from current best practices geographic agent-based modelling. Implementation tasks are discussed in some detail, as well as scenarios for fleet management and disaster management.

  6. Next Generation Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna

    1999-01-01

    In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.

  7. Optical recognition of biological agents

    NASA Astrophysics Data System (ADS)

    Baumgart, Chris W.; Linder, Kim Dalton; Trujillo, Josh J.

    2008-04-01

    Differentiation between particulate biological agents and non-biological agents is typically performed via a time-consuming "wet chemistry" process or through the use of fluorescent and spectroscopic analysis. However, while these methods can provide definitive recognition of biological agents, many of them have to be performed in a laboratory environment, or are difficult to implement in the field. Optical recognition techniques offer an additional recognition approach that can provide rapid analysis of a material in-situ to identify those materials that may be biological in nature. One possible application is to use these techniques to "screen" suspicious materials and to identify those that are potentially biological in nature. Suspicious materials identified by this screening process can then be analyzed in greater detail using the other, more definitive (but time consuming) analysis techniques. This presentation will describe the results of a feasibility study to determine whether optical pattern recognition techniques can be used to differentiate biological related materials from non-biological materials. As part of this study, feature extraction algorithms were developed utilizing multiple contrast and texture based features to characterize the macroscopic properties of different materials. In addition, several pattern recognition approaches using these features were tested including cluster analysis and neural networks. Test materials included biological agent simulants, biological agent related materials, and non-biological materials (suspicious white powders). Results of a series of feasibility tests will be presented along with a discussion of the potential field applications for these techniques.

  8. Inhalational exposure to nerve agents.

    PubMed

    Niven, Alexander S; Roop, Stuart A

    2004-03-01

    The respiratory system plays a major role in the pathogenesis of nerve agent toxicity. It is the major route of entry and absorption of nerve agent vapor, and respiratory failure is the most common cause of death follow-ing exposure. Respiratory symptoms are mediated by chemical irritation,muscarinic and nicotinic receptor overstimulation, and central nervous system effects. Recent attacks have demonstrated that most patients with an isolated vapor exposure developed respiratory symptoms almost immediately. Most patients had only mild and transient respiratory effects, and those that did develop significant respiratory compromise did so rapidly. These observations have significant ramifications on triage of patients in a mass-casualty situation, because patients with mild-to-moderate exposure to nerve agent vapor alone do not require decontamination and are less likely to develop progressive symptoms following initial antidote therapy. Limited data do not demonstrate significant long-term respiratory effects following nerve agent exposure and treatment. Provisions for effective respiratory protection against nerve agents is a vital consideration in any emergency preparedness or health care response plan against a chemical attack. PMID:15062227

  9. Investigational antimicrobial agents of 2013.

    PubMed

    Pucci, Michael J; Bush, Karen

    2013-10-01

    New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  10. Investigational Antimicrobial Agents of 2013

    PubMed Central

    Pucci, Michael J.

    2013-01-01

    SUMMARY New antimicrobial agents are always needed to counteract the resistant pathogens that continue to be selected by current therapeutic regimens. This review provides a survey of known antimicrobial agents that were currently in clinical development in the fall of 2012 and spring of 2013. Data were collected from published literature primarily from 2010 to 2012, meeting abstracts (2011 to 2012), government websites, and company websites when appropriate. Compared to what was reported in previous surveys, a surprising number of new agents are currently in company pipelines, particularly in phase 3 clinical development. Familiar antibacterial classes of the quinolones, tetracyclines, oxazolidinones, glycopeptides, and cephalosporins are represented by entities with enhanced antimicrobial or pharmacological properties. More importantly, compounds of novel chemical structures targeting bacterial pathways not previously exploited are under development. Some of the most promising compounds include novel β-lactamase inhibitor combinations that target many multidrug-resistant Gram-negative bacteria, a critical medical need. Although new antimicrobial agents will continue to be needed to address increasing antibiotic resistance, there are novel agents in development to tackle at least some of the more worrisome pathogens in the current nosocomial setting. PMID:24092856

  11. Economics of Malignant Gliomas: A Critical Review

    PubMed Central

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  12. Polymeric drug delivery for the treatment of glioblastoma

    PubMed Central

    Wait, Scott D.; Prabhu, Roshan S.; Burri, Stuart H.; Atkins, Tyler G.; Asher, Anthony L.

    2015-01-01

    Glioblastoma (GBM) remains an almost universally fatal diagnosis. The current therapeutic mainstay consists of maximal safe surgical resection followed by radiation therapy (RT) with concomitant temozolomide (TMZ), followed by monthly TMZ (the “Stupp regimen”). Several chemotherapeutic agents have been shown to have modest efficacy in the treatment of high-grade glioma (HGG), but blood-brain barrier impermeability remains a major delivery obstacle. Polymeric drug-delivery systems, developed to allow controlled local release of biologically active substances for a variety of conditions, can achieve high local concentrations of active agents while limiting systemic toxicities. Polymerically delivered carmustine (BCNU) wafers, placed on the surface of the tumor-resection cavity, can potentially provide immediate chemotherapy to residual tumor cells during the standard delay between surgery and chemoradiotherapy. BCNU wafer implantation as monochemotherapy (with RT) in newly diagnosed HGG has been investigated in 2 phase III studies that reported significant increases in median overall survival. A number of studies have investigated the tumoricidal synergies of combination chemotherapy with BCNU wafers in newly diagnosed or recurrent HGG, and a primary research focus has been the integration of BCNU wafers into multimodality therapy with the standard Stupp regimen. Overall, the results of these studies have been encouraging in terms of safety and efficacy. However, the data must be qualified by the nature of the studies conducted. Currently, there are no phase III studies of BCNU wafers with the standard Stupp regimen. We review the rationale, biochemistry, pharmacokinetics, and research history (including toxicity profile) of this modality. PMID:25746091

  13. A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas

    PubMed Central

    Ng, Kimberly; Steed, Tyler; Nguyen, Thien; Futalan, Diahnn; Akers, Johnny C.; Sarkaria, Jann; Jiang, Tao; Chowdhury, Dipanjan; Carter, Bob S.; Chen, Clark C.

    2014-01-01

    MGMT expression is a critical determinant for therapeutic resistance to DNA alkylating agents. We previously demonstrated that MGMT expression is post-transcriptionally regulated by miR-181d and other miRNAs. Here, we performed a genome-wide screen to identify MGMT regulating miRNAs. Candidate miRNAs were further tested for inverse correlation with MGMT expression in clinical specimens. We identified 15 candidate miRNAs and characterized the top candidate, miR-603. Transfection of miR-603 suppressed MGMT mRNA/protein expression in vitro and in vivo; this effect was reversed by transfection with antimiR-603. miR-603 affinity-precipitated with MGMT mRNA and suppressed luciferase activity in an MGMT-3'UTR-luciferase assay, suggesting direct interaction between miR-603 and MGMT 3'UTR. miR-603 transfection enhanced the temozolomide (TMZ) sensitivity of MGMT-expressing glioblastoma cell lines. Importantly, miR-603 mediated MGMT suppression and TMZ resistance were reversed by expression of an MGMT cDNA. In a collection of 74 clinical glioblastoma specimens, both miR-603 and miR-181d levels inversely correlated with MGMT expression. Moreover, a combined index of the two miRNAs better reflected MGMT expression than each individually. These results suggest that MGMT is co-regulated by independent miRNAs. Characterization of these miRNAs should contribute toward strategies for enhancing the efficacy of DNA alkylating agents. PMID:24994119

  14. Environmentally responsive MRI contrast agents

    PubMed Central

    Davies, Gemma-Louise; Kramberger, Iris; Davis, Jason J.

    2015-01-01

    Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents. PMID:24040650

  15. Polycatechol Nanoparticle MRI Contrast Agents.

    PubMed

    Li, Yiwen; Huang, Yuran; Wang, Zhao; Carniato, Fabio; Xie, Yijun; Patterson, Joseph P; Thompson, Matthew P; Andolina, Christopher M; Ditri, Treffly B; Millstone, Jill E; Figueroa, Joshua S; Rinehart, Jeffrey D; Scadeng, Miriam; Botta, Mauro; Gianneschi, Nathan C

    2016-02-01

    Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement. PMID:26681255

  16. Chemical warfare. Nerve agent poisoning.

    PubMed

    Holstege, C P; Kirk, M; Sidell, F R

    1997-10-01

    The threat of civilian and military casualties from nerve agent exposure has become a greater concern over the past decade. After rapidly assessing that a nerve agent attack has occurred, emphasis must be placed on decontamination and protection of both rescuers and medical personnel from exposure. The medical system can become rapidly overwhelmed and strong emotional reactions can confuse the clinical picture. Initially, care should first be focused on supportive care, with emphasis toward aggressive airway maintenance and decontamination. Atropine should be titrated, with the goal of therapy being drying of secretions and the resolution of bronchoconstriction and bradycardia. Early administration of pralidoxime chloride maximizes antidotal efficacy. Benzodiazepines, in addition to atropine, should be administered if seizures develop. Early, aggressive medical therapy is the key to prevention of the morbidity and mortality associated with nerve agent poisoning. PMID:9330846

  17. Agent review phase one report.

    SciTech Connect

    Zubelewicz, Alex Tadeusz; Davis, Christopher Edward; Bauer, Travis LaDell

    2009-12-01

    This report summarizes the findings for phase one of the agent review and discusses the review methods and results. The phase one review identified a short list of agent systems that would prove most useful in the service architecture of an information management, analysis, and retrieval system. Reviewers evaluated open-source and commercial multi-agent systems and scored them based upon viability, uniqueness, ease of development, ease of deployment, and ease of integration with other products. Based on these criteria, reviewers identified the ten most appropriate systems. The report also mentions several systems that reviewers deemed noteworthy for the ideas they implement, even if those systems are not the best choices for information management purposes.

  18. Haloprogin: a Topical Antifungal Agent

    PubMed Central

    Harrison, E. F.; Zwadyk, P.; Bequette, R. J.; Hamlow, E. E.; Tavormina, P. A.; Zygmunt, W. A.

    1970-01-01

    Haloprogin was shown to be a highly effective agent for the treatment of experimentally induced topical mycotic infections in guinea pigs. Its in vitro spectrum of activity also includes yeasts, yeastlike fungi (Candida species), and certain gram-positive bacteria. The in vitro and in vivo antifungal activity of haloprogin against dermatophytes was equal to that observed with tolnaftate. The striking differences between the two agents were the marked antimonilial and selective antibacterial activities shown by haloprogin, contrasted with the negligible activities found with tolnaftate. Addition of serum decreased the in vitro antifungal activity of haloprogin to a greater extent than that of tolnaftate; however, diminished antifungal activity was not observed when haloprogin was applied topically to experimental dermatophytic infections. Based on its broad spectrum of antimicrobial activity, haloprogin may prove to be a superior topical agent in the treatment of dermatophytic and monilial infections in man. PMID:5422306

  19. Thyroid dysfunction from antineoplastic agents.

    PubMed

    Hamnvik, Ole-Petter Riksfjord; Larsen, P Reed; Marqusee, Ellen

    2011-11-01

    Unlike cytotoxic agents that indiscriminately affect rapidly dividing cells, newer antineoplastic agents such as targeted therapies and immunotherapies are associated with thyroid dysfunction. These include tyrosine kinase inhibitors, bexarotene, radioiodine-based cancer therapies, denileukin diftitox, alemtuzumab, interferon-α, interleukin-2, ipilimumab, tremelimumab, thalidomide, and lenalidomide. Primary hypothyroidism is the most common side effect, although thyrotoxicosis and effects on thyroid-stimulating hormone secretion and thyroid hormone metabolism have also been described. Most agents cause thyroid dysfunction in 20%-50% of patients, although some have even higher rates. Despite this, physicians may overlook drug-induced thyroid dysfunction because of the complexity of the clinical picture in the cancer patient. Symptoms of hypothyroidism, such as fatigue, weakness, depression, memory loss, cold intolerance, and cardiovascular effects, may be incorrectly attributed to the primary disease or to the antineoplastic agent. Underdiagnosis of thyroid dysfunction can have important consequences for cancer patient management. At a minimum, the symptoms will adversely affect the patient's quality of life. Alternatively, such symptoms can lead to dose reductions of potentially life-saving therapies. Hypothyroidism can also alter the kinetics and clearance of medications, which may lead to undesirable side effects. Thyrotoxicosis can be mistaken for sepsis or a nonendocrinologic drug side effect. In some patients, thyroid disease may indicate a higher likelihood of tumor response to the agent. Both hypothyroidism and thyrotoxicosis are easily diagnosed with inexpensive and specific tests. In many patients, particularly those with hypothyroidism, the treatment is straightforward. We therefore recommend routine testing for thyroid abnormalities in patients receiving these antineoplastic agents. PMID:22010182

  20. Erythropoietic agents and the elderly.

    PubMed

    Agarwal, Neeraj; Prchal, Josef T

    2008-10-01

    Erythropoietin (Epo) is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development that either act as ligands for the cell surface receptors of Epo or promote Epo production, which stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents under active investigation include continuous erythropoietin receptor activator (CERA) or proline hydroxylase inhibitors that increase hypoxia-inducible factor-1 (HIF-1), thereby stimulating Epo production and iron availability and supply. Erythropoietic agents have been shown to promote neuronal regeneration and to decrease post-stroke infarct size in mouse models. They have also been reported to shorten survival when used to treat anemia in many cancer patients and to increase thromboembolism. In contrast, rapid decrease of Epo levels as observed in astronauts and high-altitude dwellers upon rapid descent to sea level leads to the decrease of erythroid mass, a phenomenon known as "neocytolysis." The relative decrease in the serum Epo level is known to occur in some subjects with otherwise unexplained anemia of aging. Anemia by itself is a predictor of poor physical function in the elderly and is a significant economic burden on society. One out of every five persons in the United States will be elderly by 2050. Erythropoietic agents, by preventing and treating otherwise unexplained anemias of the elderly and anemia associated with other disease conditions of the elderly, have the potential to improve the functional capacity and to decrease the morbidity and mortality in the elderly, thereby alleviating the overall burden of medical care in society. PMID:18809098

  1. Erythropoietic Agents and the Elderly

    PubMed Central

    Agarwal, Neeraj; Prchal, Josef T.

    2008-01-01

    Erythropoietin is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development, which either act as ligands for the cell surface receptors of erythropoietin or promote erythropoietin production that stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents stimulating erythropoiesis (such as continuous erythropoietin receptor activator (CERA) or proline hydroxylase inhibitors that increase HIF-1 thereby stimulating erythropoietin production and iron availability and supply) are under active investigation. Erythropoietic agents have been shown to promote neuronal regeneration and to decrease post-stroke infarct size in mouse models. They have also been reported to shorten survival when used to treat anemia in many cancer patients and to increase thromboembolism. In contrast, rapid decrease of erythropoietin levels as observed in astronauts and high-altitude dwellers upon rapid descent to sea level leads to the decrease of erythroid mass, a phenomenon known as neocytolysis. The relative decrease in the serum erythropoietin level is known to occur in some subjects with otherwise unexplained anemia of aging. Anemia by itself is a predictor of poor physical function in the elderly and is a significant economic burden on society. One out of every five persons in the United States will be elderly by 2050. Erythropoietic agents, by preventing and treating otherwise unexplained anemias of the elderly and anemia associated with other disease conditions of the elderly, have the potential to improve the functional capacity and to decrease the morbidity and mortality in the elderly, thereby alleviating the overall burden of medical care in society. PMID:18809098

  2. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  3. An overview of inotropic agents.

    PubMed

    Vroom, Margreeth B

    2006-09-01

    The use of inotropic agents has been surrounded by many controversies. Recent guidelines for the treatment of patients with chronic and acute heart failure have elucidated some of the issues, but many remain. As a result, a substantial variability in the use of agents between institutions and caregivers remains, which mainly results from the lack of uniform data in the literature. Prospective randomized trials with a long-term follow-up and sufficient power are clearly needed, and a number of trials are currently in progress. PMID:16959760

  4. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome and... 7 Agriculture 3 2013-01-01 2013-01-01 false Flavoring agents. 58.629 Section 58.629 Agriculture.... Flavoring agents shall be one or more of those approved in § 58.605....

  5. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome and... 7 Agriculture 3 2012-01-01 2012-01-01 false Flavoring agents. 58.629 Section 58.629 Agriculture.... Flavoring agents shall be one or more of those approved in § 58.605....

  6. 7 CFR 58.629 - Flavoring agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Material § 58.629 Flavoring agents. Flavoring agents either natural or artificial shall be wholesome and... 7 Agriculture 3 2014-01-01 2014-01-01 false Flavoring agents. 58.629 Section 58.629 Agriculture.... Flavoring agents shall be one or more of those approved in § 58.605....

  7. Why Do Extension Agents Resign?

    ERIC Educational Resources Information Center

    Manton, Linda Nunes; van Es, J. C.

    1985-01-01

    Past and current Illinois extension agents were surveyed via mail questionnaires as to reasons for staying or leaving extension programs. Reasons for leaving included family changes, family moves, opportunity to advance, better salary/benefits, dissatisfaction with administration, and too much time away from family. (CT)

  8. Foodborne illness and microbial agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illnesses result from the consumption of food containing microbial agents such as bacteria, viruses, parasites or food contaminated by poisonous chemicals or bio-toxins. Pathogen proliferation is due to nutrient composition of foods, which are capable of supporting the growth of microorgan...

  9. Superintendents: The Key Influence Agents.

    ERIC Educational Resources Information Center

    Powell, Randy

    1990-01-01

    By the nature of their positions in schools, administrators are either influence agents or targets. Based on personal interviews with 140 Oregon administrators and a survey of 319 administrators around the state, this article highlights administrators' comments about their administrative influence and about constraints on their influence.…

  10. Triggered pore-forming agents

    DOEpatents

    Bayley, H.; Walker, B.J.; Chang, C.Y.; Niblack, B.; Panchal, R.

    1998-07-07

    An inactive pore-forming agent is revealed which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell. 30 figs.

  11. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  12. SEM: A Cultural Change Agent

    ERIC Educational Resources Information Center

    Barnes, Bradley; Bourke, Brian

    2015-01-01

    The authors advance the concept that institutional culture is a purposeful framework by which to view SEM's utility, particularly as a cultural change agent. Through the connection of seemingly independent functions of performance and behavior, implications emerge that deepen the understanding of the influence of culture on performance outcomes…

  13. Direct Vasodilators and Sympatholytic Agents.

    PubMed

    McComb, Meghan N; Chao, James Y; Ng, Tien M H

    2016-01-01

    Direct vasodilators and sympatholytic agents were some of the first antihypertensive medications discovered and utilized in the past century. However, side effect profiles and the advent of newer antihypertensive drug classes have reduced the use of these agents in recent decades. Outcome data and large randomized trials supporting the efficacy of these medications are limited; however, in general the blood pressure-lowering effect of these agents has repeatedly been shown to be comparable to other more contemporary drug classes. Nevertheless, a landmark hypertension trial found a negative outcome with a doxazosin-based regimen compared to a chlorthalidone-based regimen, leading to the removal of α-1 adrenergic receptor blockers as first-line monotherapy from the hypertension guidelines. In contemporary practice, direct vasodilators and sympatholytic agents, particularly hydralazine and clonidine, are often utilized in refractory hypertension. Hydralazine and minoxidil may also be useful alternatives for patients with renal dysfunction, and both hydralazine and methyldopa are considered first line for the treatment of hypertension in pregnancy. Hydralazine has also found widespread use for the treatment of systolic heart failure in combination with isosorbide dinitrate (ISDN). The data to support use of this combination in African Americans with heart failure are particularly robust. Hydralazine with ISDN may also serve as an alternative for patients with an intolerance to angiotensin antagonists. Given these niche indications, vasodilators and sympatholytics are still useful in clinical practice; therefore, it is prudent to understand the existing data regarding efficacy and the safe use of these medications. PMID:26033778

  14. Improving agents using reliable communication

    NASA Astrophysics Data System (ADS)

    Zheng, Jinbin

    2013-10-01

    Recent advances in introspective modalities and linear time symmetries do not necessarily obviate the need for web browsers [1]. In our research, we disprove the exploration of agents, which embodies the appropriate principles of electrical engineering. Here we demonstrate that even though semaphores and XML [1] are mostly incompatible, randomized algorithms and write-back caches are mostly incompatible.

  15. Echographic studies of osmotic agents.

    PubMed

    Vucicevic, Z M; Tark, E; Ahmad, S

    1979-09-01

    The effectiveness of osmotic agents, acetazolamide (Diamox), urea, glycerol, and mannitol, and massages (5 and 10 minutes) for inducing hypotony in rabbit eyes was evaluated by ultrasonography. Mannitol was found to have the greatest hypotonic effect followed closely by urea and glycerol, then acetazolamide. The difference between the 5 and 10 minute massages was negligible. PMID:122221

  16. An Autonomous Spacecraft Agent Prototype

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Bernard, Douglas E.; Chien, Steve A.; Gat, Erann; Muscettola, Nicola; Nayak, P. Pandurang; Wagner, Michael D.; Williams, Brian C.

    1997-01-01

    This paper describes the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. This architecture integrates traditional real-time monitoring and control with constraint-based planning and scheduling, robust multi-threaded execution, and model-based diagnosis and reconfiguration.

  17. Limonene and tetrahydrofurfurly alcohol cleaning agent

    SciTech Connect

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  18. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  19. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  20. Halide test agent replacement study

    SciTech Connect

    Banks, E.M.; Freeman, W.P.; Kovach, B.J.

    1995-02-01

    The intended phaseout of the chlorofluorocarbons (CFCs) from commercial use required the evaluation of substitute materials for the testing for leak paths through both individual adsorbers and installed adsorbent banks. The American Society of Mechanical Engineers (ASME) Committee on Nuclear Air and Gas Treatment (CONAGT) is in charge of maintaining the standards and codes specifying adsorbent leak test methods for the nuclear safety related air cleaning systems. The currently published standards and codes cite the use of R-11, R-12 and R-112 for leak path test agents. All of these compounds are CFCs. There are other agencies and organizations (USDOE, USDOD and USNRC) also specifying testing for leak paths or in some cases for special life tests using the above compounds. The CONAGT has recently developed criteria for the suitability evaluation of substitute test agents. On the basis of these criteria, several compounds were evaluated for their acceptability as adsorbent bed leak and life test agents. The ASME CONAGT Test Agent Qualification Criteria. The test agent qualification is based on the following parameters: (1) Similar retention times on activated carbons at the same concentration levels as one of the following: R-11, R-12, R-112 or R-112a. (2) Similar lower detection limit sensitivity and precision in the concentration range of use as R-11, R-12, R-112 and R-112a. (3) Gives the same in-place leak test results as R-11, R-12, R-112, or R-112a. (4) Chemical and radiological stability under the use conditions. (5) Causes no degradation of the carbon and its impregnant or of the other NATS components under the use conditions. (6) Is listed in the USEPA Toxic Substances Control Act (TSCA) inventory for commercial use.

  1. Biologic agents in juvenile spondyloarthropathies.

    PubMed

    Katsicas, María Martha; Russo, Ricardo

    2016-01-01

    The juvenile spondyloarthropathies (JSpA) are a group of related rheumatic diseases characterized by involvement of peripheral large joints, axial joints, and entheses (enthesitis) that begin in the early years of life (prior to 16(th) birthday).The nomenclature and concept of spondyloarthropathies has changed during the last few decades. Although there is not any specific classification of JSpA, diseases under the spondyloarthropathy nomenclature umbrella in the younger patients include: the seronegative enthesitis and arthropathy (SEA) syndrome, juvenile ankylosing spondylitis, reactive arthritis, and inflammatory bowel disease-associated arthritis. Moreover, the ILAR criteria for Juvenile Idiopathic Arthritis includes two categories closely related to spondyloarthritis: Enthesitis-related arthritis and psoriatic arthritis.We review the pathophysiology and the use of biological agents in JSpA. JSpA are idiopathic inflammatory diseases driven by an altered balance in the proinflammatory cytokines. There is ample evidence on the role of tumor necrosis factor (TNF) and interleukin-17 in the physiopathology of these entities. Several non-biologic and biologic agents have been used with conflicting results in the treatment of these complex diseases. The efficacy and safety of anti-TNF agents, such as etanercept, infliximab and adalimumab, have been analysed in controlled and uncontrolled trials, usually showing satisfactory outcomes. Other biol